extent_io.c 197.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8 9 10 11 12 13
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
14
#include <linux/prefetch.h>
B
Boris Burkov 已提交
15
#include <linux/fsverity.h>
16
#include "misc.h"
17
#include "extent_io.h"
18
#include "extent-io-tree.h"
19
#include "extent_map.h"
20 21
#include "ctree.h"
#include "btrfs_inode.h"
22
#include "volumes.h"
23
#include "check-integrity.h"
24
#include "locking.h"
25
#include "rcu-string.h"
26
#include "backref.h"
27
#include "disk-io.h"
28
#include "subpage.h"
29
#include "zoned.h"
30
#include "block-group.h"
31 32 33

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
34
static struct bio_set btrfs_bioset;
35

36 37 38 39 40
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

41
#ifdef CONFIG_BTRFS_DEBUG
42
static LIST_HEAD(states);
C
Chris Mason 已提交
43
static DEFINE_SPINLOCK(leak_lock);
44

45 46 47
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
48 49 50
{
	unsigned long flags;

51
	spin_lock_irqsave(lock, flags);
52
	list_add(new, head);
53
	spin_unlock_irqrestore(lock, flags);
54 55
}

56 57
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
58 59 60
{
	unsigned long flags;

61
	spin_lock_irqsave(lock, flags);
62
	list_del(entry);
63
	spin_unlock_irqrestore(lock, flags);
64 65
}

66
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
67 68
{
	struct extent_buffer *eb;
69
	unsigned long flags;
70

71 72 73 74 75 76 77
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

78 79 80 81
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
82 83 84 85
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
86 87 88
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
89
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
90 91 92 93 94 95
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

96 97
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
98
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
99 100
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
101
		       refcount_read(&state->refs));
102 103 104 105
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
106

107 108
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
109
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
110
		struct extent_io_tree *tree, u64 start, u64 end)
111
{
112 113 114 115 116 117 118 119 120 121 122 123
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
124
}
125
#else
126 127
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
128
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
129
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
130
#endif
131 132 133 134 135 136 137 138

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

struct extent_page_data {
139
	struct btrfs_bio_ctrl bio_ctrl;
140 141 142
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
143 144
	unsigned int extent_locked:1;

145
	/* tells the submit_bio code to use REQ_SYNC */
146
	unsigned int sync_io:1;
147 148
};

149
static int add_extent_changeset(struct extent_state *state, u32 bits,
150 151 152 153 154 155
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
156
		return 0;
157
	if (set && (state->state & bits) == bits)
158
		return 0;
159
	if (!set && (state->state & bits) == 0)
160
		return 0;
161
	changeset->bytes_changed += state->end - state->start + 1;
162
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
163
			GFP_ATOMIC);
164
	return ret;
165 166
}

167 168
int __must_check submit_one_bio(struct bio *bio, int mirror_num,
				unsigned long bio_flags)
169 170 171 172 173 174
{
	blk_status_t ret = 0;
	struct extent_io_tree *tree = bio->bi_private;

	bio->bi_private = NULL;

175 176
	/* Caller should ensure the bio has at least some range added */
	ASSERT(bio->bi_iter.bi_size);
177 178 179 180
	if (is_data_inode(tree->private_data))
		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
					    bio_flags);
	else
181 182
		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
						mirror_num, bio_flags);
183 184 185 186

	return blk_status_to_errno(ret);
}

187 188 189
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
190 191 192 193 194 195
	struct bio *bio = epd->bio_ctrl.bio;

	if (bio) {
		bio->bi_status = errno_to_blk_status(ret);
		bio_endio(bio);
		epd->bio_ctrl.bio = NULL;
196 197 198
	}
}

199 200 201 202 203 204 205
/*
 * Submit bio from extent page data via submit_one_bio
 *
 * Return 0 if everything is OK.
 * Return <0 for error.
 */
static int __must_check flush_write_bio(struct extent_page_data *epd)
206
{
207
	int ret = 0;
208
	struct bio *bio = epd->bio_ctrl.bio;
209

210 211
	if (bio) {
		ret = submit_one_bio(bio, 0, 0);
212 213 214 215 216 217 218
		/*
		 * Clean up of epd->bio is handled by its endio function.
		 * And endio is either triggered by successful bio execution
		 * or the error handler of submit bio hook.
		 * So at this point, no matter what happened, we don't need
		 * to clean up epd->bio.
		 */
219
		epd->bio_ctrl.bio = NULL;
220
	}
221
	return ret;
222
}
223

224
int __init extent_state_cache_init(void)
225
{
D
David Sterba 已提交
226
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
227
			sizeof(struct extent_state), 0,
228
			SLAB_MEM_SPREAD, NULL);
229 230
	if (!extent_state_cache)
		return -ENOMEM;
231 232
	return 0;
}
233

234 235
int __init extent_io_init(void)
{
D
David Sterba 已提交
236
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
237
			sizeof(struct extent_buffer), 0,
238
			SLAB_MEM_SPREAD, NULL);
239
	if (!extent_buffer_cache)
240
		return -ENOMEM;
241

242
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
243
			offsetof(struct btrfs_bio, bio),
244
			BIOSET_NEED_BVECS))
245
		goto free_buffer_cache;
246

247
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
248 249
		goto free_bioset;

250 251
	return 0;

252
free_bioset:
253
	bioset_exit(&btrfs_bioset);
254

255 256 257
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
258 259
	return -ENOMEM;
}
260

261 262 263
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
264 265 266
	kmem_cache_destroy(extent_state_cache);
}

267
void __cold extent_io_exit(void)
268
{
269 270 271 272 273
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
274
	kmem_cache_destroy(extent_buffer_cache);
275
	bioset_exit(&btrfs_bioset);
276 277
}

278 279 280 281 282 283 284 285 286
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

287
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
288 289
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
290
{
291
	tree->fs_info = fs_info;
292
	tree->state = RB_ROOT;
293
	tree->dirty_bytes = 0;
294
	spin_lock_init(&tree->lock);
295
	tree->private_data = private_data;
296
	tree->owner = owner;
297 298
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
299 300
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

330
static struct extent_state *alloc_extent_state(gfp_t mask)
331 332 333
{
	struct extent_state *state;

334 335 336 337 338
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
339
	state = kmem_cache_alloc(extent_state_cache, mask);
340
	if (!state)
341 342
		return state;
	state->state = 0;
343
	state->failrec = NULL;
344
	RB_CLEAR_NODE(&state->rb_node);
345
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
346
	refcount_set(&state->refs, 1);
347
	init_waitqueue_head(&state->wq);
348
	trace_alloc_extent_state(state, mask, _RET_IP_);
349 350 351
	return state;
}

352
void free_extent_state(struct extent_state *state)
353 354 355
{
	if (!state)
		return;
356
	if (refcount_dec_and_test(&state->refs)) {
357
		WARN_ON(extent_state_in_tree(state));
358
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
359
		trace_free_extent_state(state, _RET_IP_);
360 361 362 363
		kmem_cache_free(extent_state_cache, state);
	}
}

364 365 366
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
367 368 369
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
370
{
371
	struct rb_node **p;
C
Chris Mason 已提交
372
	struct rb_node *parent = NULL;
373 374
	struct tree_entry *entry;

375 376 377 378 379 380
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

381
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
382
	while (*p) {
383 384 385 386 387 388 389 390 391 392 393
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

394
do_insert:
395 396 397 398 399
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
400
/**
401 402
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
403
 *
404 405 406 407 408 409 410
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
411 412 413 414 415 416 417
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
418
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
419
				      struct rb_node **next_ret,
420
				      struct rb_node **prev_ret,
421 422
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
423
{
424
	struct rb_root *root = &tree->state;
425
	struct rb_node **n = &root->rb_node;
426 427 428 429 430
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

431 432 433
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
434 435 436
		prev_entry = entry;

		if (offset < entry->start)
437
			n = &(*n)->rb_left;
438
		else if (offset > entry->end)
439
			n = &(*n)->rb_right;
C
Chris Mason 已提交
440
		else
441
			return *n;
442 443
	}

444 445 446 447 448
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

449
	if (next_ret) {
450
		orig_prev = prev;
C
Chris Mason 已提交
451
		while (prev && offset > prev_entry->end) {
452 453 454
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
455
		*next_ret = prev;
456 457 458
		prev = orig_prev;
	}

459
	if (prev_ret) {
460
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
461
		while (prev && offset < prev_entry->start) {
462 463 464
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
465
		*prev_ret = prev;
466 467 468 469
	}
	return NULL;
}

470 471 472 473 474
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
475
{
476
	struct rb_node *next= NULL;
477
	struct rb_node *ret;
478

479
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
480
	if (!ret)
481
		return next;
482 483 484
	return ret;
}

485 486 487 488 489 490
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

491 492 493 494 495 496 497 498 499
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
500 501
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
502 503 504 505
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
506
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
507
		return;
508 509 510 511 512 513

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
514 515 516 517
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
518 519
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
520
			RB_CLEAR_NODE(&other->rb_node);
521 522 523 524 525 526 527 528
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
529 530 531 532
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
533 534
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
535
			RB_CLEAR_NODE(&other->rb_node);
536
			free_extent_state(other);
537 538 539 540
		}
	}
}

541
static void set_state_bits(struct extent_io_tree *tree,
542
			   struct extent_state *state, u32 *bits,
543
			   struct extent_changeset *changeset);
544

545 546 547 548 549 550 551 552 553 554 555 556
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
557 558
			struct rb_node ***p,
			struct rb_node **parent,
559
			u32 *bits, struct extent_changeset *changeset)
560 561 562
{
	struct rb_node *node;

563 564 565 566 567
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
568 569
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
570

571
	set_state_bits(tree, state, bits, changeset);
572

573
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
574 575 576
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
577 578
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
579
		       found->start, found->end, start, end);
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
604

605 606
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
607

608 609 610 611 612
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

613 614
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
615 616 617 618 619 620 621
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

622 623 624 625 626 627 628 629 630
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

631 632
/*
 * utility function to clear some bits in an extent state struct.
633
 * it will optionally wake up anyone waiting on this state (wake == 1).
634 635 636 637
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
638 639
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
640
					    u32 *bits, int wake,
641
					    struct extent_changeset *changeset)
642
{
643
	struct extent_state *next;
644
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
645
	int ret;
646

647
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
648 649 650 651
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
652 653 654 655

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

656 657
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
658
	state->state &= ~bits_to_clear;
659 660
	if (wake)
		wake_up(&state->wq);
661
	if (state->state == 0) {
662
		next = next_state(state);
663
		if (extent_state_in_tree(state)) {
664
			rb_erase(&state->rb_node, &tree->state);
665
			RB_CLEAR_NODE(&state->rb_node);
666 667 668 669 670 671
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
672
		next = next_state(state);
673
	}
674
	return next;
675 676
}

677 678 679 680 681 682 683 684 685
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

686
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
687
{
688
	btrfs_panic(tree->fs_info, err,
689
	"locking error: extent tree was modified by another thread while locked");
690 691
}

692 693 694 695 696 697 698 699 700 701
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
702
 * This takes the tree lock, and returns 0 on success and < 0 on error.
703
 */
704
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705 706 707
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
708 709
{
	struct extent_state *state;
710
	struct extent_state *cached;
711 712
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
713
	u64 last_end;
714
	int err;
715
	int clear = 0;
716

717
	btrfs_debug_check_extent_io_range(tree, start, end);
718
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
719

720 721 722
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

723 724 725
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
726
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
727
		clear = 1;
728
again:
729
	if (!prealloc && gfpflags_allow_blocking(mask)) {
730 731 732 733 734 735 736
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
737 738 739
		prealloc = alloc_extent_state(mask);
	}

740
	spin_lock(&tree->lock);
741 742
	if (cached_state) {
		cached = *cached_state;
743 744 745 746 747 748

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

749 750
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
751
			if (clear)
752
				refcount_dec(&cached->refs);
753
			state = cached;
754
			goto hit_next;
755
		}
756 757
		if (clear)
			free_extent_state(cached);
758
	}
759 760 761 762
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
763
	node = tree_search(tree, start);
764 765 766
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
767
hit_next:
768 769 770
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
771
	last_end = state->end;
772

773
	/* the state doesn't have the wanted bits, go ahead */
774 775
	if (!(state->state & bits)) {
		state = next_state(state);
776
		goto next;
777
	}
778

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
796 797
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
798
		err = split_state(tree, state, prealloc, start);
799 800 801
		if (err)
			extent_io_tree_panic(tree, err);

802 803 804 805
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
806 807
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
808
			goto next;
809 810 811 812 813 814 815 816 817 818
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
819 820
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
821
		err = split_state(tree, state, prealloc, end + 1);
822 823 824
		if (err)
			extent_io_tree_panic(tree, err);

825 826
		if (wake)
			wake_up(&state->wq);
827

828
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
829

830 831 832
		prealloc = NULL;
		goto out;
	}
833

834
	state = clear_state_bit(tree, state, &bits, wake, changeset);
835
next:
836 837 838
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
839
	if (start <= end && state && !need_resched())
840
		goto hit_next;
841 842 843 844

search_again:
	if (start > end)
		goto out;
845
	spin_unlock(&tree->lock);
846
	if (gfpflags_allow_blocking(mask))
847 848
		cond_resched();
	goto again;
849 850 851 852 853 854 855 856

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

857 858
}

859 860
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
861 862
		__releases(tree->lock)
		__acquires(tree->lock)
863 864 865
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
866
	spin_unlock(&tree->lock);
867
	schedule();
868
	spin_lock(&tree->lock);
869 870 871 872 873 874 875 876
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
877
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
878
			    u32 bits)
879 880 881 882
{
	struct extent_state *state;
	struct rb_node *node;

883
	btrfs_debug_check_extent_io_range(tree, start, end);
884

885
	spin_lock(&tree->lock);
886 887 888 889 890 891
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
892
		node = tree_search(tree, start);
893
process_node:
894 895 896 897 898 899 900 901 902 903
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
904
			refcount_inc(&state->refs);
905 906 907 908 909 910 911 912 913
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

914 915 916 917
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
918 919
	}
out:
920
	spin_unlock(&tree->lock);
921 922
}

923
static void set_state_bits(struct extent_io_tree *tree,
924
			   struct extent_state *state,
925
			   u32 *bits, struct extent_changeset *changeset)
926
{
927
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
928
	int ret;
J
Josef Bacik 已提交
929

930 931 932
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

933
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
934 935 936
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
937 938
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
939
	state->state |= bits_to_set;
940 941
}

942 943
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
944
				 unsigned flags)
945 946
{
	if (cached_ptr && !(*cached_ptr)) {
947
		if (!flags || (state->state & flags)) {
948
			*cached_ptr = state;
949
			refcount_inc(&state->refs);
950 951 952 953
		}
	}
}

954 955 956 957
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
958
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
959 960
}

961
/*
962 963
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
964
 *
965 966 967
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
968
 *
969
 * [start, end] is inclusive This takes the tree lock.
970
 */
971 972
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
973 974
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
975 976 977 978
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
979 980
	struct rb_node **p;
	struct rb_node *parent;
981 982 983
	int err = 0;
	u64 last_start;
	u64 last_end;
984

985
	btrfs_debug_check_extent_io_range(tree, start, end);
986
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
987

988 989 990 991
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
992
again:
993
	if (!prealloc && gfpflags_allow_blocking(mask)) {
994 995 996 997 998 999 1000
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
1001 1002 1003
		prealloc = alloc_extent_state(mask);
	}

1004
	spin_lock(&tree->lock);
1005 1006
	if (cached_state && *cached_state) {
		state = *cached_state;
1007
		if (state->start <= start && state->end > start &&
1008
		    extent_state_in_tree(state)) {
1009 1010 1011 1012
			node = &state->rb_node;
			goto hit_next;
		}
	}
1013 1014 1015 1016
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1017
	node = tree_search_for_insert(tree, start, &p, &parent);
1018
	if (!node) {
1019 1020
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1021
		err = insert_state(tree, prealloc, start, end,
1022
				   &p, &parent, &bits, changeset);
1023 1024 1025
		if (err)
			extent_io_tree_panic(tree, err);

1026
		cache_state(prealloc, cached_state);
1027 1028 1029 1030
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1031
hit_next:
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1042
		if (state->state & exclusive_bits) {
1043 1044 1045 1046
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1047

1048
		set_state_bits(tree, state, &bits, changeset);
1049
		cache_state(state, cached_state);
1050
		merge_state(tree, state);
1051 1052 1053
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1054 1055 1056 1057
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1078
		if (state->state & exclusive_bits) {
1079 1080 1081 1082
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1094 1095
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1096
		err = split_state(tree, state, prealloc, start);
1097 1098 1099
		if (err)
			extent_io_tree_panic(tree, err);

1100 1101 1102 1103
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1104
			set_state_bits(tree, state, &bits, changeset);
1105
			cache_state(state, cached_state);
1106
			merge_state(tree, state);
1107 1108 1109
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1110 1111 1112 1113
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1129
			this_end = last_start - 1;
1130 1131 1132

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1133 1134 1135 1136 1137

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1138
		err = insert_state(tree, prealloc, start, this_end,
1139
				   NULL, NULL, &bits, changeset);
1140 1141 1142
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1143 1144
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1155
		if (state->state & exclusive_bits) {
1156 1157 1158 1159
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1160 1161 1162

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1163
		err = split_state(tree, state, prealloc, end + 1);
1164 1165
		if (err)
			extent_io_tree_panic(tree, err);
1166

1167
		set_state_bits(tree, prealloc, &bits, changeset);
1168
		cache_state(prealloc, cached_state);
1169 1170 1171 1172 1173
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1174 1175 1176 1177 1178 1179 1180
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1181 1182

out:
1183
	spin_unlock(&tree->lock);
1184 1185 1186 1187 1188 1189 1190
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1191
/**
L
Liu Bo 已提交
1192 1193
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1194 1195 1196 1197 1198
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1199
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1200 1201 1202 1203 1204 1205
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1206 1207
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1208 1209
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210
		       u32 bits, u32 clear_bits,
1211
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1212 1213 1214 1215
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1216 1217
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1218 1219 1220
	int err = 0;
	u64 last_start;
	u64 last_end;
1221
	bool first_iteration = true;
J
Josef Bacik 已提交
1222

1223
	btrfs_debug_check_extent_io_range(tree, start, end);
1224 1225
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1226

J
Josef Bacik 已提交
1227
again:
1228
	if (!prealloc) {
1229 1230 1231 1232 1233 1234 1235
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1236
		prealloc = alloc_extent_state(GFP_NOFS);
1237
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1238 1239 1240 1241
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1242 1243 1244
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1245
		    extent_state_in_tree(state)) {
1246 1247 1248 1249 1250
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1251 1252 1253 1254
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1255
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1256 1257
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1258 1259 1260 1261
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1262
		err = insert_state(tree, prealloc, start, end,
1263
				   &p, &parent, &bits, NULL);
1264 1265
		if (err)
			extent_io_tree_panic(tree, err);
1266 1267
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1282
		set_state_bits(tree, state, &bits, NULL);
1283
		cache_state(state, cached_state);
1284
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1285 1286 1287
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1288 1289 1290
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1312 1313 1314 1315
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1316
		err = split_state(tree, state, prealloc, start);
1317 1318
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1319 1320 1321 1322
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1323
			set_state_bits(tree, state, &bits, NULL);
1324
			cache_state(state, cached_state);
1325 1326
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1327 1328 1329
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1330 1331 1332
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1351 1352 1353 1354
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1355 1356 1357 1358 1359 1360

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1361
				   NULL, NULL, &bits, NULL);
1362 1363
		if (err)
			extent_io_tree_panic(tree, err);
1364
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1377 1378 1379 1380
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1381 1382

		err = split_state(tree, state, prealloc, end + 1);
1383 1384
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1385

1386
		set_state_bits(tree, prealloc, &bits, NULL);
1387
		cache_state(prealloc, cached_state);
1388
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1389 1390 1391 1392 1393 1394 1395 1396
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1397
	cond_resched();
1398
	first_iteration = false;
J
Josef Bacik 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1409
/* wrappers around set/clear extent bit */
1410
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411
			   u32 bits, struct extent_changeset *changeset)
1412 1413 1414 1415 1416 1417 1418 1419 1420
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1421 1422
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1423 1424
}

1425
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426
			   u32 bits)
1427
{
1428 1429
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1430 1431
}

1432
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433
		     u32 bits, int wake, int delete,
1434
		     struct extent_state **cached)
1435 1436
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437
				  cached, GFP_NOFS, NULL);
1438 1439 1440
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441
		u32 bits, struct extent_changeset *changeset)
1442 1443 1444 1445 1446 1447 1448
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1449
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450 1451 1452
				  changeset);
}

C
Chris Mason 已提交
1453 1454 1455 1456
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1457
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458
		     struct extent_state **cached_state)
1459 1460 1461
{
	int err;
	u64 failed_start;
1462

1463
	while (1) {
1464 1465 1466
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1467
		if (err == -EEXIST) {
1468 1469
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1470
		} else
1471 1472 1473 1474 1475 1476
			break;
		WARN_ON(start > end);
	}
	return err;
}

1477
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478 1479 1480 1481
{
	int err;
	u64 failed_start;

1482 1483
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1484 1485 1486
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1487
					 EXTENT_LOCKED, 1, 0, NULL);
1488
		return 0;
Y
Yan Zheng 已提交
1489
	}
1490 1491 1492
	return 1;
}

1493
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494
{
1495 1496
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1497 1498 1499 1500 1501 1502
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1503
		put_page(page);
1504 1505 1506 1507
		index++;
	}
}

1508
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509
{
1510
	struct address_space *mapping = inode->i_mapping;
1511 1512
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1513
	struct folio *folio;
1514 1515

	while (index <= end_index) {
1516 1517 1518 1519 1520
		folio = filemap_get_folio(mapping, index);
		filemap_dirty_folio(mapping, folio);
		folio_account_redirty(folio);
		index += folio_nr_pages(folio);
		folio_put(folio);
1521 1522 1523
	}
}

C
Chris Mason 已提交
1524 1525 1526 1527
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1528
static struct extent_state *
1529
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1539
	if (!node)
C
Chris Mason 已提交
1540 1541
		goto out;

C
Chris Mason 已提交
1542
	while (1) {
C
Chris Mason 已提交
1543
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1544
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1545
			return state;
C
Chris Mason 已提交
1546

C
Chris Mason 已提交
1547 1548 1549 1550 1551 1552 1553 1554
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1555
/*
1556
 * Find the first offset in the io tree with one or more @bits set.
1557
 *
1558 1559 1560 1561
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1562 1563
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564
			  u64 *start_ret, u64 *end_ret, u32 bits,
1565
			  struct extent_state **cached_state)
1566 1567 1568 1569 1570
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1571 1572
	if (cached_state && *cached_state) {
		state = *cached_state;
1573
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1574
			while ((state = next_state(state)) != NULL) {
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1586
	state = find_first_extent_bit_state(tree, start, bits);
1587
got_it:
1588
	if (state) {
1589
		cache_state_if_flags(state, cached_state, 0);
1590 1591 1592 1593
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1594
out:
1595 1596 1597 1598
	spin_unlock(&tree->lock);
	return ret;
}

1599
/**
1600 1601 1602 1603 1604 1605 1606
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1607 1608 1609 1610 1611 1612 1613 1614 1615
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1616
			       u64 *start_ret, u64 *end_ret, u32 bits)
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1637
/**
1638 1639
 * Find the first range that has @bits not set. This range could start before
 * @start.
1640
 *
1641 1642 1643 1644 1645
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1646 1647 1648 1649 1650 1651 1652
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1653
				 u64 *start_ret, u64 *end_ret, u32 bits)
1654 1655 1656 1657 1658 1659 1660 1661 1662
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1681 1682
			node = next;
		}
1683 1684 1685 1686
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1687
		state = rb_entry(node, struct extent_state, rb_node);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1710
		} else {
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1754 1755 1756 1757
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1758
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1759
 */
J
Josef Bacik 已提交
1760 1761 1762
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1763 1764 1765 1766
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1767
	bool found = false;
1768 1769
	u64 total_bytes = 0;

1770
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1771

1772 1773 1774 1775
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1776
	node = tree_search(tree, cur_start);
1777
	if (!node) {
1778
		*end = (u64)-1;
1779 1780 1781
		goto out;
	}

C
Chris Mason 已提交
1782
	while (1) {
1783
		state = rb_entry(node, struct extent_state, rb_node);
1784 1785
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1786 1787 1788 1789 1790 1791 1792
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1793
		if (!found) {
1794
			*start = state->start;
1795
			*cached_state = state;
1796
			refcount_inc(&state->refs);
1797
		}
1798
		found = true;
1799 1800 1801 1802
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1803
		if (total_bytes >= max_bytes)
1804 1805
			break;
		if (!node)
1806 1807 1808
			break;
	}
out:
1809
	spin_unlock(&tree->lock);
1810 1811 1812
	return found;
}

1813 1814 1815 1816 1817 1818 1819 1820
/*
 * Process one page for __process_pages_contig().
 *
 * Return >0 if we hit @page == @locked_page.
 * Return 0 if we updated the page status.
 * Return -EGAIN if the we need to try again.
 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 */
1821 1822
static int process_one_page(struct btrfs_fs_info *fs_info,
			    struct address_space *mapping,
1823
			    struct page *page, struct page *locked_page,
1824
			    unsigned long page_ops, u64 start, u64 end)
1825
{
1826 1827 1828 1829 1830
	u32 len;

	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
	len = end + 1 - start;

1831
	if (page_ops & PAGE_SET_ORDERED)
1832
		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1833
	if (page_ops & PAGE_SET_ERROR)
1834
		btrfs_page_clamp_set_error(fs_info, page, start, len);
1835
	if (page_ops & PAGE_START_WRITEBACK) {
1836 1837
		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1838 1839
	}
	if (page_ops & PAGE_END_WRITEBACK)
1840
		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1841 1842 1843 1844

	if (page == locked_page)
		return 1;

1845
	if (page_ops & PAGE_LOCK) {
1846 1847 1848 1849 1850
		int ret;

		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
		if (ret)
			return ret;
1851
		if (!PageDirty(page) || page->mapping != mapping) {
1852
			btrfs_page_end_writer_lock(fs_info, page, start, len);
1853 1854 1855 1856
			return -EAGAIN;
		}
	}
	if (page_ops & PAGE_UNLOCK)
1857
		btrfs_page_end_writer_lock(fs_info, page, start, len);
1858 1859 1860
	return 0;
}

1861 1862
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
1863
				  u64 start, u64 end, unsigned long page_ops,
1864 1865
				  u64 *processed_end)
{
1866
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	pgoff_t start_index = start >> PAGE_SHIFT;
	pgoff_t end_index = end >> PAGE_SHIFT;
	pgoff_t index = start_index;
	unsigned long nr_pages = end_index - start_index + 1;
	unsigned long pages_processed = 0;
	struct page *pages[16];
	int err = 0;
	int i;

	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(processed_end && *processed_end == start);
	}

	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
		mapping_set_error(mapping, -EIO);

	while (nr_pages > 0) {
		int found_pages;

		found_pages = find_get_pages_contig(mapping, index,
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
		if (found_pages == 0) {
			/*
			 * Only if we're going to lock these pages, we can find
			 * nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
			err = -EAGAIN;
			goto out;
		}

		for (i = 0; i < found_pages; i++) {
			int process_ret;

1903 1904 1905
			process_ret = process_one_page(fs_info, mapping,
					pages[i], locked_page, page_ops,
					start, end);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
			if (process_ret < 0) {
				for (; i < found_pages; i++)
					put_page(pages[i]);
				err = -EAGAIN;
				goto out;
			}
			put_page(pages[i]);
			pages_processed++;
		}
		nr_pages -= found_pages;
		index += found_pages;
		cond_resched();
	}
out:
	if (err && processed_end) {
		/*
		 * Update @processed_end. I know this is awful since it has
		 * two different return value patterns (inclusive vs exclusive).
		 *
		 * But the exclusive pattern is necessary if @start is 0, or we
		 * underflow and check against processed_end won't work as
		 * expected.
		 */
		if (pages_processed)
			*processed_end = min(end,
			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
		else
			*processed_end = start;
	}
	return err;
}
1937

1938 1939 1940
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1941
{
1942 1943
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1944

1945
	ASSERT(locked_page);
C
Chris Mason 已提交
1946
	if (index == locked_page->index && end_index == index)
1947
		return;
C
Chris Mason 已提交
1948

1949
	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1950
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1951 1952 1953 1954 1955 1956 1957
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1958 1959
	unsigned long index = delalloc_start >> PAGE_SHIFT;
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1960
	u64 processed_end = delalloc_start;
C
Chris Mason 已提交
1961 1962
	int ret;

1963
	ASSERT(locked_page);
C
Chris Mason 已提交
1964 1965 1966
	if (index == locked_page->index && index == end_index)
		return 0;

1967 1968 1969
	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
				     delalloc_end, PAGE_LOCK, &processed_end);
	if (ret == -EAGAIN && processed_end > delalloc_start)
1970
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1971
				      processed_end);
C
Chris Mason 已提交
1972 1973 1974 1975
	return ret;
}

/*
1976
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1977
 * more than @max_bytes.
C
Chris Mason 已提交
1978
 *
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
 * @start:	The original start bytenr to search.
 *		Will store the extent range start bytenr.
 * @end:	The original end bytenr of the search range
 *		Will store the extent range end bytenr.
 *
 * Return true if we find a delalloc range which starts inside the original
 * range, and @start/@end will store the delalloc range start/end.
 *
 * Return false if we can't find any delalloc range which starts inside the
 * original range, and @start/@end will be the non-delalloc range start/end.
C
Chris Mason 已提交
1989
 */
1990
EXPORT_FOR_TESTS
1991
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1992
				    struct page *locked_page, u64 *start,
1993
				    u64 *end)
C
Chris Mason 已提交
1994
{
1995
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1996 1997
	const u64 orig_start = *start;
	const u64 orig_end = *end;
1998
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
1999 2000
	u64 delalloc_start;
	u64 delalloc_end;
2001
	bool found;
2002
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
2003 2004 2005
	int ret;
	int loops = 0;

2006 2007 2008 2009 2010 2011
	/* Caller should pass a valid @end to indicate the search range end */
	ASSERT(orig_end > orig_start);

	/* The range should at least cover part of the page */
	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
		 orig_end <= page_offset(locked_page)));
C
Chris Mason 已提交
2012 2013 2014 2015
again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
2016 2017
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
2018
	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
C
Chris Mason 已提交
2019
		*start = delalloc_start;
2020 2021 2022

		/* @delalloc_end can be -1, never go beyond @orig_end */
		*end = min(delalloc_end, orig_end);
2023
		free_extent_state(cached_state);
2024
		return false;
C
Chris Mason 已提交
2025 2026
	}

C
Chris Mason 已提交
2027 2028 2029 2030 2031
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
2032
	if (delalloc_start < *start)
C
Chris Mason 已提交
2033 2034
		delalloc_start = *start;

C
Chris Mason 已提交
2035 2036 2037
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
2038 2039
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
2040

C
Chris Mason 已提交
2041 2042 2043
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
2044
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
2045 2046 2047 2048
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
2049
		free_extent_state(cached_state);
2050
		cached_state = NULL;
C
Chris Mason 已提交
2051
		if (!loops) {
2052
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
2053 2054 2055
			loops = 1;
			goto again;
		} else {
2056
			found = false;
C
Chris Mason 已提交
2057 2058 2059 2060 2061
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
2062
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
2063 2064 2065

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2066
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
2067
	if (!ret) {
2068
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2069
				     &cached_state);
C
Chris Mason 已提交
2070 2071 2072 2073 2074
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
2075
	free_extent_state(cached_state);
C
Chris Mason 已提交
2076 2077 2078 2079 2080 2081
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

2082
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2083
				  struct page *locked_page,
2084
				  u32 clear_bits, unsigned long page_ops)
2085
{
2086
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2087

2088
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2089
			       start, end, page_ops, NULL);
2090 2091
}

C
Chris Mason 已提交
2092 2093 2094 2095 2096
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2097 2098
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2099
		     u32 bits, int contig)
2100 2101 2102 2103 2104
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2105
	u64 last = 0;
2106 2107
	int found = 0;

2108
	if (WARN_ON(search_end <= cur_start))
2109 2110
		return 0;

2111
	spin_lock(&tree->lock);
2112 2113 2114 2115 2116 2117 2118 2119
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2120
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2121
	if (!node)
2122 2123
		goto out;

C
Chris Mason 已提交
2124
	while (1) {
2125 2126 2127
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2128 2129 2130
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2131 2132 2133 2134 2135
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2136
				*start = max(cur_start, state->start);
2137 2138
				found = 1;
			}
2139 2140 2141
			last = state->end;
		} else if (contig && found) {
			break;
2142 2143 2144 2145 2146 2147
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2148
	spin_unlock(&tree->lock);
2149 2150
	return total_bytes;
}
2151

C
Chris Mason 已提交
2152 2153 2154 2155
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2156 2157
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2158 2159 2160 2161 2162
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2163
	spin_lock(&tree->lock);
2164 2165 2166 2167
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2168
	node = tree_search(tree, start);
2169
	if (!node) {
2170 2171 2172 2173 2174 2175 2176 2177
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2178
	state->failrec = failrec;
2179
out:
2180
	spin_unlock(&tree->lock);
2181 2182 2183
	return ret;
}

2184
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2185 2186 2187
{
	struct rb_node *node;
	struct extent_state *state;
2188
	struct io_failure_record *failrec;
2189

2190
	spin_lock(&tree->lock);
2191 2192 2193 2194
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2195
	node = tree_search(tree, start);
2196
	if (!node) {
2197
		failrec = ERR_PTR(-ENOENT);
2198 2199 2200 2201
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2202
		failrec = ERR_PTR(-ENOENT);
2203 2204
		goto out;
	}
2205 2206

	failrec = state->failrec;
2207
out:
2208
	spin_unlock(&tree->lock);
2209
	return failrec;
2210 2211 2212 2213
}

/*
 * searches a range in the state tree for a given mask.
2214
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2215 2216 2217 2218
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2219
		   u32 bits, int filled, struct extent_state *cached)
2220 2221 2222 2223 2224
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2225
	spin_lock(&tree->lock);
2226
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2227
	    cached->end > start)
2228 2229 2230
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2250 2251 2252 2253

		if (state->end == (u64)-1)
			break;

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2264
	spin_unlock(&tree->lock);
2265 2266 2267
	return bitset;
}

2268 2269 2270
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2271 2272 2273 2274
{
	int ret;
	int err = 0;

2275
	set_state_failrec(failure_tree, rec->start, NULL);
2276 2277
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2278
				EXTENT_LOCKED | EXTENT_DIRTY);
2279 2280 2281
	if (ret)
		err = ret;

2282
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2283
				rec->start + rec->len - 1,
2284
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2285 2286
	if (ret && !err)
		err = ret;
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2297
 * to avoid any synchronization issues, wait for the data after writing, which
2298 2299 2300 2301
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
Q
Qu Wenruo 已提交
2302 2303 2304
static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
			     u64 length, u64 logical, struct page *page,
			     unsigned int pg_offset, int mirror_num)
2305 2306 2307 2308 2309
{
	struct bio *bio;
	struct btrfs_device *dev;
	u64 map_length = 0;
	u64 sector;
2310
	struct btrfs_io_context *bioc = NULL;
2311 2312
	int ret;

2313
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2314 2315
	BUG_ON(!mirror_num);

2316 2317
	if (btrfs_repair_one_zone(fs_info, logical))
		return 0;
2318

2319
	bio = btrfs_bio_alloc(1);
2320
	bio->bi_iter.bi_size = 0;
2321 2322
	map_length = length;

2323
	/*
2324
	 * Avoid races with device replace and make sure our bioc has devices
2325 2326 2327 2328
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2329
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2330 2331 2332 2333 2334 2335 2336
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2337
				      &map_length, &bioc, 0);
2338 2339 2340 2341 2342
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
2343
		ASSERT(bioc->mirror_num == 1);
2344 2345
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2346
				      &map_length, &bioc, mirror_num);
2347 2348 2349 2350 2351
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
2352
		BUG_ON(mirror_num != bioc->mirror_num);
2353
	}
2354

2355
	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
2356
	bio->bi_iter.bi_sector = sector;
2357 2358
	dev = bioc->stripes[bioc->mirror_num - 1].dev;
	btrfs_put_bioc(bioc);
2359 2360
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2361
		btrfs_bio_counter_dec(fs_info);
2362 2363 2364
		bio_put(bio);
		return -EIO;
	}
2365
	bio_set_dev(bio, dev->bdev);
2366
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2367
	bio_add_page(bio, page, length, pg_offset);
2368

2369
	if (btrfsic_submit_bio_wait(bio)) {
2370
		/* try to remap that extent elsewhere? */
2371
		btrfs_bio_counter_dec(fs_info);
2372
		bio_put(bio);
2373
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2374 2375 2376
		return -EIO;
	}

2377 2378
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2379
				  ino, start,
2380
				  rcu_str_deref(dev->name), sector);
2381
	btrfs_bio_counter_dec(fs_info);
2382 2383 2384 2385
	bio_put(bio);
	return 0;
}

2386
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2387
{
2388
	struct btrfs_fs_info *fs_info = eb->fs_info;
2389
	u64 start = eb->start;
2390
	int i, num_pages = num_extent_pages(eb);
2391
	int ret = 0;
2392

2393
	if (sb_rdonly(fs_info->sb))
2394 2395
		return -EROFS;

2396
	for (i = 0; i < num_pages; i++) {
2397
		struct page *p = eb->pages[i];
2398

2399
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2400
					start - page_offset(p), mirror_num);
2401 2402
		if (ret)
			break;
2403
		start += PAGE_SIZE;
2404 2405 2406 2407 2408
	}

	return ret;
}

2409 2410 2411 2412
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2413 2414 2415 2416
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2417 2418 2419 2420 2421 2422 2423 2424
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2425 2426
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2427 2428 2429
	if (!ret)
		return 0;

2430 2431
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2432 2433 2434 2435
		return 0;

	BUG_ON(!failrec->this_mirror);

2436
	if (sb_rdonly(fs_info->sb))
2437
		goto out;
2438

2439 2440
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2441 2442
					    failrec->start,
					    EXTENT_LOCKED);
2443
	spin_unlock(&io_tree->lock);
2444

2445 2446
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2447 2448
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2449
		if (num_copies > 1)  {
2450 2451 2452
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2453 2454 2455 2456
		}
	}

out:
2457
	free_io_failure(failure_tree, io_tree, failrec);
2458

2459
	return 0;
2460 2461
}

2462 2463 2464 2465 2466 2467
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2468
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2469
{
2470
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2487
		failrec = state->failrec;
2488 2489 2490 2491 2492 2493 2494 2495
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2496
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2497
							     u64 start)
2498
{
2499
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2500
	struct io_failure_record *failrec;
2501 2502 2503 2504
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2505
	const u32 sectorsize = fs_info->sectorsize;
2506 2507 2508
	int ret;
	u64 logical;

2509
	failrec = get_state_failrec(failure_tree, start);
2510
	if (!IS_ERR(failrec)) {
2511
		btrfs_debug(fs_info,
2512 2513
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
			failrec->logical, failrec->start, failrec->len);
2514 2515 2516 2517 2518
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2519 2520

		return failrec;
2521
	}
2522

2523 2524 2525
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2526

2527
	failrec->start = start;
2528
	failrec->len = sectorsize;
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
	failrec->this_mirror = 0;
	failrec->bio_flags = 0;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
2566
	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2567 2568 2569 2570
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
2571 2572
		ret = set_extent_bits(tree, start, start + sectorsize - 1,
				      EXTENT_DAMAGED);
2573 2574 2575 2576 2577 2578
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2579 2580
}

2581
static bool btrfs_check_repairable(struct inode *inode,
2582 2583
				   struct io_failure_record *failrec,
				   int failed_mirror)
2584
{
2585
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2586 2587
	int num_copies;

2588
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2589 2590 2591 2592 2593 2594
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2595 2596 2597
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2598
		return false;
2599 2600
	}

2601 2602 2603
	/* The failure record should only contain one sector */
	ASSERT(failrec->len == fs_info->sectorsize);

2604
	/*
2605 2606 2607 2608 2609 2610 2611
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
2612
	 */
2613
	ASSERT(failed_mirror);
2614 2615 2616
	failrec->failed_mirror = failed_mirror;
	failrec->this_mirror++;
	if (failrec->this_mirror == failed_mirror)
2617 2618
		failrec->this_mirror++;

2619
	if (failrec->this_mirror > num_copies) {
2620 2621 2622
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2623
		return false;
2624 2625
	}

2626
	return true;
2627 2628
}

2629 2630 2631 2632 2633
int btrfs_repair_one_sector(struct inode *inode,
			    struct bio *failed_bio, u32 bio_offset,
			    struct page *page, unsigned int pgoff,
			    u64 start, int failed_mirror,
			    submit_bio_hook_t *submit_bio_hook)
2634 2635
{
	struct io_failure_record *failrec;
2636
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2637
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2638
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2639
	struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
2640
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2641
	struct bio *repair_bio;
2642
	struct btrfs_bio *repair_bbio;
2643

2644 2645
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2646

2647
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2648

2649
	failrec = btrfs_get_io_failure_record(inode, start);
2650
	if (IS_ERR(failrec))
2651
		return PTR_ERR(failrec);
2652

2653 2654

	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2655
		free_io_failure(failure_tree, tree, failrec);
2656
		return -EIO;
2657 2658
	}

2659 2660
	repair_bio = btrfs_bio_alloc(1);
	repair_bbio = btrfs_bio(repair_bio);
2661
	repair_bbio->file_offset = start;
2662 2663 2664 2665
	repair_bio->bi_opf = REQ_OP_READ;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2666

2667
	if (failed_bbio->csum) {
2668
		const u32 csum_size = fs_info->csum_size;
2669

2670 2671 2672
		repair_bbio->csum = repair_bbio->csum_inline;
		memcpy(repair_bbio->csum,
		       failed_bbio->csum + csum_size * icsum, csum_size);
2673
	}
2674

2675
	bio_add_page(repair_bio, page, failrec->len, pgoff);
2676
	repair_bbio->iter = repair_bio->bi_iter;
2677

2678
	btrfs_debug(btrfs_sb(inode->i_sb),
2679 2680
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2681

2682 2683 2684 2685 2686 2687 2688
	/*
	 * At this point we have a bio, so any errors from submit_bio_hook()
	 * will be handled by the endio on the repair_bio, so we can't return an
	 * error here.
	 */
	submit_bio_hook(inode, repair_bio, failrec->this_mirror, failrec->bio_flags);
	return BLK_STS_OK;
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	if (uptodate) {
B
Boris Burkov 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707
		if (fsverity_active(page->mapping->host) &&
		    !PageError(page) &&
		    !PageUptodate(page) &&
		    start < i_size_read(page->mapping->host) &&
		    !fsverity_verify_page(page)) {
			btrfs_page_set_error(fs_info, page, start, len);
		} else {
			btrfs_page_set_uptodate(fs_info, page, start, len);
		}
2708 2709 2710 2711 2712 2713 2714
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

	if (fs_info->sectorsize == PAGE_SIZE)
		unlock_page(page);
2715
	else
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

static blk_status_t submit_read_repair(struct inode *inode,
				      struct bio *failed_bio, u32 bio_offset,
				      struct page *page, unsigned int pgoff,
				      u64 start, u64 end, int failed_mirror,
				      unsigned int error_bitmap,
				      submit_bio_hook_t *submit_bio_hook)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int error = 0;
	int i;

	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);

	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		struct extent_state *cached = NULL;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

		ret = btrfs_repair_one_sector(inode, failed_bio,
				bio_offset + offset,
				page, pgoff + offset, start + offset,
				failed_mirror, submit_bio_hook);
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
		 * Repair failed, just record the error but still continue.
		 * Or the remaining sectors will not be properly unlocked.
		 */
		if (!error)
			error = ret;
next:
		end_page_read(page, uptodate, start + offset, sectorsize);
		if (uptodate)
			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
					start + offset,
					start + offset + sectorsize - 1,
					&cached, GFP_ATOMIC);
		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
				start + offset,
				start + offset + sectorsize - 1,
				&cached);
	}
	return errno_to_blk_status(error);
2791 2792
}

2793 2794
/* lots and lots of room for performance fixes in the end_bio funcs */

2795
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2796
{
2797
	struct btrfs_inode *inode;
2798
	const bool uptodate = (err == 0);
2799
	int ret = 0;
2800

2801 2802 2803
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2804 2805

	if (!uptodate) {
2806 2807 2808 2809 2810 2811 2812 2813
		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
		u32 len;

		ASSERT(end + 1 - start <= U32_MAX);
		len = end + 1 - start;

		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2814
		ret = err < 0 ? err : -EIO;
2815
		mapping_set_error(page->mapping, ret);
2816 2817 2818
	}
}

2819 2820 2821 2822 2823 2824 2825 2826 2827
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2828
static void end_bio_extent_writepage(struct bio *bio)
2829
{
2830
	int error = blk_status_to_errno(bio->bi_status);
2831
	struct bio_vec *bvec;
2832 2833
	u64 start;
	u64 end;
2834
	struct bvec_iter_all iter_all;
2835
	bool first_bvec = true;
2836

2837
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2838
	bio_for_each_segment_all(bvec, bio, iter_all) {
2839
		struct page *page = bvec->bv_page;
2840 2841
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
		const u32 sectorsize = fs_info->sectorsize;

		/* Our read/write should always be sector aligned. */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page write in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
			btrfs_info(fs_info,
		"incomplete page write with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2856

2857 2858 2859 2860 2861
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2862
		end_extent_writepage(page, error, start, end);
2863 2864

		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2865
	}
2866

2867 2868 2869
	bio_put(bio);
}

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2880
	/* End of the range in @inode */
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2899 2900
{
	struct extent_state *cached = NULL;
2901 2902 2903 2904 2905
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2906

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2941 2942
}

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
	if (fs_info->sectorsize == PAGE_SIZE)
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
/*
 * Find extent buffer for a givne bytenr.
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
	if (fs_info->sectorsize == PAGE_SIZE) {
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

	/* For subpage case, we need to lookup buffer radix tree */
	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       bytenr >> fs_info->sectorsize_bits);
	rcu_read_unlock();
	ASSERT(eb);
	return eb;
}

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2993
static void end_bio_extent_readpage(struct bio *bio)
2994
{
2995
	struct bio_vec *bvec;
2996
	struct btrfs_bio *bbio = btrfs_bio(bio);
2997
	struct extent_io_tree *tree, *failure_tree;
2998
	struct processed_extent processed = { 0 };
2999 3000 3001 3002 3003
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
3004
	int mirror;
3005
	int ret;
3006
	struct bvec_iter_all iter_all;
3007

3008
	ASSERT(!bio_flagged(bio, BIO_CLONED));
3009
	bio_for_each_segment_all(bvec, bio, iter_all) {
3010
		bool uptodate = !bio->bi_status;
3011
		struct page *page = bvec->bv_page;
3012
		struct inode *inode = page->mapping->host;
3013
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3014
		const u32 sectorsize = fs_info->sectorsize;
3015
		unsigned int error_bitmap = (unsigned int)-1;
3016 3017 3018
		u64 start;
		u64 end;
		u32 len;
3019

3020 3021
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
3022
			bio->bi_iter.bi_sector, bio->bi_status,
3023
			bbio->mirror_num);
3024
		tree = &BTRFS_I(inode)->io_tree;
3025
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3026

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
3046
		len = bvec->bv_len;
3047

3048
		mirror = bbio->mirror_num;
3049
		if (likely(uptodate)) {
3050
			if (is_data_inode(inode)) {
3051
				error_bitmap = btrfs_verify_data_csum(bbio,
3052
						bio_offset, page, start, end);
3053 3054
				ret = error_bitmap;
			} else {
3055
				ret = btrfs_validate_metadata_buffer(bbio,
3056
					page, start, end, mirror);
3057
			}
3058
			if (ret)
3059
				uptodate = false;
3060
			else
3061 3062 3063 3064
				clean_io_failure(BTRFS_I(inode)->root->fs_info,
						 failure_tree, tree, start,
						 page,
						 btrfs_ino(BTRFS_I(inode)), 0);
3065
		}
3066

3067 3068 3069
		if (likely(uptodate))
			goto readpage_ok;

3070
		if (is_data_inode(inode)) {
3071 3072 3073 3074 3075 3076 3077 3078
			/*
			 * If we failed to submit the IO at all we'll have a
			 * mirror_num == 0, in which case we need to just mark
			 * the page with an error and unlock it and carry on.
			 */
			if (mirror == 0)
				goto readpage_ok;

3079
			/*
3080 3081
			 * btrfs_submit_read_repair() will handle all the good
			 * and bad sectors, we just continue to the next bvec.
3082
			 */
3083 3084 3085 3086 3087 3088 3089 3090
			submit_read_repair(inode, bio, bio_offset, page,
					   start - page_offset(page), start,
					   end, mirror, error_bitmap,
					   btrfs_submit_data_bio);

			ASSERT(bio_offset + len > bio_offset);
			bio_offset += len;
			continue;
3091 3092 3093
		} else {
			struct extent_buffer *eb;

3094
			eb = find_extent_buffer_readpage(fs_info, page, start);
3095 3096 3097
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
3098
		}
3099
readpage_ok:
3100
		if (likely(uptodate)) {
3101
			loff_t i_size = i_size_read(inode);
3102
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3103

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3115
						     offset_in_page(start));
3116 3117 3118 3119

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3120
		}
3121 3122
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3123

3124
		/* Update page status and unlock */
3125
		end_page_read(page, uptodate, start, len);
3126
		endio_readpage_release_extent(&processed, BTRFS_I(inode),
B
Boris Burkov 已提交
3127
					      start, end, PageUptodate(page));
3128
	}
3129 3130
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3131
	btrfs_bio_free_csum(bbio);
3132 3133 3134
	bio_put(bio);
}

3135
/*
3136 3137 3138
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3139
 */
3140
static inline void btrfs_bio_init(struct btrfs_bio *bbio)
3141
{
3142
	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
3143
}
3144

3145
/*
Q
Qu Wenruo 已提交
3146 3147 3148
 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
 *
 * The bio allocation is backed by bioset and does not fail.
3149
 */
3150
struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
3151 3152 3153
{
	struct bio *bio;

Q
Qu Wenruo 已提交
3154
	ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
3155
	bio = bio_alloc_bioset(NULL, nr_iovecs, 0, GFP_NOFS, &btrfs_bioset);
3156
	btrfs_bio_init(btrfs_bio(bio));
3157 3158 3159
	return bio;
}

3160
struct bio *btrfs_bio_clone(struct bio *bio)
3161
{
3162
	struct btrfs_bio *bbio;
3163
	struct bio *new;
3164

3165
	/* Bio allocation backed by a bioset does not fail */
3166
	new = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOFS, &btrfs_bioset);
3167 3168 3169
	bbio = btrfs_bio(new);
	btrfs_bio_init(bbio);
	bbio->iter = bio->bi_iter;
3170 3171
	return new;
}
3172

3173
struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3174 3175
{
	struct bio *bio;
3176
	struct btrfs_bio *bbio;
3177

3178 3179
	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);

3180
	/* this will never fail when it's backed by a bioset */
3181
	bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
3182 3183
	ASSERT(bio);

3184 3185
	bbio = btrfs_bio(bio);
	btrfs_bio_init(bbio);
3186 3187

	bio_trim(bio, offset >> 9, size >> 9);
3188
	bbio->iter = bio->bi_iter;
3189 3190
	return bio;
}
3191

3192 3193 3194
/**
 * Attempt to add a page to bio
 *
3195
 * @bio_ctrl:	record both the bio, and its bio_flags
3196 3197 3198 3199
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @size:	portion of page that we want to write
3200
 * @pg_offset:	starting offset in the page
3201 3202 3203 3204
 * @bio_flags:	flags of the current bio to see if we can merge them
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
3205 3206 3207
 * Return >= 0 for the number of bytes added to the bio.
 * Can return 0 if the current bio is already at stripe/zone boundary.
 * Return <0 for error.
3208
 */
3209 3210 3211 3212 3213
static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			      struct page *page,
			      u64 disk_bytenr, unsigned int size,
			      unsigned int pg_offset,
			      unsigned long bio_flags)
3214
{
3215 3216
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
3217
	u32 real_size;
3218 3219
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3220
	int ret;
3221

3222 3223 3224 3225
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
	if (bio_ctrl->bio_flags != bio_flags)
3226
		return 0;
3227

3228
	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3229 3230 3231 3232
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
3233
		return 0;
3234

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	real_size = min(bio_ctrl->len_to_oe_boundary,
			bio_ctrl->len_to_stripe_boundary) - bio_size;
	real_size = min(real_size, size);

	/*
	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
	 * bio will still execute its endio function on the page!
	 */
	if (real_size == 0)
		return 0;
3245

3246
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3247
		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3248
	else
3249
		ret = bio_add_page(bio, page, real_size, pg_offset);
3250

3251
	return ret;
3252 3253
}

3254
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3255
			       struct btrfs_inode *inode, u64 file_offset)
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

3290
	if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3291 3292 3293 3294 3295
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	/* Ordered extent not yet created, so we're good */
3296
	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3308 3309 3310 3311 3312
static int alloc_new_bio(struct btrfs_inode *inode,
			 struct btrfs_bio_ctrl *bio_ctrl,
			 struct writeback_control *wbc,
			 unsigned int opf,
			 bio_end_io_t end_io_func,
3313
			 u64 disk_bytenr, u32 offset, u64 file_offset,
3314 3315 3316 3317 3318 3319
			 unsigned long bio_flags)
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct bio *bio;
	int ret;

3320
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
3321 3322 3323 3324 3325
	/*
	 * For compressed page range, its disk_bytenr is always @disk_bytenr
	 * passed in, no matter if we have added any range into previous bio.
	 */
	if (bio_flags & EXTENT_BIO_COMPRESSED)
Q
Qu Wenruo 已提交
3326
		bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
3327
	else
Q
Qu Wenruo 已提交
3328
		bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
3329 3330 3331 3332 3333
	bio_ctrl->bio = bio;
	bio_ctrl->bio_flags = bio_flags;
	bio->bi_end_io = end_io_func;
	bio->bi_private = &inode->io_tree;
	bio->bi_opf = opf;
3334 3335 3336
	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
	if (ret < 0)
		goto error;
3337

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
	if (wbc) {
		/*
		 * For Zone append we need the correct block_device that we are
		 * going to write to set in the bio to be able to respect the
		 * hardware limitation.  Look it up here:
		 */
		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
			struct btrfs_device *dev;

			dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
						     fs_info->sectorsize);
			if (IS_ERR(dev)) {
				ret = PTR_ERR(dev);
				goto error;
			}
3353

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
			bio_set_dev(bio, dev->bdev);
		} else {
			/*
			 * Otherwise pick the last added device to support
			 * cgroup writeback.  For multi-device file systems this
			 * means blk-cgroup policies have to always be set on the
			 * last added/replaced device.  This is a bit odd but has
			 * been like that for a long time.
			 */
			bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
3364
		}
3365 3366 3367
		wbc_init_bio(wbc, bio);
	} else {
		ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
3368 3369 3370 3371 3372 3373 3374 3375 3376
	}
	return 0;
error:
	bio_ctrl->bio = NULL;
	bio->bi_status = errno_to_blk_status(ret);
	bio_endio(bio);
	return ret;
}

3377 3378
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3379 3380
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3381 3382
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3383 3384
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3385
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3386 3387 3388 3389
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
3390
 */
3391
static int submit_extent_page(unsigned int opf,
3392
			      struct writeback_control *wbc,
3393
			      struct btrfs_bio_ctrl *bio_ctrl,
3394
			      struct page *page, u64 disk_bytenr,
3395
			      size_t size, unsigned long pg_offset,
3396
			      bio_end_io_t end_io_func,
C
Chris Mason 已提交
3397
			      int mirror_num,
3398 3399
			      unsigned long bio_flags,
			      bool force_bio_submit)
3400 3401
{
	int ret = 0;
3402
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3403
	unsigned int cur = pg_offset;
3404

3405
	ASSERT(bio_ctrl);
3406

3407 3408
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
	if (force_bio_submit && bio_ctrl->bio) {
		ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
		bio_ctrl->bio = NULL;
		if (ret < 0)
			return ret;
	}

	while (cur < pg_offset + size) {
		u32 offset = cur - pg_offset;
		int added;

		/* Allocate new bio if needed */
		if (!bio_ctrl->bio) {
			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
					    end_io_func, disk_bytenr, offset,
3424
					    page_offset(page) + cur,
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
					    bio_flags);
			if (ret < 0)
				return ret;
		}
		/*
		 * We must go through btrfs_bio_add_page() to ensure each
		 * page range won't cross various boundaries.
		 */
		if (bio_flags & EXTENT_BIO_COMPRESSED)
			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
					size - offset, pg_offset + offset,
					bio_flags);
		else
			added = btrfs_bio_add_page(bio_ctrl, page,
					disk_bytenr + offset, size - offset,
					pg_offset + offset, bio_flags);

		/* Metadata page range should never be split */
		if (!is_data_inode(&inode->vfs_inode))
			ASSERT(added == 0 || added == size - offset);

		/* At least we added some page, update the account */
		if (wbc && added)
			wbc_account_cgroup_owner(wbc, page, added);

		/* We have reached boundary, submit right now */
		if (added < size - offset) {
			/* The bio should contain some page(s) */
			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
			ret = submit_one_bio(bio_ctrl->bio, mirror_num,
					bio_ctrl->bio_flags);
3456 3457
			bio_ctrl->bio = NULL;
			if (ret < 0)
3458
				return ret;
3459
		}
3460
		cur += added;
3461
	}
3462
	return 0;
3463 3464
}

3465 3466 3467
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3468
{
3469 3470 3471
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3472 3473 3474 3475 3476 3477 3478 3479 3480
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
	if (fs_info->sectorsize == PAGE_SIZE) {
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3498
	else
3499 3500 3501 3502
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3503 3504
}

3505
int set_page_extent_mapped(struct page *page)
3506
{
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3529
	if (!PagePrivate(page))
3530 3531 3532 3533 3534 3535 3536
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3537 3538
}

3539 3540
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3541
		 u64 start, u64 len, struct extent_map **em_cached)
3542 3543 3544 3545 3546
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3547
		if (extent_map_in_tree(em) && start >= em->start &&
3548
		    start < extent_map_end(em)) {
3549
			refcount_inc(&em->refs);
3550 3551 3552 3553 3554 3555 3556
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3557
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3558
	if (em_cached && !IS_ERR(em)) {
3559
		BUG_ON(*em_cached);
3560
		refcount_inc(&em->refs);
3561 3562 3563 3564
		*em_cached = em;
	}
	return em;
}
3565 3566 3567 3568
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3569
 * XXX JDM: This needs looking at to ensure proper page locking
3570
 * return 0 on success, otherwise return error
3571
 */
3572
int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3573
		      struct btrfs_bio_ctrl *bio_ctrl,
3574
		      unsigned int read_flags, u64 *prev_em_start)
3575 3576
{
	struct inode *inode = page->mapping->host;
3577
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3578
	u64 start = page_offset(page);
3579
	const u64 end = start + PAGE_SIZE - 1;
3580 3581 3582 3583 3584 3585
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3586
	int ret = 0;
3587
	size_t pg_offset = 0;
3588 3589
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3590
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3591

3592 3593 3594
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3595 3596
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3597 3598
		goto out;
	}
3599

3600
	if (page->index == last_byte >> PAGE_SHIFT) {
3601
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3602 3603

		if (zero_offset) {
3604
			iosize = PAGE_SIZE - zero_offset;
3605
			memzero_page(page, zero_offset, iosize);
C
Chris Mason 已提交
3606 3607 3608
			flush_dcache_page(page);
		}
	}
3609
	begin_page_read(fs_info, page);
3610
	while (cur <= end) {
3611
		unsigned long this_bio_flag = 0;
3612
		bool force_bio_submit = false;
3613
		u64 disk_bytenr;
3614

3615
		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
3616
		if (cur >= last_byte) {
3617 3618
			struct extent_state *cached = NULL;

3619
			iosize = PAGE_SIZE - pg_offset;
3620
			memzero_page(page, pg_offset, iosize);
3621 3622
			flush_dcache_page(page);
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3623
					    &cached, GFP_NOFS);
3624
			unlock_extent_cached(tree, cur,
3625
					     cur + iosize - 1, &cached);
3626
			end_page_read(page, true, cur, iosize);
3627 3628
			break;
		}
3629
		em = __get_extent_map(inode, page, pg_offset, cur,
3630
				      end - cur + 1, em_cached);
3631
		if (IS_ERR(em)) {
3632
			unlock_extent(tree, cur, end);
3633
			end_page_read(page, false, cur, end + 1 - cur);
3634
			ret = PTR_ERR(em);
3635 3636 3637 3638 3639 3640
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3641
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3642
			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3643 3644 3645
			extent_set_compress_type(&this_bio_flag,
						 em->compress_type);
		}
C
Chris Mason 已提交
3646

3647 3648
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3649
		iosize = ALIGN(iosize, blocksize);
3650
		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3651
			disk_bytenr = em->block_start;
3652
		else
3653
			disk_bytenr = em->block_start + extent_offset;
3654
		block_start = em->block_start;
Y
Yan Zheng 已提交
3655 3656
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3657 3658 3659

		/*
		 * If we have a file range that points to a compressed extent
3660
		 * and it's followed by a consecutive file range that points
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3694
		    *prev_em_start != em->start)
3695 3696 3697
			force_bio_submit = true;

		if (prev_em_start)
3698
			*prev_em_start = em->start;
3699

3700 3701 3702 3703 3704
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3705 3706
			struct extent_state *cached = NULL;

3707
			memzero_page(page, pg_offset, iosize);
3708 3709 3710
			flush_dcache_page(page);

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3711
					    &cached, GFP_NOFS);
3712
			unlock_extent_cached(tree, cur,
3713
					     cur + iosize - 1, &cached);
3714
			end_page_read(page, true, cur, iosize);
3715
			cur = cur + iosize;
3716
			pg_offset += iosize;
3717 3718 3719
			continue;
		}
		/* the get_extent function already copied into the page */
3720 3721
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3722
			unlock_extent(tree, cur, cur + iosize - 1);
3723
			end_page_read(page, true, cur, iosize);
3724
			cur = cur + iosize;
3725
			pg_offset += iosize;
3726 3727
			continue;
		}
3728 3729 3730 3731
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3732
			unlock_extent(tree, cur, cur + iosize - 1);
3733
			end_page_read(page, false, cur, iosize);
3734
			cur = cur + iosize;
3735
			pg_offset += iosize;
3736 3737
			continue;
		}
3738

3739
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3740 3741
					 bio_ctrl, page, disk_bytenr, iosize,
					 pg_offset,
3742
					 end_bio_extent_readpage, 0,
3743 3744
					 this_bio_flag,
					 force_bio_submit);
3745
		if (ret) {
3746
			unlock_extent(tree, cur, cur + iosize - 1);
3747
			end_page_read(page, false, cur, iosize);
3748
			goto out;
3749
		}
3750
		cur = cur + iosize;
3751
		pg_offset += iosize;
3752
	}
D
Dan Magenheimer 已提交
3753
out:
3754
	return ret;
3755 3756
}

3757
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3758 3759 3760 3761
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3762
{
3763
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3764 3765
	int index;

3766
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3767 3768

	for (index = 0; index < nr_pages; index++) {
3769
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3770
				  REQ_RAHEAD, prev_em_start);
3771
		put_page(pages[index]);
3772 3773 3774
	}
}

3775
static void update_nr_written(struct writeback_control *wbc,
3776
			      unsigned long nr_written)
3777 3778 3779 3780
{
	wbc->nr_to_write -= nr_written;
}

3781
/*
3782 3783
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3784
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3785 3786 3787 3788 3789
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3790
 */
3791
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3792
		struct page *page, struct writeback_control *wbc)
3793
{
3794
	const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3795
	u64 delalloc_start = page_offset(page);
3796
	u64 delalloc_to_write = 0;
3797 3798
	/* How many pages are started by btrfs_run_delalloc_range() */
	unsigned long nr_written = 0;
3799 3800 3801
	int ret;
	int page_started = 0;

3802 3803 3804
	while (delalloc_start < page_end) {
		u64 delalloc_end = page_end;
		bool found;
3805

3806
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3807
					       &delalloc_start,
3808
					       &delalloc_end);
3809
		if (!found) {
3810 3811 3812
			delalloc_start = delalloc_end + 1;
			continue;
		}
3813
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3814
				delalloc_end, &page_started, &nr_written, wbc);
3815
		if (ret) {
3816 3817
			btrfs_page_set_error(inode->root->fs_info, page,
					     page_offset(page), PAGE_SIZE);
3818
			return ret;
3819 3820
		}
		/*
3821 3822
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3823 3824
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3825
				      PAGE_SIZE) >> PAGE_SHIFT;
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

3837
	/* Did btrfs_run_dealloc_range() already unlock and start the IO? */
3838 3839
	if (page_started) {
		/*
3840 3841
		 * We've unlocked the page, so we can't update the mapping's
		 * writeback index, just update nr_to_write.
3842
		 */
3843
		wbc->nr_to_write -= nr_written;
3844 3845 3846
		return 1;
	}

3847
	return 0;
3848 3849
}

3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
/*
 * Find the first byte we need to write.
 *
 * For subpage, one page can contain several sectors, and
 * __extent_writepage_io() will just grab all extent maps in the page
 * range and try to submit all non-inline/non-compressed extents.
 *
 * This is a big problem for subpage, we shouldn't re-submit already written
 * data at all.
 * This function will lookup subpage dirty bit to find which range we really
 * need to submit.
 *
 * Return the next dirty range in [@start, @end).
 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
 */
static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
				 struct page *page, u64 *start, u64 *end)
{
	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3869
	struct btrfs_subpage_info *spi = fs_info->subpage_info;
3870 3871 3872
	u64 orig_start = *start;
	/* Declare as unsigned long so we can use bitmap ops */
	unsigned long flags;
3873
	int range_start_bit;
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	int range_end_bit;

	/*
	 * For regular sector size == page size case, since one page only
	 * contains one sector, we return the page offset directly.
	 */
	if (fs_info->sectorsize == PAGE_SIZE) {
		*start = page_offset(page);
		*end = page_offset(page) + PAGE_SIZE;
		return;
	}

3886 3887 3888
	range_start_bit = spi->dirty_offset +
			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);

3889 3890
	/* We should have the page locked, but just in case */
	spin_lock_irqsave(&subpage->lock, flags);
3891 3892
	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
			       spi->dirty_offset + spi->bitmap_nr_bits);
3893 3894
	spin_unlock_irqrestore(&subpage->lock, flags);

3895 3896 3897
	range_start_bit -= spi->dirty_offset;
	range_end_bit -= spi->dirty_offset;

3898 3899 3900 3901
	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
}

3902 3903 3904 3905 3906 3907 3908 3909
/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3910
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3911 3912 3913 3914
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
3915
				 int *nr_ret)
3916
{
3917
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3918 3919
	u64 cur = page_offset(page);
	u64 end = cur + PAGE_SIZE - 1;
3920 3921 3922
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3923 3924
	int ret = 0;
	int nr = 0;
3925
	u32 opf = REQ_OP_WRITE;
3926
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3927
	bool compressed;
C
Chris Mason 已提交
3928

3929
	ret = btrfs_writepage_cow_fixup(page);
3930 3931
	if (ret) {
		/* Fixup worker will requeue */
3932
		redirty_page_for_writepage(wbc, page);
3933 3934
		unlock_page(page);
		return 1;
3935 3936
	}

3937 3938 3939 3940
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3941
	update_nr_written(wbc, 1);
3942

3943
	while (cur <= end) {
3944
		u64 disk_bytenr;
3945
		u64 em_end;
3946 3947
		u64 dirty_range_start = cur;
		u64 dirty_range_end;
3948
		u32 iosize;
3949

3950
		if (cur >= i_size) {
3951
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3952
							     end, true);
3953 3954 3955 3956 3957 3958 3959 3960 3961
			/*
			 * This range is beyond i_size, thus we don't need to
			 * bother writing back.
			 * But we still need to clear the dirty subpage bit, or
			 * the next time the page gets dirtied, we will try to
			 * writeback the sectors with subpage dirty bits,
			 * causing writeback without ordered extent.
			 */
			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
3962 3963
			break;
		}
3964 3965 3966 3967 3968 3969 3970 3971

		find_next_dirty_byte(fs_info, page, &dirty_range_start,
				     &dirty_range_end);
		if (cur < dirty_range_start) {
			cur = dirty_range_start;
			continue;
		}

3972
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3973
		if (IS_ERR(em)) {
3974
			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3975
			ret = PTR_ERR_OR_ZERO(em);
3976 3977 3978 3979
			break;
		}

		extent_offset = cur - em->start;
3980
		em_end = extent_map_end(em);
3981 3982 3983 3984
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3985
		block_start = em->block_start;
C
Chris Mason 已提交
3986
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3987 3988
		disk_bytenr = em->block_start + extent_offset;

3989 3990 3991 3992 3993
		/*
		 * Note that em_end from extent_map_end() and dirty_range_end from
		 * find_next_dirty_byte() are all exclusive
		 */
		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3994

3995
		if (btrfs_use_zone_append(inode, em->block_start))
3996 3997
			opf = REQ_OP_ZONE_APPEND;

3998 3999 4000
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
4001 4002 4003 4004 4005
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
4006
		    block_start == EXTENT_MAP_INLINE) {
4007
			if (compressed)
C
Chris Mason 已提交
4008
				nr++;
4009
			else
4010
				btrfs_writepage_endio_finish_ordered(inode,
4011
						page, cur, cur + iosize - 1, true);
4012
			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
C
Chris Mason 已提交
4013
			cur += iosize;
4014 4015
			continue;
		}
C
Chris Mason 已提交
4016

4017
		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4018
		if (!PageWriteback(page)) {
4019
			btrfs_err(inode->root->fs_info,
4020 4021
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
4022
		}
4023

4024 4025 4026 4027 4028 4029 4030 4031
		/*
		 * Although the PageDirty bit is cleared before entering this
		 * function, subpage dirty bit is not cleared.
		 * So clear subpage dirty bit here so next time we won't submit
		 * page for range already written to disk.
		 */
		btrfs_page_clear_dirty(fs_info, page, cur, iosize);

4032 4033
		ret = submit_extent_page(opf | write_flags, wbc,
					 &epd->bio_ctrl, page,
4034
					 disk_bytenr, iosize,
4035
					 cur - page_offset(page),
4036
					 end_bio_extent_writepage,
4037
					 0, 0, false);
4038
		if (ret) {
4039
			btrfs_page_set_error(fs_info, page, cur, iosize);
4040
			if (PageWriteback(page))
4041 4042
				btrfs_page_clear_writeback(fs_info, page, cur,
							   iosize);
4043
		}
4044

4045
		cur += iosize;
4046 4047
		nr++;
	}
4048 4049 4050 4051 4052 4053
	/*
	 * If we finish without problem, we should not only clear page dirty,
	 * but also empty subpage dirty bits
	 */
	if (!ret)
		btrfs_page_assert_not_dirty(fs_info, page);
4054 4055 4056 4057 4058 4059 4060 4061 4062
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
4063 4064 4065
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
4066 4067
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4068
			      struct extent_page_data *epd)
4069
{
4070
	struct folio *folio = page_folio(page);
4071
	struct inode *inode = page->mapping->host;
4072
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4073 4074
	const u64 page_start = page_offset(page);
	const u64 page_end = page_start + PAGE_SIZE - 1;
4075 4076
	int ret;
	int nr = 0;
4077
	size_t pg_offset;
4078
	loff_t i_size = i_size_read(inode);
4079
	unsigned long end_index = i_size >> PAGE_SHIFT;
4080 4081 4082 4083 4084

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

4085 4086
	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
			       page_offset(page), PAGE_SIZE);
4087

4088
	pg_offset = offset_in_page(i_size);
4089 4090
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
4091 4092
		folio_invalidate(folio, 0, folio_size(folio));
		folio_unlock(folio);
4093 4094 4095 4096
		return 0;
	}

	if (page->index == end_index) {
4097
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4098 4099 4100
		flush_dcache_page(page);
	}

4101 4102 4103 4104 4105
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
4106

4107
	if (!epd->extent_locked) {
4108
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
4109
		if (ret == 1)
4110
			return 0;
4111 4112 4113
		if (ret)
			goto done;
	}
4114

4115
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4116
				    &nr);
4117
	if (ret == 1)
4118
		return 0;
4119

4120 4121 4122 4123 4124 4125
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
	/*
	 * Here we used to have a check for PageError() and then set @ret and
	 * call end_extent_writepage().
	 *
	 * But in fact setting @ret here will cause different error paths
	 * between subpage and regular sectorsize.
	 *
	 * For regular page size, we never submit current page, but only add
	 * current page to current bio.
	 * The bio submission can only happen in next page.
	 * Thus if we hit the PageError() branch, @ret is already set to
	 * non-zero value and will not get updated for regular sectorsize.
	 *
	 * But for subpage case, it's possible we submit part of current page,
	 * thus can get PageError() set by submitted bio of the same page,
	 * while our @ret is still 0.
	 *
	 * So here we unify the behavior and don't set @ret.
	 * Error can still be properly passed to higher layer as page will
	 * be set error, here we just don't handle the IO failure.
	 *
	 * NOTE: This is just a hotfix for subpage.
	 * The root fix will be properly ending ordered extent when we hit
	 * an error during writeback.
	 *
	 * But that needs a bigger refactoring, as we not only need to grab the
	 * submitted OE, but also need to know exactly at which bytenr we hit
	 * the error.
	 * Currently the full page based __extent_writepage_io() is not
	 * capable of that.
	 */
	if (PageError(page))
4158
		end_extent_writepage(page, ret, page_start, page_end);
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
	if (epd->extent_locked) {
		/*
		 * If epd->extent_locked, it's from extent_write_locked_range(),
		 * the page can either be locked by lock_page() or
		 * process_one_page().
		 * Let btrfs_page_unlock_writer() handle both cases.
		 */
		ASSERT(wbc);
		btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
					 wbc->range_end + 1 - wbc->range_start);
	} else {
		unlock_page(page);
	}
4172
	ASSERT(ret <= 0);
4173
	return ret;
4174 4175
}

4176
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4177
{
4178 4179
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
4180 4181
}

4182 4183
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
4184 4185 4186
	if (test_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags))
		btrfs_zone_finish_endio(eb->fs_info, eb->start, eb->len);

4187 4188 4189 4190 4191
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

4192
/*
4193
 * Lock extent buffer status and pages for writeback.
4194
 *
4195 4196 4197 4198 4199 4200
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
4201
 */
4202
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4203
			  struct extent_page_data *epd)
4204
{
4205
	struct btrfs_fs_info *fs_info = eb->fs_info;
4206
	int i, num_pages, failed_page_nr;
4207 4208 4209 4210
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
4211
		ret = flush_write_bio(epd);
4212 4213 4214
		if (ret < 0)
			return ret;
		flush = 1;
4215 4216 4217 4218 4219 4220 4221 4222
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
4223
			ret = flush_write_bio(epd);
4224 4225
			if (ret < 0)
				return ret;
4226 4227
			flush = 1;
		}
C
Chris Mason 已提交
4228 4229 4230 4231 4232
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
4233 4234 4235 4236
			btrfs_tree_unlock(eb);
		}
	}

4237 4238 4239 4240 4241 4242
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4243 4244
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4245
		spin_unlock(&eb->refs_lock);
4246
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4247 4248 4249
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4250
		ret = 1;
4251 4252
	} else {
		spin_unlock(&eb->refs_lock);
4253 4254 4255 4256
	}

	btrfs_tree_unlock(eb);

4257 4258 4259 4260 4261 4262 4263
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
	if (!ret || fs_info->sectorsize < PAGE_SIZE)
4264 4265
		return ret;

4266
	num_pages = num_extent_pages(eb);
4267
	for (i = 0; i < num_pages; i++) {
4268
		struct page *p = eb->pages[i];
4269 4270 4271

		if (!trylock_page(p)) {
			if (!flush) {
4272 4273 4274 4275 4276
				int err;

				err = flush_write_bio(epd);
				if (err < 0) {
					ret = err;
4277 4278 4279
					failed_page_nr = i;
					goto err_unlock;
				}
4280 4281 4282 4283 4284 4285 4286
				flush = 1;
			}
			lock_page(p);
		}
	}

	return ret;
4287 4288 4289 4290
err_unlock:
	/* Unlock already locked pages */
	for (i = 0; i < failed_page_nr; i++)
		unlock_page(eb->pages[i]);
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
	/*
	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
	 * be made and undo everything done before.
	 */
	btrfs_tree_lock(eb);
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
	end_extent_buffer_writeback(eb);
	spin_unlock(&eb->refs_lock);
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
				 fs_info->dirty_metadata_batch);
	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
	btrfs_tree_unlock(eb);
4305
	return ret;
4306 4307
}

4308
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4309
{
4310
	struct btrfs_fs_info *fs_info = eb->fs_info;
4311

4312
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4313 4314 4315
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4316 4317 4318 4319 4320 4321
	/*
	 * A read may stumble upon this buffer later, make sure that it gets an
	 * error and knows there was an error.
	 */
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);

4322 4323 4324 4325 4326 4327 4328 4329
	/*
	 * We need to set the mapping with the io error as well because a write
	 * error will flip the file system readonly, and then syncfs() will
	 * return a 0 because we are readonly if we don't modify the err seq for
	 * the superblock.
	 */
	mapping_set_error(page->mapping, -EIO);

4330 4331 4332 4333 4334 4335 4336
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4377
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4378 4379
		break;
	case 0:
4380
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4381 4382
		break;
	case 1:
4383
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4384 4385 4386 4387 4388 4389
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       start >> fs_info->sectorsize_bits);
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4416
static void end_bio_subpage_eb_writepage(struct bio *bio)
4417
{
4418
	struct btrfs_fs_info *fs_info;
4419 4420 4421
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4422 4423 4424
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
	ASSERT(fs_info->sectorsize < PAGE_SIZE);

4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4473
static void end_bio_extent_buffer_writepage(struct bio *bio)
4474
{
4475
	struct bio_vec *bvec;
4476
	struct extent_buffer *eb;
4477
	int done;
4478
	struct bvec_iter_all iter_all;
4479

4480
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4481
	bio_for_each_segment_all(bvec, bio, iter_all) {
4482 4483 4484 4485 4486 4487
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4488
		if (bio->bi_status ||
4489
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4490
			ClearPageUptodate(page);
4491
			set_btree_ioerr(page, eb);
4492 4493 4494 4495 4496 4497 4498 4499
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4500
	}
4501 4502 4503 4504

	bio_put(bio);
}

4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
	bool no_dirty_ebs = false;
	int ret;

4544 4545
	prepare_eb_write(eb);

4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4556 4557 4558
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4559
			end_bio_subpage_eb_writepage, 0, 0, false);
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
		update_nr_written(wbc, 1);
	return ret;
}

4579
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4580 4581 4582
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4583
	u64 disk_bytenr = eb->start;
4584
	int i, num_pages;
4585
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4586
	int ret = 0;
4587

4588
	prepare_eb_write(eb);
4589

4590
	num_pages = num_extent_pages(eb);
4591
	for (i = 0; i < num_pages; i++) {
4592
		struct page *p = eb->pages[i];
4593 4594 4595

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4596
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4597 4598
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4599
					 end_bio_extent_buffer_writepage,
4600
					 0, 0, false);
4601
		if (ret) {
4602
			set_btree_ioerr(p, eb);
4603 4604
			if (PageWriteback(p))
				end_page_writeback(p);
4605 4606 4607 4608 4609
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4610
		disk_bytenr += PAGE_SIZE;
4611
		update_nr_written(wbc, 1);
4612 4613 4614 4615 4616
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4617
			struct page *p = eb->pages[i];
4618
			clear_page_dirty_for_io(p);
4619 4620 4621 4622 4623 4624 4625
			unlock_page(p);
		}
	}

	return ret;
}

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
4652
	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
4668 4669
		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
			      subpage->bitmaps)) {
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4704
		ret = write_one_subpage_eb(eb, wbc, epd);
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
	end_write_bio(epd, ret);
	return ret;
}

4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4743
	struct btrfs_block_group *cache = NULL;
4744 4745 4746 4747 4748 4749
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4750 4751 4752
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return submit_eb_subpage(page, wbc, epd);

4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4792 4793 4794 4795
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4796 4797 4798
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4799 4800 4801
		free_extent_buffer(eb);
		return ret;
	}
4802
	if (cache) {
4803 4804 4805
		/*
		 * Implies write in zoned mode. Mark the last eb in a block group.
		 */
4806 4807
		if (cache->seq_zone && eb->start + eb->len == cache->zone_capacity)
			set_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags);
4808
		btrfs_put_block_group(cache);
4809
	}
4810 4811 4812 4813 4814 4815 4816
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4817 4818 4819
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4820
	struct extent_buffer *eb_context = NULL;
4821
	struct extent_page_data epd = {
4822
		.bio_ctrl = { 0 },
4823 4824 4825
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4826
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4827 4828 4829 4830 4831 4832 4833 4834
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4835
	xa_mark_t tag;
4836

4837
	pagevec_init(&pvec);
4838 4839 4840
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4841 4842 4843 4844 4845
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4846
	} else {
4847 4848
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4849 4850 4851 4852 4853 4854
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4855
	btrfs_zoned_meta_io_lock(fs_info);
4856 4857 4858 4859
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4860
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4861
			tag))) {
4862 4863 4864 4865 4866
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4867 4868
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4869
				continue;
4870
			if (ret < 0) {
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4894 4895
	if (ret < 0) {
		end_write_bio(&epd, ret);
4896
		goto out;
4897
	}
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
	 */
J
Josef Bacik 已提交
4925
	if (!BTRFS_FS_ERROR(fs_info)) {
4926 4927
		ret = flush_write_bio(&epd);
	} else {
4928
		ret = -EROFS;
4929 4930
		end_write_bio(&epd, ret);
	}
4931 4932
out:
	btrfs_zoned_meta_io_unlock(fs_info);
4933 4934 4935
	return ret;
}

4936
/**
4937 4938
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4939
 * @mapping: address space structure to write
4940 4941
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4942 4943 4944 4945 4946 4947 4948 4949 4950
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4951
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4952
			     struct writeback_control *wbc,
4953
			     struct extent_page_data *epd)
4954
{
4955
	struct inode *inode = mapping->host;
4956 4957
	int ret = 0;
	int done = 0;
4958
	int nr_to_write_done = 0;
4959 4960 4961 4962
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4963 4964
	pgoff_t done_index;
	int range_whole = 0;
4965
	int scanned = 0;
M
Matthew Wilcox 已提交
4966
	xa_mark_t tag;
4967

4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4980
	pagevec_init(&pvec);
4981 4982 4983
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4984 4985 4986 4987 4988
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4989
	} else {
4990 4991
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4992 4993
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4994 4995
		scanned = 1;
	}
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5010 5011 5012
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
5013
retry:
5014
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5015
		tag_pages_for_writeback(mapping, index, end);
5016
	done_index = index;
5017
	while (!done && !nr_to_write_done && (index <= end) &&
5018 5019
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
5020 5021 5022 5023 5024
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

5025
			done_index = page->index + 1;
5026
			/*
M
Matthew Wilcox 已提交
5027 5028 5029 5030 5031
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
5032
			 */
5033
			if (!trylock_page(page)) {
5034 5035
				ret = flush_write_bio(epd);
				BUG_ON(ret < 0);
5036
				lock_page(page);
5037
			}
5038 5039 5040 5041 5042 5043

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
5044
			if (wbc->sync_mode != WB_SYNC_NONE) {
5045 5046 5047 5048
				if (PageWriteback(page)) {
					ret = flush_write_bio(epd);
					BUG_ON(ret < 0);
				}
5049
				wait_on_page_writeback(page);
C
Chris Mason 已提交
5050
			}
5051 5052 5053 5054 5055 5056 5057

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

5058
			ret = __extent_writepage(page, wbc, epd);
5059 5060 5061 5062
			if (ret < 0) {
				done = 1;
				break;
			}
5063 5064 5065 5066 5067 5068 5069

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
5070 5071 5072 5073
		}
		pagevec_release(&pvec);
		cond_resched();
	}
5074
	if (!scanned && !done) {
5075 5076 5077 5078 5079 5080
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
		ret = flush_write_bio(epd);
		if (!ret)
			goto retry;
5091
	}
5092 5093 5094 5095

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

5096
	btrfs_add_delayed_iput(inode);
5097
	return ret;
5098 5099
}

5100
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
5101 5102 5103
{
	int ret;
	struct extent_page_data epd = {
5104
		.bio_ctrl = { 0 },
5105
		.extent_locked = 0,
5106
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5107 5108 5109
	};

	ret = __extent_writepage(page, wbc, &epd);
5110 5111 5112 5113 5114
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
5115

5116 5117
	ret = flush_write_bio(&epd);
	ASSERT(ret <= 0);
5118 5119 5120
	return ret;
}

5121 5122 5123 5124 5125 5126
/*
 * Submit the pages in the range to bio for call sites which delalloc range has
 * already been ran (aka, ordered extent inserted) and all pages are still
 * locked.
 */
int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
5127
{
5128 5129
	bool found_error = false;
	int first_error = 0;
5130 5131 5132
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
5133
	u64 cur = start;
5134 5135
	unsigned long nr_pages;
	const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
5136
	struct extent_page_data epd = {
5137
		.bio_ctrl = { 0 },
5138
		.extent_locked = 1,
5139
		.sync_io = 1,
5140 5141
	};
	struct writeback_control wbc_writepages = {
5142
		.sync_mode	= WB_SYNC_ALL,
5143 5144
		.range_start	= start,
		.range_end	= end + 1,
5145 5146 5147
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
5148 5149
	};

5150 5151 5152 5153 5154
	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
	nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
		   PAGE_SHIFT;
	wbc_writepages.nr_to_write = nr_pages * 2;

5155
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5156
	while (cur <= end) {
5157 5158
		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);

5159 5160 5161 5162 5163 5164
		page = find_get_page(mapping, cur >> PAGE_SHIFT);
		/*
		 * All pages in the range are locked since
		 * btrfs_run_delalloc_range(), thus there is no way to clear
		 * the page dirty flag.
		 */
5165
		ASSERT(PageLocked(page));
5166 5167 5168 5169 5170 5171 5172
		ASSERT(PageDirty(page));
		clear_page_dirty_for_io(page);
		ret = __extent_writepage(page, &wbc_writepages, &epd);
		ASSERT(ret <= 0);
		if (ret < 0) {
			found_error = true;
			first_error = ret;
5173
		}
5174
		put_page(page);
5175
		cur = cur_end + 1;
5176 5177
	}

5178
	if (!found_error)
5179 5180
		ret = flush_write_bio(&epd);
	else
5181
		end_write_bio(&epd, ret);
5182 5183

	wbc_detach_inode(&wbc_writepages);
5184 5185
	if (found_error)
		return first_error;
5186 5187
	return ret;
}
5188

5189
int extent_writepages(struct address_space *mapping,
5190 5191
		      struct writeback_control *wbc)
{
5192
	struct inode *inode = mapping->host;
5193 5194
	int ret = 0;
	struct extent_page_data epd = {
5195
		.bio_ctrl = { 0 },
5196
		.extent_locked = 0,
5197
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5198 5199
	};

5200 5201 5202 5203
	/*
	 * Allow only a single thread to do the reloc work in zoned mode to
	 * protect the write pointer updates.
	 */
5204
	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
5205
	ret = extent_write_cache_pages(mapping, wbc, &epd);
5206
	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
5207 5208 5209 5210 5211 5212
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
	ret = flush_write_bio(&epd);
5213 5214 5215
	return ret;
}

5216
void extent_readahead(struct readahead_control *rac)
5217
{
5218
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
L
Liu Bo 已提交
5219
	struct page *pagepool[16];
5220
	struct extent_map *em_cached = NULL;
5221
	u64 prev_em_start = (u64)-1;
5222
	int nr;
5223

5224
	while ((nr = readahead_page_batch(rac, pagepool))) {
5225 5226
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5227

5228
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5229
				&em_cached, &bio_ctrl, &prev_em_start);
5230
	}
L
Liu Bo 已提交
5231

5232 5233 5234
	if (em_cached)
		free_extent_map(em_cached);

5235 5236
	if (bio_ctrl.bio) {
		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5237 5238
			return;
	}
5239 5240 5241
}

/*
5242 5243
 * basic invalidate_folio code, this waits on any locked or writeback
 * ranges corresponding to the folio, and then deletes any extent state
5244 5245
 * records from the tree
 */
5246 5247
int extent_invalidate_folio(struct extent_io_tree *tree,
			  struct folio *folio, size_t offset)
5248
{
5249
	struct extent_state *cached_state = NULL;
5250 5251 5252
	u64 start = folio_pos(folio);
	u64 end = start + folio_size(folio) - 1;
	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
5253

5254 5255 5256
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

5257
	start += ALIGN(offset, blocksize);
5258 5259 5260
	if (start > end)
		return 0;

5261
	lock_extent_bits(tree, start, end, &cached_state);
5262
	folio_wait_writeback(folio);
5263 5264 5265 5266 5267 5268 5269

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
5270 5271 5272
	return 0;
}

5273 5274 5275 5276 5277
/*
 * a helper for releasepage, this tests for areas of the page that
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
5278
static int try_release_extent_state(struct extent_io_tree *tree,
5279
				    struct page *page, gfp_t mask)
5280
{
M
Miao Xie 已提交
5281
	u64 start = page_offset(page);
5282
	u64 end = start + PAGE_SIZE - 1;
5283 5284
	int ret = 1;

N
Nikolay Borisov 已提交
5285
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5286
		ret = 0;
N
Nikolay Borisov 已提交
5287
	} else {
5288
		/*
5289 5290 5291 5292
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
5293
		 */
5294
		ret = __clear_extent_bit(tree, start, end,
5295 5296
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
5297 5298 5299 5300 5301 5302 5303 5304

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5305 5306 5307 5308
	}
	return ret;
}

5309 5310 5311 5312 5313
/*
 * a helper for releasepage.  As long as there are no locked extents
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5314
int try_release_extent_mapping(struct page *page, gfp_t mask)
5315 5316
{
	struct extent_map *em;
M
Miao Xie 已提交
5317
	u64 start = page_offset(page);
5318
	u64 end = start + PAGE_SIZE - 1;
5319 5320 5321
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5322

5323
	if (gfpflags_allow_blocking(mask) &&
5324
	    page->mapping->host->i_size > SZ_16M) {
5325
		u64 len;
5326
		while (start <= end) {
5327 5328 5329
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5330
			len = end - start + 1;
5331
			write_lock(&map->lock);
5332
			em = lookup_extent_mapping(map, start, len);
5333
			if (!em) {
5334
				write_unlock(&map->lock);
5335 5336
				break;
			}
5337 5338
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5339
				write_unlock(&map->lock);
5340 5341 5342
				free_extent_map(em);
				break;
			}
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5370 5371 5372 5373 5374 5375 5376 5377
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5378 5379 5380
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5381
next:
5382
			start = extent_map_end(em);
5383
			write_unlock(&map->lock);
5384 5385

			/* once for us */
5386
			free_extent_map(em);
5387 5388

			cond_resched(); /* Allow large-extent preemption. */
5389 5390
		}
	}
5391
	return try_release_extent_state(tree, page, mask);
5392 5393
}

5394 5395 5396 5397
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
5398
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5399
						u64 offset, u64 last)
5400
{
5401
	u64 sectorsize = btrfs_inode_sectorsize(inode);
5402 5403 5404 5405 5406 5407
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

5408
	while (1) {
5409 5410 5411
		len = last - offset;
		if (len == 0)
			break;
5412
		len = ALIGN(len, sectorsize);
5413
		em = btrfs_get_extent_fiemap(inode, offset, len);
5414
		if (IS_ERR(em))
5415 5416 5417
			return em;

		/* if this isn't a hole return it */
5418
		if (em->block_start != EXTENT_MAP_HOLE)
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5464
	 * fiemap extent won't overlap with cached one.
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
5516
 * Emit last fiemap cache
5517
 *
5518 5519 5520 5521 5522 5523 5524
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5525
 */
5526
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5527
				  struct fiemap_cache *cache)
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5542
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5543
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
5544
{
J
Josef Bacik 已提交
5545
	int ret = 0;
5546
	u64 off;
Y
Yehuda Sadeh 已提交
5547 5548
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
5549 5550
	u32 found_type;
	u64 last;
5551
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
5552
	u64 disko = 0;
5553
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
5554
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
5555
	struct extent_map *em = NULL;
5556
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
5557
	struct btrfs_path *path;
5558
	struct btrfs_root *root = inode->root;
5559
	struct fiemap_cache cache = { 0 };
5560 5561
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
5562
	int end = 0;
5563 5564 5565
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
5566 5567 5568 5569

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
5570 5571 5572 5573
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

5574 5575 5576 5577 5578 5579 5580
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

5581 5582 5583 5584 5585
	/*
	 * We can't initialize that to 'start' as this could miss extents due
	 * to extent item merging
	 */
	off = 0;
5586 5587
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5588

5589 5590 5591 5592
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
5593 5594
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
5595
	if (ret < 0) {
5596
		goto out_free_ulist;
5597 5598 5599 5600
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
5601
	}
5602

J
Josef Bacik 已提交
5603 5604
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5605
	found_type = found_key.type;
J
Josef Bacik 已提交
5606

5607
	/* No extents, but there might be delalloc bits */
5608
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
5609
	    found_type != BTRFS_EXTENT_DATA_KEY) {
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
5621
	}
5622
	btrfs_release_path(path);
J
Josef Bacik 已提交
5623

5624 5625 5626 5627 5628 5629 5630 5631 5632 5633
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5634
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5635
			 &cached_state);
5636

5637
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
5638 5639 5640 5641 5642 5643
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
5644

Y
Yehuda Sadeh 已提交
5645
	while (!end) {
5646
		u64 offset_in_extent = 0;
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5659

5660 5661
		/*
		 * record the offset from the start of the extent
5662 5663 5664
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5665
		 */
5666 5667
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5668
		em_end = extent_map_end(em);
5669
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5670
		flags = 0;
5671 5672 5673 5674
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5675

5676 5677 5678 5679 5680 5681 5682
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5683
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
5684 5685
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5686
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5687 5688
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5689
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5690 5691
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5692 5693 5694
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5695 5696 5697 5698

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5699 5700 5701
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5702
			 */
5703
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5704
						 bytenr, roots, tmp_ulist);
5705
			if (ret < 0)
5706
				goto out_free;
5707
			if (ret)
5708
				flags |= FIEMAP_EXTENT_SHARED;
5709
			ret = 0;
Y
Yehuda Sadeh 已提交
5710 5711 5712
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5713 5714
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5715 5716 5717

		free_extent_map(em);
		em = NULL;
5718 5719
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5720 5721 5722 5723
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5724
		/* now scan forward to see if this is really the last extent. */
5725
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5726 5727 5728 5729 5730
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5731 5732 5733
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5734 5735
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5736 5737 5738
		if (ret) {
			if (ret == 1)
				ret = 0;
5739
			goto out_free;
5740
		}
Y
Yehuda Sadeh 已提交
5741 5742
	}
out_free:
5743
	if (!ret)
5744
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5745 5746
	free_extent_map(em);
out:
5747
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5748
			     &cached_state);
5749 5750

out_free_ulist:
5751
	btrfs_free_path(path);
5752 5753
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5754 5755 5756
	return ret;
}

5757 5758 5759 5760 5761
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5762
int extent_buffer_under_io(const struct extent_buffer *eb)
5763 5764 5765 5766 5767 5768
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5769
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5770
{
5771
	struct btrfs_subpage *subpage;
5772

5773
	lockdep_assert_held(&page->mapping->private_lock);
5774

5775 5776 5777 5778
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
5779 5780 5781 5782 5783 5784
		/*
		 * Even there is no eb refs here, we may still have
		 * end_page_read() call relying on page::private.
		 */
		if (atomic_read(&subpage->readers))
			return true;
5785 5786 5787
	}
	return false;
}
5788

5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5802
		if (mapped)
5803 5804 5805 5806 5807
			spin_unlock(&page->mapping->private_lock);
		return;
	}

	if (fs_info->sectorsize == PAGE_SIZE) {
5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5820
			/*
5821 5822
			 * We need to make sure we haven't be attached
			 * to a new eb.
5823
			 */
5824
			detach_page_private(page);
5825
		}
5826 5827
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
5845
	 * page range and no unfinished IO.
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5869

5870
		/* One for when we allocated the page */
5871
		put_page(page);
5872
	}
5873 5874 5875 5876 5877 5878 5879
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5880
	btrfs_release_extent_buffer_pages(eb);
5881
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5882 5883 5884
	__free_extent_buffer(eb);
}

5885 5886
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5887
		      unsigned long len)
5888 5889 5890
{
	struct extent_buffer *eb = NULL;

5891
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5892 5893
	eb->start = start;
	eb->len = len;
5894
	eb->fs_info = fs_info;
5895
	eb->bflags = 0;
5896
	init_rwsem(&eb->lock);
5897

5898 5899
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5900
	INIT_LIST_HEAD(&eb->release_list);
5901

5902
	spin_lock_init(&eb->refs_lock);
5903
	atomic_set(&eb->refs, 1);
5904
	atomic_set(&eb->io_pages, 0);
5905

5906
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5907 5908 5909 5910

	return eb;
}

5911
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5912
{
5913
	int i;
5914 5915
	struct page *p;
	struct extent_buffer *new;
5916
	int num_pages = num_extent_pages(src);
5917

5918
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5919 5920 5921
	if (new == NULL)
		return NULL;

5922 5923 5924 5925 5926 5927 5928
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5929
	for (i = 0; i < num_pages; i++) {
5930 5931
		int ret;

5932
		p = alloc_page(GFP_NOFS);
5933 5934 5935 5936
		if (!p) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5937 5938 5939 5940 5941 5942
		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			put_page(p);
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5943 5944
		WARN_ON(PageDirty(p));
		new->pages[i] = p;
5945
		copy_page(page_address(p), page_address(src->pages[i]));
5946
	}
5947
	set_extent_buffer_uptodate(new);
5948 5949 5950 5951

	return new;
}

5952 5953
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5954 5955
{
	struct extent_buffer *eb;
5956 5957
	int num_pages;
	int i;
5958

5959
	eb = __alloc_extent_buffer(fs_info, start, len);
5960 5961 5962
	if (!eb)
		return NULL;

5963
	num_pages = num_extent_pages(eb);
5964
	for (i = 0; i < num_pages; i++) {
5965 5966
		int ret;

5967
		eb->pages[i] = alloc_page(GFP_NOFS);
5968 5969
		if (!eb->pages[i])
			goto err;
5970 5971 5972
		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
		if (ret < 0)
			goto err;
5973 5974 5975
	}
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5976
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5977 5978 5979

	return eb;
err:
5980 5981
	for (; i > 0; i--) {
		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5982
		__free_page(eb->pages[i - 1]);
5983
	}
5984 5985 5986 5987
	__free_extent_buffer(eb);
	return NULL;
}

5988
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5989
						u64 start)
5990
{
5991
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5992 5993
}

5994 5995
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5996
	int refs;
5997 5998 5999 6000
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
6001
	 *
6002 6003 6004
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
	 * calling releasepage when the tree reference is the only reference.
6005
	 *
6006 6007 6008 6009 6010
	 * In both cases, care is taken to ensure that the extent_buffer's
	 * pages are not under io. However, releasepage can be concurrently
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
6011
	 *
6012 6013 6014 6015 6016 6017 6018
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
6019
	 */
6020 6021 6022 6023
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

6024 6025
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6026
		atomic_inc(&eb->refs);
6027
	spin_unlock(&eb->refs_lock);
6028 6029
}

6030 6031
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
6032
{
6033
	int num_pages, i;
6034

6035 6036
	check_buffer_tree_ref(eb);

6037
	num_pages = num_extent_pages(eb);
6038
	for (i = 0; i < num_pages; i++) {
6039 6040
		struct page *p = eb->pages[i];

6041 6042
		if (p != accessed)
			mark_page_accessed(p);
6043 6044 6045
	}
}

6046 6047
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
6048 6049 6050
{
	struct extent_buffer *eb;

6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
6070
	}
6071 6072
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
6073 6074
}

6075 6076
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6077
					u64 start)
6078 6079 6080 6081 6082 6083 6084
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
6085
	eb = alloc_dummy_extent_buffer(fs_info, start);
6086
	if (!eb)
6087
		return ERR_PTR(-ENOMEM);
6088 6089
	eb->fs_info = fs_info;
again:
6090
	ret = radix_tree_preload(GFP_NOFS);
6091 6092
	if (ret) {
		exists = ERR_PTR(ret);
6093
		goto free_eb;
6094
	}
6095 6096
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
6097
				start >> fs_info->sectorsize_bits, eb);
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
			goto free_eb;
		else
			goto again;
	}
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

6117 6118
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
6119 6120 6121
{
	struct extent_buffer *exists;

6122 6123 6124 6125 6126 6127 6128 6129
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
	if (fs_info->sectorsize < PAGE_SIZE)
		return NULL;

6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

6149
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6150
					  u64 start, u64 owner_root, int level)
6151
{
6152
	unsigned long len = fs_info->nodesize;
6153 6154
	int num_pages;
	int i;
6155
	unsigned long index = start >> PAGE_SHIFT;
6156
	struct extent_buffer *eb;
6157
	struct extent_buffer *exists = NULL;
6158
	struct page *p;
6159
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
6160
	int uptodate = 1;
6161
	int ret;
6162

6163
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
6164 6165 6166 6167
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return ERR_PTR(-EINVAL);
	}

6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

6179 6180 6181 6182 6183 6184 6185 6186
	if (fs_info->sectorsize < PAGE_SIZE &&
	    offset_in_page(start) + len > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %lu",
			  start, len);
		return ERR_PTR(-EINVAL);
	}

6187
	eb = find_extent_buffer(fs_info, start);
6188
	if (eb)
6189 6190
		return eb;

6191
	eb = __alloc_extent_buffer(fs_info, start, len);
6192
	if (!eb)
6193
		return ERR_PTR(-ENOMEM);
6194
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6195

6196
	num_pages = num_extent_pages(eb);
6197
	for (i = 0; i < num_pages; i++, index++) {
6198 6199
		struct btrfs_subpage *prealloc = NULL;

6200
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6201 6202
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
6203
			goto free_eb;
6204
		}
J
Josef Bacik 已提交
6205

6206 6207 6208 6209 6210 6211 6212 6213 6214 6215
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
6216
		if (fs_info->sectorsize < PAGE_SIZE) {
6217 6218 6219
			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
			if (IS_ERR(prealloc)) {
				ret = PTR_ERR(prealloc);
6220 6221 6222 6223 6224
				unlock_page(p);
				put_page(p);
				exists = ERR_PTR(ret);
				goto free_eb;
			}
6225 6226
		}

J
Josef Bacik 已提交
6227
		spin_lock(&mapping->private_lock);
6228
		exists = grab_extent_buffer(fs_info, p);
6229 6230 6231 6232 6233
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
6234
			btrfs_free_subpage(prealloc);
6235
			goto free_eb;
6236
		}
6237 6238 6239
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
6250
		spin_unlock(&mapping->private_lock);
6251

6252
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6253
		eb->pages[i] = p;
6254 6255
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
6256 6257

		/*
6258 6259 6260 6261 6262
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
		 * opens a race with btree_releasepage which can free a page
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
6263
		 */
6264 6265
	}
	if (uptodate)
6266
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6267
again:
6268
	ret = radix_tree_preload(GFP_NOFS);
6269 6270
	if (ret) {
		exists = ERR_PTR(ret);
6271
		goto free_eb;
6272
	}
6273

6274 6275
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
6276
				start >> fs_info->sectorsize_bits, eb);
6277
	spin_unlock(&fs_info->buffer_lock);
6278
	radix_tree_preload_end();
6279
	if (ret == -EEXIST) {
6280
		exists = find_extent_buffer(fs_info, start);
6281 6282 6283
		if (exists)
			goto free_eb;
		else
6284
			goto again;
6285 6286
	}
	/* add one reference for the tree */
6287
	check_buffer_tree_ref(eb);
6288
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
6289 6290

	/*
6291 6292 6293
	 * Now it's safe to unlock the pages because any calls to
	 * btree_releasepage will correctly detect that a page belongs to a
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
6294
	 */
6295 6296
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6297 6298
	return eb;

6299
free_eb:
6300
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6301 6302 6303 6304
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
6305

6306
	btrfs_release_extent_buffer(eb);
6307
	return exists;
6308 6309
}

6310 6311 6312 6313 6314 6315 6316 6317
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6318
static int release_extent_buffer(struct extent_buffer *eb)
6319
	__releases(&eb->refs_lock)
6320
{
6321 6322
	lockdep_assert_held(&eb->refs_lock);

6323 6324
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6325
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6326
			struct btrfs_fs_info *fs_info = eb->fs_info;
6327

6328
			spin_unlock(&eb->refs_lock);
6329

6330 6331
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
6332
					  eb->start >> fs_info->sectorsize_bits);
6333
			spin_unlock(&fs_info->buffer_lock);
6334 6335
		} else {
			spin_unlock(&eb->refs_lock);
6336
		}
6337

6338
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6339
		/* Should be safe to release our pages at this point */
6340
		btrfs_release_extent_buffer_pages(eb);
6341
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6342
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6343 6344 6345 6346
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6347
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6348
		return 1;
6349 6350
	}
	spin_unlock(&eb->refs_lock);
6351 6352

	return 0;
6353 6354
}

6355 6356
void free_extent_buffer(struct extent_buffer *eb)
{
6357 6358
	int refs;
	int old;
6359 6360 6361
	if (!eb)
		return;

6362 6363
	while (1) {
		refs = atomic_read(&eb->refs);
6364 6365 6366
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6367 6368 6369 6370 6371 6372
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

6373 6374 6375
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6376
	    !extent_buffer_under_io(eb) &&
6377 6378 6379 6380 6381 6382 6383
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6384
	release_extent_buffer(eb);
6385 6386 6387 6388 6389
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6390 6391
		return;

6392 6393 6394
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6395
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6396 6397
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6398
	release_extent_buffer(eb);
6399 6400
}

6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6429
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6430
{
6431 6432
	int i;
	int num_pages;
6433 6434
	struct page *page;

6435 6436 6437
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return clear_subpage_extent_buffer_dirty(eb);

6438
	num_pages = num_extent_pages(eb);
6439 6440

	for (i = 0; i < num_pages; i++) {
6441
		page = eb->pages[i];
6442
		if (!PageDirty(page))
C
Chris Mason 已提交
6443
			continue;
6444
		lock_page(page);
6445
		btree_clear_page_dirty(page);
6446
		ClearPageError(page);
6447
		unlock_page(page);
6448
	}
6449
	WARN_ON(atomic_read(&eb->refs) == 0);
6450 6451
}

6452
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6453
{
6454 6455
	int i;
	int num_pages;
6456
	bool was_dirty;
6457

6458 6459
	check_buffer_tree_ref(eb);

6460
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6461

6462
	num_pages = num_extent_pages(eb);
6463
	WARN_ON(atomic_read(&eb->refs) == 0);
6464 6465
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6466 6467
	if (!was_dirty) {
		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6468

6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6488 6489 6490 6491 6492
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6493
	return was_dirty;
6494 6495
}

6496
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6497
{
6498
	struct btrfs_fs_info *fs_info = eb->fs_info;
6499
	struct page *page;
6500
	int num_pages;
6501
	int i;
6502

6503
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6504
	num_pages = num_extent_pages(eb);
6505
	for (i = 0; i < num_pages; i++) {
6506
		page = eb->pages[i];
C
Chris Mason 已提交
6507
		if (page)
6508 6509
			btrfs_page_clear_uptodate(fs_info, page,
						  eb->start, eb->len);
6510 6511 6512
	}
}

6513
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6514
{
6515
	struct btrfs_fs_info *fs_info = eb->fs_info;
6516
	struct page *page;
6517
	int num_pages;
6518
	int i;
6519

6520
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6521
	num_pages = num_extent_pages(eb);
6522
	for (i = 0; i < num_pages; i++) {
6523
		page = eb->pages[i];
6524
		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6525 6526 6527
	}
}

6528 6529 6530 6531 6532 6533
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6534
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6535 6536 6537 6538 6539 6540 6541
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6542 6543
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6565
	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6566 6567 6568 6569
	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
				 end_bio_extent_readpage, mirror_num, 0,
6570 6571 6572 6573 6574 6575 6576 6577 6578
				 true);
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6579
	if (bio_ctrl.bio) {
6580 6581
		int tmp;

6582 6583
		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
		bio_ctrl.bio = NULL;
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
		if (tmp < 0)
			return tmp;
	}
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6596
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6597
{
6598
	int i;
6599 6600 6601
	struct page *page;
	int err;
	int ret = 0;
6602 6603
	int locked_pages = 0;
	int all_uptodate = 1;
6604
	int num_pages;
6605
	unsigned long num_reads = 0;
6606
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6607

6608
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6609 6610
		return 0;

6611 6612 6613 6614 6615 6616 6617 6618
	/*
	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
	 * operation, which could potentially still be in flight.  In this case
	 * we simply want to return an error.
	 */
	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
		return -EIO;

6619 6620 6621
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6622
	num_pages = num_extent_pages(eb);
6623
	for (i = 0; i < num_pages; i++) {
6624
		page = eb->pages[i];
6625
		if (wait == WAIT_NONE) {
6626 6627 6628 6629 6630 6631 6632
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6633
			if (!trylock_page(page))
6634
				goto unlock_exit;
6635 6636 6637
		} else {
			lock_page(page);
		}
6638
		locked_pages++;
6639 6640 6641 6642 6643 6644
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6645
	for (i = 0; i < num_pages; i++) {
6646
		page = eb->pages[i];
6647 6648
		if (!PageUptodate(page)) {
			num_reads++;
6649
			all_uptodate = 0;
6650
		}
6651
	}
6652

6653
	if (all_uptodate) {
6654
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6655 6656 6657
		goto unlock_exit;
	}

6658
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6659
	eb->read_mirror = 0;
6660
	atomic_set(&eb->io_pages, num_reads);
6661 6662 6663 6664 6665
	/*
	 * It is possible for releasepage to clear the TREE_REF bit before we
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6666
	for (i = 0; i < num_pages; i++) {
6667
		page = eb->pages[i];
6668

6669
		if (!PageUptodate(page)) {
6670 6671 6672 6673 6674 6675
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6676
			ClearPageError(page);
6677
			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6678 6679 6680
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
					 mirror_num, 0, false);
6681 6682
			if (err) {
				/*
6683 6684 6685
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6686
				 */
6687 6688 6689
				ret = err;
				SetPageError(page);
				unlock_page(page);
6690 6691
				atomic_dec(&eb->io_pages);
			}
6692 6693 6694 6695 6696
		} else {
			unlock_page(page);
		}
	}

6697 6698 6699
	if (bio_ctrl.bio) {
		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
		bio_ctrl.bio = NULL;
6700 6701
		if (err)
			return err;
6702
	}
6703

6704
	if (ret || wait != WAIT_COMPLETE)
6705
		return ret;
C
Chris Mason 已提交
6706

6707
	for (i = 0; i < num_pages; i++) {
6708
		page = eb->pages[i];
6709
		wait_on_page_locked(page);
C
Chris Mason 已提交
6710
		if (!PageUptodate(page))
6711 6712
			ret = -EIO;
	}
C
Chris Mason 已提交
6713

6714
	return ret;
6715 6716

unlock_exit:
C
Chris Mason 已提交
6717
	while (locked_pages > 0) {
6718
		locked_pages--;
6719 6720
		page = eb->pages[locked_pages];
		unlock_page(page);
6721 6722
	}
	return ret;
6723 6724
}

6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6755 6756
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6757 6758 6759 6760 6761 6762
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6763
	unsigned long i = get_eb_page_index(start);
6764

6765
	if (check_eb_range(eb, start, len))
6766
		return;
6767

6768
	offset = get_eb_offset_in_page(eb, start);
6769

C
Chris Mason 已提交
6770
	while (len > 0) {
6771
		page = eb->pages[i];
6772

6773
		cur = min(len, (PAGE_SIZE - offset));
6774
		kaddr = page_address(page);
6775 6776 6777 6778 6779 6780 6781 6782 6783
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6784 6785 6786
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6787 6788 6789 6790 6791 6792
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6793
	unsigned long i = get_eb_page_index(start);
6794 6795 6796 6797 6798
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6799
	offset = get_eb_offset_in_page(eb, start);
6800 6801

	while (len > 0) {
6802
		page = eb->pages[i];
6803

6804
		cur = min(len, (PAGE_SIZE - offset));
6805
		kaddr = page_address(page);
6806
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6820 6821
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6822 6823 6824 6825 6826 6827
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6828
	unsigned long i = get_eb_page_index(start);
6829 6830
	int ret = 0;

6831 6832
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6833

6834
	offset = get_eb_offset_in_page(eb, start);
6835

C
Chris Mason 已提交
6836
	while (len > 0) {
6837
		page = eb->pages[i];
6838

6839
		cur = min(len, (PAGE_SIZE - offset));
6840

6841
		kaddr = page_address(page);
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

6865 6866 6867 6868 6869 6870 6871 6872 6873
	/*
	 * If we are using the commit root we could potentially clear a page
	 * Uptodate while we're using the extent buffer that we've previously
	 * looked up.  We don't want to complain in this case, as the page was
	 * valid before, we just didn't write it out.  Instead we want to catch
	 * the case where we didn't actually read the block properly, which
	 * would have !PageUptodate && !PageError, as we clear PageError before
	 * reading.
	 */
6874
	if (fs_info->sectorsize < PAGE_SIZE) {
6875
		bool uptodate, error;
6876 6877 6878

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
6879 6880
		error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
		WARN_ON(!uptodate && !error);
6881
	} else {
6882
		WARN_ON(!PageUptodate(page) && !PageError(page));
6883 6884 6885
	}
}

6886
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6887 6888 6889 6890
		const void *srcv)
{
	char *kaddr;

6891
	assert_eb_page_uptodate(eb, eb->pages[0]);
6892 6893 6894 6895
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6896 6897
}

6898
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6899 6900 6901
{
	char *kaddr;

6902
	assert_eb_page_uptodate(eb, eb->pages[0]);
6903 6904 6905
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6906 6907
}

6908
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6909 6910 6911 6912 6913 6914 6915
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6916
	unsigned long i = get_eb_page_index(start);
6917

6918 6919
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6920 6921
	if (check_eb_range(eb, start, len))
		return;
6922

6923
	offset = get_eb_offset_in_page(eb, start);
6924

C
Chris Mason 已提交
6925
	while (len > 0) {
6926
		page = eb->pages[i];
6927
		assert_eb_page_uptodate(eb, page);
6928

6929
		cur = min(len, PAGE_SIZE - offset);
6930
		kaddr = page_address(page);
6931 6932 6933 6934 6935 6936 6937 6938 6939
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6940
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6941
		unsigned long len)
6942 6943 6944 6945 6946
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6947
	unsigned long i = get_eb_page_index(start);
6948

6949 6950
	if (check_eb_range(eb, start, len))
		return;
6951

6952
	offset = get_eb_offset_in_page(eb, start);
6953

C
Chris Mason 已提交
6954
	while (len > 0) {
6955
		page = eb->pages[i];
6956
		assert_eb_page_uptodate(eb, page);
6957

6958
		cur = min(len, PAGE_SIZE - offset);
6959
		kaddr = page_address(page);
6960
		memset(kaddr + offset, 0, cur);
6961 6962 6963 6964 6965 6966 6967

		len -= cur;
		offset = 0;
		i++;
	}
}

6968 6969
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6970 6971
{
	int i;
6972
	int num_pages;
6973 6974 6975

	ASSERT(dst->len == src->len);

6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989
	if (dst->fs_info->sectorsize == PAGE_SIZE) {
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
6990 6991
}

6992 6993
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
6994 6995 6996 6997 6998 6999 7000 7001
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
7002
	unsigned long i = get_eb_page_index(dst_offset);
7003

7004 7005 7006 7007
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

7008 7009
	WARN_ON(src->len != dst_len);

7010
	offset = get_eb_offset_in_page(dst, dst_offset);
7011

C
Chris Mason 已提交
7012
	while (len > 0) {
7013
		page = dst->pages[i];
7014
		assert_eb_page_uptodate(dst, page);
7015

7016
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
7017

7018
		kaddr = page_address(page);
7019 7020 7021 7022 7023 7024 7025 7026 7027
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
7041
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
7054
	offset = start + offset_in_page(eb->start) + byte_offset;
7055

7056
	*page_index = offset >> PAGE_SHIFT;
7057
	*page_offset = offset_in_page(offset);
7058 7059 7060 7061 7062 7063 7064 7065
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
7066
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
7067 7068
			   unsigned long nr)
{
7069
	u8 *kaddr;
7070 7071 7072 7073 7074 7075
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
7076
	assert_eb_page_uptodate(eb, page);
7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
7088
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7089 7090
			      unsigned long pos, unsigned long len)
{
7091
	u8 *kaddr;
7092 7093 7094 7095 7096
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7097
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7098 7099 7100

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7101
	assert_eb_page_uptodate(eb, page);
7102 7103 7104 7105 7106 7107
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7108
		mask_to_set = ~0;
7109
		if (++offset >= PAGE_SIZE && len > 0) {
7110 7111
			offset = 0;
			page = eb->pages[++i];
7112
			assert_eb_page_uptodate(eb, page);
7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
7130 7131 7132
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
7133
{
7134
	u8 *kaddr;
7135 7136 7137 7138 7139
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7140
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7141 7142 7143

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7144
	assert_eb_page_uptodate(eb, page);
7145 7146 7147 7148 7149 7150
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7151
		mask_to_clear = ~0;
7152
		if (++offset >= PAGE_SIZE && len > 0) {
7153 7154
			offset = 0;
			page = eb->pages[++i];
7155
			assert_eb_page_uptodate(eb, page);
7156 7157 7158 7159 7160 7161 7162 7163 7164
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

7165 7166 7167 7168 7169 7170
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

7171 7172 7173 7174
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
7175
	char *dst_kaddr = page_address(dst_page);
7176
	char *src_kaddr;
7177
	int must_memmove = 0;
7178

7179
	if (dst_page != src_page) {
7180
		src_kaddr = page_address(src_page);
7181
	} else {
7182
		src_kaddr = dst_kaddr;
7183 7184
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
7185
	}
7186

7187 7188 7189 7190
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7191 7192
}

7193 7194 7195
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
7196 7197 7198 7199 7200 7201 7202
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

7203 7204 7205
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7206

C
Chris Mason 已提交
7207
	while (len > 0) {
7208 7209
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7210

7211 7212
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
7213

7214
		cur = min(len, (unsigned long)(PAGE_SIZE -
7215 7216
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
7217
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7218

7219
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7220 7221 7222 7223 7224 7225 7226 7227
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

7228 7229 7230
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
7231 7232 7233 7234 7235 7236 7237 7238 7239
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

7240 7241 7242
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7243
	if (dst_offset < src_offset) {
7244 7245 7246
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
7247
	while (len > 0) {
7248 7249
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
7250

7251 7252
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7253 7254 7255

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
7256
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7257 7258 7259 7260 7261 7262 7263 7264
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
7265

7266
#define GANG_LOOKUP_SIZE	16
7267 7268 7269
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
7270
	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
7271 7272
	struct extent_buffer *found = NULL;
	u64 page_start = page_offset(page);
7273
	u64 cur = page_start;
7274 7275 7276 7277

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	lockdep_assert_held(&fs_info->buffer_lock);

7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296
	while (cur < page_start + PAGE_SIZE) {
		int ret;
		int i;

		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
				(void **)gang, cur >> fs_info->sectorsize_bits,
				min_t(unsigned int, GANG_LOOKUP_SIZE,
				      PAGE_SIZE / fs_info->nodesize));
		if (ret == 0)
			goto out;
		for (i = 0; i < ret; i++) {
			/* Already beyond page end */
			if (gang[i]->start >= page_start + PAGE_SIZE)
				goto out;
			/* Found one */
			if (gang[i]->start >= bytenr) {
				found = gang[i];
				goto out;
			}
7297
		}
7298
		cur = gang[ret - 1]->start + gang[ret - 1]->len;
7299
	}
7300
out:
7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373
	return found;
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7374
int try_release_extent_buffer(struct page *page)
7375
{
7376 7377
	struct extent_buffer *eb;

7378 7379 7380
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return try_release_subpage_extent_buffer(page);

7381
	/*
7382 7383
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7384 7385 7386 7387
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
7388
		return 1;
7389
	}
7390

7391 7392
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7393 7394

	/*
7395 7396 7397
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7398
	 */
7399
	spin_lock(&eb->refs_lock);
7400
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7401 7402 7403
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7404
	}
7405
	spin_unlock(&page->mapping->private_lock);
7406

7407
	/*
7408 7409
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7410
	 */
7411 7412 7413
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7414
	}
7415

7416
	return release_extent_buffer(eb);
7417
}
7418 7419 7420 7421 7422

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7423
 * @owner_root: objectid of the root that owns this eb
7424
 * @gen:	generation for the uptodate check, can be 0
7425
 * @level:	level for the eb
7426 7427 7428 7429 7430 7431
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7432
				u64 bytenr, u64 owner_root, u64 gen, int level)
7433 7434 7435 7436
{
	struct extent_buffer *eb;
	int ret;

7437
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7465 7466 7467
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7468
}