extent_io.c 186.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8 9 10 11 12 13
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
14
#include <linux/prefetch.h>
D
Dan Magenheimer 已提交
15
#include <linux/cleancache.h>
16
#include "misc.h"
17
#include "extent_io.h"
18
#include "extent-io-tree.h"
19
#include "extent_map.h"
20 21
#include "ctree.h"
#include "btrfs_inode.h"
22
#include "volumes.h"
23
#include "check-integrity.h"
24
#include "locking.h"
25
#include "rcu-string.h"
26
#include "backref.h"
27
#include "disk-io.h"
28
#include "subpage.h"
29
#include "zoned.h"
30
#include "block-group.h"
31 32 33

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
34
static struct bio_set btrfs_bioset;
35

36 37 38 39 40
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

41
#ifdef CONFIG_BTRFS_DEBUG
42
static LIST_HEAD(states);
C
Chris Mason 已提交
43
static DEFINE_SPINLOCK(leak_lock);
44

45 46 47
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
48 49 50
{
	unsigned long flags;

51
	spin_lock_irqsave(lock, flags);
52
	list_add(new, head);
53
	spin_unlock_irqrestore(lock, flags);
54 55
}

56 57
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
58 59 60
{
	unsigned long flags;

61
	spin_lock_irqsave(lock, flags);
62
	list_del(entry);
63
	spin_unlock_irqrestore(lock, flags);
64 65
}

66
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
67 68
{
	struct extent_buffer *eb;
69
	unsigned long flags;
70

71 72 73 74 75 76 77
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

78 79 80 81
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
82 83 84 85
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
86 87 88
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
89
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
90 91 92 93 94 95
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

96 97
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
98
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
99 100
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
101
		       refcount_read(&state->refs));
102 103 104 105
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
106

107 108
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
109
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
110
		struct extent_io_tree *tree, u64 start, u64 end)
111
{
112 113 114 115 116 117 118 119 120 121 122 123
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
124
}
125
#else
126 127
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
128
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
129
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
130
#endif
131 132 133 134 135 136 137 138

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

struct extent_page_data {
139
	struct btrfs_bio_ctrl bio_ctrl;
140 141 142
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
143 144
	unsigned int extent_locked:1;

145
	/* tells the submit_bio code to use REQ_SYNC */
146
	unsigned int sync_io:1;
147 148
};

149
static int add_extent_changeset(struct extent_state *state, u32 bits,
150 151 152 153 154 155
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
156
		return 0;
157
	if (set && (state->state & bits) == bits)
158
		return 0;
159
	if (!set && (state->state & bits) == 0)
160
		return 0;
161
	changeset->bytes_changed += state->end - state->start + 1;
162
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
163
			GFP_ATOMIC);
164
	return ret;
165 166
}

167 168
int __must_check submit_one_bio(struct bio *bio, int mirror_num,
				unsigned long bio_flags)
169 170 171 172 173 174
{
	blk_status_t ret = 0;
	struct extent_io_tree *tree = bio->bi_private;

	bio->bi_private = NULL;

175 176 177 178
	if (is_data_inode(tree->private_data))
		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
					    bio_flags);
	else
179 180
		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
						mirror_num, bio_flags);
181 182 183 184

	return blk_status_to_errno(ret);
}

185 186 187
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
188 189 190 191 192 193
	struct bio *bio = epd->bio_ctrl.bio;

	if (bio) {
		bio->bi_status = errno_to_blk_status(ret);
		bio_endio(bio);
		epd->bio_ctrl.bio = NULL;
194 195 196
	}
}

197 198 199 200 201 202 203
/*
 * Submit bio from extent page data via submit_one_bio
 *
 * Return 0 if everything is OK.
 * Return <0 for error.
 */
static int __must_check flush_write_bio(struct extent_page_data *epd)
204
{
205
	int ret = 0;
206
	struct bio *bio = epd->bio_ctrl.bio;
207

208 209
	if (bio) {
		ret = submit_one_bio(bio, 0, 0);
210 211 212 213 214 215 216
		/*
		 * Clean up of epd->bio is handled by its endio function.
		 * And endio is either triggered by successful bio execution
		 * or the error handler of submit bio hook.
		 * So at this point, no matter what happened, we don't need
		 * to clean up epd->bio.
		 */
217
		epd->bio_ctrl.bio = NULL;
218
	}
219
	return ret;
220
}
221

222
int __init extent_state_cache_init(void)
223
{
D
David Sterba 已提交
224
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
225
			sizeof(struct extent_state), 0,
226
			SLAB_MEM_SPREAD, NULL);
227 228
	if (!extent_state_cache)
		return -ENOMEM;
229 230
	return 0;
}
231

232 233
int __init extent_io_init(void)
{
D
David Sterba 已提交
234
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
235
			sizeof(struct extent_buffer), 0,
236
			SLAB_MEM_SPREAD, NULL);
237
	if (!extent_buffer_cache)
238
		return -ENOMEM;
239

240 241 242
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
			offsetof(struct btrfs_io_bio, bio),
			BIOSET_NEED_BVECS))
243
		goto free_buffer_cache;
244

245
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
246 247
		goto free_bioset;

248 249
	return 0;

250
free_bioset:
251
	bioset_exit(&btrfs_bioset);
252

253 254 255
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
256 257
	return -ENOMEM;
}
258

259 260 261
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
262 263 264
	kmem_cache_destroy(extent_state_cache);
}

265
void __cold extent_io_exit(void)
266
{
267 268 269 270 271
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
272
	kmem_cache_destroy(extent_buffer_cache);
273
	bioset_exit(&btrfs_bioset);
274 275
}

276 277 278 279 280 281 282 283 284
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

285
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
286 287
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
288
{
289
	tree->fs_info = fs_info;
290
	tree->state = RB_ROOT;
291
	tree->dirty_bytes = 0;
292
	spin_lock_init(&tree->lock);
293
	tree->private_data = private_data;
294
	tree->owner = owner;
295 296
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
297 298
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

328
static struct extent_state *alloc_extent_state(gfp_t mask)
329 330 331
{
	struct extent_state *state;

332 333 334 335 336
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
337
	state = kmem_cache_alloc(extent_state_cache, mask);
338
	if (!state)
339 340
		return state;
	state->state = 0;
341
	state->failrec = NULL;
342
	RB_CLEAR_NODE(&state->rb_node);
343
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
344
	refcount_set(&state->refs, 1);
345
	init_waitqueue_head(&state->wq);
346
	trace_alloc_extent_state(state, mask, _RET_IP_);
347 348 349
	return state;
}

350
void free_extent_state(struct extent_state *state)
351 352 353
{
	if (!state)
		return;
354
	if (refcount_dec_and_test(&state->refs)) {
355
		WARN_ON(extent_state_in_tree(state));
356
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
357
		trace_free_extent_state(state, _RET_IP_);
358 359 360 361
		kmem_cache_free(extent_state_cache, state);
	}
}

362 363 364
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
365 366 367
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
368
{
369
	struct rb_node **p;
C
Chris Mason 已提交
370
	struct rb_node *parent = NULL;
371 372
	struct tree_entry *entry;

373 374 375 376 377 378
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

379
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
380
	while (*p) {
381 382 383 384 385 386 387 388 389 390 391
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

392
do_insert:
393 394 395 396 397
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
398
/**
399 400
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
401
 *
402 403 404 405 406 407 408
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
409 410 411 412 413 414 415
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
416
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
417
				      struct rb_node **next_ret,
418
				      struct rb_node **prev_ret,
419 420
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
421
{
422
	struct rb_root *root = &tree->state;
423
	struct rb_node **n = &root->rb_node;
424 425 426 427 428
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

429 430 431
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
432 433 434
		prev_entry = entry;

		if (offset < entry->start)
435
			n = &(*n)->rb_left;
436
		else if (offset > entry->end)
437
			n = &(*n)->rb_right;
C
Chris Mason 已提交
438
		else
439
			return *n;
440 441
	}

442 443 444 445 446
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

447
	if (next_ret) {
448
		orig_prev = prev;
C
Chris Mason 已提交
449
		while (prev && offset > prev_entry->end) {
450 451 452
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
453
		*next_ret = prev;
454 455 456
		prev = orig_prev;
	}

457
	if (prev_ret) {
458
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
459
		while (prev && offset < prev_entry->start) {
460 461 462
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
463
		*prev_ret = prev;
464 465 466 467
	}
	return NULL;
}

468 469 470 471 472
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
473
{
474
	struct rb_node *next= NULL;
475
	struct rb_node *ret;
476

477
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
478
	if (!ret)
479
		return next;
480 481 482
	return ret;
}

483 484 485 486 487 488
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

489 490 491 492 493 494 495 496 497
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
498 499
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
500 501 502 503
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
504
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
505
		return;
506 507 508 509 510 511

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
512 513 514 515
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
516 517
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
518
			RB_CLEAR_NODE(&other->rb_node);
519 520 521 522 523 524 525 526
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
527 528 529 530
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
531 532
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
533
			RB_CLEAR_NODE(&other->rb_node);
534
			free_extent_state(other);
535 536 537 538
		}
	}
}

539
static void set_state_bits(struct extent_io_tree *tree,
540
			   struct extent_state *state, u32 *bits,
541
			   struct extent_changeset *changeset);
542

543 544 545 546 547 548 549 550 551 552 553 554
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
555 556
			struct rb_node ***p,
			struct rb_node **parent,
557
			u32 *bits, struct extent_changeset *changeset)
558 559 560
{
	struct rb_node *node;

561 562 563 564 565
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
566 567
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
568

569
	set_state_bits(tree, state, bits, changeset);
570

571
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
572 573 574
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
575 576
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
577
		       found->start, found->end, start, end);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
602

603 604
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
605

606 607 608 609 610
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

611 612
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
613 614 615 616 617 618 619
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

620 621 622 623 624 625 626 627 628
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

629 630
/*
 * utility function to clear some bits in an extent state struct.
631
 * it will optionally wake up anyone waiting on this state (wake == 1).
632 633 634 635
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
636 637
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
638
					    u32 *bits, int wake,
639
					    struct extent_changeset *changeset)
640
{
641
	struct extent_state *next;
642
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
643
	int ret;
644

645
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
646 647 648 649
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
650 651 652 653

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

654 655
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
656
	state->state &= ~bits_to_clear;
657 658
	if (wake)
		wake_up(&state->wq);
659
	if (state->state == 0) {
660
		next = next_state(state);
661
		if (extent_state_in_tree(state)) {
662
			rb_erase(&state->rb_node, &tree->state);
663
			RB_CLEAR_NODE(&state->rb_node);
664 665 666 667 668 669
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
670
		next = next_state(state);
671
	}
672
	return next;
673 674
}

675 676 677 678 679 680 681 682 683
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

684
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
685
{
686
	btrfs_panic(tree->fs_info, err,
687
	"locking error: extent tree was modified by another thread while locked");
688 689
}

690 691 692 693 694 695 696 697 698 699
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
700
 * This takes the tree lock, and returns 0 on success and < 0 on error.
701
 */
702
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
703 704 705
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
706 707
{
	struct extent_state *state;
708
	struct extent_state *cached;
709 710
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
711
	u64 last_end;
712
	int err;
713
	int clear = 0;
714

715
	btrfs_debug_check_extent_io_range(tree, start, end);
716
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
717

718 719 720
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

721 722 723
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
724
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
725
		clear = 1;
726
again:
727
	if (!prealloc && gfpflags_allow_blocking(mask)) {
728 729 730 731 732 733 734
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
735 736 737
		prealloc = alloc_extent_state(mask);
	}

738
	spin_lock(&tree->lock);
739 740
	if (cached_state) {
		cached = *cached_state;
741 742 743 744 745 746

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

747 748
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
749
			if (clear)
750
				refcount_dec(&cached->refs);
751
			state = cached;
752
			goto hit_next;
753
		}
754 755
		if (clear)
			free_extent_state(cached);
756
	}
757 758 759 760
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
761
	node = tree_search(tree, start);
762 763 764
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
765
hit_next:
766 767 768
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
769
	last_end = state->end;
770

771
	/* the state doesn't have the wanted bits, go ahead */
772 773
	if (!(state->state & bits)) {
		state = next_state(state);
774
		goto next;
775
	}
776

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
794 795
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
796
		err = split_state(tree, state, prealloc, start);
797 798 799
		if (err)
			extent_io_tree_panic(tree, err);

800 801 802 803
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
804 805
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
806
			goto next;
807 808 809 810 811 812 813 814 815 816
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
817 818
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
819
		err = split_state(tree, state, prealloc, end + 1);
820 821 822
		if (err)
			extent_io_tree_panic(tree, err);

823 824
		if (wake)
			wake_up(&state->wq);
825

826
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
827

828 829 830
		prealloc = NULL;
		goto out;
	}
831

832
	state = clear_state_bit(tree, state, &bits, wake, changeset);
833
next:
834 835 836
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
837
	if (start <= end && state && !need_resched())
838
		goto hit_next;
839 840 841 842

search_again:
	if (start > end)
		goto out;
843
	spin_unlock(&tree->lock);
844
	if (gfpflags_allow_blocking(mask))
845 846
		cond_resched();
	goto again;
847 848 849 850 851 852 853 854

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

855 856
}

857 858
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
859 860
		__releases(tree->lock)
		__acquires(tree->lock)
861 862 863
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
864
	spin_unlock(&tree->lock);
865
	schedule();
866
	spin_lock(&tree->lock);
867 868 869 870 871 872 873 874
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
875
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
876
			    u32 bits)
877 878 879 880
{
	struct extent_state *state;
	struct rb_node *node;

881
	btrfs_debug_check_extent_io_range(tree, start, end);
882

883
	spin_lock(&tree->lock);
884 885 886 887 888 889
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
890
		node = tree_search(tree, start);
891
process_node:
892 893 894 895 896 897 898 899 900 901
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
902
			refcount_inc(&state->refs);
903 904 905 906 907 908 909 910 911
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

912 913 914 915
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
916 917
	}
out:
918
	spin_unlock(&tree->lock);
919 920
}

921
static void set_state_bits(struct extent_io_tree *tree,
922
			   struct extent_state *state,
923
			   u32 *bits, struct extent_changeset *changeset)
924
{
925
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
926
	int ret;
J
Josef Bacik 已提交
927

928 929 930
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

931
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
932 933 934
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
935 936
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
937
	state->state |= bits_to_set;
938 939
}

940 941
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
942
				 unsigned flags)
943 944
{
	if (cached_ptr && !(*cached_ptr)) {
945
		if (!flags || (state->state & flags)) {
946
			*cached_ptr = state;
947
			refcount_inc(&state->refs);
948 949 950 951
		}
	}
}

952 953 954 955
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
956
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
957 958
}

959
/*
960 961
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
962
 *
963 964 965
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
966
 *
967
 * [start, end] is inclusive This takes the tree lock.
968
 */
969 970
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
971 972
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
973 974 975 976
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
977 978
	struct rb_node **p;
	struct rb_node *parent;
979 980 981
	int err = 0;
	u64 last_start;
	u64 last_end;
982

983
	btrfs_debug_check_extent_io_range(tree, start, end);
984
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
985

986 987 988 989
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
990
again:
991
	if (!prealloc && gfpflags_allow_blocking(mask)) {
992 993 994 995 996 997 998
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
999 1000 1001
		prealloc = alloc_extent_state(mask);
	}

1002
	spin_lock(&tree->lock);
1003 1004
	if (cached_state && *cached_state) {
		state = *cached_state;
1005
		if (state->start <= start && state->end > start &&
1006
		    extent_state_in_tree(state)) {
1007 1008 1009 1010
			node = &state->rb_node;
			goto hit_next;
		}
	}
1011 1012 1013 1014
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1015
	node = tree_search_for_insert(tree, start, &p, &parent);
1016
	if (!node) {
1017 1018
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1019
		err = insert_state(tree, prealloc, start, end,
1020
				   &p, &parent, &bits, changeset);
1021 1022 1023
		if (err)
			extent_io_tree_panic(tree, err);

1024
		cache_state(prealloc, cached_state);
1025 1026 1027 1028
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1029
hit_next:
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1040
		if (state->state & exclusive_bits) {
1041 1042 1043 1044
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1045

1046
		set_state_bits(tree, state, &bits, changeset);
1047
		cache_state(state, cached_state);
1048
		merge_state(tree, state);
1049 1050 1051
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1052 1053 1054 1055
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1076
		if (state->state & exclusive_bits) {
1077 1078 1079 1080
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1092 1093
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1094
		err = split_state(tree, state, prealloc, start);
1095 1096 1097
		if (err)
			extent_io_tree_panic(tree, err);

1098 1099 1100 1101
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1102
			set_state_bits(tree, state, &bits, changeset);
1103
			cache_state(state, cached_state);
1104
			merge_state(tree, state);
1105 1106 1107
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1108 1109 1110 1111
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1127
			this_end = last_start - 1;
1128 1129 1130

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1131 1132 1133 1134 1135

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1136
		err = insert_state(tree, prealloc, start, this_end,
1137
				   NULL, NULL, &bits, changeset);
1138 1139 1140
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1141 1142
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1153
		if (state->state & exclusive_bits) {
1154 1155 1156 1157
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1158 1159 1160

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1161
		err = split_state(tree, state, prealloc, end + 1);
1162 1163
		if (err)
			extent_io_tree_panic(tree, err);
1164

1165
		set_state_bits(tree, prealloc, &bits, changeset);
1166
		cache_state(prealloc, cached_state);
1167 1168 1169 1170 1171
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1172 1173 1174 1175 1176 1177 1178
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1179 1180

out:
1181
	spin_unlock(&tree->lock);
1182 1183 1184 1185 1186 1187 1188
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1189
/**
L
Liu Bo 已提交
1190 1191
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1192 1193 1194 1195 1196
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1197
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1198 1199 1200 1201 1202 1203
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1204 1205
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1206 1207
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1208
		       u32 bits, u32 clear_bits,
1209
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1210 1211 1212 1213
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1214 1215
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1216 1217 1218
	int err = 0;
	u64 last_start;
	u64 last_end;
1219
	bool first_iteration = true;
J
Josef Bacik 已提交
1220

1221
	btrfs_debug_check_extent_io_range(tree, start, end);
1222 1223
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1224

J
Josef Bacik 已提交
1225
again:
1226
	if (!prealloc) {
1227 1228 1229 1230 1231 1232 1233
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1234
		prealloc = alloc_extent_state(GFP_NOFS);
1235
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1236 1237 1238 1239
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1240 1241 1242
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1243
		    extent_state_in_tree(state)) {
1244 1245 1246 1247 1248
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1249 1250 1251 1252
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1253
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1254 1255
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1256 1257 1258 1259
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1260
		err = insert_state(tree, prealloc, start, end,
1261
				   &p, &parent, &bits, NULL);
1262 1263
		if (err)
			extent_io_tree_panic(tree, err);
1264 1265
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1280
		set_state_bits(tree, state, &bits, NULL);
1281
		cache_state(state, cached_state);
1282
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1283 1284 1285
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1286 1287 1288
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1310 1311 1312 1313
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1314
		err = split_state(tree, state, prealloc, start);
1315 1316
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1317 1318 1319 1320
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1321
			set_state_bits(tree, state, &bits, NULL);
1322
			cache_state(state, cached_state);
1323 1324
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1325 1326 1327
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1328 1329 1330
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1349 1350 1351 1352
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1353 1354 1355 1356 1357 1358

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1359
				   NULL, NULL, &bits, NULL);
1360 1361
		if (err)
			extent_io_tree_panic(tree, err);
1362
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1375 1376 1377 1378
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1379 1380

		err = split_state(tree, state, prealloc, end + 1);
1381 1382
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1383

1384
		set_state_bits(tree, prealloc, &bits, NULL);
1385
		cache_state(prealloc, cached_state);
1386
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1387 1388 1389 1390 1391 1392 1393 1394
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1395
	cond_resched();
1396
	first_iteration = false;
J
Josef Bacik 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1407
/* wrappers around set/clear extent bit */
1408
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1409
			   u32 bits, struct extent_changeset *changeset)
1410 1411 1412 1413 1414 1415 1416 1417 1418
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1419 1420
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1421 1422
}

1423
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1424
			   u32 bits)
1425
{
1426 1427
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1428 1429
}

1430
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1431
		     u32 bits, int wake, int delete,
1432
		     struct extent_state **cached)
1433 1434
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1435
				  cached, GFP_NOFS, NULL);
1436 1437 1438
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1439
		u32 bits, struct extent_changeset *changeset)
1440 1441 1442 1443 1444 1445 1446
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1447
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1448 1449 1450
				  changeset);
}

C
Chris Mason 已提交
1451 1452 1453 1454
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1455
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456
		     struct extent_state **cached_state)
1457 1458 1459
{
	int err;
	u64 failed_start;
1460

1461
	while (1) {
1462 1463 1464
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1465
		if (err == -EEXIST) {
1466 1467
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1468
		} else
1469 1470 1471 1472 1473 1474
			break;
		WARN_ON(start > end);
	}
	return err;
}

1475
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1476 1477 1478 1479
{
	int err;
	u64 failed_start;

1480 1481
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1482 1483 1484
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1485
					 EXTENT_LOCKED, 1, 0, NULL);
1486
		return 0;
Y
Yan Zheng 已提交
1487
	}
1488 1489 1490
	return 1;
}

1491
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1492
{
1493 1494
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1495 1496 1497 1498 1499 1500
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1501
		put_page(page);
1502 1503 1504 1505
		index++;
	}
}

1506
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1507
{
1508 1509
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1510 1511 1512 1513 1514 1515
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		__set_page_dirty_nobuffers(page);
1516
		account_page_redirty(page);
1517
		put_page(page);
1518 1519 1520 1521
		index++;
	}
}

C
Chris Mason 已提交
1522 1523 1524 1525
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1526
static struct extent_state *
1527
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1537
	if (!node)
C
Chris Mason 已提交
1538 1539
		goto out;

C
Chris Mason 已提交
1540
	while (1) {
C
Chris Mason 已提交
1541
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1542
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1543
			return state;
C
Chris Mason 已提交
1544

C
Chris Mason 已提交
1545 1546 1547 1548 1549 1550 1551 1552
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1553
/*
1554
 * Find the first offset in the io tree with one or more @bits set.
1555
 *
1556 1557 1558 1559
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1560 1561
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1562
			  u64 *start_ret, u64 *end_ret, u32 bits,
1563
			  struct extent_state **cached_state)
1564 1565 1566 1567 1568
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1569 1570
	if (cached_state && *cached_state) {
		state = *cached_state;
1571
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1572
			while ((state = next_state(state)) != NULL) {
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1584
	state = find_first_extent_bit_state(tree, start, bits);
1585
got_it:
1586
	if (state) {
1587
		cache_state_if_flags(state, cached_state, 0);
1588 1589 1590 1591
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1592
out:
1593 1594 1595 1596
	spin_unlock(&tree->lock);
	return ret;
}

1597
/**
1598 1599 1600 1601 1602 1603 1604
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1605 1606 1607 1608 1609 1610 1611 1612 1613
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1614
			       u64 *start_ret, u64 *end_ret, u32 bits)
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1635
/**
1636 1637
 * Find the first range that has @bits not set. This range could start before
 * @start.
1638
 *
1639 1640 1641 1642 1643
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1644 1645 1646 1647 1648 1649 1650
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1651
				 u64 *start_ret, u64 *end_ret, u32 bits)
1652 1653 1654 1655 1656 1657 1658 1659 1660
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1679 1680
			node = next;
		}
1681 1682 1683 1684
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1685
		state = rb_entry(node, struct extent_state, rb_node);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1708
		} else {
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1752 1753 1754 1755
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1756
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1757
 */
J
Josef Bacik 已提交
1758 1759 1760
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1761 1762 1763 1764
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1765
	bool found = false;
1766 1767
	u64 total_bytes = 0;

1768
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1769

1770 1771 1772 1773
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1774
	node = tree_search(tree, cur_start);
1775
	if (!node) {
1776
		*end = (u64)-1;
1777 1778 1779
		goto out;
	}

C
Chris Mason 已提交
1780
	while (1) {
1781
		state = rb_entry(node, struct extent_state, rb_node);
1782 1783
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1784 1785 1786 1787 1788 1789 1790
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1791
		if (!found) {
1792
			*start = state->start;
1793
			*cached_state = state;
1794
			refcount_inc(&state->refs);
1795
		}
1796
		found = true;
1797 1798 1799 1800
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1801
		if (total_bytes >= max_bytes)
1802 1803
			break;
		if (!node)
1804 1805 1806
			break;
	}
out:
1807
	spin_unlock(&tree->lock);
1808 1809 1810
	return found;
}

1811 1812 1813 1814 1815
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
				  pgoff_t start_index, pgoff_t end_index,
				  unsigned long page_ops, pgoff_t *index_ret);

1816 1817 1818
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1819
{
1820 1821
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1822

1823
	ASSERT(locked_page);
C
Chris Mason 已提交
1824
	if (index == locked_page->index && end_index == index)
1825
		return;
C
Chris Mason 已提交
1826

1827 1828
	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1829 1830 1831 1832 1833 1834 1835
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1836
	unsigned long index = delalloc_start >> PAGE_SHIFT;
1837
	unsigned long index_ret = index;
1838
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
C
Chris Mason 已提交
1839 1840
	int ret;

1841
	ASSERT(locked_page);
C
Chris Mason 已提交
1842 1843 1844
	if (index == locked_page->index && index == end_index)
		return 0;

1845 1846 1847 1848 1849
	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
				     end_index, PAGE_LOCK, &index_ret);
	if (ret == -EAGAIN)
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
				      (u64)index_ret << PAGE_SHIFT);
C
Chris Mason 已提交
1850 1851 1852 1853
	return ret;
}

/*
1854 1855
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 * more than @max_bytes.  @Start and @end are used to return the range,
C
Chris Mason 已提交
1856
 *
1857 1858
 * Return: true if we find something
 *         false if nothing was in the tree
C
Chris Mason 已提交
1859
 */
1860
EXPORT_FOR_TESTS
1861
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1862
				    struct page *locked_page, u64 *start,
1863
				    u64 *end)
C
Chris Mason 已提交
1864
{
1865
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1866
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
1867 1868
	u64 delalloc_start;
	u64 delalloc_end;
1869
	bool found;
1870
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
1871 1872 1873 1874 1875 1876 1877
	int ret;
	int loops = 0;

again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
1878 1879
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
C
Chris Mason 已提交
1880
	if (!found || delalloc_end <= *start) {
C
Chris Mason 已提交
1881 1882
		*start = delalloc_start;
		*end = delalloc_end;
1883
		free_extent_state(cached_state);
1884
		return false;
C
Chris Mason 已提交
1885 1886
	}

C
Chris Mason 已提交
1887 1888 1889 1890 1891
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
1892
	if (delalloc_start < *start)
C
Chris Mason 已提交
1893 1894
		delalloc_start = *start;

C
Chris Mason 已提交
1895 1896 1897
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
1898 1899
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
1900

C
Chris Mason 已提交
1901 1902 1903
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
1904
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
1905 1906 1907 1908
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
1909
		free_extent_state(cached_state);
1910
		cached_state = NULL;
C
Chris Mason 已提交
1911
		if (!loops) {
1912
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
1913 1914 1915
			loops = 1;
			goto again;
		} else {
1916
			found = false;
C
Chris Mason 已提交
1917 1918 1919 1920 1921
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
1922
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
1923 1924 1925

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1926
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
1927
	if (!ret) {
1928
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1929
				     &cached_state);
C
Chris Mason 已提交
1930 1931 1932 1933 1934
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
1935
	free_extent_state(cached_state);
C
Chris Mason 已提交
1936 1937 1938 1939 1940 1941
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

1942 1943 1944 1945
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
				  pgoff_t start_index, pgoff_t end_index,
				  unsigned long page_ops, pgoff_t *index_ret)
C
Chris Mason 已提交
1946
{
1947
	unsigned long nr_pages = end_index - start_index + 1;
1948
	unsigned long pages_processed = 0;
1949
	pgoff_t index = start_index;
C
Chris Mason 已提交
1950
	struct page *pages[16];
1951
	unsigned ret;
1952
	int err = 0;
C
Chris Mason 已提交
1953
	int i;
1954

1955 1956 1957 1958 1959
	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(index_ret && *index_ret == start_index);
	}

1960
	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1961
		mapping_set_error(mapping, -EIO);
1962

C
Chris Mason 已提交
1963
	while (nr_pages > 0) {
1964
		ret = find_get_pages_contig(mapping, index,
1965 1966
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
1967 1968 1969 1970 1971 1972
		if (ret == 0) {
			/*
			 * Only if we're going to lock these pages,
			 * can we find nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
1973 1974
			err = -EAGAIN;
			goto out;
1975
		}
1976

1977
		for (i = 0; i < ret; i++) {
1978 1979
			if (page_ops & PAGE_SET_ORDERED)
				SetPageOrdered(pages[i]);
1980

1981
			if (locked_page && pages[i] == locked_page) {
1982
				put_page(pages[i]);
1983
				pages_processed++;
C
Chris Mason 已提交
1984 1985
				continue;
			}
1986
			if (page_ops & PAGE_START_WRITEBACK) {
C
Chris Mason 已提交
1987 1988
				clear_page_dirty_for_io(pages[i]);
				set_page_writeback(pages[i]);
1989
			}
1990 1991
			if (page_ops & PAGE_SET_ERROR)
				SetPageError(pages[i]);
1992
			if (page_ops & PAGE_END_WRITEBACK)
C
Chris Mason 已提交
1993
				end_page_writeback(pages[i]);
1994
			if (page_ops & PAGE_UNLOCK)
1995
				unlock_page(pages[i]);
1996 1997 1998 1999 2000
			if (page_ops & PAGE_LOCK) {
				lock_page(pages[i]);
				if (!PageDirty(pages[i]) ||
				    pages[i]->mapping != mapping) {
					unlock_page(pages[i]);
2001 2002
					for (; i < ret; i++)
						put_page(pages[i]);
2003 2004 2005 2006
					err = -EAGAIN;
					goto out;
				}
			}
2007
			put_page(pages[i]);
2008
			pages_processed++;
C
Chris Mason 已提交
2009 2010 2011 2012 2013
		}
		nr_pages -= ret;
		index += ret;
		cond_resched();
	}
2014 2015
out:
	if (err && index_ret)
2016
		*index_ret = start_index + pages_processed - 1;
2017
	return err;
C
Chris Mason 已提交
2018 2019
}

2020
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2021
				  struct page *locked_page,
2022
				  u32 clear_bits, unsigned long page_ops)
2023
{
2024
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2025

2026
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2027
			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2028
			       page_ops, NULL);
2029 2030
}

C
Chris Mason 已提交
2031 2032 2033 2034 2035
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2036 2037
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2038
		     u32 bits, int contig)
2039 2040 2041 2042 2043
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2044
	u64 last = 0;
2045 2046
	int found = 0;

2047
	if (WARN_ON(search_end <= cur_start))
2048 2049
		return 0;

2050
	spin_lock(&tree->lock);
2051 2052 2053 2054 2055 2056 2057 2058
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2059
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2060
	if (!node)
2061 2062
		goto out;

C
Chris Mason 已提交
2063
	while (1) {
2064 2065 2066
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2067 2068 2069
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2070 2071 2072 2073 2074
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2075
				*start = max(cur_start, state->start);
2076 2077
				found = 1;
			}
2078 2079 2080
			last = state->end;
		} else if (contig && found) {
			break;
2081 2082 2083 2084 2085 2086
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2087
	spin_unlock(&tree->lock);
2088 2089
	return total_bytes;
}
2090

C
Chris Mason 已提交
2091 2092 2093 2094
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2095 2096
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2097 2098 2099 2100 2101
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2102
	spin_lock(&tree->lock);
2103 2104 2105 2106
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2107
	node = tree_search(tree, start);
2108
	if (!node) {
2109 2110 2111 2112 2113 2114 2115 2116
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2117
	state->failrec = failrec;
2118
out:
2119
	spin_unlock(&tree->lock);
2120 2121 2122
	return ret;
}

2123
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2124 2125 2126
{
	struct rb_node *node;
	struct extent_state *state;
2127
	struct io_failure_record *failrec;
2128

2129
	spin_lock(&tree->lock);
2130 2131 2132 2133
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2134
	node = tree_search(tree, start);
2135
	if (!node) {
2136
		failrec = ERR_PTR(-ENOENT);
2137 2138 2139 2140
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2141
		failrec = ERR_PTR(-ENOENT);
2142 2143
		goto out;
	}
2144 2145

	failrec = state->failrec;
2146
out:
2147
	spin_unlock(&tree->lock);
2148
	return failrec;
2149 2150 2151 2152
}

/*
 * searches a range in the state tree for a given mask.
2153
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2154 2155 2156 2157
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2158
		   u32 bits, int filled, struct extent_state *cached)
2159 2160 2161 2162 2163
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2164
	spin_lock(&tree->lock);
2165
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2166
	    cached->end > start)
2167 2168 2169
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2189 2190 2191 2192

		if (state->end == (u64)-1)
			break;

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2203
	spin_unlock(&tree->lock);
2204 2205 2206 2207 2208 2209 2210
	return bitset;
}

/*
 * helper function to set a given page up to date if all the
 * extents in the tree for that page are up to date
 */
2211
static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2212
{
M
Miao Xie 已提交
2213
	u64 start = page_offset(page);
2214
	u64 end = start + PAGE_SIZE - 1;
2215
	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2216 2217 2218
		SetPageUptodate(page);
}

2219 2220 2221
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2222 2223 2224 2225
{
	int ret;
	int err = 0;

2226
	set_state_failrec(failure_tree, rec->start, NULL);
2227 2228
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2229
				EXTENT_LOCKED | EXTENT_DIRTY);
2230 2231 2232
	if (ret)
		err = ret;

2233
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2234
				rec->start + rec->len - 1,
2235
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2236 2237
	if (ret && !err)
		err = ret;
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2248
 * to avoid any synchronization issues, wait for the data after writing, which
2249 2250 2251 2252
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
2253 2254 2255
int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
		      u64 length, u64 logical, struct page *page,
		      unsigned int pg_offset, int mirror_num)
2256 2257 2258 2259 2260 2261 2262 2263
{
	struct bio *bio;
	struct btrfs_device *dev;
	u64 map_length = 0;
	u64 sector;
	struct btrfs_bio *bbio = NULL;
	int ret;

2264
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2265 2266
	BUG_ON(!mirror_num);

2267 2268 2269
	if (btrfs_is_zoned(fs_info))
		return btrfs_repair_one_zone(fs_info, logical);

2270
	bio = btrfs_io_bio_alloc(1);
2271
	bio->bi_iter.bi_size = 0;
2272 2273
	map_length = length;

2274 2275 2276 2277 2278 2279
	/*
	 * Avoid races with device replace and make sure our bbio has devices
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2280
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
				      &map_length, &bbio, 0);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		ASSERT(bbio->mirror_num == 1);
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
				      &map_length, &bbio, mirror_num);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		BUG_ON(mirror_num != bbio->mirror_num);
2304
	}
2305 2306

	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2307
	bio->bi_iter.bi_sector = sector;
2308
	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2309
	btrfs_put_bbio(bbio);
2310 2311
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2312
		btrfs_bio_counter_dec(fs_info);
2313 2314 2315
		bio_put(bio);
		return -EIO;
	}
2316
	bio_set_dev(bio, dev->bdev);
2317
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2318
	bio_add_page(bio, page, length, pg_offset);
2319

2320
	if (btrfsic_submit_bio_wait(bio)) {
2321
		/* try to remap that extent elsewhere? */
2322
		btrfs_bio_counter_dec(fs_info);
2323
		bio_put(bio);
2324
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2325 2326 2327
		return -EIO;
	}

2328 2329
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2330
				  ino, start,
2331
				  rcu_str_deref(dev->name), sector);
2332
	btrfs_bio_counter_dec(fs_info);
2333 2334 2335 2336
	bio_put(bio);
	return 0;
}

2337
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2338
{
2339
	struct btrfs_fs_info *fs_info = eb->fs_info;
2340
	u64 start = eb->start;
2341
	int i, num_pages = num_extent_pages(eb);
2342
	int ret = 0;
2343

2344
	if (sb_rdonly(fs_info->sb))
2345 2346
		return -EROFS;

2347
	for (i = 0; i < num_pages; i++) {
2348
		struct page *p = eb->pages[i];
2349

2350
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2351
					start - page_offset(p), mirror_num);
2352 2353
		if (ret)
			break;
2354
		start += PAGE_SIZE;
2355 2356 2357 2358 2359
	}

	return ret;
}

2360 2361 2362 2363
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2364 2365 2366 2367
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2368 2369 2370 2371 2372 2373 2374 2375
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2376 2377
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2378 2379 2380
	if (!ret)
		return 0;

2381 2382
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2383 2384 2385 2386
		return 0;

	BUG_ON(!failrec->this_mirror);

2387
	if (sb_rdonly(fs_info->sb))
2388
		goto out;
2389

2390 2391
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2392 2393
					    failrec->start,
					    EXTENT_LOCKED);
2394
	spin_unlock(&io_tree->lock);
2395

2396 2397
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2398 2399
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2400
		if (num_copies > 1)  {
2401 2402 2403
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2404 2405 2406 2407
		}
	}

out:
2408
	free_io_failure(failure_tree, io_tree, failrec);
2409

2410
	return 0;
2411 2412
}

2413 2414 2415 2416 2417 2418
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2419
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2420
{
2421
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2438
		failrec = state->failrec;
2439 2440 2441 2442 2443 2444 2445 2446
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2447
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2448
							     u64 start)
2449
{
2450
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2451
	struct io_failure_record *failrec;
2452 2453 2454 2455
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2456
	const u32 sectorsize = fs_info->sectorsize;
2457 2458 2459
	int ret;
	u64 logical;

2460
	failrec = get_state_failrec(failure_tree, start);
2461
	if (!IS_ERR(failrec)) {
2462
		btrfs_debug(fs_info,
2463 2464
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
			failrec->logical, failrec->start, failrec->len);
2465 2466 2467 2468 2469
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2470 2471

		return failrec;
2472
	}
2473

2474 2475 2476
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2477

2478
	failrec->start = start;
2479
	failrec->len = sectorsize;
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
	failrec->this_mirror = 0;
	failrec->bio_flags = 0;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
2517
	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2518 2519 2520 2521
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
2522 2523
		ret = set_extent_bits(tree, start, start + sectorsize - 1,
				      EXTENT_DAMAGED);
2524 2525 2526 2527 2528 2529
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2530 2531
}

2532
static bool btrfs_check_repairable(struct inode *inode,
2533 2534
				   struct io_failure_record *failrec,
				   int failed_mirror)
2535
{
2536
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2537 2538
	int num_copies;

2539
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2540 2541 2542 2543 2544 2545
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2546 2547 2548
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2549
		return false;
2550 2551
	}

2552 2553 2554
	/* The failure record should only contain one sector */
	ASSERT(failrec->len == fs_info->sectorsize);

2555
	/*
2556 2557 2558 2559 2560 2561 2562
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
2563
	 */
2564 2565 2566
	failrec->failed_mirror = failed_mirror;
	failrec->this_mirror++;
	if (failrec->this_mirror == failed_mirror)
2567 2568
		failrec->this_mirror++;

2569
	if (failrec->this_mirror > num_copies) {
2570 2571 2572
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2573
		return false;
2574 2575
	}

2576
	return true;
2577 2578
}

2579 2580 2581 2582 2583
int btrfs_repair_one_sector(struct inode *inode,
			    struct bio *failed_bio, u32 bio_offset,
			    struct page *page, unsigned int pgoff,
			    u64 start, int failed_mirror,
			    submit_bio_hook_t *submit_bio_hook)
2584 2585
{
	struct io_failure_record *failrec;
2586
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2587
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2588
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2589
	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2590
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2591 2592
	struct bio *repair_bio;
	struct btrfs_io_bio *repair_io_bio;
2593
	blk_status_t status;
2594

2595 2596
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2597

2598
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2599

2600
	failrec = btrfs_get_io_failure_record(inode, start);
2601
	if (IS_ERR(failrec))
2602
		return PTR_ERR(failrec);
2603

2604 2605

	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2606
		free_io_failure(failure_tree, tree, failrec);
2607
		return -EIO;
2608 2609
	}

2610 2611 2612 2613 2614 2615
	repair_bio = btrfs_io_bio_alloc(1);
	repair_io_bio = btrfs_io_bio(repair_bio);
	repair_bio->bi_opf = REQ_OP_READ;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2616

2617
	if (failed_io_bio->csum) {
2618
		const u32 csum_size = fs_info->csum_size;
2619 2620 2621 2622 2623

		repair_io_bio->csum = repair_io_bio->csum_inline;
		memcpy(repair_io_bio->csum,
		       failed_io_bio->csum + csum_size * icsum, csum_size);
	}
2624

2625 2626 2627
	bio_add_page(repair_bio, page, failrec->len, pgoff);
	repair_io_bio->logical = failrec->start;
	repair_io_bio->iter = repair_bio->bi_iter;
2628

2629
	btrfs_debug(btrfs_sb(inode->i_sb),
2630 2631
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2632

2633 2634
	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
				 failrec->bio_flags);
2635
	if (status) {
2636
		free_io_failure(failure_tree, tree, failrec);
2637
		bio_put(repair_bio);
2638
	}
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	return blk_status_to_errno(status);
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	/*
	 * For subapge metadata case, all btrfs_page_* helpers need page to
	 * have page::private populated.
	 * But we can have rare case where the last eb in the page is only
	 * referred by the IO, and it gets released immedately after it's
	 * read and verified.
	 *
	 * This can detach the page private completely.
	 * In that case, we can just skip the page status update completely,
	 * as the page has no eb anymore.
	 */
	if (fs_info->sectorsize < PAGE_SIZE && unlikely(!PagePrivate(page))) {
		ASSERT(!is_data_inode(page->mapping->host));
		return;
	}
	if (uptodate) {
		btrfs_page_set_uptodate(fs_info, page, start, len);
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

	if (fs_info->sectorsize == PAGE_SIZE)
		unlock_page(page);
	else if (is_data_inode(page->mapping->host))
		/*
		 * For subpage data, unlock the page if we're the last reader.
		 * For subpage metadata, page lock is not utilized for read.
		 */
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

static blk_status_t submit_read_repair(struct inode *inode,
				      struct bio *failed_bio, u32 bio_offset,
				      struct page *page, unsigned int pgoff,
				      u64 start, u64 end, int failed_mirror,
				      unsigned int error_bitmap,
				      submit_bio_hook_t *submit_bio_hook)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int error = 0;
	int i;

	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);

	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		struct extent_state *cached = NULL;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

		ret = btrfs_repair_one_sector(inode, failed_bio,
				bio_offset + offset,
				page, pgoff + offset, start + offset,
				failed_mirror, submit_bio_hook);
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
		 * Repair failed, just record the error but still continue.
		 * Or the remaining sectors will not be properly unlocked.
		 */
		if (!error)
			error = ret;
next:
		end_page_read(page, uptodate, start + offset, sectorsize);
		if (uptodate)
			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
					start + offset,
					start + offset + sectorsize - 1,
					&cached, GFP_ATOMIC);
		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
				start + offset,
				start + offset + sectorsize - 1,
				&cached);
	}
	return errno_to_blk_status(error);
2753 2754
}

2755 2756
/* lots and lots of room for performance fixes in the end_bio funcs */

2757
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2758
{
2759
	struct btrfs_inode *inode;
2760
	int uptodate = (err == 0);
2761
	int ret = 0;
2762

2763 2764 2765
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2766 2767 2768 2769

	if (!uptodate) {
		ClearPageUptodate(page);
		SetPageError(page);
2770
		ret = err < 0 ? err : -EIO;
2771
		mapping_set_error(page->mapping, ret);
2772 2773 2774
	}
}

2775 2776 2777 2778 2779 2780 2781 2782 2783
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2784
static void end_bio_extent_writepage(struct bio *bio)
2785
{
2786
	int error = blk_status_to_errno(bio->bi_status);
2787
	struct bio_vec *bvec;
2788 2789
	u64 start;
	u64 end;
2790
	struct bvec_iter_all iter_all;
2791
	bool first_bvec = true;
2792

2793
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2794
	bio_for_each_segment_all(bvec, bio, iter_all) {
2795
		struct page *page = bvec->bv_page;
2796 2797
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2798

2799 2800 2801 2802 2803
		/* We always issue full-page reads, but if some block
		 * in a page fails to read, blk_update_request() will
		 * advance bv_offset and adjust bv_len to compensate.
		 * Print a warning for nonzero offsets, and an error
		 * if they don't add up to a full page.  */
2804 2805
		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2806
				btrfs_err(fs_info,
2807 2808 2809
				   "partial page write in btrfs with offset %u and length %u",
					bvec->bv_offset, bvec->bv_len);
			else
2810
				btrfs_info(fs_info,
J
Jeff Mahoney 已提交
2811
				   "incomplete page write in btrfs with offset %u and length %u",
2812 2813
					bvec->bv_offset, bvec->bv_len);
		}
2814

2815 2816
		start = page_offset(page);
		end = start + bvec->bv_offset + bvec->bv_len - 1;
2817

2818 2819 2820 2821 2822
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2823
		end_extent_writepage(page, error, start, end);
2824
		end_page_writeback(page);
2825
	}
2826

2827 2828 2829
	bio_put(bio);
}

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2840
	/* End of the range in @inode */
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2859 2860
{
	struct extent_state *cached = NULL;
2861 2862 2863 2864 2865
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2866

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2901 2902
}

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
	if (fs_info->sectorsize == PAGE_SIZE)
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
/*
 * Find extent buffer for a givne bytenr.
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
	if (fs_info->sectorsize == PAGE_SIZE) {
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

	/* For subpage case, we need to lookup buffer radix tree */
	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       bytenr >> fs_info->sectorsize_bits);
	rcu_read_unlock();
	ASSERT(eb);
	return eb;
}

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2953
static void end_bio_extent_readpage(struct bio *bio)
2954
{
2955
	struct bio_vec *bvec;
2956
	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2957
	struct extent_io_tree *tree, *failure_tree;
2958
	struct processed_extent processed = { 0 };
2959 2960 2961 2962 2963
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
2964
	int mirror;
2965
	int ret;
2966
	struct bvec_iter_all iter_all;
2967

2968
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2969
	bio_for_each_segment_all(bvec, bio, iter_all) {
2970
		bool uptodate = !bio->bi_status;
2971
		struct page *page = bvec->bv_page;
2972
		struct inode *inode = page->mapping->host;
2973
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2974
		const u32 sectorsize = fs_info->sectorsize;
2975
		unsigned int error_bitmap = (unsigned int)-1;
2976 2977 2978
		u64 start;
		u64 end;
		u32 len;
2979

2980 2981
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
2982
			bio->bi_iter.bi_sector, bio->bi_status,
2983
			io_bio->mirror_num);
2984
		tree = &BTRFS_I(inode)->io_tree;
2985
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2986

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
3006
		len = bvec->bv_len;
3007

3008
		mirror = io_bio->mirror_num;
3009
		if (likely(uptodate)) {
3010 3011
			if (is_data_inode(inode)) {
				error_bitmap = btrfs_verify_data_csum(io_bio,
3012
						bio_offset, page, start, end);
3013 3014
				ret = error_bitmap;
			} else {
3015
				ret = btrfs_validate_metadata_buffer(io_bio,
3016
					page, start, end, mirror);
3017
			}
3018
			if (ret)
3019
				uptodate = false;
3020
			else
3021 3022 3023 3024
				clean_io_failure(BTRFS_I(inode)->root->fs_info,
						 failure_tree, tree, start,
						 page,
						 btrfs_ino(BTRFS_I(inode)), 0);
3025
		}
3026

3027 3028 3029
		if (likely(uptodate))
			goto readpage_ok;

3030
		if (is_data_inode(inode)) {
3031
			/*
3032 3033
			 * btrfs_submit_read_repair() will handle all the good
			 * and bad sectors, we just continue to the next bvec.
3034
			 */
3035 3036 3037 3038 3039 3040 3041 3042
			submit_read_repair(inode, bio, bio_offset, page,
					   start - page_offset(page), start,
					   end, mirror, error_bitmap,
					   btrfs_submit_data_bio);

			ASSERT(bio_offset + len > bio_offset);
			bio_offset += len;
			continue;
3043 3044 3045
		} else {
			struct extent_buffer *eb;

3046
			eb = find_extent_buffer_readpage(fs_info, page, start);
3047 3048 3049 3050 3051 3052
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
					       &eb->bflags))
				btree_readahead_hook(eb, -EIO);
3053
		}
3054
readpage_ok:
3055
		if (likely(uptodate)) {
3056
			loff_t i_size = i_size_read(inode);
3057
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3058

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3070
						     offset_in_page(start));
3071 3072 3073 3074

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3075
		}
3076 3077
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3078

3079
		/* Update page status and unlock */
3080
		end_page_read(page, uptodate, start, len);
3081 3082
		endio_readpage_release_extent(&processed, BTRFS_I(inode),
					      start, end, uptodate);
3083
	}
3084 3085
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3086
	btrfs_io_bio_free_csum(io_bio);
3087 3088 3089
	bio_put(bio);
}

3090
/*
3091 3092 3093
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3094
 */
3095
static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3096
{
3097 3098
	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
}
3099

3100
/*
3101 3102 3103
 * The following helpers allocate a bio. As it's backed by a bioset, it'll
 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
 * for the appropriate container_of magic
3104
 */
3105
struct bio *btrfs_bio_alloc(u64 first_byte)
3106 3107 3108
{
	struct bio *bio;

3109
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3110
	bio->bi_iter.bi_sector = first_byte >> 9;
3111
	btrfs_io_bio_init(btrfs_io_bio(bio));
3112 3113 3114
	return bio;
}

3115
struct bio *btrfs_bio_clone(struct bio *bio)
3116
{
3117 3118
	struct btrfs_io_bio *btrfs_bio;
	struct bio *new;
3119

3120
	/* Bio allocation backed by a bioset does not fail */
3121
	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3122
	btrfs_bio = btrfs_io_bio(new);
3123
	btrfs_io_bio_init(btrfs_bio);
3124
	btrfs_bio->iter = bio->bi_iter;
3125 3126
	return new;
}
3127

3128
struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3129
{
3130 3131
	struct bio *bio;

3132
	/* Bio allocation backed by a bioset does not fail */
3133
	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3134
	btrfs_io_bio_init(btrfs_io_bio(bio));
3135
	return bio;
3136 3137
}

3138
struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3139 3140 3141 3142 3143
{
	struct bio *bio;
	struct btrfs_io_bio *btrfs_bio;

	/* this will never fail when it's backed by a bioset */
3144
	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3145 3146 3147
	ASSERT(bio);

	btrfs_bio = btrfs_io_bio(bio);
3148
	btrfs_io_bio_init(btrfs_bio);
3149 3150

	bio_trim(bio, offset >> 9, size >> 9);
3151
	btrfs_bio->iter = bio->bi_iter;
3152 3153
	return bio;
}
3154

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
/**
 * Attempt to add a page to bio
 *
 * @bio:	destination bio
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @pg_offset:	starting offset in the page
 * @size:	portion of page that we want to write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
 * @return:	true if page was added, false otherwise
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
 * Return true if successfully page added. Otherwise, return false.
 */
3172 3173
static bool btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			       struct page *page,
3174 3175 3176 3177
			       u64 disk_bytenr, unsigned int size,
			       unsigned int pg_offset,
			       unsigned long bio_flags)
{
3178 3179
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
3180 3181
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3182
	int ret;
3183

3184 3185 3186 3187
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
	if (bio_ctrl->bio_flags != bio_flags)
3188 3189
		return false;

3190
	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3191 3192 3193 3194 3195 3196
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
		return false;

3197 3198
	if (bio_size + size > bio_ctrl->len_to_oe_boundary ||
	    bio_size + size > bio_ctrl->len_to_stripe_boundary)
3199 3200
		return false;

3201
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3202
		ret = bio_add_zone_append_page(bio, page, size, pg_offset);
3203
	else
3204 3205 3206
		ret = bio_add_page(bio, page, size, pg_offset);

	return ret == size;
3207 3208
}

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
			       struct btrfs_inode *inode)
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

	if (!btrfs_is_zoned(fs_info) ||
	    bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	ASSERT(fs_info->max_zone_append_size > 0);
	/* Ordered extent not yet created, so we're good */
	ordered = btrfs_lookup_ordered_extent(inode, logical);
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3265 3266
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3267 3268
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3269 3270
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3271 3272
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3273
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3274 3275 3276 3277
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
3278
 */
3279
static int submit_extent_page(unsigned int opf,
3280
			      struct writeback_control *wbc,
3281
			      struct btrfs_bio_ctrl *bio_ctrl,
3282
			      struct page *page, u64 disk_bytenr,
3283
			      size_t size, unsigned long pg_offset,
3284
			      bio_end_io_t end_io_func,
C
Chris Mason 已提交
3285
			      int mirror_num,
3286 3287
			      unsigned long bio_flags,
			      bool force_bio_submit)
3288 3289 3290
{
	int ret = 0;
	struct bio *bio;
3291
	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3292 3293 3294
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &inode->io_tree;
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3295

3296
	ASSERT(bio_ctrl);
3297

3298 3299 3300 3301
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
	if (bio_ctrl->bio) {
		bio = bio_ctrl->bio;
3302
		if (force_bio_submit ||
3303 3304 3305 3306 3307
		    !btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, io_size,
					pg_offset, bio_flags)) {
			ret = submit_one_bio(bio, mirror_num, bio_ctrl->bio_flags);
			bio_ctrl->bio = NULL;
			if (ret < 0)
3308
				return ret;
3309
		} else {
3310
			if (wbc)
3311
				wbc_account_cgroup_owner(wbc, page, io_size);
3312 3313 3314
			return 0;
		}
	}
C
Chris Mason 已提交
3315

3316
	bio = btrfs_bio_alloc(disk_bytenr);
3317
	bio_add_page(bio, page, io_size, pg_offset);
3318 3319
	bio->bi_end_io = end_io_func;
	bio->bi_private = tree;
3320
	bio->bi_write_hint = page->mapping->host->i_write_hint;
3321
	bio->bi_opf = opf;
3322
	if (wbc) {
3323 3324
		struct block_device *bdev;

3325
		bdev = fs_info->fs_devices->latest_bdev;
3326
		bio_set_dev(bio, bdev);
3327
		wbc_init_bio(wbc, bio);
3328
		wbc_account_cgroup_owner(wbc, page, io_size);
3329
	}
3330
	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3331
		struct btrfs_device *device;
3332

3333 3334 3335
		device = btrfs_zoned_get_device(fs_info, disk_bytenr, io_size);
		if (IS_ERR(device))
			return PTR_ERR(device);
3336

3337
		btrfs_io_bio(bio)->device = device;
3338
	}
3339

3340 3341 3342
	bio_ctrl->bio = bio;
	bio_ctrl->bio_flags = bio_flags;
	ret = calc_bio_boundaries(bio_ctrl, inode);
3343 3344 3345 3346

	return ret;
}

3347 3348 3349
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3350
{
3351 3352 3353
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3354 3355 3356 3357 3358 3359 3360 3361 3362
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
	if (fs_info->sectorsize == PAGE_SIZE) {
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3380
	else
3381 3382 3383 3384
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3385 3386
}

3387
int set_page_extent_mapped(struct page *page)
3388
{
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3411
	if (!PagePrivate(page))
3412 3413 3414 3415 3416 3417 3418
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3419 3420
}

3421 3422
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3423
		 u64 start, u64 len, struct extent_map **em_cached)
3424 3425 3426 3427 3428
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3429
		if (extent_map_in_tree(em) && start >= em->start &&
3430
		    start < extent_map_end(em)) {
3431
			refcount_inc(&em->refs);
3432 3433 3434 3435 3436 3437 3438
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3439
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3440 3441
	if (em_cached && !IS_ERR_OR_NULL(em)) {
		BUG_ON(*em_cached);
3442
		refcount_inc(&em->refs);
3443 3444 3445 3446
		*em_cached = em;
	}
	return em;
}
3447 3448 3449 3450
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3451
 * XXX JDM: This needs looking at to ensure proper page locking
3452
 * return 0 on success, otherwise return error
3453
 */
3454
int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3455
		      struct btrfs_bio_ctrl *bio_ctrl,
3456
		      unsigned int read_flags, u64 *prev_em_start)
3457 3458
{
	struct inode *inode = page->mapping->host;
3459
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3460
	u64 start = page_offset(page);
3461
	const u64 end = start + PAGE_SIZE - 1;
3462 3463 3464 3465 3466 3467
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3468
	int ret = 0;
3469
	int nr = 0;
3470
	size_t pg_offset = 0;
3471 3472
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3473
	unsigned long this_bio_flag = 0;
3474
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3475

3476 3477 3478
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3479 3480
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3481 3482
		goto out;
	}
3483

D
Dan Magenheimer 已提交
3484 3485 3486
	if (!PageUptodate(page)) {
		if (cleancache_get_page(page) == 0) {
			BUG_ON(blocksize != PAGE_SIZE);
3487
			unlock_extent(tree, start, end);
3488
			unlock_page(page);
D
Dan Magenheimer 已提交
3489 3490 3491 3492
			goto out;
		}
	}

3493
	if (page->index == last_byte >> PAGE_SHIFT) {
3494
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3495 3496

		if (zero_offset) {
3497
			iosize = PAGE_SIZE - zero_offset;
3498
			memzero_page(page, zero_offset, iosize);
C
Chris Mason 已提交
3499 3500 3501
			flush_dcache_page(page);
		}
	}
3502
	begin_page_read(fs_info, page);
3503
	while (cur <= end) {
3504
		bool force_bio_submit = false;
3505
		u64 disk_bytenr;
3506

3507
		if (cur >= last_byte) {
3508 3509
			struct extent_state *cached = NULL;

3510
			iosize = PAGE_SIZE - pg_offset;
3511
			memzero_page(page, pg_offset, iosize);
3512 3513
			flush_dcache_page(page);
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3514
					    &cached, GFP_NOFS);
3515
			unlock_extent_cached(tree, cur,
3516
					     cur + iosize - 1, &cached);
3517
			end_page_read(page, true, cur, iosize);
3518 3519
			break;
		}
3520
		em = __get_extent_map(inode, page, pg_offset, cur,
3521
				      end - cur + 1, em_cached);
3522
		if (IS_ERR_OR_NULL(em)) {
3523
			unlock_extent(tree, cur, end);
3524
			end_page_read(page, false, cur, end + 1 - cur);
3525 3526 3527 3528 3529 3530
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3531
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3532
			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3533 3534 3535
			extent_set_compress_type(&this_bio_flag,
						 em->compress_type);
		}
C
Chris Mason 已提交
3536

3537 3538
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3539
		iosize = ALIGN(iosize, blocksize);
3540
		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3541
			disk_bytenr = em->block_start;
3542
		else
3543
			disk_bytenr = em->block_start + extent_offset;
3544
		block_start = em->block_start;
Y
Yan Zheng 已提交
3545 3546
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3547 3548 3549

		/*
		 * If we have a file range that points to a compressed extent
3550
		 * and it's followed by a consecutive file range that points
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3584
		    *prev_em_start != em->start)
3585 3586 3587
			force_bio_submit = true;

		if (prev_em_start)
3588
			*prev_em_start = em->start;
3589

3590 3591 3592 3593 3594
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3595 3596
			struct extent_state *cached = NULL;

3597
			memzero_page(page, pg_offset, iosize);
3598 3599 3600
			flush_dcache_page(page);

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3601
					    &cached, GFP_NOFS);
3602
			unlock_extent_cached(tree, cur,
3603
					     cur + iosize - 1, &cached);
3604
			end_page_read(page, true, cur, iosize);
3605
			cur = cur + iosize;
3606
			pg_offset += iosize;
3607 3608 3609
			continue;
		}
		/* the get_extent function already copied into the page */
3610 3611
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3612
			check_page_uptodate(tree, page);
3613
			unlock_extent(tree, cur, cur + iosize - 1);
3614
			end_page_read(page, true, cur, iosize);
3615
			cur = cur + iosize;
3616
			pg_offset += iosize;
3617 3618
			continue;
		}
3619 3620 3621 3622
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3623
			unlock_extent(tree, cur, cur + iosize - 1);
3624
			end_page_read(page, false, cur, iosize);
3625
			cur = cur + iosize;
3626
			pg_offset += iosize;
3627 3628
			continue;
		}
3629

3630
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3631 3632
					 bio_ctrl, page, disk_bytenr, iosize,
					 pg_offset,
3633
					 end_bio_extent_readpage, 0,
3634 3635
					 this_bio_flag,
					 force_bio_submit);
3636 3637 3638
		if (!ret) {
			nr++;
		} else {
3639
			unlock_extent(tree, cur, cur + iosize - 1);
3640
			end_page_read(page, false, cur, iosize);
3641
			goto out;
3642
		}
3643
		cur = cur + iosize;
3644
		pg_offset += iosize;
3645
	}
D
Dan Magenheimer 已提交
3646
out:
3647
	return ret;
3648 3649
}

3650
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3651 3652 3653 3654
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3655
{
3656
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3657 3658
	int index;

3659
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3660 3661

	for (index = 0; index < nr_pages; index++) {
3662
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3663
				  REQ_RAHEAD, prev_em_start);
3664
		put_page(pages[index]);
3665 3666 3667
	}
}

3668
static void update_nr_written(struct writeback_control *wbc,
3669
			      unsigned long nr_written)
3670 3671 3672 3673
{
	wbc->nr_to_write -= nr_written;
}

3674
/*
3675 3676
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3677
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3678 3679 3680 3681 3682
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3683
 */
3684
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3685 3686
		struct page *page, struct writeback_control *wbc,
		u64 delalloc_start, unsigned long *nr_written)
3687
{
3688
	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3689
	bool found;
3690 3691 3692 3693 3694 3695 3696
	u64 delalloc_to_write = 0;
	u64 delalloc_end = 0;
	int ret;
	int page_started = 0;


	while (delalloc_end < page_end) {
3697
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3698
					       &delalloc_start,
3699
					       &delalloc_end);
3700
		if (!found) {
3701 3702 3703
			delalloc_start = delalloc_end + 1;
			continue;
		}
3704
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3705
				delalloc_end, &page_started, nr_written, wbc);
3706 3707
		if (ret) {
			SetPageError(page);
3708 3709 3710 3711 3712
			/*
			 * btrfs_run_delalloc_range should return < 0 for error
			 * but just in case, we use > 0 here meaning the IO is
			 * started, so we don't want to return > 0 unless
			 * things are going well.
3713
			 */
3714
			return ret < 0 ? ret : -EIO;
3715 3716
		}
		/*
3717 3718
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3719 3720
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3721
				      PAGE_SIZE) >> PAGE_SHIFT;
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

	/* did the fill delalloc function already unlock and start
	 * the IO?
	 */
	if (page_started) {
		/*
		 * we've unlocked the page, so we can't update
		 * the mapping's writeback index, just update
		 * nr_to_write.
		 */
		wbc->nr_to_write -= *nr_written;
		return 1;
	}

3746
	return 0;
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
}

/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3757
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3758 3759 3760 3761 3762
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
				 unsigned long nr_written,
3763
				 int *nr_ret)
3764
{
3765
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3766
	struct extent_io_tree *tree = &inode->io_tree;
M
Miao Xie 已提交
3767
	u64 start = page_offset(page);
3768
	u64 end = start + PAGE_SIZE - 1;
3769 3770 3771 3772
	u64 cur = start;
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3773 3774
	int ret = 0;
	int nr = 0;
3775
	u32 opf = REQ_OP_WRITE;
3776
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3777
	bool compressed;
C
Chris Mason 已提交
3778

3779
	ret = btrfs_writepage_cow_fixup(page, start, end);
3780 3781
	if (ret) {
		/* Fixup worker will requeue */
3782
		redirty_page_for_writepage(wbc, page);
3783 3784 3785
		update_nr_written(wbc, nr_written);
		unlock_page(page);
		return 1;
3786 3787
	}

3788 3789 3790 3791
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3792
	update_nr_written(wbc, nr_written + 1);
3793

3794
	while (cur <= end) {
3795
		u64 disk_bytenr;
3796
		u64 em_end;
3797
		u32 iosize;
3798

3799
		if (cur >= i_size) {
3800 3801
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
							     end, 1);
3802 3803
			break;
		}
3804
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3805
		if (IS_ERR_OR_NULL(em)) {
3806
			SetPageError(page);
3807
			ret = PTR_ERR_OR_ZERO(em);
3808 3809 3810 3811
			break;
		}

		extent_offset = cur - em->start;
3812
		em_end = extent_map_end(em);
3813 3814 3815 3816
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3817
		block_start = em->block_start;
C
Chris Mason 已提交
3818
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3819 3820 3821 3822
		disk_bytenr = em->block_start + extent_offset;

		/* Note that em_end from extent_map_end() is exclusive */
		iosize = min(em_end, end + 1) - cur;
3823

3824
		if (btrfs_use_zone_append(inode, em->block_start))
3825 3826
			opf = REQ_OP_ZONE_APPEND;

3827 3828 3829
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
3830 3831 3832 3833 3834
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
3835
		    block_start == EXTENT_MAP_INLINE) {
3836
			if (compressed)
C
Chris Mason 已提交
3837
				nr++;
3838
			else
3839 3840
				btrfs_writepage_endio_finish_ordered(inode,
						page, cur, cur + iosize - 1, 1);
C
Chris Mason 已提交
3841
			cur += iosize;
3842 3843
			continue;
		}
C
Chris Mason 已提交
3844

3845
		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3846
		if (!PageWriteback(page)) {
3847
			btrfs_err(inode->root->fs_info,
3848 3849
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
3850
		}
3851

3852 3853
		ret = submit_extent_page(opf | write_flags, wbc,
					 &epd->bio_ctrl, page,
3854
					 disk_bytenr, iosize,
3855
					 cur - page_offset(page),
3856
					 end_bio_extent_writepage,
3857
					 0, 0, false);
3858
		if (ret) {
3859
			SetPageError(page);
3860 3861 3862
			if (PageWriteback(page))
				end_page_writeback(page);
		}
3863

3864
		cur += iosize;
3865 3866
		nr++;
	}
3867 3868 3869 3870 3871 3872 3873 3874 3875
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
3876 3877 3878
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
3879 3880
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3881
			      struct extent_page_data *epd)
3882 3883 3884
{
	struct inode *inode = page->mapping->host;
	u64 start = page_offset(page);
3885
	u64 page_end = start + PAGE_SIZE - 1;
3886 3887
	int ret;
	int nr = 0;
3888
	size_t pg_offset;
3889
	loff_t i_size = i_size_read(inode);
3890
	unsigned long end_index = i_size >> PAGE_SHIFT;
3891 3892 3893 3894 3895 3896 3897 3898
	unsigned long nr_written = 0;

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

	ClearPageError(page);

3899
	pg_offset = offset_in_page(i_size);
3900 3901
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
3902
		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3903 3904 3905 3906 3907
		unlock_page(page);
		return 0;
	}

	if (page->index == end_index) {
3908
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
3909 3910 3911
		flush_dcache_page(page);
	}

3912 3913 3914 3915 3916
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
3917

3918
	if (!epd->extent_locked) {
3919 3920
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
					 &nr_written);
3921
		if (ret == 1)
3922
			return 0;
3923 3924 3925
		if (ret)
			goto done;
	}
3926

3927 3928
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
				    nr_written, &nr);
3929
	if (ret == 1)
3930
		return 0;
3931

3932 3933 3934 3935 3936 3937
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
3938 3939 3940 3941
	if (PageError(page)) {
		ret = ret < 0 ? ret : -EIO;
		end_extent_writepage(page, ret, start, page_end);
	}
3942
	unlock_page(page);
3943
	ASSERT(ret <= 0);
3944
	return ret;
3945 3946
}

3947
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3948
{
3949 3950
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
3951 3952
}

3953 3954 3955 3956 3957 3958 3959
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

3960
/*
3961
 * Lock extent buffer status and pages for writeback.
3962
 *
3963 3964 3965 3966 3967 3968
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
3969
 */
3970
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3971
			  struct extent_page_data *epd)
3972
{
3973
	struct btrfs_fs_info *fs_info = eb->fs_info;
3974
	int i, num_pages, failed_page_nr;
3975 3976 3977 3978
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
3979
		ret = flush_write_bio(epd);
3980 3981 3982
		if (ret < 0)
			return ret;
		flush = 1;
3983 3984 3985 3986 3987 3988 3989 3990
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
3991
			ret = flush_write_bio(epd);
3992 3993
			if (ret < 0)
				return ret;
3994 3995
			flush = 1;
		}
C
Chris Mason 已提交
3996 3997 3998 3999 4000
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
4001 4002 4003 4004
			btrfs_tree_unlock(eb);
		}
	}

4005 4006 4007 4008 4009 4010
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4011 4012
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4013
		spin_unlock(&eb->refs_lock);
4014
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4015 4016 4017
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4018
		ret = 1;
4019 4020
	} else {
		spin_unlock(&eb->refs_lock);
4021 4022 4023 4024
	}

	btrfs_tree_unlock(eb);

4025 4026 4027 4028 4029 4030 4031
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
	if (!ret || fs_info->sectorsize < PAGE_SIZE)
4032 4033
		return ret;

4034
	num_pages = num_extent_pages(eb);
4035
	for (i = 0; i < num_pages; i++) {
4036
		struct page *p = eb->pages[i];
4037 4038 4039

		if (!trylock_page(p)) {
			if (!flush) {
4040 4041 4042 4043 4044
				int err;

				err = flush_write_bio(epd);
				if (err < 0) {
					ret = err;
4045 4046 4047
					failed_page_nr = i;
					goto err_unlock;
				}
4048 4049 4050 4051 4052 4053 4054
				flush = 1;
			}
			lock_page(p);
		}
	}

	return ret;
4055 4056 4057 4058
err_unlock:
	/* Unlock already locked pages */
	for (i = 0; i < failed_page_nr; i++)
		unlock_page(eb->pages[i]);
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
	/*
	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
	 * be made and undo everything done before.
	 */
	btrfs_tree_lock(eb);
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
	end_extent_buffer_writeback(eb);
	spin_unlock(&eb->refs_lock);
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
				 fs_info->dirty_metadata_batch);
	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
	btrfs_tree_unlock(eb);
4073
	return ret;
4074 4075
}

4076
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4077
{
4078
	struct btrfs_fs_info *fs_info = eb->fs_info;
4079

4080
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4081 4082 4083
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4084 4085 4086 4087 4088 4089 4090
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4131
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4132 4133
		break;
	case 0:
4134
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4135 4136
		break;
	case 1:
4137
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4138 4139 4140 4141 4142 4143
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       start >> fs_info->sectorsize_bits);
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4170
static void end_bio_subpage_eb_writepage(struct bio *bio)
4171
{
4172
	struct btrfs_fs_info *fs_info;
4173 4174 4175
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4176 4177 4178
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
	ASSERT(fs_info->sectorsize < PAGE_SIZE);

4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4227
static void end_bio_extent_buffer_writepage(struct bio *bio)
4228
{
4229
	struct bio_vec *bvec;
4230
	struct extent_buffer *eb;
4231
	int done;
4232
	struct bvec_iter_all iter_all;
4233

4234
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4235
	bio_for_each_segment_all(bvec, bio, iter_all) {
4236 4237 4238 4239 4240 4241
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4242
		if (bio->bi_status ||
4243
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4244
			ClearPageUptodate(page);
4245
			set_btree_ioerr(page, eb);
4246 4247 4248 4249 4250 4251 4252 4253
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4254
	}
4255 4256 4257 4258

	bio_put(bio);
}

4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
	bool no_dirty_ebs = false;
	int ret;

4298 4299
	prepare_eb_write(eb);

4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4310 4311 4312
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4313
			end_bio_subpage_eb_writepage, 0, 0, false);
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
		update_nr_written(wbc, 1);
	return ret;
}

4333
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4334 4335 4336
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4337
	u64 disk_bytenr = eb->start;
4338
	int i, num_pages;
4339
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4340
	int ret = 0;
4341

4342
	prepare_eb_write(eb);
4343

4344
	num_pages = num_extent_pages(eb);
4345
	for (i = 0; i < num_pages; i++) {
4346
		struct page *p = eb->pages[i];
4347 4348 4349

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4350
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4351 4352
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4353
					 end_bio_extent_buffer_writepage,
4354
					 0, 0, false);
4355
		if (ret) {
4356
			set_btree_ioerr(p, eb);
4357 4358
			if (PageWriteback(p))
				end_page_writeback(p);
4359 4360 4361 4362 4363
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4364
		disk_bytenr += PAGE_SIZE;
4365
		update_nr_written(wbc, 1);
4366 4367 4368 4369 4370
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4371
			struct page *p = eb->pages[i];
4372
			clear_page_dirty_for_io(p);
4373 4374 4375 4376 4377 4378 4379
			unlock_page(p);
		}
	}

	return ret;
}

4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
	while (bit_start < nbits) {
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
		if (!((1 << bit_start) & subpage->dirty_bitmap)) {
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4458
		ret = write_one_subpage_eb(eb, wbc, epd);
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
	end_write_bio(epd, ret);
	return ret;
}

4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4497
	struct btrfs_block_group *cache = NULL;
4498 4499 4500 4501 4502 4503
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4504 4505 4506
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return submit_eb_subpage(page, wbc, epd);

4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4546 4547 4548 4549
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4550 4551 4552
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4553 4554 4555
		free_extent_buffer(eb);
		return ret;
	}
4556 4557
	if (cache)
		btrfs_put_block_group(cache);
4558 4559 4560 4561 4562 4563 4564
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4565 4566 4567
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4568
	struct extent_buffer *eb_context = NULL;
4569
	struct extent_page_data epd = {
4570
		.bio_ctrl = { 0 },
4571 4572 4573
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4574
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4575 4576 4577 4578 4579 4580 4581 4582
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4583
	xa_mark_t tag;
4584

4585
	pagevec_init(&pvec);
4586 4587 4588
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4589 4590 4591 4592 4593
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4594
	} else {
4595 4596
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4597 4598 4599 4600 4601 4602
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4603
	btrfs_zoned_meta_io_lock(fs_info);
4604 4605 4606 4607
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4608
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4609
			tag))) {
4610 4611 4612 4613 4614
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4615 4616
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4617
				continue;
4618
			if (ret < 0) {
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4642 4643
	if (ret < 0) {
		end_write_bio(&epd, ret);
4644
		goto out;
4645
	}
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
	 */
	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
		ret = flush_write_bio(&epd);
	} else {
4676
		ret = -EROFS;
4677 4678
		end_write_bio(&epd, ret);
	}
4679 4680
out:
	btrfs_zoned_meta_io_unlock(fs_info);
4681 4682 4683
	return ret;
}

4684
/**
4685 4686
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4687
 * @mapping: address space structure to write
4688 4689
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4690 4691 4692 4693 4694 4695 4696 4697 4698
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4699
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4700
			     struct writeback_control *wbc,
4701
			     struct extent_page_data *epd)
4702
{
4703
	struct inode *inode = mapping->host;
4704 4705
	int ret = 0;
	int done = 0;
4706
	int nr_to_write_done = 0;
4707 4708 4709 4710
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4711 4712
	pgoff_t done_index;
	int range_whole = 0;
4713
	int scanned = 0;
M
Matthew Wilcox 已提交
4714
	xa_mark_t tag;
4715

4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4728
	pagevec_init(&pvec);
4729 4730 4731
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4732 4733 4734 4735 4736
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4737
	} else {
4738 4739
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4740 4741
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4742 4743
		scanned = 1;
	}
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4758 4759 4760
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4761
retry:
4762
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4763
		tag_pages_for_writeback(mapping, index, end);
4764
	done_index = index;
4765
	while (!done && !nr_to_write_done && (index <= end) &&
4766 4767
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
4768 4769 4770 4771 4772
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4773
			done_index = page->index + 1;
4774
			/*
M
Matthew Wilcox 已提交
4775 4776 4777 4778 4779
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
4780
			 */
4781
			if (!trylock_page(page)) {
4782 4783
				ret = flush_write_bio(epd);
				BUG_ON(ret < 0);
4784
				lock_page(page);
4785
			}
4786 4787 4788 4789 4790 4791

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
4792
			if (wbc->sync_mode != WB_SYNC_NONE) {
4793 4794 4795 4796
				if (PageWriteback(page)) {
					ret = flush_write_bio(epd);
					BUG_ON(ret < 0);
				}
4797
				wait_on_page_writeback(page);
C
Chris Mason 已提交
4798
			}
4799 4800 4801 4802 4803 4804 4805

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

4806
			ret = __extent_writepage(page, wbc, epd);
4807 4808 4809 4810
			if (ret < 0) {
				done = 1;
				break;
			}
4811 4812 4813 4814 4815 4816 4817

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
4818 4819 4820 4821
		}
		pagevec_release(&pvec);
		cond_resched();
	}
4822
	if (!scanned && !done) {
4823 4824 4825 4826 4827 4828
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
		ret = flush_write_bio(epd);
		if (!ret)
			goto retry;
4839
	}
4840 4841 4842 4843

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

4844
	btrfs_add_delayed_iput(inode);
4845
	return ret;
4846 4847
}

4848
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4849 4850 4851
{
	int ret;
	struct extent_page_data epd = {
4852
		.bio_ctrl = { 0 },
4853
		.extent_locked = 0,
4854
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4855 4856 4857
	};

	ret = __extent_writepage(page, wbc, &epd);
4858 4859 4860 4861 4862
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
4863

4864 4865
	ret = flush_write_bio(&epd);
	ASSERT(ret <= 0);
4866 4867 4868
	return ret;
}

4869
int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4870 4871 4872 4873 4874
			      int mode)
{
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
4875 4876
	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
		PAGE_SHIFT;
4877 4878

	struct extent_page_data epd = {
4879
		.bio_ctrl = { 0 },
4880
		.extent_locked = 1,
4881
		.sync_io = mode == WB_SYNC_ALL,
4882 4883 4884 4885 4886 4887
	};
	struct writeback_control wbc_writepages = {
		.sync_mode	= mode,
		.nr_to_write	= nr_pages * 2,
		.range_start	= start,
		.range_end	= end + 1,
4888 4889 4890
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
4891 4892
	};

4893
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
C
Chris Mason 已提交
4894
	while (start <= end) {
4895
		page = find_get_page(mapping, start >> PAGE_SHIFT);
4896 4897 4898
		if (clear_page_dirty_for_io(page))
			ret = __extent_writepage(page, &wbc_writepages, &epd);
		else {
4899 4900
			btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
					page, start, start + PAGE_SIZE - 1, 1);
4901 4902
			unlock_page(page);
		}
4903 4904
		put_page(page);
		start += PAGE_SIZE;
4905 4906
	}

4907
	ASSERT(ret <= 0);
4908 4909 4910
	if (ret == 0)
		ret = flush_write_bio(&epd);
	else
4911
		end_write_bio(&epd, ret);
4912 4913

	wbc_detach_inode(&wbc_writepages);
4914 4915
	return ret;
}
4916

4917
int extent_writepages(struct address_space *mapping,
4918 4919 4920 4921
		      struct writeback_control *wbc)
{
	int ret = 0;
	struct extent_page_data epd = {
4922
		.bio_ctrl = { 0 },
4923
		.extent_locked = 0,
4924
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4925 4926
	};

4927
	ret = extent_write_cache_pages(mapping, wbc, &epd);
4928 4929 4930 4931 4932 4933
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
	ret = flush_write_bio(&epd);
4934 4935 4936
	return ret;
}

4937
void extent_readahead(struct readahead_control *rac)
4938
{
4939
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
L
Liu Bo 已提交
4940
	struct page *pagepool[16];
4941
	struct extent_map *em_cached = NULL;
4942
	u64 prev_em_start = (u64)-1;
4943
	int nr;
4944

4945
	while ((nr = readahead_page_batch(rac, pagepool))) {
4946 4947
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
4948

4949
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
4950
				&em_cached, &bio_ctrl, &prev_em_start);
4951
	}
L
Liu Bo 已提交
4952

4953 4954 4955
	if (em_cached)
		free_extent_map(em_cached);

4956 4957
	if (bio_ctrl.bio) {
		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
4958 4959
			return;
	}
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
}

/*
 * basic invalidatepage code, this waits on any locked or writeback
 * ranges corresponding to the page, and then deletes any extent state
 * records from the tree
 */
int extent_invalidatepage(struct extent_io_tree *tree,
			  struct page *page, unsigned long offset)
{
4970
	struct extent_state *cached_state = NULL;
M
Miao Xie 已提交
4971
	u64 start = page_offset(page);
4972
	u64 end = start + PAGE_SIZE - 1;
4973 4974
	size_t blocksize = page->mapping->host->i_sb->s_blocksize;

4975 4976 4977
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

4978
	start += ALIGN(offset, blocksize);
4979 4980 4981
	if (start > end)
		return 0;

4982
	lock_extent_bits(tree, start, end, &cached_state);
4983
	wait_on_page_writeback(page);
4984 4985 4986 4987 4988 4989 4990

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
4991 4992 4993
	return 0;
}

4994 4995 4996 4997 4998
/*
 * a helper for releasepage, this tests for areas of the page that
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
4999
static int try_release_extent_state(struct extent_io_tree *tree,
5000
				    struct page *page, gfp_t mask)
5001
{
M
Miao Xie 已提交
5002
	u64 start = page_offset(page);
5003
	u64 end = start + PAGE_SIZE - 1;
5004 5005
	int ret = 1;

N
Nikolay Borisov 已提交
5006
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5007
		ret = 0;
N
Nikolay Borisov 已提交
5008
	} else {
5009
		/*
5010 5011 5012 5013
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
5014
		 */
5015
		ret = __clear_extent_bit(tree, start, end,
5016 5017
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
5018 5019 5020 5021 5022 5023 5024 5025

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5026 5027 5028 5029
	}
	return ret;
}

5030 5031 5032 5033 5034
/*
 * a helper for releasepage.  As long as there are no locked extents
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5035
int try_release_extent_mapping(struct page *page, gfp_t mask)
5036 5037
{
	struct extent_map *em;
M
Miao Xie 已提交
5038
	u64 start = page_offset(page);
5039
	u64 end = start + PAGE_SIZE - 1;
5040 5041 5042
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5043

5044
	if (gfpflags_allow_blocking(mask) &&
5045
	    page->mapping->host->i_size > SZ_16M) {
5046
		u64 len;
5047
		while (start <= end) {
5048 5049 5050
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5051
			len = end - start + 1;
5052
			write_lock(&map->lock);
5053
			em = lookup_extent_mapping(map, start, len);
5054
			if (!em) {
5055
				write_unlock(&map->lock);
5056 5057
				break;
			}
5058 5059
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5060
				write_unlock(&map->lock);
5061 5062 5063
				free_extent_map(em);
				break;
			}
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5091 5092 5093 5094 5095 5096 5097 5098
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5099 5100 5101
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5102
next:
5103
			start = extent_map_end(em);
5104
			write_unlock(&map->lock);
5105 5106

			/* once for us */
5107
			free_extent_map(em);
5108 5109

			cond_resched(); /* Allow large-extent preemption. */
5110 5111
		}
	}
5112
	return try_release_extent_state(tree, page, mask);
5113 5114
}

5115 5116 5117 5118
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
5119
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5120
						u64 offset, u64 last)
5121
{
5122
	u64 sectorsize = btrfs_inode_sectorsize(inode);
5123 5124 5125 5126 5127 5128
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

5129
	while (1) {
5130 5131 5132
		len = last - offset;
		if (len == 0)
			break;
5133
		len = ALIGN(len, sectorsize);
5134
		em = btrfs_get_extent_fiemap(inode, offset, len);
5135
		if (IS_ERR_OR_NULL(em))
5136 5137 5138
			return em;

		/* if this isn't a hole return it */
5139
		if (em->block_start != EXTENT_MAP_HOLE)
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5185
	 * fiemap extent won't overlap with cached one.
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
5237
 * Emit last fiemap cache
5238
 *
5239 5240 5241 5242 5243 5244 5245
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5246
 */
5247
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5248
				  struct fiemap_cache *cache)
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5263
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5264
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
5265
{
J
Josef Bacik 已提交
5266
	int ret = 0;
5267
	u64 off;
Y
Yehuda Sadeh 已提交
5268 5269
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
5270 5271
	u32 found_type;
	u64 last;
5272
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
5273
	u64 disko = 0;
5274
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
5275
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
5276
	struct extent_map *em = NULL;
5277
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
5278
	struct btrfs_path *path;
5279
	struct btrfs_root *root = inode->root;
5280
	struct fiemap_cache cache = { 0 };
5281 5282
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
5283
	int end = 0;
5284 5285 5286
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
5287 5288 5289 5290

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
5291 5292 5293 5294
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

5295 5296 5297 5298 5299 5300 5301
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

5302 5303 5304 5305 5306
	/*
	 * We can't initialize that to 'start' as this could miss extents due
	 * to extent item merging
	 */
	off = 0;
5307 5308
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5309

5310 5311 5312 5313
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
5314 5315
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
5316
	if (ret < 0) {
5317
		goto out_free_ulist;
5318 5319 5320 5321
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
5322
	}
5323

J
Josef Bacik 已提交
5324 5325
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5326
	found_type = found_key.type;
J
Josef Bacik 已提交
5327

5328
	/* No extents, but there might be delalloc bits */
5329
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
5330
	    found_type != BTRFS_EXTENT_DATA_KEY) {
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
5342
	}
5343
	btrfs_release_path(path);
J
Josef Bacik 已提交
5344

5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5355
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5356
			 &cached_state);
5357

5358
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
5359 5360 5361 5362 5363 5364
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
5365

Y
Yehuda Sadeh 已提交
5366
	while (!end) {
5367
		u64 offset_in_extent = 0;
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5380

5381 5382
		/*
		 * record the offset from the start of the extent
5383 5384 5385
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5386
		 */
5387 5388
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5389
		em_end = extent_map_end(em);
5390
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5391
		flags = 0;
5392 5393 5394 5395
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5396

5397 5398 5399 5400 5401 5402 5403
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5404
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
5405 5406
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5407
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5408 5409
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5410
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5411 5412
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5413 5414 5415
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5416 5417 5418 5419

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5420 5421 5422
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5423
			 */
5424
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5425
						 bytenr, roots, tmp_ulist);
5426
			if (ret < 0)
5427
				goto out_free;
5428
			if (ret)
5429
				flags |= FIEMAP_EXTENT_SHARED;
5430
			ret = 0;
Y
Yehuda Sadeh 已提交
5431 5432 5433
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5434 5435
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5436 5437 5438

		free_extent_map(em);
		em = NULL;
5439 5440
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5441 5442 5443 5444
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5445
		/* now scan forward to see if this is really the last extent. */
5446
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5447 5448 5449 5450 5451
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5452 5453 5454
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5455 5456
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5457 5458 5459
		if (ret) {
			if (ret == 1)
				ret = 0;
5460
			goto out_free;
5461
		}
Y
Yehuda Sadeh 已提交
5462 5463
	}
out_free:
5464
	if (!ret)
5465
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5466 5467
	free_extent_map(em);
out:
5468
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5469
			     &cached_state);
5470 5471

out_free_ulist:
5472
	btrfs_free_path(path);
5473 5474
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5475 5476 5477
	return ret;
}

5478 5479 5480 5481 5482
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5483
int extent_buffer_under_io(const struct extent_buffer *eb)
5484 5485 5486 5487 5488 5489
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5490
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5491
{
5492
	struct btrfs_subpage *subpage;
5493

5494
	lockdep_assert_held(&page->mapping->private_lock);
5495

5496 5497 5498 5499 5500 5501 5502
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
	}
	return false;
}
5503

5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5517
		if (mapped)
5518 5519 5520 5521 5522
			spin_unlock(&page->mapping->private_lock);
		return;
	}

	if (fs_info->sectorsize == PAGE_SIZE) {
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5535
			/*
5536 5537
			 * We need to make sure we haven't be attached
			 * to a new eb.
5538
			 */
5539
			detach_page_private(page);
5540
		}
5541 5542
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
	 * page range.
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5584

5585
		/* One for when we allocated the page */
5586
		put_page(page);
5587
	}
5588 5589 5590 5591 5592 5593 5594
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5595
	btrfs_release_extent_buffer_pages(eb);
5596
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5597 5598 5599
	__free_extent_buffer(eb);
}

5600 5601
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5602
		      unsigned long len)
5603 5604 5605
{
	struct extent_buffer *eb = NULL;

5606
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5607 5608
	eb->start = start;
	eb->len = len;
5609
	eb->fs_info = fs_info;
5610
	eb->bflags = 0;
5611
	init_rwsem(&eb->lock);
5612

5613 5614
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5615
	INIT_LIST_HEAD(&eb->release_list);
5616

5617
	spin_lock_init(&eb->refs_lock);
5618
	atomic_set(&eb->refs, 1);
5619
	atomic_set(&eb->io_pages, 0);
5620

5621
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5622 5623 5624 5625

	return eb;
}

5626
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5627
{
5628
	int i;
5629 5630
	struct page *p;
	struct extent_buffer *new;
5631
	int num_pages = num_extent_pages(src);
5632

5633
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5634 5635 5636
	if (new == NULL)
		return NULL;

5637 5638 5639 5640 5641 5642 5643
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5644
	for (i = 0; i < num_pages; i++) {
5645 5646
		int ret;

5647
		p = alloc_page(GFP_NOFS);
5648 5649 5650 5651
		if (!p) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5652 5653 5654 5655 5656 5657
		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			put_page(p);
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5658 5659
		WARN_ON(PageDirty(p));
		new->pages[i] = p;
5660
		copy_page(page_address(p), page_address(src->pages[i]));
5661
	}
5662
	set_extent_buffer_uptodate(new);
5663 5664 5665 5666

	return new;
}

5667 5668
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5669 5670
{
	struct extent_buffer *eb;
5671 5672
	int num_pages;
	int i;
5673

5674
	eb = __alloc_extent_buffer(fs_info, start, len);
5675 5676 5677
	if (!eb)
		return NULL;

5678
	num_pages = num_extent_pages(eb);
5679
	for (i = 0; i < num_pages; i++) {
5680 5681
		int ret;

5682
		eb->pages[i] = alloc_page(GFP_NOFS);
5683 5684
		if (!eb->pages[i])
			goto err;
5685 5686 5687
		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
		if (ret < 0)
			goto err;
5688 5689 5690
	}
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5691
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5692 5693 5694

	return eb;
err:
5695 5696
	for (; i > 0; i--) {
		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5697
		__free_page(eb->pages[i - 1]);
5698
	}
5699 5700 5701 5702
	__free_extent_buffer(eb);
	return NULL;
}

5703
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5704
						u64 start)
5705
{
5706
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5707 5708
}

5709 5710
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5711
	int refs;
5712 5713 5714 5715
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5716
	 *
5717 5718 5719
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
	 * calling releasepage when the tree reference is the only reference.
5720
	 *
5721 5722 5723 5724 5725
	 * In both cases, care is taken to ensure that the extent_buffer's
	 * pages are not under io. However, releasepage can be concurrently
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5726
	 *
5727 5728 5729 5730 5731 5732 5733
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
5734
	 */
5735 5736 5737 5738
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

5739 5740
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5741
		atomic_inc(&eb->refs);
5742
	spin_unlock(&eb->refs_lock);
5743 5744
}

5745 5746
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
5747
{
5748
	int num_pages, i;
5749

5750 5751
	check_buffer_tree_ref(eb);

5752
	num_pages = num_extent_pages(eb);
5753
	for (i = 0; i < num_pages; i++) {
5754 5755
		struct page *p = eb->pages[i];

5756 5757
		if (p != accessed)
			mark_page_accessed(p);
5758 5759 5760
	}
}

5761 5762
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
5763 5764 5765
{
	struct extent_buffer *eb;

5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
5785
	}
5786 5787
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
5788 5789
}

5790 5791
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5792
					u64 start)
5793 5794 5795 5796 5797 5798 5799
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
5800
	eb = alloc_dummy_extent_buffer(fs_info, start);
5801
	if (!eb)
5802
		return ERR_PTR(-ENOMEM);
5803 5804
	eb->fs_info = fs_info;
again:
5805
	ret = radix_tree_preload(GFP_NOFS);
5806 5807
	if (ret) {
		exists = ERR_PTR(ret);
5808
		goto free_eb;
5809
	}
5810 5811
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
5812
				start >> fs_info->sectorsize_bits, eb);
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
			goto free_eb;
		else
			goto again;
	}
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

5832 5833
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
5834 5835 5836
{
	struct extent_buffer *exists;

5837 5838 5839 5840 5841 5842 5843 5844
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
	if (fs_info->sectorsize < PAGE_SIZE)
		return NULL;

5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

5864
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5865
					  u64 start, u64 owner_root, int level)
5866
{
5867
	unsigned long len = fs_info->nodesize;
5868 5869
	int num_pages;
	int i;
5870
	unsigned long index = start >> PAGE_SHIFT;
5871
	struct extent_buffer *eb;
5872
	struct extent_buffer *exists = NULL;
5873
	struct page *p;
5874
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5875
	int uptodate = 1;
5876
	int ret;
5877

5878
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5879 5880 5881 5882
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return ERR_PTR(-EINVAL);
	}

5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

5894 5895 5896 5897 5898 5899 5900 5901
	if (fs_info->sectorsize < PAGE_SIZE &&
	    offset_in_page(start) + len > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %lu",
			  start, len);
		return ERR_PTR(-EINVAL);
	}

5902
	eb = find_extent_buffer(fs_info, start);
5903
	if (eb)
5904 5905
		return eb;

5906
	eb = __alloc_extent_buffer(fs_info, start, len);
5907
	if (!eb)
5908
		return ERR_PTR(-ENOMEM);
5909
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
5910

5911
	num_pages = num_extent_pages(eb);
5912
	for (i = 0; i < num_pages; i++, index++) {
5913 5914
		struct btrfs_subpage *prealloc = NULL;

5915
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5916 5917
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
5918
			goto free_eb;
5919
		}
J
Josef Bacik 已提交
5920

5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
		ret = btrfs_alloc_subpage(fs_info, &prealloc,
					  BTRFS_SUBPAGE_METADATA);
		if (ret < 0) {
			unlock_page(p);
			put_page(p);
			exists = ERR_PTR(ret);
			goto free_eb;
		}

J
Josef Bacik 已提交
5940
		spin_lock(&mapping->private_lock);
5941
		exists = grab_extent_buffer(fs_info, p);
5942 5943 5944 5945 5946
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
5947
			btrfs_free_subpage(prealloc);
5948
			goto free_eb;
5949
		}
5950 5951 5952
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
5963
		spin_unlock(&mapping->private_lock);
5964

5965
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
5966
		eb->pages[i] = p;
5967 5968
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
5969 5970

		/*
5971 5972 5973 5974 5975
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
		 * opens a race with btree_releasepage which can free a page
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
5976
		 */
5977 5978
	}
	if (uptodate)
5979
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5980
again:
5981
	ret = radix_tree_preload(GFP_NOFS);
5982 5983
	if (ret) {
		exists = ERR_PTR(ret);
5984
		goto free_eb;
5985
	}
5986

5987 5988
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
5989
				start >> fs_info->sectorsize_bits, eb);
5990
	spin_unlock(&fs_info->buffer_lock);
5991
	radix_tree_preload_end();
5992
	if (ret == -EEXIST) {
5993
		exists = find_extent_buffer(fs_info, start);
5994 5995 5996
		if (exists)
			goto free_eb;
		else
5997
			goto again;
5998 5999
	}
	/* add one reference for the tree */
6000
	check_buffer_tree_ref(eb);
6001
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
6002 6003

	/*
6004 6005 6006
	 * Now it's safe to unlock the pages because any calls to
	 * btree_releasepage will correctly detect that a page belongs to a
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
6007
	 */
6008 6009
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6010 6011
	return eb;

6012
free_eb:
6013
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6014 6015 6016 6017
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
6018

6019
	btrfs_release_extent_buffer(eb);
6020
	return exists;
6021 6022
}

6023 6024 6025 6026 6027 6028 6029 6030
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6031
static int release_extent_buffer(struct extent_buffer *eb)
6032
	__releases(&eb->refs_lock)
6033
{
6034 6035
	lockdep_assert_held(&eb->refs_lock);

6036 6037
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6038
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6039
			struct btrfs_fs_info *fs_info = eb->fs_info;
6040

6041
			spin_unlock(&eb->refs_lock);
6042

6043 6044
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
6045
					  eb->start >> fs_info->sectorsize_bits);
6046
			spin_unlock(&fs_info->buffer_lock);
6047 6048
		} else {
			spin_unlock(&eb->refs_lock);
6049
		}
6050

6051
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6052
		/* Should be safe to release our pages at this point */
6053
		btrfs_release_extent_buffer_pages(eb);
6054
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6055
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6056 6057 6058 6059
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6060
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6061
		return 1;
6062 6063
	}
	spin_unlock(&eb->refs_lock);
6064 6065

	return 0;
6066 6067
}

6068 6069
void free_extent_buffer(struct extent_buffer *eb)
{
6070 6071
	int refs;
	int old;
6072 6073 6074
	if (!eb)
		return;

6075 6076
	while (1) {
		refs = atomic_read(&eb->refs);
6077 6078 6079
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6080 6081 6082 6083 6084 6085
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

6086 6087 6088
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6089
	    !extent_buffer_under_io(eb) &&
6090 6091 6092 6093 6094 6095 6096
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6097
	release_extent_buffer(eb);
6098 6099 6100 6101 6102
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6103 6104
		return;

6105 6106 6107
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6108
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6109 6110
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6111
	release_extent_buffer(eb);
6112 6113
}

6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6142
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6143
{
6144 6145
	int i;
	int num_pages;
6146 6147
	struct page *page;

6148 6149 6150
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return clear_subpage_extent_buffer_dirty(eb);

6151
	num_pages = num_extent_pages(eb);
6152 6153

	for (i = 0; i < num_pages; i++) {
6154
		page = eb->pages[i];
6155
		if (!PageDirty(page))
C
Chris Mason 已提交
6156
			continue;
6157
		lock_page(page);
6158
		btree_clear_page_dirty(page);
6159
		ClearPageError(page);
6160
		unlock_page(page);
6161
	}
6162
	WARN_ON(atomic_read(&eb->refs) == 0);
6163 6164
}

6165
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6166
{
6167 6168
	int i;
	int num_pages;
6169
	bool was_dirty;
6170

6171 6172
	check_buffer_tree_ref(eb);

6173
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6174

6175
	num_pages = num_extent_pages(eb);
6176
	WARN_ON(atomic_read(&eb->refs) == 0);
6177 6178
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6179 6180
	if (!was_dirty) {
		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6181

6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6201 6202 6203 6204 6205
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6206
	return was_dirty;
6207 6208
}

6209
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6210
{
6211
	struct btrfs_fs_info *fs_info = eb->fs_info;
6212
	struct page *page;
6213
	int num_pages;
6214
	int i;
6215

6216
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6217
	num_pages = num_extent_pages(eb);
6218
	for (i = 0; i < num_pages; i++) {
6219
		page = eb->pages[i];
C
Chris Mason 已提交
6220
		if (page)
6221 6222
			btrfs_page_clear_uptodate(fs_info, page,
						  eb->start, eb->len);
6223 6224 6225
	}
}

6226
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6227
{
6228
	struct btrfs_fs_info *fs_info = eb->fs_info;
6229
	struct page *page;
6230
	int num_pages;
6231
	int i;
6232

6233
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6234
	num_pages = num_extent_pages(eb);
6235
	for (i = 0; i < num_pages; i++) {
6236
		page = eb->pages[i];
6237
		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6238 6239 6240
	}
}

6241 6242 6243 6244 6245 6246
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6247
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6248 6249 6250 6251 6252 6253 6254
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6255 6256
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6278 6279 6280 6281
	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
				 end_bio_extent_readpage, mirror_num, 0,
6282 6283 6284 6285 6286 6287 6288 6289 6290
				 true);
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6291
	if (bio_ctrl.bio) {
6292 6293
		int tmp;

6294 6295
		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
		bio_ctrl.bio = NULL;
6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
		if (tmp < 0)
			return tmp;
	}
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6308
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6309
{
6310
	int i;
6311 6312 6313
	struct page *page;
	int err;
	int ret = 0;
6314 6315
	int locked_pages = 0;
	int all_uptodate = 1;
6316
	int num_pages;
6317
	unsigned long num_reads = 0;
6318
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6319

6320
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6321 6322
		return 0;

6323 6324 6325
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6326
	num_pages = num_extent_pages(eb);
6327
	for (i = 0; i < num_pages; i++) {
6328
		page = eb->pages[i];
6329
		if (wait == WAIT_NONE) {
6330 6331 6332 6333 6334 6335 6336
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6337
			if (!trylock_page(page))
6338
				goto unlock_exit;
6339 6340 6341
		} else {
			lock_page(page);
		}
6342
		locked_pages++;
6343 6344 6345 6346 6347 6348
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6349
	for (i = 0; i < num_pages; i++) {
6350
		page = eb->pages[i];
6351 6352
		if (!PageUptodate(page)) {
			num_reads++;
6353
			all_uptodate = 0;
6354
		}
6355
	}
6356

6357
	if (all_uptodate) {
6358
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6359 6360 6361
		goto unlock_exit;
	}

6362
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6363
	eb->read_mirror = 0;
6364
	atomic_set(&eb->io_pages, num_reads);
6365 6366 6367 6368 6369
	/*
	 * It is possible for releasepage to clear the TREE_REF bit before we
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6370
	for (i = 0; i < num_pages; i++) {
6371
		page = eb->pages[i];
6372

6373
		if (!PageUptodate(page)) {
6374 6375 6376 6377 6378 6379
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6380
			ClearPageError(page);
6381
			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6382 6383 6384
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
					 mirror_num, 0, false);
6385 6386
			if (err) {
				/*
6387 6388 6389
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6390
				 */
6391 6392 6393
				ret = err;
				SetPageError(page);
				unlock_page(page);
6394 6395
				atomic_dec(&eb->io_pages);
			}
6396 6397 6398 6399 6400
		} else {
			unlock_page(page);
		}
	}

6401 6402 6403
	if (bio_ctrl.bio) {
		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
		bio_ctrl.bio = NULL;
6404 6405
		if (err)
			return err;
6406
	}
6407

6408
	if (ret || wait != WAIT_COMPLETE)
6409
		return ret;
C
Chris Mason 已提交
6410

6411
	for (i = 0; i < num_pages; i++) {
6412
		page = eb->pages[i];
6413
		wait_on_page_locked(page);
C
Chris Mason 已提交
6414
		if (!PageUptodate(page))
6415 6416
			ret = -EIO;
	}
C
Chris Mason 已提交
6417

6418
	return ret;
6419 6420

unlock_exit:
C
Chris Mason 已提交
6421
	while (locked_pages > 0) {
6422
		locked_pages--;
6423 6424
		page = eb->pages[locked_pages];
		unlock_page(page);
6425 6426
	}
	return ret;
6427 6428
}

6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6459 6460
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6461 6462 6463 6464 6465 6466
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6467
	unsigned long i = get_eb_page_index(start);
6468

6469
	if (check_eb_range(eb, start, len))
6470
		return;
6471

6472
	offset = get_eb_offset_in_page(eb, start);
6473

C
Chris Mason 已提交
6474
	while (len > 0) {
6475
		page = eb->pages[i];
6476

6477
		cur = min(len, (PAGE_SIZE - offset));
6478
		kaddr = page_address(page);
6479 6480 6481 6482 6483 6484 6485 6486 6487
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6488 6489 6490
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6491 6492 6493 6494 6495 6496
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6497
	unsigned long i = get_eb_page_index(start);
6498 6499 6500 6501 6502
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6503
	offset = get_eb_offset_in_page(eb, start);
6504 6505

	while (len > 0) {
6506
		page = eb->pages[i];
6507

6508
		cur = min(len, (PAGE_SIZE - offset));
6509
		kaddr = page_address(page);
6510
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6524 6525
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6526 6527 6528 6529 6530 6531
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6532
	unsigned long i = get_eb_page_index(start);
6533 6534
	int ret = 0;

6535 6536
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6537

6538
	offset = get_eb_offset_in_page(eb, start);
6539

C
Chris Mason 已提交
6540
	while (len > 0) {
6541
		page = eb->pages[i];
6542

6543
		cur = min(len, (PAGE_SIZE - offset));
6544

6545
		kaddr = page_address(page);
6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

	if (fs_info->sectorsize < PAGE_SIZE) {
		bool uptodate;

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
		WARN_ON(!uptodate);
	} else {
		WARN_ON(!PageUptodate(page));
	}
}

6580
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6581 6582 6583 6584
		const void *srcv)
{
	char *kaddr;

6585
	assert_eb_page_uptodate(eb, eb->pages[0]);
6586 6587 6588 6589
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6590 6591
}

6592
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6593 6594 6595
{
	char *kaddr;

6596
	assert_eb_page_uptodate(eb, eb->pages[0]);
6597 6598 6599
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6600 6601
}

6602
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6603 6604 6605 6606 6607 6608 6609
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6610
	unsigned long i = get_eb_page_index(start);
6611

6612 6613
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6614 6615
	if (check_eb_range(eb, start, len))
		return;
6616

6617
	offset = get_eb_offset_in_page(eb, start);
6618

C
Chris Mason 已提交
6619
	while (len > 0) {
6620
		page = eb->pages[i];
6621
		assert_eb_page_uptodate(eb, page);
6622

6623
		cur = min(len, PAGE_SIZE - offset);
6624
		kaddr = page_address(page);
6625 6626 6627 6628 6629 6630 6631 6632 6633
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6634
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6635
		unsigned long len)
6636 6637 6638 6639 6640
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6641
	unsigned long i = get_eb_page_index(start);
6642

6643 6644
	if (check_eb_range(eb, start, len))
		return;
6645

6646
	offset = get_eb_offset_in_page(eb, start);
6647

C
Chris Mason 已提交
6648
	while (len > 0) {
6649
		page = eb->pages[i];
6650
		assert_eb_page_uptodate(eb, page);
6651

6652
		cur = min(len, PAGE_SIZE - offset);
6653
		kaddr = page_address(page);
6654
		memset(kaddr + offset, 0, cur);
6655 6656 6657 6658 6659 6660 6661

		len -= cur;
		offset = 0;
		i++;
	}
}

6662 6663
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6664 6665
{
	int i;
6666
	int num_pages;
6667 6668 6669

	ASSERT(dst->len == src->len);

6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
	if (dst->fs_info->sectorsize == PAGE_SIZE) {
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
6684 6685
}

6686 6687
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
6688 6689 6690 6691 6692 6693 6694 6695
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6696
	unsigned long i = get_eb_page_index(dst_offset);
6697

6698 6699 6700 6701
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

6702 6703
	WARN_ON(src->len != dst_len);

6704
	offset = get_eb_offset_in_page(dst, dst_offset);
6705

C
Chris Mason 已提交
6706
	while (len > 0) {
6707
		page = dst->pages[i];
6708
		assert_eb_page_uptodate(dst, page);
6709

6710
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6711

6712
		kaddr = page_address(page);
6713 6714 6715 6716 6717 6718 6719 6720 6721
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
6735
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
6748
	offset = start + offset_in_page(eb->start) + byte_offset;
6749

6750
	*page_index = offset >> PAGE_SHIFT;
6751
	*page_offset = offset_in_page(offset);
6752 6753 6754 6755 6756 6757 6758 6759
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
6760
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6761 6762
			   unsigned long nr)
{
6763
	u8 *kaddr;
6764 6765 6766 6767 6768 6769
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
6770
	assert_eb_page_uptodate(eb, page);
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
6782
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6783 6784
			      unsigned long pos, unsigned long len)
{
6785
	u8 *kaddr;
6786 6787 6788 6789 6790
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6791
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6792 6793 6794

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
6795
	assert_eb_page_uptodate(eb, page);
6796 6797 6798 6799 6800 6801
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6802
		mask_to_set = ~0;
6803
		if (++offset >= PAGE_SIZE && len > 0) {
6804 6805
			offset = 0;
			page = eb->pages[++i];
6806
			assert_eb_page_uptodate(eb, page);
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
6824 6825 6826
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
6827
{
6828
	u8 *kaddr;
6829 6830 6831 6832 6833
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6834
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6835 6836 6837

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
6838
	assert_eb_page_uptodate(eb, page);
6839 6840 6841 6842 6843 6844
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6845
		mask_to_clear = ~0;
6846
		if (++offset >= PAGE_SIZE && len > 0) {
6847 6848
			offset = 0;
			page = eb->pages[++i];
6849
			assert_eb_page_uptodate(eb, page);
6850 6851 6852 6853 6854 6855 6856 6857 6858
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

6859 6860 6861 6862 6863 6864
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

6865 6866 6867 6868
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
6869
	char *dst_kaddr = page_address(dst_page);
6870
	char *src_kaddr;
6871
	int must_memmove = 0;
6872

6873
	if (dst_page != src_page) {
6874
		src_kaddr = page_address(src_page);
6875
	} else {
6876
		src_kaddr = dst_kaddr;
6877 6878
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
6879
	}
6880

6881 6882 6883 6884
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6885 6886
}

6887 6888 6889
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
6890 6891 6892 6893 6894 6895 6896
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

6897 6898 6899
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6900

C
Chris Mason 已提交
6901
	while (len > 0) {
6902 6903
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6904

6905 6906
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
6907

6908
		cur = min(len, (unsigned long)(PAGE_SIZE -
6909 6910
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
6911
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6912

6913
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6914 6915 6916 6917 6918 6919 6920 6921
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

6922 6923 6924
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
6925 6926 6927 6928 6929 6930 6931 6932 6933
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

6934 6935 6936
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6937
	if (dst_offset < src_offset) {
6938 6939 6940
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
6941
	while (len > 0) {
6942 6943
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
6944

6945 6946
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
6947 6948 6949

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
6950
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6951 6952 6953 6954 6955 6956 6957 6958
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
6959

6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
	struct extent_buffer *found = NULL;
	u64 page_start = page_offset(page);
	int ret;
	int i;

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
	lockdep_assert_held(&fs_info->buffer_lock);

	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
			bytenr >> fs_info->sectorsize_bits,
			PAGE_SIZE / fs_info->nodesize);
	for (i = 0; i < ret; i++) {
		/* Already beyond page end */
		if (gang[i]->start >= page_start + PAGE_SIZE)
			break;
		/* Found one */
		if (gang[i]->start >= bytenr) {
			found = gang[i];
			break;
		}
	}
	return found;
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7059
int try_release_extent_buffer(struct page *page)
7060
{
7061 7062
	struct extent_buffer *eb;

7063 7064 7065
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return try_release_subpage_extent_buffer(page);

7066
	/*
7067 7068
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7069 7070 7071 7072
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
7073
		return 1;
7074
	}
7075

7076 7077
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7078 7079

	/*
7080 7081 7082
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7083
	 */
7084
	spin_lock(&eb->refs_lock);
7085
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7086 7087 7088
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7089
	}
7090
	spin_unlock(&page->mapping->private_lock);
7091

7092
	/*
7093 7094
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7095
	 */
7096 7097 7098
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7099
	}
7100

7101
	return release_extent_buffer(eb);
7102
}
7103 7104 7105 7106 7107

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7108
 * @owner_root: objectid of the root that owns this eb
7109
 * @gen:	generation for the uptodate check, can be 0
7110
 * @level:	level for the eb
7111 7112 7113 7114 7115 7116
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7117
				u64 bytenr, u64 owner_root, u64 gen, int level)
7118 7119 7120 7121
{
	struct extent_buffer *eb;
	int ret;

7122
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7150 7151 7152
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7153
}