extent_io.c 198.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
9
#include <linux/sched/mm.h>
10 11 12 13 14
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
15
#include <linux/prefetch.h>
B
Boris Burkov 已提交
16
#include <linux/fsverity.h>
17
#include "misc.h"
18
#include "extent_io.h"
19
#include "extent-io-tree.h"
20
#include "extent_map.h"
21 22
#include "ctree.h"
#include "btrfs_inode.h"
23
#include "volumes.h"
24
#include "check-integrity.h"
25
#include "locking.h"
26
#include "rcu-string.h"
27
#include "backref.h"
28
#include "disk-io.h"
29
#include "subpage.h"
30
#include "zoned.h"
31
#include "block-group.h"
32
#include "compression.h"
33 34 35

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
36
static struct bio_set btrfs_bioset;
37

38 39 40 41 42
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

43
#ifdef CONFIG_BTRFS_DEBUG
44
static LIST_HEAD(states);
C
Chris Mason 已提交
45
static DEFINE_SPINLOCK(leak_lock);
46

47 48 49
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
50 51 52
{
	unsigned long flags;

53
	spin_lock_irqsave(lock, flags);
54
	list_add(new, head);
55
	spin_unlock_irqrestore(lock, flags);
56 57
}

58 59
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
60 61 62
{
	unsigned long flags;

63
	spin_lock_irqsave(lock, flags);
64
	list_del(entry);
65
	spin_unlock_irqrestore(lock, flags);
66 67
}

68
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
69 70
{
	struct extent_buffer *eb;
71
	unsigned long flags;
72

73 74 75 76 77 78 79
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

80
	WARN_ON(!list_empty(&fs_info->allocated_ebs));
81 82 83 84
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
85 86 87 88
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
89 90 91
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
92
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
93 94 95 96 97 98
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

99 100
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
101
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
102 103
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
104
		       refcount_read(&state->refs));
105 106 107 108
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
109

110 111
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
112
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
113
		struct extent_io_tree *tree, u64 start, u64 end)
114
{
115 116 117 118 119 120 121 122 123 124 125 126
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
127
}
128
#else
129 130
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
131
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
132
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
133
#endif
134 135 136 137 138 139 140

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

141 142 143 144 145 146
/*
 * Structure to record info about the bio being assembled, and other info like
 * how many bytes are there before stripe/ordered extent boundary.
 */
struct btrfs_bio_ctrl {
	struct bio *bio;
147
	enum btrfs_compression_type compress_type;
148 149 150 151
	u32 len_to_stripe_boundary;
	u32 len_to_oe_boundary;
};

152
struct extent_page_data {
153
	struct btrfs_bio_ctrl bio_ctrl;
154 155 156
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
157 158
	unsigned int extent_locked:1;

159
	/* tells the submit_bio code to use REQ_SYNC */
160
	unsigned int sync_io:1;
161 162
};

163
static int add_extent_changeset(struct extent_state *state, u32 bits,
164 165 166 167 168 169
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
170
		return 0;
171
	if (set && (state->state & bits) == bits)
172
		return 0;
173
	if (!set && (state->state & bits) == 0)
174
		return 0;
175
	changeset->bytes_changed += state->end - state->start + 1;
176
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
177
			GFP_ATOMIC);
178
	return ret;
179 180
}

181 182
static void submit_one_bio(struct bio *bio, int mirror_num,
			   enum btrfs_compression_type compress_type)
183 184 185 186 187
{
	struct extent_io_tree *tree = bio->bi_private;

	bio->bi_private = NULL;

188 189
	/* Caller should ensure the bio has at least some range added */
	ASSERT(bio->bi_iter.bi_size);
190

191
	if (is_data_inode(tree->private_data))
192
		btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
193
					    compress_type);
194
	else
195
		btrfs_submit_metadata_bio(tree->private_data, bio, mirror_num);
196 197 198 199 200 201
	/*
	 * Above submission hooks will handle the error by ending the bio,
	 * which will do the cleanup properly.  So here we should not return
	 * any error, or the caller of submit_extent_page() will do cleanup
	 * again, causing problems.
	 */
202 203
}

204 205 206
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
207 208 209 210 211 212
	struct bio *bio = epd->bio_ctrl.bio;

	if (bio) {
		bio->bi_status = errno_to_blk_status(ret);
		bio_endio(bio);
		epd->bio_ctrl.bio = NULL;
213 214 215
	}
}

216 217 218 219 220 221
/*
 * Submit bio from extent page data via submit_one_bio
 *
 * Return 0 if everything is OK.
 * Return <0 for error.
 */
222
static void flush_write_bio(struct extent_page_data *epd)
223
{
224
	struct bio *bio = epd->bio_ctrl.bio;
225

226
	if (bio) {
227
		submit_one_bio(bio, 0, 0);
228 229 230 231 232 233 234
		/*
		 * Clean up of epd->bio is handled by its endio function.
		 * And endio is either triggered by successful bio execution
		 * or the error handler of submit bio hook.
		 * So at this point, no matter what happened, we don't need
		 * to clean up epd->bio.
		 */
235
		epd->bio_ctrl.bio = NULL;
236 237
	}
}
238

239
int __init extent_state_cache_init(void)
240
{
D
David Sterba 已提交
241
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
242
			sizeof(struct extent_state), 0,
243
			SLAB_MEM_SPREAD, NULL);
244 245
	if (!extent_state_cache)
		return -ENOMEM;
246 247
	return 0;
}
248

249 250
int __init extent_io_init(void)
{
D
David Sterba 已提交
251
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
252
			sizeof(struct extent_buffer), 0,
253
			SLAB_MEM_SPREAD, NULL);
254
	if (!extent_buffer_cache)
255
		return -ENOMEM;
256

257
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
258
			offsetof(struct btrfs_bio, bio),
259
			BIOSET_NEED_BVECS))
260
		goto free_buffer_cache;
261

262
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
263 264
		goto free_bioset;

265 266
	return 0;

267
free_bioset:
268
	bioset_exit(&btrfs_bioset);
269

270 271 272
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
273 274
	return -ENOMEM;
}
275

276 277 278
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
279 280 281
	kmem_cache_destroy(extent_state_cache);
}

282
void __cold extent_io_exit(void)
283
{
284 285 286 287 288
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
289
	kmem_cache_destroy(extent_buffer_cache);
290
	bioset_exit(&btrfs_bioset);
291 292
}

293 294 295 296 297 298 299 300 301
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

302
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
303 304
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
305
{
306
	tree->fs_info = fs_info;
307
	tree->state = RB_ROOT;
308
	tree->dirty_bytes = 0;
309
	spin_lock_init(&tree->lock);
310
	tree->private_data = private_data;
311
	tree->owner = owner;
312 313
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
314 315
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

345
static struct extent_state *alloc_extent_state(gfp_t mask)
346 347 348
{
	struct extent_state *state;

349 350 351 352 353
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
354
	state = kmem_cache_alloc(extent_state_cache, mask);
355
	if (!state)
356 357
		return state;
	state->state = 0;
358
	state->failrec = NULL;
359
	RB_CLEAR_NODE(&state->rb_node);
360
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
361
	refcount_set(&state->refs, 1);
362
	init_waitqueue_head(&state->wq);
363
	trace_alloc_extent_state(state, mask, _RET_IP_);
364 365 366
	return state;
}

367
void free_extent_state(struct extent_state *state)
368 369 370
{
	if (!state)
		return;
371
	if (refcount_dec_and_test(&state->refs)) {
372
		WARN_ON(extent_state_in_tree(state));
373
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
374
		trace_free_extent_state(state, _RET_IP_);
375 376 377 378
		kmem_cache_free(extent_state_cache, state);
	}
}

379 380 381
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
382 383 384
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
385
{
386
	struct rb_node **p;
C
Chris Mason 已提交
387
	struct rb_node *parent = NULL;
388 389
	struct tree_entry *entry;

390 391 392 393 394 395
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

396
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
397
	while (*p) {
398 399 400 401 402 403 404 405 406 407 408
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

409
do_insert:
410 411 412 413 414
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
415
/**
416 417
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
418
 *
419 420 421 422 423 424 425
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
426 427 428 429 430 431 432
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
433
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
434
				      struct rb_node **next_ret,
435
				      struct rb_node **prev_ret,
436 437
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
438
{
439
	struct rb_root *root = &tree->state;
440
	struct rb_node **n = &root->rb_node;
441 442 443 444 445
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

446 447 448
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
449 450 451
		prev_entry = entry;

		if (offset < entry->start)
452
			n = &(*n)->rb_left;
453
		else if (offset > entry->end)
454
			n = &(*n)->rb_right;
C
Chris Mason 已提交
455
		else
456
			return *n;
457 458
	}

459 460 461 462 463
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

464
	if (next_ret) {
465
		orig_prev = prev;
C
Chris Mason 已提交
466
		while (prev && offset > prev_entry->end) {
467 468 469
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
470
		*next_ret = prev;
471 472 473
		prev = orig_prev;
	}

474
	if (prev_ret) {
475
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
476
		while (prev && offset < prev_entry->start) {
477 478 479
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
480
		*prev_ret = prev;
481 482 483 484
	}
	return NULL;
}

485 486 487 488 489
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
490
{
491
	struct rb_node *next= NULL;
492
	struct rb_node *ret;
493

494
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
495
	if (!ret)
496
		return next;
497 498 499
	return ret;
}

500 501 502 503 504 505
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

506 507 508 509 510 511 512 513 514
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
515 516
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
517 518 519 520
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
521
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
522
		return;
523 524 525 526 527 528

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
529 530 531 532
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
533 534
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
535
			RB_CLEAR_NODE(&other->rb_node);
536 537 538 539 540 541 542 543
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
544 545 546 547
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
548 549
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
550
			RB_CLEAR_NODE(&other->rb_node);
551
			free_extent_state(other);
552 553 554 555
		}
	}
}

556
static void set_state_bits(struct extent_io_tree *tree,
557
			   struct extent_state *state, u32 *bits,
558
			   struct extent_changeset *changeset);
559

560 561 562 563 564 565 566 567 568 569 570 571
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
572 573
			struct rb_node ***p,
			struct rb_node **parent,
574
			u32 *bits, struct extent_changeset *changeset)
575 576 577
{
	struct rb_node *node;

578 579 580 581 582
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
583 584
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
585

586
	set_state_bits(tree, state, bits, changeset);
587

588
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
589 590 591
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
592 593
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
594
		       found->start, found->end, start, end);
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
619

620 621
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
622

623 624 625 626 627
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

628 629
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
630 631 632 633 634 635 636
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

637 638 639 640 641 642 643 644 645
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

646 647
/*
 * utility function to clear some bits in an extent state struct.
648
 * it will optionally wake up anyone waiting on this state (wake == 1).
649 650 651 652
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
653 654
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
655
					    u32 *bits, int wake,
656
					    struct extent_changeset *changeset)
657
{
658
	struct extent_state *next;
659
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
660
	int ret;
661

662
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
663 664 665 666
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
667 668 669 670

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

671 672
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
673
	state->state &= ~bits_to_clear;
674 675
	if (wake)
		wake_up(&state->wq);
676
	if (state->state == 0) {
677
		next = next_state(state);
678
		if (extent_state_in_tree(state)) {
679
			rb_erase(&state->rb_node, &tree->state);
680
			RB_CLEAR_NODE(&state->rb_node);
681 682 683 684 685 686
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
687
		next = next_state(state);
688
	}
689
	return next;
690 691
}

692 693 694 695 696 697 698 699 700
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

701
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
702
{
703
	btrfs_panic(tree->fs_info, err,
704
	"locking error: extent tree was modified by another thread while locked");
705 706
}

707 708 709 710 711 712 713 714 715 716
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
717
 * This takes the tree lock, and returns 0 on success and < 0 on error.
718
 */
719
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
720 721 722
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
723 724
{
	struct extent_state *state;
725
	struct extent_state *cached;
726 727
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
728
	u64 last_end;
729
	int err;
730
	int clear = 0;
731

732
	btrfs_debug_check_extent_io_range(tree, start, end);
733
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
734

735 736 737
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

738 739 740
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
741
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
742
		clear = 1;
743
again:
744
	if (!prealloc && gfpflags_allow_blocking(mask)) {
745 746 747 748 749 750 751
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
752 753 754
		prealloc = alloc_extent_state(mask);
	}

755
	spin_lock(&tree->lock);
756 757
	if (cached_state) {
		cached = *cached_state;
758 759 760 761 762 763

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

764 765
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
766
			if (clear)
767
				refcount_dec(&cached->refs);
768
			state = cached;
769
			goto hit_next;
770
		}
771 772
		if (clear)
			free_extent_state(cached);
773
	}
774 775 776 777
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
778
	node = tree_search(tree, start);
779 780 781
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
782
hit_next:
783 784 785
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
786
	last_end = state->end;
787

788
	/* the state doesn't have the wanted bits, go ahead */
789 790
	if (!(state->state & bits)) {
		state = next_state(state);
791
		goto next;
792
	}
793

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
811 812
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
813
		err = split_state(tree, state, prealloc, start);
814 815 816
		if (err)
			extent_io_tree_panic(tree, err);

817 818 819 820
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
821 822
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
823
			goto next;
824 825 826 827 828 829 830 831 832 833
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
834 835
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
836
		err = split_state(tree, state, prealloc, end + 1);
837 838 839
		if (err)
			extent_io_tree_panic(tree, err);

840 841
		if (wake)
			wake_up(&state->wq);
842

843
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
844

845 846 847
		prealloc = NULL;
		goto out;
	}
848

849
	state = clear_state_bit(tree, state, &bits, wake, changeset);
850
next:
851 852 853
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
854
	if (start <= end && state && !need_resched())
855
		goto hit_next;
856 857 858 859

search_again:
	if (start > end)
		goto out;
860
	spin_unlock(&tree->lock);
861
	if (gfpflags_allow_blocking(mask))
862 863
		cond_resched();
	goto again;
864 865 866 867 868 869 870 871

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

872 873
}

874 875
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
876 877
		__releases(tree->lock)
		__acquires(tree->lock)
878 879 880
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
881
	spin_unlock(&tree->lock);
882
	schedule();
883
	spin_lock(&tree->lock);
884 885 886 887 888 889 890 891
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
892
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
893
			    u32 bits)
894 895 896 897
{
	struct extent_state *state;
	struct rb_node *node;

898
	btrfs_debug_check_extent_io_range(tree, start, end);
899

900
	spin_lock(&tree->lock);
901 902 903 904 905 906
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
907
		node = tree_search(tree, start);
908
process_node:
909 910 911 912 913 914 915 916 917 918
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
919
			refcount_inc(&state->refs);
920 921 922 923 924 925 926 927 928
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

929 930 931 932
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
933 934
	}
out:
935
	spin_unlock(&tree->lock);
936 937
}

938
static void set_state_bits(struct extent_io_tree *tree,
939
			   struct extent_state *state,
940
			   u32 *bits, struct extent_changeset *changeset)
941
{
942
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
943
	int ret;
J
Josef Bacik 已提交
944

945 946 947
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

948
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
949 950 951
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
952 953
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
954
	state->state |= bits_to_set;
955 956
}

957 958
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
959
				 unsigned flags)
960 961
{
	if (cached_ptr && !(*cached_ptr)) {
962
		if (!flags || (state->state & flags)) {
963
			*cached_ptr = state;
964
			refcount_inc(&state->refs);
965 966 967 968
		}
	}
}

969 970 971 972
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
973
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
974 975
}

976
/*
977 978
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
979
 *
980 981 982
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
983
 *
984
 * [start, end] is inclusive This takes the tree lock.
985
 */
986 987
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
988 989
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
990 991 992 993
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
994 995
	struct rb_node **p;
	struct rb_node *parent;
996 997 998
	int err = 0;
	u64 last_start;
	u64 last_end;
999

1000
	btrfs_debug_check_extent_io_range(tree, start, end);
1001
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
1002

1003 1004 1005 1006
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
1007
again:
1008
	if (!prealloc && gfpflags_allow_blocking(mask)) {
1009 1010 1011 1012 1013 1014 1015
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
1016 1017 1018
		prealloc = alloc_extent_state(mask);
	}

1019
	spin_lock(&tree->lock);
1020 1021
	if (cached_state && *cached_state) {
		state = *cached_state;
1022
		if (state->start <= start && state->end > start &&
1023
		    extent_state_in_tree(state)) {
1024 1025 1026 1027
			node = &state->rb_node;
			goto hit_next;
		}
	}
1028 1029 1030 1031
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1032
	node = tree_search_for_insert(tree, start, &p, &parent);
1033
	if (!node) {
1034 1035
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1036
		err = insert_state(tree, prealloc, start, end,
1037
				   &p, &parent, &bits, changeset);
1038 1039 1040
		if (err)
			extent_io_tree_panic(tree, err);

1041
		cache_state(prealloc, cached_state);
1042 1043 1044 1045
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1046
hit_next:
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1057
		if (state->state & exclusive_bits) {
1058 1059 1060 1061
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1062

1063
		set_state_bits(tree, state, &bits, changeset);
1064
		cache_state(state, cached_state);
1065
		merge_state(tree, state);
1066 1067 1068
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1069 1070 1071 1072
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1093
		if (state->state & exclusive_bits) {
1094 1095 1096 1097
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1109 1110
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1111
		err = split_state(tree, state, prealloc, start);
1112 1113 1114
		if (err)
			extent_io_tree_panic(tree, err);

1115 1116 1117 1118
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1119
			set_state_bits(tree, state, &bits, changeset);
1120
			cache_state(state, cached_state);
1121
			merge_state(tree, state);
1122 1123 1124
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1125 1126 1127 1128
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1144
			this_end = last_start - 1;
1145 1146 1147

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1148 1149 1150 1151 1152

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1153
		err = insert_state(tree, prealloc, start, this_end,
1154
				   NULL, NULL, &bits, changeset);
1155 1156 1157
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1158 1159
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1170
		if (state->state & exclusive_bits) {
1171 1172 1173 1174
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1175 1176 1177

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1178
		err = split_state(tree, state, prealloc, end + 1);
1179 1180
		if (err)
			extent_io_tree_panic(tree, err);
1181

1182
		set_state_bits(tree, prealloc, &bits, changeset);
1183
		cache_state(prealloc, cached_state);
1184 1185 1186 1187 1188
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1189 1190 1191 1192 1193 1194 1195
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1196 1197

out:
1198
	spin_unlock(&tree->lock);
1199 1200 1201 1202 1203 1204 1205
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1206
/**
L
Liu Bo 已提交
1207 1208
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1209 1210 1211 1212 1213
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1214
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1215 1216 1217 1218 1219 1220
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1221 1222
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1223 1224
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1225
		       u32 bits, u32 clear_bits,
1226
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1227 1228 1229 1230
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1231 1232
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1233 1234 1235
	int err = 0;
	u64 last_start;
	u64 last_end;
1236
	bool first_iteration = true;
J
Josef Bacik 已提交
1237

1238
	btrfs_debug_check_extent_io_range(tree, start, end);
1239 1240
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1241

J
Josef Bacik 已提交
1242
again:
1243
	if (!prealloc) {
1244 1245 1246 1247 1248 1249 1250
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1251
		prealloc = alloc_extent_state(GFP_NOFS);
1252
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1253 1254 1255 1256
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1257 1258 1259
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1260
		    extent_state_in_tree(state)) {
1261 1262 1263 1264 1265
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1266 1267 1268 1269
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1270
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1271 1272
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1273 1274 1275 1276
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1277
		err = insert_state(tree, prealloc, start, end,
1278
				   &p, &parent, &bits, NULL);
1279 1280
		if (err)
			extent_io_tree_panic(tree, err);
1281 1282
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1297
		set_state_bits(tree, state, &bits, NULL);
1298
		cache_state(state, cached_state);
1299
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1300 1301 1302
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1303 1304 1305
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1327 1328 1329 1330
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1331
		err = split_state(tree, state, prealloc, start);
1332 1333
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1334 1335 1336 1337
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1338
			set_state_bits(tree, state, &bits, NULL);
1339
			cache_state(state, cached_state);
1340 1341
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1342 1343 1344
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1345 1346 1347
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1366 1367 1368 1369
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1370 1371 1372 1373 1374 1375

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1376
				   NULL, NULL, &bits, NULL);
1377 1378
		if (err)
			extent_io_tree_panic(tree, err);
1379
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1392 1393 1394 1395
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1396 1397

		err = split_state(tree, state, prealloc, end + 1);
1398 1399
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1400

1401
		set_state_bits(tree, prealloc, &bits, NULL);
1402
		cache_state(prealloc, cached_state);
1403
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1404 1405 1406 1407 1408 1409 1410 1411
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1412
	cond_resched();
1413
	first_iteration = false;
J
Josef Bacik 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1424
/* wrappers around set/clear extent bit */
1425
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1426
			   u32 bits, struct extent_changeset *changeset)
1427 1428 1429 1430 1431 1432 1433 1434 1435
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1436 1437
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1438 1439
}

1440
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1441
			   u32 bits)
1442
{
1443 1444
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1445 1446
}

1447
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1448
		     u32 bits, int wake, int delete,
1449
		     struct extent_state **cached)
1450 1451
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1452
				  cached, GFP_NOFS, NULL);
1453 1454 1455
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456
		u32 bits, struct extent_changeset *changeset)
1457 1458 1459 1460 1461 1462 1463
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1464
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1465 1466 1467
				  changeset);
}

C
Chris Mason 已提交
1468 1469 1470 1471
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1472
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1473
		     struct extent_state **cached_state)
1474 1475 1476
{
	int err;
	u64 failed_start;
1477

1478
	while (1) {
1479 1480 1481
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1482
		if (err == -EEXIST) {
1483 1484
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1485
		} else
1486 1487 1488 1489 1490 1491
			break;
		WARN_ON(start > end);
	}
	return err;
}

1492
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1493 1494 1495 1496
{
	int err;
	u64 failed_start;

1497 1498
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1499 1500 1501
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1502
					 EXTENT_LOCKED, 1, 0, NULL);
1503
		return 0;
Y
Yan Zheng 已提交
1504
	}
1505 1506 1507
	return 1;
}

1508
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1509
{
1510 1511
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1512 1513 1514 1515 1516 1517
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1518
		put_page(page);
1519 1520 1521 1522
		index++;
	}
}

1523
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1524
{
1525
	struct address_space *mapping = inode->i_mapping;
1526 1527
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1528
	struct folio *folio;
1529 1530

	while (index <= end_index) {
1531 1532 1533 1534 1535
		folio = filemap_get_folio(mapping, index);
		filemap_dirty_folio(mapping, folio);
		folio_account_redirty(folio);
		index += folio_nr_pages(folio);
		folio_put(folio);
1536 1537 1538
	}
}

C
Chris Mason 已提交
1539 1540 1541 1542
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1543
static struct extent_state *
1544
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1554
	if (!node)
C
Chris Mason 已提交
1555 1556
		goto out;

C
Chris Mason 已提交
1557
	while (1) {
C
Chris Mason 已提交
1558
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1559
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1560
			return state;
C
Chris Mason 已提交
1561

C
Chris Mason 已提交
1562 1563 1564 1565 1566 1567 1568 1569
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1570
/*
1571
 * Find the first offset in the io tree with one or more @bits set.
1572
 *
1573 1574 1575 1576
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1577 1578
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1579
			  u64 *start_ret, u64 *end_ret, u32 bits,
1580
			  struct extent_state **cached_state)
1581 1582 1583 1584 1585
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1586 1587
	if (cached_state && *cached_state) {
		state = *cached_state;
1588
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1589
			while ((state = next_state(state)) != NULL) {
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1601
	state = find_first_extent_bit_state(tree, start, bits);
1602
got_it:
1603
	if (state) {
1604
		cache_state_if_flags(state, cached_state, 0);
1605 1606 1607 1608
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1609
out:
1610 1611 1612 1613
	spin_unlock(&tree->lock);
	return ret;
}

1614
/**
1615 1616 1617 1618 1619 1620 1621
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1622 1623 1624 1625 1626 1627 1628 1629 1630
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1631
			       u64 *start_ret, u64 *end_ret, u32 bits)
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1652
/**
1653 1654
 * Find the first range that has @bits not set. This range could start before
 * @start.
1655
 *
1656 1657 1658 1659 1660
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1661 1662 1663 1664 1665 1666 1667
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1668
				 u64 *start_ret, u64 *end_ret, u32 bits)
1669 1670 1671 1672 1673 1674 1675 1676 1677
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1696 1697
			node = next;
		}
1698 1699 1700 1701
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1702
		state = rb_entry(node, struct extent_state, rb_node);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1725
		} else {
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1769 1770 1771 1772
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1773
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1774
 */
J
Josef Bacik 已提交
1775 1776 1777
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1778 1779 1780 1781
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1782
	bool found = false;
1783 1784
	u64 total_bytes = 0;

1785
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1786

1787 1788 1789 1790
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1791
	node = tree_search(tree, cur_start);
1792
	if (!node) {
1793
		*end = (u64)-1;
1794 1795 1796
		goto out;
	}

C
Chris Mason 已提交
1797
	while (1) {
1798
		state = rb_entry(node, struct extent_state, rb_node);
1799 1800
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1801 1802 1803 1804 1805 1806 1807
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1808
		if (!found) {
1809
			*start = state->start;
1810
			*cached_state = state;
1811
			refcount_inc(&state->refs);
1812
		}
1813
		found = true;
1814 1815 1816 1817
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1818
		if (total_bytes >= max_bytes)
1819 1820
			break;
		if (!node)
1821 1822 1823
			break;
	}
out:
1824
	spin_unlock(&tree->lock);
1825 1826 1827
	return found;
}

1828 1829 1830 1831 1832 1833 1834 1835
/*
 * Process one page for __process_pages_contig().
 *
 * Return >0 if we hit @page == @locked_page.
 * Return 0 if we updated the page status.
 * Return -EGAIN if the we need to try again.
 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 */
1836 1837
static int process_one_page(struct btrfs_fs_info *fs_info,
			    struct address_space *mapping,
1838
			    struct page *page, struct page *locked_page,
1839
			    unsigned long page_ops, u64 start, u64 end)
1840
{
1841 1842 1843 1844 1845
	u32 len;

	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
	len = end + 1 - start;

1846
	if (page_ops & PAGE_SET_ORDERED)
1847
		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1848
	if (page_ops & PAGE_SET_ERROR)
1849
		btrfs_page_clamp_set_error(fs_info, page, start, len);
1850
	if (page_ops & PAGE_START_WRITEBACK) {
1851 1852
		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1853 1854
	}
	if (page_ops & PAGE_END_WRITEBACK)
1855
		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1856 1857 1858 1859

	if (page == locked_page)
		return 1;

1860
	if (page_ops & PAGE_LOCK) {
1861 1862 1863 1864 1865
		int ret;

		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
		if (ret)
			return ret;
1866
		if (!PageDirty(page) || page->mapping != mapping) {
1867
			btrfs_page_end_writer_lock(fs_info, page, start, len);
1868 1869 1870 1871
			return -EAGAIN;
		}
	}
	if (page_ops & PAGE_UNLOCK)
1872
		btrfs_page_end_writer_lock(fs_info, page, start, len);
1873 1874 1875
	return 0;
}

1876 1877
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
1878
				  u64 start, u64 end, unsigned long page_ops,
1879 1880
				  u64 *processed_end)
{
1881
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	pgoff_t start_index = start >> PAGE_SHIFT;
	pgoff_t end_index = end >> PAGE_SHIFT;
	pgoff_t index = start_index;
	unsigned long nr_pages = end_index - start_index + 1;
	unsigned long pages_processed = 0;
	struct page *pages[16];
	int err = 0;
	int i;

	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(processed_end && *processed_end == start);
	}

	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
		mapping_set_error(mapping, -EIO);

	while (nr_pages > 0) {
		int found_pages;

		found_pages = find_get_pages_contig(mapping, index,
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
		if (found_pages == 0) {
			/*
			 * Only if we're going to lock these pages, we can find
			 * nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
			err = -EAGAIN;
			goto out;
		}

		for (i = 0; i < found_pages; i++) {
			int process_ret;

1918 1919 1920
			process_ret = process_one_page(fs_info, mapping,
					pages[i], locked_page, page_ops,
					start, end);
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
			if (process_ret < 0) {
				for (; i < found_pages; i++)
					put_page(pages[i]);
				err = -EAGAIN;
				goto out;
			}
			put_page(pages[i]);
			pages_processed++;
		}
		nr_pages -= found_pages;
		index += found_pages;
		cond_resched();
	}
out:
	if (err && processed_end) {
		/*
		 * Update @processed_end. I know this is awful since it has
		 * two different return value patterns (inclusive vs exclusive).
		 *
		 * But the exclusive pattern is necessary if @start is 0, or we
		 * underflow and check against processed_end won't work as
		 * expected.
		 */
		if (pages_processed)
			*processed_end = min(end,
			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
		else
			*processed_end = start;
	}
	return err;
}
1952

1953 1954 1955
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1956
{
1957 1958
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1959

1960
	ASSERT(locked_page);
C
Chris Mason 已提交
1961
	if (index == locked_page->index && end_index == index)
1962
		return;
C
Chris Mason 已提交
1963

1964
	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1965
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1966 1967 1968 1969 1970 1971 1972
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1973 1974
	unsigned long index = delalloc_start >> PAGE_SHIFT;
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1975
	u64 processed_end = delalloc_start;
C
Chris Mason 已提交
1976 1977
	int ret;

1978
	ASSERT(locked_page);
C
Chris Mason 已提交
1979 1980 1981
	if (index == locked_page->index && index == end_index)
		return 0;

1982 1983 1984
	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
				     delalloc_end, PAGE_LOCK, &processed_end);
	if (ret == -EAGAIN && processed_end > delalloc_start)
1985
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1986
				      processed_end);
C
Chris Mason 已提交
1987 1988 1989 1990
	return ret;
}

/*
1991
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1992
 * more than @max_bytes.
C
Chris Mason 已提交
1993
 *
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
 * @start:	The original start bytenr to search.
 *		Will store the extent range start bytenr.
 * @end:	The original end bytenr of the search range
 *		Will store the extent range end bytenr.
 *
 * Return true if we find a delalloc range which starts inside the original
 * range, and @start/@end will store the delalloc range start/end.
 *
 * Return false if we can't find any delalloc range which starts inside the
 * original range, and @start/@end will be the non-delalloc range start/end.
C
Chris Mason 已提交
2004
 */
2005
EXPORT_FOR_TESTS
2006
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
2007
				    struct page *locked_page, u64 *start,
2008
				    u64 *end)
C
Chris Mason 已提交
2009
{
2010
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2011 2012
	const u64 orig_start = *start;
	const u64 orig_end = *end;
2013
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
2014 2015
	u64 delalloc_start;
	u64 delalloc_end;
2016
	bool found;
2017
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
2018 2019 2020
	int ret;
	int loops = 0;

2021 2022 2023 2024 2025 2026
	/* Caller should pass a valid @end to indicate the search range end */
	ASSERT(orig_end > orig_start);

	/* The range should at least cover part of the page */
	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
		 orig_end <= page_offset(locked_page)));
C
Chris Mason 已提交
2027 2028 2029 2030
again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
2031 2032
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
2033
	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
C
Chris Mason 已提交
2034
		*start = delalloc_start;
2035 2036 2037

		/* @delalloc_end can be -1, never go beyond @orig_end */
		*end = min(delalloc_end, orig_end);
2038
		free_extent_state(cached_state);
2039
		return false;
C
Chris Mason 已提交
2040 2041
	}

C
Chris Mason 已提交
2042 2043 2044 2045 2046
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
2047
	if (delalloc_start < *start)
C
Chris Mason 已提交
2048 2049
		delalloc_start = *start;

C
Chris Mason 已提交
2050 2051 2052
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
2053 2054
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
2055

C
Chris Mason 已提交
2056 2057 2058
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
2059
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
2060 2061 2062 2063
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
2064
		free_extent_state(cached_state);
2065
		cached_state = NULL;
C
Chris Mason 已提交
2066
		if (!loops) {
2067
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
2068 2069 2070
			loops = 1;
			goto again;
		} else {
2071
			found = false;
C
Chris Mason 已提交
2072 2073 2074 2075 2076
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
2077
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
2078 2079 2080

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2081
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
2082
	if (!ret) {
2083
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2084
				     &cached_state);
C
Chris Mason 已提交
2085 2086 2087 2088 2089
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
2090
	free_extent_state(cached_state);
C
Chris Mason 已提交
2091 2092 2093 2094 2095 2096
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

2097
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2098
				  struct page *locked_page,
2099
				  u32 clear_bits, unsigned long page_ops)
2100
{
2101
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2102

2103
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2104
			       start, end, page_ops, NULL);
2105 2106
}

C
Chris Mason 已提交
2107 2108 2109 2110 2111
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2112 2113
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2114
		     u32 bits, int contig)
2115 2116 2117 2118 2119
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2120
	u64 last = 0;
2121 2122
	int found = 0;

2123
	if (WARN_ON(search_end <= cur_start))
2124 2125
		return 0;

2126
	spin_lock(&tree->lock);
2127 2128 2129 2130 2131 2132 2133 2134
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2135
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2136
	if (!node)
2137 2138
		goto out;

C
Chris Mason 已提交
2139
	while (1) {
2140 2141 2142
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2143 2144 2145
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2146 2147 2148 2149 2150
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2151
				*start = max(cur_start, state->start);
2152 2153
				found = 1;
			}
2154 2155 2156
			last = state->end;
		} else if (contig && found) {
			break;
2157 2158 2159 2160 2161 2162
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2163
	spin_unlock(&tree->lock);
2164 2165
	return total_bytes;
}
2166

C
Chris Mason 已提交
2167 2168 2169 2170
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2171 2172
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2173 2174 2175 2176 2177
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2178
	spin_lock(&tree->lock);
2179 2180 2181 2182
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2183
	node = tree_search(tree, start);
2184
	if (!node) {
2185 2186 2187 2188 2189 2190 2191 2192
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2193
	state->failrec = failrec;
2194
out:
2195
	spin_unlock(&tree->lock);
2196 2197 2198
	return ret;
}

2199
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2200 2201 2202
{
	struct rb_node *node;
	struct extent_state *state;
2203
	struct io_failure_record *failrec;
2204

2205
	spin_lock(&tree->lock);
2206 2207 2208 2209
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2210
	node = tree_search(tree, start);
2211
	if (!node) {
2212
		failrec = ERR_PTR(-ENOENT);
2213 2214 2215 2216
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2217
		failrec = ERR_PTR(-ENOENT);
2218 2219
		goto out;
	}
2220 2221

	failrec = state->failrec;
2222
out:
2223
	spin_unlock(&tree->lock);
2224
	return failrec;
2225 2226 2227 2228
}

/*
 * searches a range in the state tree for a given mask.
2229
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2230 2231 2232 2233
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2234
		   u32 bits, int filled, struct extent_state *cached)
2235 2236 2237 2238 2239
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2240
	spin_lock(&tree->lock);
2241
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2242
	    cached->end > start)
2243 2244 2245
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2265 2266 2267 2268

		if (state->end == (u64)-1)
			break;

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2279
	spin_unlock(&tree->lock);
2280 2281 2282
	return bitset;
}

2283 2284 2285
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2286 2287 2288 2289
{
	int ret;
	int err = 0;

2290
	set_state_failrec(failure_tree, rec->start, NULL);
2291 2292
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2293
				EXTENT_LOCKED | EXTENT_DIRTY);
2294 2295 2296
	if (ret)
		err = ret;

2297
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2298
				rec->start + rec->len - 1,
2299
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2300 2301
	if (ret && !err)
		err = ret;
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2312
 * to avoid any synchronization issues, wait for the data after writing, which
2313 2314 2315 2316
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
Q
Qu Wenruo 已提交
2317 2318 2319
static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
			     u64 length, u64 logical, struct page *page,
			     unsigned int pg_offset, int mirror_num)
2320 2321
{
	struct btrfs_device *dev;
2322 2323
	struct bio_vec bvec;
	struct bio bio;
2324 2325
	u64 map_length = 0;
	u64 sector;
2326
	struct btrfs_io_context *bioc = NULL;
2327
	int ret = 0;
2328

2329
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2330 2331
	BUG_ON(!mirror_num);

2332 2333
	if (btrfs_repair_one_zone(fs_info, logical))
		return 0;
2334

2335 2336
	map_length = length;

2337
	/*
2338
	 * Avoid races with device replace and make sure our bioc has devices
2339 2340 2341 2342
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2343
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2344 2345 2346 2347 2348 2349 2350
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2351
				      &map_length, &bioc, 0);
2352 2353
		if (ret)
			goto out_counter_dec;
2354
		ASSERT(bioc->mirror_num == 1);
2355 2356
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2357
				      &map_length, &bioc, mirror_num);
2358 2359
		if (ret)
			goto out_counter_dec;
2360
		BUG_ON(mirror_num != bioc->mirror_num);
2361
	}
2362

2363 2364 2365
	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
	dev = bioc->stripes[bioc->mirror_num - 1].dev;
	btrfs_put_bioc(bioc);
2366

2367 2368
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2369 2370
		ret = -EIO;
		goto out_counter_dec;
2371 2372
	}

2373 2374 2375 2376 2377 2378 2379
	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
	bio.bi_iter.bi_sector = sector;
	__bio_add_page(&bio, page, length, pg_offset);

	btrfsic_check_bio(&bio);
	ret = submit_bio_wait(&bio);
	if (ret) {
2380
		/* try to remap that extent elsewhere? */
2381
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2382
		goto out_bio_uninit;
2383 2384
	}

2385 2386
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2387
				  ino, start,
2388
				  rcu_str_deref(dev->name), sector);
2389 2390 2391 2392 2393
	ret = 0;

out_bio_uninit:
	bio_uninit(&bio);
out_counter_dec:
2394
	btrfs_bio_counter_dec(fs_info);
2395
	return ret;
2396 2397
}

2398
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2399
{
2400
	struct btrfs_fs_info *fs_info = eb->fs_info;
2401
	u64 start = eb->start;
2402
	int i, num_pages = num_extent_pages(eb);
2403
	int ret = 0;
2404

2405
	if (sb_rdonly(fs_info->sb))
2406 2407
		return -EROFS;

2408
	for (i = 0; i < num_pages; i++) {
2409
		struct page *p = eb->pages[i];
2410

2411
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2412
					start - page_offset(p), mirror_num);
2413 2414
		if (ret)
			break;
2415
		start += PAGE_SIZE;
2416 2417 2418 2419 2420
	}

	return ret;
}

2421 2422 2423 2424
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2425 2426 2427 2428
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2429 2430 2431 2432 2433 2434 2435 2436
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2437 2438
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2439 2440 2441
	if (!ret)
		return 0;

2442 2443
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2444 2445 2446 2447
		return 0;

	BUG_ON(!failrec->this_mirror);

2448
	if (sb_rdonly(fs_info->sb))
2449
		goto out;
2450

2451 2452
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2453 2454
					    failrec->start,
					    EXTENT_LOCKED);
2455
	spin_unlock(&io_tree->lock);
2456

2457 2458
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2459 2460
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2461
		if (num_copies > 1)  {
2462 2463 2464
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2465 2466 2467 2468
		}
	}

out:
2469
	free_io_failure(failure_tree, io_tree, failrec);
2470

2471
	return 0;
2472 2473
}

2474 2475 2476 2477 2478 2479
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2480
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2481
{
2482
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2499
		failrec = state->failrec;
2500 2501 2502 2503 2504 2505 2506 2507
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2508
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2509
							     u64 start)
2510
{
2511
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2512
	struct io_failure_record *failrec;
2513 2514 2515 2516
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2517
	const u32 sectorsize = fs_info->sectorsize;
2518 2519 2520
	int ret;
	u64 logical;

2521
	failrec = get_state_failrec(failure_tree, start);
2522
	if (!IS_ERR(failrec)) {
2523
		btrfs_debug(fs_info,
2524 2525
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
			failrec->logical, failrec->start, failrec->len);
2526 2527 2528 2529 2530
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2531 2532

		return failrec;
2533
	}
2534

2535 2536 2537
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2538

2539
	failrec->start = start;
2540
	failrec->len = sectorsize;
2541
	failrec->this_mirror = 0;
2542
	failrec->compress_type = BTRFS_COMPRESS_NONE;
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
2566
		failrec->compress_type = em->compress_type;
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
2577
	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2578 2579 2580 2581
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
2582 2583
		ret = set_extent_bits(tree, start, start + sectorsize - 1,
				      EXTENT_DAMAGED);
2584 2585 2586 2587 2588 2589
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2590 2591
}

2592
static bool btrfs_check_repairable(struct inode *inode,
2593 2594
				   struct io_failure_record *failrec,
				   int failed_mirror)
2595
{
2596
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2597 2598
	int num_copies;

2599
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2600 2601 2602 2603 2604 2605
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2606 2607 2608
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2609
		return false;
2610 2611
	}

2612 2613 2614
	/* The failure record should only contain one sector */
	ASSERT(failrec->len == fs_info->sectorsize);

2615
	/*
2616 2617 2618 2619 2620 2621 2622
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
2623
	 */
2624
	ASSERT(failed_mirror);
2625 2626 2627
	failrec->failed_mirror = failed_mirror;
	failrec->this_mirror++;
	if (failrec->this_mirror == failed_mirror)
2628 2629
		failrec->this_mirror++;

2630
	if (failrec->this_mirror > num_copies) {
2631 2632 2633
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2634
		return false;
2635 2636
	}

2637
	return true;
2638 2639
}

2640 2641 2642 2643 2644
int btrfs_repair_one_sector(struct inode *inode,
			    struct bio *failed_bio, u32 bio_offset,
			    struct page *page, unsigned int pgoff,
			    u64 start, int failed_mirror,
			    submit_bio_hook_t *submit_bio_hook)
2645 2646
{
	struct io_failure_record *failrec;
2647
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2648
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2649
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2650
	struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
2651
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2652
	struct bio *repair_bio;
2653
	struct btrfs_bio *repair_bbio;
2654

2655 2656
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2657

2658
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2659

2660
	failrec = btrfs_get_io_failure_record(inode, start);
2661
	if (IS_ERR(failrec))
2662
		return PTR_ERR(failrec);
2663

2664 2665

	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2666
		free_io_failure(failure_tree, tree, failrec);
2667
		return -EIO;
2668 2669
	}

2670 2671
	repair_bio = btrfs_bio_alloc(1);
	repair_bbio = btrfs_bio(repair_bio);
2672
	repair_bbio->file_offset = start;
2673 2674 2675 2676
	repair_bio->bi_opf = REQ_OP_READ;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2677

2678
	if (failed_bbio->csum) {
2679
		const u32 csum_size = fs_info->csum_size;
2680

2681 2682 2683
		repair_bbio->csum = repair_bbio->csum_inline;
		memcpy(repair_bbio->csum,
		       failed_bbio->csum + csum_size * icsum, csum_size);
2684
	}
2685

2686
	bio_add_page(repair_bio, page, failrec->len, pgoff);
2687
	repair_bbio->iter = repair_bio->bi_iter;
2688

2689
	btrfs_debug(btrfs_sb(inode->i_sb),
2690 2691
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2692

2693 2694 2695 2696 2697
	/*
	 * At this point we have a bio, so any errors from submit_bio_hook()
	 * will be handled by the endio on the repair_bio, so we can't return an
	 * error here.
	 */
2698
	submit_bio_hook(inode, repair_bio, failrec->this_mirror, failrec->compress_type);
2699
	return BLK_STS_OK;
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	if (uptodate) {
B
Boris Burkov 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718
		if (fsverity_active(page->mapping->host) &&
		    !PageError(page) &&
		    !PageUptodate(page) &&
		    start < i_size_read(page->mapping->host) &&
		    !fsverity_verify_page(page)) {
			btrfs_page_set_error(fs_info, page, start, len);
		} else {
			btrfs_page_set_uptodate(fs_info, page, start, len);
		}
2719 2720 2721 2722 2723
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

2724
	if (!btrfs_is_subpage(fs_info, page))
2725
		unlock_page(page);
2726
	else
2727 2728 2729
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

2730 2731 2732 2733 2734 2735 2736
static blk_status_t submit_data_read_repair(struct inode *inode,
					    struct bio *failed_bio,
					    u32 bio_offset, struct page *page,
					    unsigned int pgoff,
					    u64 start, u64 end,
					    int failed_mirror,
					    unsigned int error_bitmap)
2737 2738 2739 2740 2741 2742 2743 2744 2745
{
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int error = 0;
	int i;

	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);

2746 2747 2748
	/* This repair is only for data */
	ASSERT(is_data_inode(inode));

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		struct extent_state *cached = NULL;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

		ret = btrfs_repair_one_sector(inode, failed_bio,
				bio_offset + offset,
				page, pgoff + offset, start + offset,
2777
				failed_mirror, btrfs_submit_data_bio);
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
		 * Repair failed, just record the error but still continue.
		 * Or the remaining sectors will not be properly unlocked.
		 */
		if (!error)
			error = ret;
next:
		end_page_read(page, uptodate, start + offset, sectorsize);
		if (uptodate)
			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
					start + offset,
					start + offset + sectorsize - 1,
					&cached, GFP_ATOMIC);
		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
				start + offset,
				start + offset + sectorsize - 1,
				&cached);
	}
	return errno_to_blk_status(error);
2806 2807
}

2808 2809
/* lots and lots of room for performance fixes in the end_bio funcs */

2810
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2811
{
2812
	struct btrfs_inode *inode;
2813
	const bool uptodate = (err == 0);
2814
	int ret = 0;
2815

2816 2817 2818
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2819 2820

	if (!uptodate) {
2821 2822 2823 2824 2825 2826 2827 2828
		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
		u32 len;

		ASSERT(end + 1 - start <= U32_MAX);
		len = end + 1 - start;

		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2829
		ret = err < 0 ? err : -EIO;
2830
		mapping_set_error(page->mapping, ret);
2831 2832 2833
	}
}

2834 2835 2836 2837 2838 2839 2840 2841 2842
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2843
static void end_bio_extent_writepage(struct bio *bio)
2844
{
2845
	int error = blk_status_to_errno(bio->bi_status);
2846
	struct bio_vec *bvec;
2847 2848
	u64 start;
	u64 end;
2849
	struct bvec_iter_all iter_all;
2850
	bool first_bvec = true;
2851

2852
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2853
	bio_for_each_segment_all(bvec, bio, iter_all) {
2854
		struct page *page = bvec->bv_page;
2855 2856
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
		const u32 sectorsize = fs_info->sectorsize;

		/* Our read/write should always be sector aligned. */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page write in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
			btrfs_info(fs_info,
		"incomplete page write with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2871

2872 2873 2874 2875 2876
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2877
		end_extent_writepage(page, error, start, end);
2878 2879

		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2880
	}
2881

2882 2883 2884
	bio_put(bio);
}

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2895
	/* End of the range in @inode */
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2914 2915
{
	struct extent_state *cached = NULL;
2916 2917 2918 2919 2920
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2921

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2956 2957
}

2958 2959 2960
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
2961
	if (!btrfs_is_subpage(fs_info, page))
2962 2963 2964 2965 2966 2967
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2968
/*
2969
 * Find extent buffer for a given bytenr.
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
2983
	if (fs_info->nodesize >= PAGE_SIZE) {
2984 2985 2986 2987
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

2988 2989 2990
	/* For subpage case, we need to lookup extent buffer xarray */
	eb = xa_load(&fs_info->extent_buffers,
		     bytenr >> fs_info->sectorsize_bits);
2991 2992 2993 2994
	ASSERT(eb);
	return eb;
}

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
3006
static void end_bio_extent_readpage(struct bio *bio)
3007
{
3008
	struct bio_vec *bvec;
3009
	struct btrfs_bio *bbio = btrfs_bio(bio);
3010
	struct extent_io_tree *tree, *failure_tree;
3011
	struct processed_extent processed = { 0 };
3012 3013 3014 3015 3016
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
3017
	int mirror;
3018
	int ret;
3019
	struct bvec_iter_all iter_all;
3020

3021
	ASSERT(!bio_flagged(bio, BIO_CLONED));
3022
	bio_for_each_segment_all(bvec, bio, iter_all) {
3023
		bool uptodate = !bio->bi_status;
3024
		struct page *page = bvec->bv_page;
3025
		struct inode *inode = page->mapping->host;
3026
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3027
		const u32 sectorsize = fs_info->sectorsize;
3028
		unsigned int error_bitmap = (unsigned int)-1;
3029 3030 3031
		u64 start;
		u64 end;
		u32 len;
3032

3033 3034
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
3035
			bio->bi_iter.bi_sector, bio->bi_status,
3036
			bbio->mirror_num);
3037
		tree = &BTRFS_I(inode)->io_tree;
3038
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3039

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
3059
		len = bvec->bv_len;
3060

3061
		mirror = bbio->mirror_num;
3062
		if (likely(uptodate)) {
3063
			if (is_data_inode(inode)) {
3064
				error_bitmap = btrfs_verify_data_csum(bbio,
3065
						bio_offset, page, start, end);
3066 3067
				ret = error_bitmap;
			} else {
3068
				ret = btrfs_validate_metadata_buffer(bbio,
3069
					page, start, end, mirror);
3070
			}
3071
			if (ret)
3072
				uptodate = false;
3073
			else
3074 3075 3076 3077
				clean_io_failure(BTRFS_I(inode)->root->fs_info,
						 failure_tree, tree, start,
						 page,
						 btrfs_ino(BTRFS_I(inode)), 0);
3078
		}
3079

3080 3081 3082
		if (likely(uptodate))
			goto readpage_ok;

3083
		if (is_data_inode(inode)) {
3084 3085 3086 3087 3088 3089 3090 3091
			/*
			 * If we failed to submit the IO at all we'll have a
			 * mirror_num == 0, in which case we need to just mark
			 * the page with an error and unlock it and carry on.
			 */
			if (mirror == 0)
				goto readpage_ok;

3092
			/*
3093
			 * submit_data_read_repair() will handle all the good
3094
			 * and bad sectors, we just continue to the next bvec.
3095
			 */
3096 3097 3098 3099
			submit_data_read_repair(inode, bio, bio_offset, page,
						start - page_offset(page),
						start, end, mirror,
						error_bitmap);
3100 3101 3102 3103

			ASSERT(bio_offset + len > bio_offset);
			bio_offset += len;
			continue;
3104 3105 3106
		} else {
			struct extent_buffer *eb;

3107
			eb = find_extent_buffer_readpage(fs_info, page, start);
3108 3109 3110
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
3111
		}
3112
readpage_ok:
3113
		if (likely(uptodate)) {
3114
			loff_t i_size = i_size_read(inode);
3115
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3116

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3128
						     offset_in_page(start));
3129 3130 3131 3132

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3133
		}
3134 3135
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3136

3137
		/* Update page status and unlock */
3138
		end_page_read(page, uptodate, start, len);
3139
		endio_readpage_release_extent(&processed, BTRFS_I(inode),
B
Boris Burkov 已提交
3140
					      start, end, PageUptodate(page));
3141
	}
3142 3143
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3144
	btrfs_bio_free_csum(bbio);
3145 3146 3147
	bio_put(bio);
}

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
/**
 * Populate every free slot in a provided array with pages.
 *
 * @nr_pages:   number of pages to allocate
 * @page_array: the array to fill with pages; any existing non-null entries in
 * 		the array will be skipped
 *
 * Return: 0        if all pages were able to be allocated;
 *         -ENOMEM  otherwise, and the caller is responsible for freeing all
 *                  non-null page pointers in the array.
 */
int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
{
3161
	unsigned int allocated;
3162

3163 3164
	for (allocated = 0; allocated < nr_pages;) {
		unsigned int last = allocated;
3165

3166 3167
		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);

3168 3169 3170
		if (allocated == nr_pages)
			return 0;

3171 3172 3173 3174 3175 3176
		/*
		 * During this iteration, no page could be allocated, even
		 * though alloc_pages_bulk_array() falls back to alloc_page()
		 * if  it could not bulk-allocate. So we must be out of memory.
		 */
		if (allocated == last)
3177
			return -ENOMEM;
3178 3179

		memalloc_retry_wait(GFP_NOFS);
3180 3181 3182 3183
	}
	return 0;
}

3184
/*
3185 3186 3187
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3188
 */
3189
static inline void btrfs_bio_init(struct btrfs_bio *bbio)
3190
{
3191
	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
3192
}
3193

3194
/*
Q
Qu Wenruo 已提交
3195 3196 3197
 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
 *
 * The bio allocation is backed by bioset and does not fail.
3198
 */
3199
struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
3200 3201 3202
{
	struct bio *bio;

Q
Qu Wenruo 已提交
3203
	ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
3204
	bio = bio_alloc_bioset(NULL, nr_iovecs, 0, GFP_NOFS, &btrfs_bioset);
3205
	btrfs_bio_init(btrfs_bio(bio));
3206 3207 3208
	return bio;
}

3209
struct bio *btrfs_bio_clone(struct block_device *bdev, struct bio *bio)
3210
{
3211
	struct btrfs_bio *bbio;
3212
	struct bio *new;
3213

3214
	/* Bio allocation backed by a bioset does not fail */
3215
	new = bio_alloc_clone(bdev, bio, GFP_NOFS, &btrfs_bioset);
3216 3217 3218
	bbio = btrfs_bio(new);
	btrfs_bio_init(bbio);
	bbio->iter = bio->bi_iter;
3219 3220
	return new;
}
3221

3222
struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3223 3224
{
	struct bio *bio;
3225
	struct btrfs_bio *bbio;
3226

3227 3228
	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);

3229
	/* this will never fail when it's backed by a bioset */
3230
	bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
3231 3232
	ASSERT(bio);

3233 3234
	bbio = btrfs_bio(bio);
	btrfs_bio_init(bbio);
3235 3236

	bio_trim(bio, offset >> 9, size >> 9);
3237
	bbio->iter = bio->bi_iter;
3238 3239
	return bio;
}
3240

3241 3242 3243
/**
 * Attempt to add a page to bio
 *
3244
 * @bio_ctrl:	record both the bio, and its bio_flags
3245 3246 3247 3248
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @size:	portion of page that we want to write
3249
 * @pg_offset:	starting offset in the page
3250
 * @compress_type:   compression type of the current bio to see if we can merge them
3251 3252 3253
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
3254 3255 3256
 * Return >= 0 for the number of bytes added to the bio.
 * Can return 0 if the current bio is already at stripe/zone boundary.
 * Return <0 for error.
3257
 */
3258 3259 3260 3261
static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			      struct page *page,
			      u64 disk_bytenr, unsigned int size,
			      unsigned int pg_offset,
3262
			      enum btrfs_compression_type compress_type)
3263
{
3264 3265
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
3266
	u32 real_size;
3267 3268
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3269
	int ret;
3270

3271 3272 3273
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3274
	if (bio_ctrl->compress_type != compress_type)
3275
		return 0;
3276

3277
	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
3278 3279 3280 3281
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
3282
		return 0;
3283

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	real_size = min(bio_ctrl->len_to_oe_boundary,
			bio_ctrl->len_to_stripe_boundary) - bio_size;
	real_size = min(real_size, size);

	/*
	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
	 * bio will still execute its endio function on the page!
	 */
	if (real_size == 0)
		return 0;
3294

3295
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3296
		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3297
	else
3298
		ret = bio_add_page(bio, page, real_size, pg_offset);
3299

3300
	return ret;
3301 3302
}

3303
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3304
			       struct btrfs_inode *inode, u64 file_offset)
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
3320
	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

3339
	if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3340 3341 3342 3343 3344
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	/* Ordered extent not yet created, so we're good */
3345
	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3357 3358 3359 3360 3361
static int alloc_new_bio(struct btrfs_inode *inode,
			 struct btrfs_bio_ctrl *bio_ctrl,
			 struct writeback_control *wbc,
			 unsigned int opf,
			 bio_end_io_t end_io_func,
3362
			 u64 disk_bytenr, u32 offset, u64 file_offset,
3363
			 enum btrfs_compression_type compress_type)
3364 3365 3366 3367 3368
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct bio *bio;
	int ret;

3369
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
3370 3371 3372 3373
	/*
	 * For compressed page range, its disk_bytenr is always @disk_bytenr
	 * passed in, no matter if we have added any range into previous bio.
	 */
3374
	if (compress_type != BTRFS_COMPRESS_NONE)
Q
Qu Wenruo 已提交
3375
		bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
3376
	else
Q
Qu Wenruo 已提交
3377
		bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
3378
	bio_ctrl->bio = bio;
3379
	bio_ctrl->compress_type = compress_type;
3380 3381 3382
	bio->bi_end_io = end_io_func;
	bio->bi_private = &inode->io_tree;
	bio->bi_opf = opf;
3383 3384 3385
	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
	if (ret < 0)
		goto error;
3386

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
	if (wbc) {
		/*
		 * For Zone append we need the correct block_device that we are
		 * going to write to set in the bio to be able to respect the
		 * hardware limitation.  Look it up here:
		 */
		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
			struct btrfs_device *dev;

			dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
						     fs_info->sectorsize);
			if (IS_ERR(dev)) {
				ret = PTR_ERR(dev);
				goto error;
			}
3402

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
			bio_set_dev(bio, dev->bdev);
		} else {
			/*
			 * Otherwise pick the last added device to support
			 * cgroup writeback.  For multi-device file systems this
			 * means blk-cgroup policies have to always be set on the
			 * last added/replaced device.  This is a bit odd but has
			 * been like that for a long time.
			 */
			bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
3413
		}
3414 3415 3416
		wbc_init_bio(wbc, bio);
	} else {
		ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
3417 3418 3419 3420 3421 3422 3423 3424 3425
	}
	return 0;
error:
	bio_ctrl->bio = NULL;
	bio->bi_status = errno_to_blk_status(ret);
	bio_endio(bio);
	return ret;
}

3426 3427
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3428 3429
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3430 3431
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3432 3433
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3434
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3435 3436 3437
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3438
 * @compress_type:   compress type for current bio
3439
 */
3440
static int submit_extent_page(unsigned int opf,
3441
			      struct writeback_control *wbc,
3442
			      struct btrfs_bio_ctrl *bio_ctrl,
3443
			      struct page *page, u64 disk_bytenr,
3444
			      size_t size, unsigned long pg_offset,
3445
			      bio_end_io_t end_io_func,
C
Chris Mason 已提交
3446
			      int mirror_num,
3447
			      enum btrfs_compression_type compress_type,
3448
			      bool force_bio_submit)
3449 3450
{
	int ret = 0;
3451
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3452
	unsigned int cur = pg_offset;
3453

3454
	ASSERT(bio_ctrl);
3455

3456 3457
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
3458
	if (force_bio_submit && bio_ctrl->bio) {
3459
		submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->compress_type);
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
		bio_ctrl->bio = NULL;
	}

	while (cur < pg_offset + size) {
		u32 offset = cur - pg_offset;
		int added;

		/* Allocate new bio if needed */
		if (!bio_ctrl->bio) {
			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
					    end_io_func, disk_bytenr, offset,
3471
					    page_offset(page) + cur,
3472
					    compress_type);
3473 3474 3475 3476 3477 3478 3479
			if (ret < 0)
				return ret;
		}
		/*
		 * We must go through btrfs_bio_add_page() to ensure each
		 * page range won't cross various boundaries.
		 */
3480
		if (compress_type != BTRFS_COMPRESS_NONE)
3481 3482
			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
					size - offset, pg_offset + offset,
3483
					compress_type);
3484 3485 3486
		else
			added = btrfs_bio_add_page(bio_ctrl, page,
					disk_bytenr + offset, size - offset,
3487
					pg_offset + offset, compress_type);
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500

		/* Metadata page range should never be split */
		if (!is_data_inode(&inode->vfs_inode))
			ASSERT(added == 0 || added == size - offset);

		/* At least we added some page, update the account */
		if (wbc && added)
			wbc_account_cgroup_owner(wbc, page, added);

		/* We have reached boundary, submit right now */
		if (added < size - offset) {
			/* The bio should contain some page(s) */
			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3501
			submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->compress_type);
3502
			bio_ctrl->bio = NULL;
3503
		}
3504
		cur += added;
3505
	}
3506
	return 0;
3507 3508
}

3509 3510 3511
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3512
{
3513 3514 3515
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3516 3517 3518 3519 3520 3521 3522 3523 3524
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3525
	if (fs_info->nodesize >= PAGE_SIZE) {
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3542
	else
3543 3544 3545 3546
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3547 3548
}

3549
int set_page_extent_mapped(struct page *page)
3550
{
3551 3552 3553 3554 3555 3556 3557 3558 3559
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

3560
	if (btrfs_is_subpage(fs_info, page))
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3573
	if (!PagePrivate(page))
3574 3575 3576
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
3577
	if (btrfs_is_subpage(fs_info, page))
3578 3579 3580
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3581 3582
}

3583 3584
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3585
		 u64 start, u64 len, struct extent_map **em_cached)
3586 3587 3588 3589 3590
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3591
		if (extent_map_in_tree(em) && start >= em->start &&
3592
		    start < extent_map_end(em)) {
3593
			refcount_inc(&em->refs);
3594 3595 3596 3597 3598 3599 3600
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3601
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3602
	if (em_cached && !IS_ERR(em)) {
3603
		BUG_ON(*em_cached);
3604
		refcount_inc(&em->refs);
3605 3606 3607 3608
		*em_cached = em;
	}
	return em;
}
3609 3610 3611 3612
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3613
 * XXX JDM: This needs looking at to ensure proper page locking
3614
 * return 0 on success, otherwise return error
3615
 */
3616
static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3617
		      struct btrfs_bio_ctrl *bio_ctrl,
3618
		      unsigned int read_flags, u64 *prev_em_start)
3619 3620
{
	struct inode *inode = page->mapping->host;
3621
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3622
	u64 start = page_offset(page);
3623
	const u64 end = start + PAGE_SIZE - 1;
3624 3625 3626 3627 3628 3629
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3630
	int ret = 0;
3631
	size_t pg_offset = 0;
3632 3633
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3634
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3635

3636 3637 3638
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3639 3640
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3641 3642
		goto out;
	}
3643

3644
	if (page->index == last_byte >> PAGE_SHIFT) {
3645
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3646 3647

		if (zero_offset) {
3648
			iosize = PAGE_SIZE - zero_offset;
3649
			memzero_page(page, zero_offset, iosize);
C
Chris Mason 已提交
3650 3651 3652
			flush_dcache_page(page);
		}
	}
3653
	begin_page_read(fs_info, page);
3654
	while (cur <= end) {
3655
		unsigned long this_bio_flag = 0;
3656
		bool force_bio_submit = false;
3657
		u64 disk_bytenr;
3658

3659
		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
3660
		if (cur >= last_byte) {
3661 3662
			struct extent_state *cached = NULL;

3663
			iosize = PAGE_SIZE - pg_offset;
3664
			memzero_page(page, pg_offset, iosize);
3665 3666
			flush_dcache_page(page);
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3667
					    &cached, GFP_NOFS);
3668
			unlock_extent_cached(tree, cur,
3669
					     cur + iosize - 1, &cached);
3670
			end_page_read(page, true, cur, iosize);
3671 3672
			break;
		}
3673
		em = __get_extent_map(inode, page, pg_offset, cur,
3674
				      end - cur + 1, em_cached);
3675
		if (IS_ERR(em)) {
3676
			unlock_extent(tree, cur, end);
3677
			end_page_read(page, false, cur, end + 1 - cur);
3678
			ret = PTR_ERR(em);
3679 3680 3681 3682 3683 3684
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3685 3686
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			this_bio_flag = em->compress_type;
C
Chris Mason 已提交
3687

3688 3689
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3690
		iosize = ALIGN(iosize, blocksize);
3691
		if (this_bio_flag != BTRFS_COMPRESS_NONE)
3692
			disk_bytenr = em->block_start;
3693
		else
3694
			disk_bytenr = em->block_start + extent_offset;
3695
		block_start = em->block_start;
Y
Yan Zheng 已提交
3696 3697
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3698 3699 3700

		/*
		 * If we have a file range that points to a compressed extent
3701
		 * and it's followed by a consecutive file range that points
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3735
		    *prev_em_start != em->start)
3736 3737 3738
			force_bio_submit = true;

		if (prev_em_start)
3739
			*prev_em_start = em->start;
3740

3741 3742 3743 3744 3745
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3746 3747
			struct extent_state *cached = NULL;

3748
			memzero_page(page, pg_offset, iosize);
3749 3750 3751
			flush_dcache_page(page);

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3752
					    &cached, GFP_NOFS);
3753
			unlock_extent_cached(tree, cur,
3754
					     cur + iosize - 1, &cached);
3755
			end_page_read(page, true, cur, iosize);
3756
			cur = cur + iosize;
3757
			pg_offset += iosize;
3758 3759 3760
			continue;
		}
		/* the get_extent function already copied into the page */
3761 3762
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3763
			unlock_extent(tree, cur, cur + iosize - 1);
3764
			end_page_read(page, true, cur, iosize);
3765
			cur = cur + iosize;
3766
			pg_offset += iosize;
3767 3768
			continue;
		}
3769 3770 3771 3772
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3773
			unlock_extent(tree, cur, cur + iosize - 1);
3774
			end_page_read(page, false, cur, iosize);
3775
			cur = cur + iosize;
3776
			pg_offset += iosize;
3777 3778
			continue;
		}
3779

3780
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3781 3782
					 bio_ctrl, page, disk_bytenr, iosize,
					 pg_offset,
3783
					 end_bio_extent_readpage, 0,
3784 3785
					 this_bio_flag,
					 force_bio_submit);
3786
		if (ret) {
3787 3788 3789 3790 3791 3792
			/*
			 * We have to unlock the remaining range, or the page
			 * will never be unlocked.
			 */
			unlock_extent(tree, cur, end);
			end_page_read(page, false, cur, end + 1 - cur);
3793
			goto out;
3794
		}
3795
		cur = cur + iosize;
3796
		pg_offset += iosize;
3797
	}
D
Dan Magenheimer 已提交
3798
out:
3799
	return ret;
3800 3801
}

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
int btrfs_readpage(struct file *file, struct page *page)
{
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	u64 start = page_offset(page);
	u64 end = start + PAGE_SIZE - 1;
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
	int ret;

	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);

	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
	/*
	 * If btrfs_do_readpage() failed we will want to submit the assembled
	 * bio to do the cleanup.
	 */
	if (bio_ctrl.bio)
3818
		submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.compress_type);
3819 3820 3821
	return ret;
}

3822
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3823 3824 3825 3826
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3827
{
3828
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3829 3830
	int index;

3831
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3832 3833

	for (index = 0; index < nr_pages; index++) {
3834
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3835
				  REQ_RAHEAD, prev_em_start);
3836
		put_page(pages[index]);
3837 3838 3839
	}
}

3840
/*
3841 3842
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3843
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3844 3845 3846 3847 3848
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3849
 */
3850
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3851
		struct page *page, struct writeback_control *wbc)
3852
{
3853
	const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3854
	u64 delalloc_start = page_offset(page);
3855
	u64 delalloc_to_write = 0;
3856 3857
	/* How many pages are started by btrfs_run_delalloc_range() */
	unsigned long nr_written = 0;
3858 3859 3860
	int ret;
	int page_started = 0;

3861 3862 3863
	while (delalloc_start < page_end) {
		u64 delalloc_end = page_end;
		bool found;
3864

3865
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3866
					       &delalloc_start,
3867
					       &delalloc_end);
3868
		if (!found) {
3869 3870 3871
			delalloc_start = delalloc_end + 1;
			continue;
		}
3872
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3873
				delalloc_end, &page_started, &nr_written, wbc);
3874
		if (ret) {
3875 3876
			btrfs_page_set_error(inode->root->fs_info, page,
					     page_offset(page), PAGE_SIZE);
3877
			return ret;
3878 3879
		}
		/*
3880 3881
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3882 3883
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3884
				      PAGE_SIZE) >> PAGE_SHIFT;
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

3896
	/* Did btrfs_run_dealloc_range() already unlock and start the IO? */
3897 3898
	if (page_started) {
		/*
3899 3900
		 * We've unlocked the page, so we can't update the mapping's
		 * writeback index, just update nr_to_write.
3901
		 */
3902
		wbc->nr_to_write -= nr_written;
3903 3904 3905
		return 1;
	}

3906
	return 0;
3907 3908
}

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
/*
 * Find the first byte we need to write.
 *
 * For subpage, one page can contain several sectors, and
 * __extent_writepage_io() will just grab all extent maps in the page
 * range and try to submit all non-inline/non-compressed extents.
 *
 * This is a big problem for subpage, we shouldn't re-submit already written
 * data at all.
 * This function will lookup subpage dirty bit to find which range we really
 * need to submit.
 *
 * Return the next dirty range in [@start, @end).
 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
 */
static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
				 struct page *page, u64 *start, u64 *end)
{
	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3928
	struct btrfs_subpage_info *spi = fs_info->subpage_info;
3929 3930 3931
	u64 orig_start = *start;
	/* Declare as unsigned long so we can use bitmap ops */
	unsigned long flags;
3932
	int range_start_bit;
3933 3934 3935 3936 3937 3938
	int range_end_bit;

	/*
	 * For regular sector size == page size case, since one page only
	 * contains one sector, we return the page offset directly.
	 */
3939
	if (!btrfs_is_subpage(fs_info, page)) {
3940 3941 3942 3943 3944
		*start = page_offset(page);
		*end = page_offset(page) + PAGE_SIZE;
		return;
	}

3945 3946 3947
	range_start_bit = spi->dirty_offset +
			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);

3948 3949
	/* We should have the page locked, but just in case */
	spin_lock_irqsave(&subpage->lock, flags);
3950 3951
	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
			       spi->dirty_offset + spi->bitmap_nr_bits);
3952 3953
	spin_unlock_irqrestore(&subpage->lock, flags);

3954 3955 3956
	range_start_bit -= spi->dirty_offset;
	range_end_bit -= spi->dirty_offset;

3957 3958 3959 3960
	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
}

3961 3962 3963 3964 3965 3966 3967 3968
/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3969
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3970 3971 3972 3973
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
3974
				 int *nr_ret)
3975
{
3976
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3977 3978
	u64 cur = page_offset(page);
	u64 end = cur + PAGE_SIZE - 1;
3979 3980 3981
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3982
	int saved_ret = 0;
3983 3984
	int ret = 0;
	int nr = 0;
3985
	u32 opf = REQ_OP_WRITE;
3986
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3987
	bool has_error = false;
3988
	bool compressed;
C
Chris Mason 已提交
3989

3990
	ret = btrfs_writepage_cow_fixup(page);
3991 3992
	if (ret) {
		/* Fixup worker will requeue */
3993
		redirty_page_for_writepage(wbc, page);
3994 3995
		unlock_page(page);
		return 1;
3996 3997
	}

3998 3999 4000 4001
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
4002
	wbc->nr_to_write--;
4003

4004
	while (cur <= end) {
4005
		u64 disk_bytenr;
4006
		u64 em_end;
4007 4008
		u64 dirty_range_start = cur;
		u64 dirty_range_end;
4009
		u32 iosize;
4010

4011
		if (cur >= i_size) {
4012
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
4013
							     end, true);
4014 4015 4016 4017 4018 4019 4020 4021 4022
			/*
			 * This range is beyond i_size, thus we don't need to
			 * bother writing back.
			 * But we still need to clear the dirty subpage bit, or
			 * the next time the page gets dirtied, we will try to
			 * writeback the sectors with subpage dirty bits,
			 * causing writeback without ordered extent.
			 */
			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
4023 4024
			break;
		}
4025 4026 4027 4028 4029 4030 4031 4032

		find_next_dirty_byte(fs_info, page, &dirty_range_start,
				     &dirty_range_end);
		if (cur < dirty_range_start) {
			cur = dirty_range_start;
			continue;
		}

4033
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
4034
		if (IS_ERR(em)) {
4035
			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
4036
			ret = PTR_ERR_OR_ZERO(em);
4037 4038 4039
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;
4040 4041 4042 4043
			break;
		}

		extent_offset = cur - em->start;
4044
		em_end = extent_map_end(em);
4045 4046 4047 4048
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
4049
		block_start = em->block_start;
C
Chris Mason 已提交
4050
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4051 4052
		disk_bytenr = em->block_start + extent_offset;

4053 4054 4055 4056 4057
		/*
		 * Note that em_end from extent_map_end() and dirty_range_end from
		 * find_next_dirty_byte() are all exclusive
		 */
		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
4058

4059
		if (btrfs_use_zone_append(inode, em->block_start))
4060 4061
			opf = REQ_OP_ZONE_APPEND;

4062 4063 4064
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
4065 4066 4067 4068 4069
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
4070
		    block_start == EXTENT_MAP_INLINE) {
4071
			if (compressed)
C
Chris Mason 已提交
4072
				nr++;
4073
			else
4074
				btrfs_writepage_endio_finish_ordered(inode,
4075
						page, cur, cur + iosize - 1, true);
4076
			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
C
Chris Mason 已提交
4077
			cur += iosize;
4078 4079
			continue;
		}
C
Chris Mason 已提交
4080

4081
		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4082
		if (!PageWriteback(page)) {
4083
			btrfs_err(inode->root->fs_info,
4084 4085
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
4086
		}
4087

4088 4089 4090 4091 4092 4093 4094 4095
		/*
		 * Although the PageDirty bit is cleared before entering this
		 * function, subpage dirty bit is not cleared.
		 * So clear subpage dirty bit here so next time we won't submit
		 * page for range already written to disk.
		 */
		btrfs_page_clear_dirty(fs_info, page, cur, iosize);

4096 4097
		ret = submit_extent_page(opf | write_flags, wbc,
					 &epd->bio_ctrl, page,
4098
					 disk_bytenr, iosize,
4099
					 cur - page_offset(page),
4100
					 end_bio_extent_writepage,
4101
					 0, 0, false);
4102
		if (ret) {
4103 4104 4105 4106
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;

4107
			btrfs_page_set_error(fs_info, page, cur, iosize);
4108
			if (PageWriteback(page))
4109 4110
				btrfs_page_clear_writeback(fs_info, page, cur,
							   iosize);
4111
		}
4112

4113
		cur += iosize;
4114 4115
		nr++;
	}
4116 4117 4118 4119
	/*
	 * If we finish without problem, we should not only clear page dirty,
	 * but also empty subpage dirty bits
	 */
4120
	if (!has_error)
4121
		btrfs_page_assert_not_dirty(fs_info, page);
4122 4123
	else
		ret = saved_ret;
4124 4125 4126 4127 4128 4129 4130 4131 4132
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
4133 4134 4135
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
4136 4137
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4138
			      struct extent_page_data *epd)
4139
{
4140
	struct folio *folio = page_folio(page);
4141
	struct inode *inode = page->mapping->host;
4142
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4143 4144
	const u64 page_start = page_offset(page);
	const u64 page_end = page_start + PAGE_SIZE - 1;
4145 4146
	int ret;
	int nr = 0;
4147
	size_t pg_offset;
4148
	loff_t i_size = i_size_read(inode);
4149
	unsigned long end_index = i_size >> PAGE_SHIFT;
4150 4151 4152 4153 4154

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

4155 4156
	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
			       page_offset(page), PAGE_SIZE);
4157

4158
	pg_offset = offset_in_page(i_size);
4159 4160
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
4161 4162
		folio_invalidate(folio, 0, folio_size(folio));
		folio_unlock(folio);
4163 4164 4165 4166
		return 0;
	}

	if (page->index == end_index) {
4167
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4168 4169 4170
		flush_dcache_page(page);
	}

4171 4172 4173 4174 4175
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
4176

4177
	if (!epd->extent_locked) {
4178
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
4179
		if (ret == 1)
4180
			return 0;
4181 4182 4183
		if (ret)
			goto done;
	}
4184

4185
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4186
				    &nr);
4187
	if (ret == 1)
4188
		return 0;
4189

4190 4191 4192 4193 4194 4195
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
	/*
	 * Here we used to have a check for PageError() and then set @ret and
	 * call end_extent_writepage().
	 *
	 * But in fact setting @ret here will cause different error paths
	 * between subpage and regular sectorsize.
	 *
	 * For regular page size, we never submit current page, but only add
	 * current page to current bio.
	 * The bio submission can only happen in next page.
	 * Thus if we hit the PageError() branch, @ret is already set to
	 * non-zero value and will not get updated for regular sectorsize.
	 *
	 * But for subpage case, it's possible we submit part of current page,
	 * thus can get PageError() set by submitted bio of the same page,
	 * while our @ret is still 0.
	 *
	 * So here we unify the behavior and don't set @ret.
	 * Error can still be properly passed to higher layer as page will
	 * be set error, here we just don't handle the IO failure.
	 *
	 * NOTE: This is just a hotfix for subpage.
	 * The root fix will be properly ending ordered extent when we hit
	 * an error during writeback.
	 *
	 * But that needs a bigger refactoring, as we not only need to grab the
	 * submitted OE, but also need to know exactly at which bytenr we hit
	 * the error.
	 * Currently the full page based __extent_writepage_io() is not
	 * capable of that.
	 */
	if (PageError(page))
4228
		end_extent_writepage(page, ret, page_start, page_end);
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
	if (epd->extent_locked) {
		/*
		 * If epd->extent_locked, it's from extent_write_locked_range(),
		 * the page can either be locked by lock_page() or
		 * process_one_page().
		 * Let btrfs_page_unlock_writer() handle both cases.
		 */
		ASSERT(wbc);
		btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
					 wbc->range_end + 1 - wbc->range_start);
	} else {
		unlock_page(page);
	}
4242
	ASSERT(ret <= 0);
4243
	return ret;
4244 4245
}

4246
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4247
{
4248 4249
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
4250 4251
}

4252 4253 4254 4255 4256 4257 4258
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

4259
/*
4260
 * Lock extent buffer status and pages for writeback.
4261
 *
4262 4263 4264 4265 4266 4267
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
4268
 */
4269
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4270
			  struct extent_page_data *epd)
4271
{
4272
	struct btrfs_fs_info *fs_info = eb->fs_info;
4273
	int i, num_pages;
4274 4275 4276 4277
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
4278
		flush_write_bio(epd);
4279
		flush = 1;
4280 4281 4282 4283 4284 4285 4286 4287
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
4288
			flush_write_bio(epd);
4289 4290
			flush = 1;
		}
C
Chris Mason 已提交
4291 4292 4293 4294 4295
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
4296 4297 4298 4299
			btrfs_tree_unlock(eb);
		}
	}

4300 4301 4302 4303 4304 4305
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4306 4307
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4308
		spin_unlock(&eb->refs_lock);
4309
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4310 4311 4312
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4313
		ret = 1;
4314 4315
	} else {
		spin_unlock(&eb->refs_lock);
4316 4317 4318 4319
	}

	btrfs_tree_unlock(eb);

4320 4321 4322 4323 4324 4325
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
4326
	if (!ret || fs_info->nodesize < PAGE_SIZE)
4327 4328
		return ret;

4329
	num_pages = num_extent_pages(eb);
4330
	for (i = 0; i < num_pages; i++) {
4331
		struct page *p = eb->pages[i];
4332 4333 4334

		if (!trylock_page(p)) {
			if (!flush) {
4335
				flush_write_bio(epd);
4336 4337 4338 4339 4340 4341
				flush = 1;
			}
			lock_page(p);
		}
	}

4342
	return ret;
4343 4344
}

4345
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4346
{
4347
	struct btrfs_fs_info *fs_info = eb->fs_info;
4348

4349
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4350 4351 4352
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4353 4354 4355 4356 4357 4358
	/*
	 * A read may stumble upon this buffer later, make sure that it gets an
	 * error and knows there was an error.
	 */
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);

4359 4360 4361 4362 4363 4364 4365 4366
	/*
	 * We need to set the mapping with the io error as well because a write
	 * error will flip the file system readonly, and then syncfs() will
	 * return a 0 because we are readonly if we don't modify the err seq for
	 * the superblock.
	 */
	mapping_set_error(page->mapping, -EIO);

4367 4368 4369 4370 4371 4372 4373
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4414
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4415 4416
		break;
	case 0:
4417
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4418 4419
		break;
	case 1:
4420
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4421 4422 4423 4424 4425 4426
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
4437 4438
	eb = xa_load(&fs_info->extent_buffers,
		     start >> fs_info->sectorsize_bits);
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4453
static void end_bio_subpage_eb_writepage(struct bio *bio)
4454
{
4455
	struct btrfs_fs_info *fs_info;
4456 4457 4458
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4459
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4460
	ASSERT(fs_info->nodesize < PAGE_SIZE);
4461

4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4510
static void end_bio_extent_buffer_writepage(struct bio *bio)
4511
{
4512
	struct bio_vec *bvec;
4513
	struct extent_buffer *eb;
4514
	int done;
4515
	struct bvec_iter_all iter_all;
4516

4517
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4518
	bio_for_each_segment_all(bvec, bio, iter_all) {
4519 4520 4521 4522 4523 4524
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4525
		if (bio->bi_status ||
4526
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4527
			ClearPageUptodate(page);
4528
			set_btree_ioerr(page, eb);
4529 4530 4531 4532 4533 4534 4535 4536
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4537
	}
4538 4539 4540 4541

	bio_put(bio);
}

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
	bool no_dirty_ebs = false;
	int ret;

4581 4582
	prepare_eb_write(eb);

4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4593 4594 4595
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4596
			end_bio_subpage_eb_writepage, 0, 0, false);
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
4612
		wbc->nr_to_write--;
4613 4614 4615
	return ret;
}

4616
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4617 4618 4619
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4620
	u64 disk_bytenr = eb->start;
4621
	int i, num_pages;
4622
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4623
	int ret = 0;
4624

4625
	prepare_eb_write(eb);
4626

4627
	num_pages = num_extent_pages(eb);
4628
	for (i = 0; i < num_pages; i++) {
4629
		struct page *p = eb->pages[i];
4630 4631 4632

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4633
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4634 4635
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4636
					 end_bio_extent_buffer_writepage,
4637
					 0, 0, false);
4638
		if (ret) {
4639
			set_btree_ioerr(p, eb);
4640 4641
			if (PageWriteback(p))
				end_page_writeback(p);
4642 4643 4644 4645 4646
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4647
		disk_bytenr += PAGE_SIZE;
4648
		wbc->nr_to_write--;
4649 4650 4651 4652 4653
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4654
			struct page *p = eb->pages[i];
4655
			clear_page_dirty_for_io(p);
4656 4657 4658 4659 4660 4661 4662
			unlock_page(p);
		}
	}

	return ret;
}

4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
4689
	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
4705 4706
		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
			      subpage->bitmaps)) {
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4741
		ret = write_one_subpage_eb(eb, wbc, epd);
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
	end_write_bio(epd, ret);
	return ret;
}

4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4780
	struct btrfs_block_group *cache = NULL;
4781 4782 4783 4784 4785 4786
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4787
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4788 4789
		return submit_eb_subpage(page, wbc, epd);

4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4829 4830 4831 4832
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4833 4834 4835
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4836 4837 4838
		free_extent_buffer(eb);
		return ret;
	}
4839
	if (cache) {
4840 4841 4842
		/*
		 * Implies write in zoned mode. Mark the last eb in a block group.
		 */
4843
		btrfs_schedule_zone_finish_bg(cache, eb);
4844
		btrfs_put_block_group(cache);
4845
	}
4846 4847 4848 4849 4850 4851 4852
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4853 4854 4855
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4856
	struct extent_buffer *eb_context = NULL;
4857
	struct extent_page_data epd = {
4858
		.bio_ctrl = { 0 },
4859 4860 4861
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4862
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4863 4864 4865 4866 4867 4868 4869 4870
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4871
	xa_mark_t tag;
4872

4873
	pagevec_init(&pvec);
4874 4875 4876
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4877 4878 4879 4880 4881
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4882
	} else {
4883 4884
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4885 4886 4887 4888 4889 4890
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4891
	btrfs_zoned_meta_io_lock(fs_info);
4892 4893 4894 4895
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4896
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4897
			tag))) {
4898 4899 4900 4901 4902
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4903 4904
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4905
				continue;
4906
			if (ret < 0) {
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4930 4931
	if (ret < 0) {
		end_write_bio(&epd, ret);
4932
		goto out;
4933
	}
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
	 */
J
Josef Bacik 已提交
4961
	if (!BTRFS_FS_ERROR(fs_info)) {
4962
		flush_write_bio(&epd);
4963
	} else {
4964
		ret = -EROFS;
4965 4966
		end_write_bio(&epd, ret);
	}
4967 4968
out:
	btrfs_zoned_meta_io_unlock(fs_info);
4969 4970 4971 4972 4973 4974
	/*
	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
	 */
	if (ret > 0)
		ret = 0;
4975 4976 4977
	return ret;
}

4978
/**
4979 4980
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4981
 * @mapping: address space structure to write
4982 4983
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4984 4985 4986 4987 4988 4989 4990 4991 4992
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4993
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4994
			     struct writeback_control *wbc,
4995
			     struct extent_page_data *epd)
4996
{
4997
	struct inode *inode = mapping->host;
4998 4999
	int ret = 0;
	int done = 0;
5000
	int nr_to_write_done = 0;
5001 5002 5003 5004
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
5005 5006
	pgoff_t done_index;
	int range_whole = 0;
5007
	int scanned = 0;
M
Matthew Wilcox 已提交
5008
	xa_mark_t tag;
5009

5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

5022
	pagevec_init(&pvec);
5023 5024 5025
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
5026 5027 5028 5029 5030
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
5031
	} else {
5032 5033
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
5034 5035
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
5036 5037
		scanned = 1;
	}
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5052 5053 5054
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
5055
retry:
5056
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5057
		tag_pages_for_writeback(mapping, index, end);
5058
	done_index = index;
5059
	while (!done && !nr_to_write_done && (index <= end) &&
5060 5061
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
5062 5063 5064 5065 5066
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

5067
			done_index = page->index + 1;
5068
			/*
M
Matthew Wilcox 已提交
5069 5070 5071 5072 5073
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
5074
			 */
5075
			if (!trylock_page(page)) {
5076
				flush_write_bio(epd);
5077
				lock_page(page);
5078
			}
5079 5080 5081 5082 5083 5084

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
5085
			if (wbc->sync_mode != WB_SYNC_NONE) {
5086 5087
				if (PageWriteback(page))
					flush_write_bio(epd);
5088
				wait_on_page_writeback(page);
C
Chris Mason 已提交
5089
			}
5090 5091 5092 5093 5094 5095 5096

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

5097
			ret = __extent_writepage(page, wbc, epd);
5098 5099 5100 5101
			if (ret < 0) {
				done = 1;
				break;
			}
5102 5103 5104 5105 5106 5107 5108

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
5109 5110 5111 5112
		}
		pagevec_release(&pvec);
		cond_resched();
	}
5113
	if (!scanned && !done) {
5114 5115 5116 5117 5118 5119
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
5120 5121 5122 5123 5124 5125 5126

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
5127 5128
		flush_write_bio(epd);
		goto retry;
5129
	}
5130 5131 5132 5133

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

5134
	btrfs_add_delayed_iput(inode);
5135
	return ret;
5136 5137
}

5138
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
5139 5140 5141
{
	int ret;
	struct extent_page_data epd = {
5142
		.bio_ctrl = { 0 },
5143
		.extent_locked = 0,
5144
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5145 5146 5147
	};

	ret = __extent_writepage(page, wbc, &epd);
5148 5149 5150 5151 5152
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
5153

5154
	flush_write_bio(&epd);
5155 5156 5157
	return ret;
}

5158 5159 5160 5161 5162 5163
/*
 * Submit the pages in the range to bio for call sites which delalloc range has
 * already been ran (aka, ordered extent inserted) and all pages are still
 * locked.
 */
int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
5164
{
5165 5166
	bool found_error = false;
	int first_error = 0;
5167 5168 5169
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
5170
	u64 cur = start;
5171 5172
	unsigned long nr_pages;
	const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
5173
	struct extent_page_data epd = {
5174
		.bio_ctrl = { 0 },
5175
		.extent_locked = 1,
5176
		.sync_io = 1,
5177 5178
	};
	struct writeback_control wbc_writepages = {
5179
		.sync_mode	= WB_SYNC_ALL,
5180 5181
		.range_start	= start,
		.range_end	= end + 1,
5182 5183 5184
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
5185 5186
	};

5187 5188 5189 5190 5191
	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
	nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
		   PAGE_SHIFT;
	wbc_writepages.nr_to_write = nr_pages * 2;

5192
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5193
	while (cur <= end) {
5194 5195
		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);

5196 5197 5198 5199 5200 5201
		page = find_get_page(mapping, cur >> PAGE_SHIFT);
		/*
		 * All pages in the range are locked since
		 * btrfs_run_delalloc_range(), thus there is no way to clear
		 * the page dirty flag.
		 */
5202
		ASSERT(PageLocked(page));
5203 5204 5205 5206 5207 5208 5209
		ASSERT(PageDirty(page));
		clear_page_dirty_for_io(page);
		ret = __extent_writepage(page, &wbc_writepages, &epd);
		ASSERT(ret <= 0);
		if (ret < 0) {
			found_error = true;
			first_error = ret;
5210
		}
5211
		put_page(page);
5212
		cur = cur_end + 1;
5213 5214
	}

5215
	if (!found_error)
5216
		flush_write_bio(&epd);
5217
	else
5218
		end_write_bio(&epd, ret);
5219 5220

	wbc_detach_inode(&wbc_writepages);
5221 5222
	if (found_error)
		return first_error;
5223 5224
	return ret;
}
5225

5226
int extent_writepages(struct address_space *mapping,
5227 5228
		      struct writeback_control *wbc)
{
5229
	struct inode *inode = mapping->host;
5230 5231
	int ret = 0;
	struct extent_page_data epd = {
5232
		.bio_ctrl = { 0 },
5233
		.extent_locked = 0,
5234
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5235 5236
	};

5237 5238 5239 5240
	/*
	 * Allow only a single thread to do the reloc work in zoned mode to
	 * protect the write pointer updates.
	 */
5241
	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
5242
	ret = extent_write_cache_pages(mapping, wbc, &epd);
5243
	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
5244 5245 5246 5247 5248
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
5249
	flush_write_bio(&epd);
5250 5251 5252
	return ret;
}

5253
void extent_readahead(struct readahead_control *rac)
5254
{
5255
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
L
Liu Bo 已提交
5256
	struct page *pagepool[16];
5257
	struct extent_map *em_cached = NULL;
5258
	u64 prev_em_start = (u64)-1;
5259
	int nr;
5260

5261
	while ((nr = readahead_page_batch(rac, pagepool))) {
5262 5263
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5264

5265
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5266
				&em_cached, &bio_ctrl, &prev_em_start);
5267
	}
L
Liu Bo 已提交
5268

5269 5270 5271
	if (em_cached)
		free_extent_map(em_cached);

5272
	if (bio_ctrl.bio)
5273
		submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.compress_type);
5274 5275 5276
}

/*
5277 5278
 * basic invalidate_folio code, this waits on any locked or writeback
 * ranges corresponding to the folio, and then deletes any extent state
5279 5280
 * records from the tree
 */
5281 5282
int extent_invalidate_folio(struct extent_io_tree *tree,
			  struct folio *folio, size_t offset)
5283
{
5284
	struct extent_state *cached_state = NULL;
5285 5286 5287
	u64 start = folio_pos(folio);
	u64 end = start + folio_size(folio) - 1;
	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
5288

5289 5290 5291
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

5292
	start += ALIGN(offset, blocksize);
5293 5294 5295
	if (start > end)
		return 0;

5296
	lock_extent_bits(tree, start, end, &cached_state);
5297
	folio_wait_writeback(folio);
5298 5299 5300 5301 5302 5303 5304

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
5305 5306 5307
	return 0;
}

5308 5309 5310 5311 5312
/*
 * a helper for releasepage, this tests for areas of the page that
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
5313
static int try_release_extent_state(struct extent_io_tree *tree,
5314
				    struct page *page, gfp_t mask)
5315
{
M
Miao Xie 已提交
5316
	u64 start = page_offset(page);
5317
	u64 end = start + PAGE_SIZE - 1;
5318 5319
	int ret = 1;

N
Nikolay Borisov 已提交
5320
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5321
		ret = 0;
N
Nikolay Borisov 已提交
5322
	} else {
5323
		/*
5324 5325 5326 5327
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
5328
		 */
5329
		ret = __clear_extent_bit(tree, start, end,
5330 5331
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
5332 5333 5334 5335 5336 5337 5338 5339

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5340 5341 5342 5343
	}
	return ret;
}

5344 5345 5346 5347 5348
/*
 * a helper for releasepage.  As long as there are no locked extents
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5349
int try_release_extent_mapping(struct page *page, gfp_t mask)
5350 5351
{
	struct extent_map *em;
M
Miao Xie 已提交
5352
	u64 start = page_offset(page);
5353
	u64 end = start + PAGE_SIZE - 1;
5354 5355 5356
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5357

5358
	if (gfpflags_allow_blocking(mask) &&
5359
	    page->mapping->host->i_size > SZ_16M) {
5360
		u64 len;
5361
		while (start <= end) {
5362 5363 5364
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5365
			len = end - start + 1;
5366
			write_lock(&map->lock);
5367
			em = lookup_extent_mapping(map, start, len);
5368
			if (!em) {
5369
				write_unlock(&map->lock);
5370 5371
				break;
			}
5372 5373
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5374
				write_unlock(&map->lock);
5375 5376 5377
				free_extent_map(em);
				break;
			}
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5405 5406 5407 5408 5409 5410 5411 5412
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5413 5414 5415
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5416
next:
5417
			start = extent_map_end(em);
5418
			write_unlock(&map->lock);
5419 5420

			/* once for us */
5421
			free_extent_map(em);
5422 5423

			cond_resched(); /* Allow large-extent preemption. */
5424 5425
		}
	}
5426
	return try_release_extent_state(tree, page, mask);
5427 5428
}

5429 5430 5431 5432
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
5433
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5434
						u64 offset, u64 last)
5435
{
5436
	u64 sectorsize = btrfs_inode_sectorsize(inode);
5437 5438 5439 5440 5441 5442
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

5443
	while (1) {
5444 5445 5446
		len = last - offset;
		if (len == 0)
			break;
5447
		len = ALIGN(len, sectorsize);
5448
		em = btrfs_get_extent_fiemap(inode, offset, len);
5449
		if (IS_ERR(em))
5450 5451 5452
			return em;

		/* if this isn't a hole return it */
5453
		if (em->block_start != EXTENT_MAP_HOLE)
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5499
	 * fiemap extent won't overlap with cached one.
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
5551
 * Emit last fiemap cache
5552
 *
5553 5554 5555 5556 5557 5558 5559
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5560
 */
5561
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5562
				  struct fiemap_cache *cache)
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5577
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5578
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
5579
{
J
Josef Bacik 已提交
5580
	int ret = 0;
5581
	u64 off;
Y
Yehuda Sadeh 已提交
5582 5583
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
5584 5585
	u32 found_type;
	u64 last;
5586
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
5587
	u64 disko = 0;
5588
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
5589
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
5590
	struct extent_map *em = NULL;
5591
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
5592
	struct btrfs_path *path;
5593
	struct btrfs_root *root = inode->root;
5594
	struct fiemap_cache cache = { 0 };
5595 5596
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
5597
	int end = 0;
5598 5599 5600
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
5601 5602 5603 5604

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
5605 5606 5607 5608
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

5609 5610 5611 5612 5613 5614 5615
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

5616 5617 5618 5619 5620
	/*
	 * We can't initialize that to 'start' as this could miss extents due
	 * to extent item merging
	 */
	off = 0;
5621 5622
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5623

5624 5625 5626 5627
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
5628 5629
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
5630
	if (ret < 0) {
5631
		goto out_free_ulist;
5632 5633 5634 5635
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
5636
	}
5637

J
Josef Bacik 已提交
5638 5639
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5640
	found_type = found_key.type;
J
Josef Bacik 已提交
5641

5642
	/* No extents, but there might be delalloc bits */
5643
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
5644
	    found_type != BTRFS_EXTENT_DATA_KEY) {
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
5656
	}
5657
	btrfs_release_path(path);
J
Josef Bacik 已提交
5658

5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5669
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5670
			 &cached_state);
5671

5672
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
5673 5674 5675 5676 5677 5678
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
5679

Y
Yehuda Sadeh 已提交
5680
	while (!end) {
5681
		u64 offset_in_extent = 0;
5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5694

5695 5696
		/*
		 * record the offset from the start of the extent
5697 5698 5699
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5700
		 */
5701 5702
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5703
		em_end = extent_map_end(em);
5704
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5705
		flags = 0;
5706 5707 5708 5709
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5710

5711 5712 5713 5714 5715 5716 5717
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5718
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
5719 5720
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5721
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5722 5723
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5724
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5725 5726
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5727 5728 5729
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5730 5731 5732 5733

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5734 5735 5736
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5737
			 */
5738
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5739
						 bytenr, roots, tmp_ulist);
5740
			if (ret < 0)
5741
				goto out_free;
5742
			if (ret)
5743
				flags |= FIEMAP_EXTENT_SHARED;
5744
			ret = 0;
Y
Yehuda Sadeh 已提交
5745 5746 5747
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5748 5749
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5750 5751 5752

		free_extent_map(em);
		em = NULL;
5753 5754
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5755 5756 5757 5758
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5759
		/* now scan forward to see if this is really the last extent. */
5760
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5761 5762 5763 5764 5765
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5766 5767 5768
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5769 5770
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5771 5772 5773
		if (ret) {
			if (ret == 1)
				ret = 0;
5774
			goto out_free;
5775
		}
Y
Yehuda Sadeh 已提交
5776 5777
	}
out_free:
5778
	if (!ret)
5779
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5780 5781
	free_extent_map(em);
out:
5782
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5783
			     &cached_state);
5784 5785

out_free_ulist:
5786
	btrfs_free_path(path);
5787 5788
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5789 5790 5791
	return ret;
}

5792 5793 5794 5795 5796
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5797
int extent_buffer_under_io(const struct extent_buffer *eb)
5798 5799 5800 5801 5802 5803
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5804
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5805
{
5806
	struct btrfs_subpage *subpage;
5807

5808
	lockdep_assert_held(&page->mapping->private_lock);
5809

5810 5811 5812 5813
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
5814 5815 5816 5817 5818 5819
		/*
		 * Even there is no eb refs here, we may still have
		 * end_page_read() call relying on page::private.
		 */
		if (atomic_read(&subpage->readers))
			return true;
5820 5821 5822
	}
	return false;
}
5823

5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5837
		if (mapped)
5838 5839 5840 5841
			spin_unlock(&page->mapping->private_lock);
		return;
	}

5842
	if (fs_info->nodesize >= PAGE_SIZE) {
5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5855
			/*
5856 5857
			 * We need to make sure we haven't be attached
			 * to a new eb.
5858
			 */
5859
			detach_page_private(page);
5860
		}
5861 5862
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
5880
	 * page range and no unfinished IO.
5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5904

5905
		/* One for when we allocated the page */
5906
		put_page(page);
5907
	}
5908 5909 5910 5911 5912 5913 5914
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5915
	btrfs_release_extent_buffer_pages(eb);
5916
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5917 5918 5919
	__free_extent_buffer(eb);
}

5920 5921
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5922
		      unsigned long len)
5923 5924 5925
{
	struct extent_buffer *eb = NULL;

5926
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5927 5928
	eb->start = start;
	eb->len = len;
5929
	eb->fs_info = fs_info;
5930
	eb->bflags = 0;
5931
	init_rwsem(&eb->lock);
5932

5933 5934
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5935
	INIT_LIST_HEAD(&eb->release_list);
5936

5937
	spin_lock_init(&eb->refs_lock);
5938
	atomic_set(&eb->refs, 1);
5939
	atomic_set(&eb->io_pages, 0);
5940

5941
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5942 5943 5944 5945

	return eb;
}

5946
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5947
{
5948
	int i;
5949
	struct extent_buffer *new;
5950
	int num_pages = num_extent_pages(src);
5951
	int ret;
5952

5953
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5954 5955 5956
	if (new == NULL)
		return NULL;

5957 5958 5959 5960 5961 5962 5963
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5964 5965 5966 5967 5968 5969 5970
	memset(new->pages, 0, sizeof(*new->pages) * num_pages);
	ret = btrfs_alloc_page_array(num_pages, new->pages);
	if (ret) {
		btrfs_release_extent_buffer(new);
		return NULL;
	}

5971
	for (i = 0; i < num_pages; i++) {
5972
		int ret;
5973
		struct page *p = new->pages[i];
5974 5975 5976 5977 5978 5979

		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5980
		WARN_ON(PageDirty(p));
5981
		copy_page(page_address(p), page_address(src->pages[i]));
5982
	}
5983
	set_extent_buffer_uptodate(new);
5984 5985 5986 5987

	return new;
}

5988 5989
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5990 5991
{
	struct extent_buffer *eb;
5992 5993
	int num_pages;
	int i;
5994
	int ret;
5995

5996
	eb = __alloc_extent_buffer(fs_info, start, len);
5997 5998 5999
	if (!eb)
		return NULL;

6000
	num_pages = num_extent_pages(eb);
6001 6002 6003 6004
	ret = btrfs_alloc_page_array(num_pages, eb->pages);
	if (ret)
		goto err;

6005
	for (i = 0; i < num_pages; i++) {
6006
		struct page *p = eb->pages[i];
6007

6008
		ret = attach_extent_buffer_page(eb, p, NULL);
6009 6010
		if (ret < 0)
			goto err;
6011
	}
6012

6013 6014
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
6015
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
6016 6017 6018

	return eb;
err:
6019 6020 6021 6022 6023
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i]) {
			detach_extent_buffer_page(eb, eb->pages[i]);
			__free_page(eb->pages[i]);
		}
6024
	}
6025 6026 6027 6028
	__free_extent_buffer(eb);
	return NULL;
}

6029
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
6030
						u64 start)
6031
{
6032
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
6033 6034
}

6035 6036
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
6037
	int refs;
6038 6039 6040 6041
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
6042
	 *
6043 6044 6045
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
	 * calling releasepage when the tree reference is the only reference.
6046
	 *
6047 6048 6049 6050 6051
	 * In both cases, care is taken to ensure that the extent_buffer's
	 * pages are not under io. However, releasepage can be concurrently
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
6052
	 *
6053 6054 6055 6056 6057 6058 6059
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
6060
	 */
6061 6062 6063 6064
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

6065 6066
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6067
		atomic_inc(&eb->refs);
6068
	spin_unlock(&eb->refs_lock);
6069 6070
}

6071 6072
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
6073
{
6074
	int num_pages, i;
6075

6076 6077
	check_buffer_tree_ref(eb);

6078
	num_pages = num_extent_pages(eb);
6079
	for (i = 0; i < num_pages; i++) {
6080 6081
		struct page *p = eb->pages[i];

6082 6083
		if (p != accessed)
			mark_page_accessed(p);
6084 6085 6086
	}
}

6087 6088
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
6089 6090 6091
{
	struct extent_buffer *eb;

6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
6111
	}
6112 6113
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
6114 6115
}

6116 6117
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6118
					u64 start)
6119 6120 6121 6122 6123 6124 6125
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
6126
	eb = alloc_dummy_extent_buffer(fs_info, start);
6127
	if (!eb)
6128
		return ERR_PTR(-ENOMEM);
6129
	eb->fs_info = fs_info;
6130 6131 6132 6133 6134 6135 6136

	do {
		ret = xa_insert(&fs_info->extent_buffers,
				start >> fs_info->sectorsize_bits,
				eb, GFP_NOFS);
		if (ret == -ENOMEM) {
			exists = ERR_PTR(ret);
6137
			goto free_eb;
6138 6139 6140 6141 6142 6143 6144 6145
		}
		if (ret == -EBUSY) {
			exists = find_extent_buffer(fs_info, start);
			if (exists)
				goto free_eb;
		}
	} while (ret);

6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

6156 6157
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
6158 6159 6160
{
	struct extent_buffer *exists;

6161 6162 6163 6164 6165
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
6166
	if (fs_info->nodesize < PAGE_SIZE)
6167 6168
		return NULL;

6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
{
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return -EINVAL;
	}

	if (fs_info->nodesize < PAGE_SIZE &&
	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	if (fs_info->nodesize >= PAGE_SIZE &&
	    !IS_ALIGNED(start, PAGE_SIZE)) {
		btrfs_err(fs_info,
		"tree block is not page aligned, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	return 0;
}

6212
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6213
					  u64 start, u64 owner_root, int level)
6214
{
6215
	unsigned long len = fs_info->nodesize;
6216 6217
	int num_pages;
	int i;
6218
	unsigned long index = start >> PAGE_SHIFT;
6219
	struct extent_buffer *eb;
6220
	struct extent_buffer *exists = NULL;
6221
	struct page *p;
6222
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
6223
	int uptodate = 1;
6224
	int ret;
6225

6226
	if (check_eb_alignment(fs_info, start))
6227 6228
		return ERR_PTR(-EINVAL);

6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

6240
	eb = find_extent_buffer(fs_info, start);
6241
	if (eb)
6242 6243
		return eb;

6244
	eb = __alloc_extent_buffer(fs_info, start, len);
6245
	if (!eb)
6246
		return ERR_PTR(-ENOMEM);
6247
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6248

6249
	num_pages = num_extent_pages(eb);
6250
	for (i = 0; i < num_pages; i++, index++) {
6251 6252
		struct btrfs_subpage *prealloc = NULL;

6253
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6254 6255
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
6256
			goto free_eb;
6257
		}
J
Josef Bacik 已提交
6258

6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
6269
		if (fs_info->nodesize < PAGE_SIZE) {
6270 6271 6272
			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
			if (IS_ERR(prealloc)) {
				ret = PTR_ERR(prealloc);
6273 6274 6275 6276 6277
				unlock_page(p);
				put_page(p);
				exists = ERR_PTR(ret);
				goto free_eb;
			}
6278 6279
		}

J
Josef Bacik 已提交
6280
		spin_lock(&mapping->private_lock);
6281
		exists = grab_extent_buffer(fs_info, p);
6282 6283 6284 6285 6286
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
6287
			btrfs_free_subpage(prealloc);
6288
			goto free_eb;
6289
		}
6290 6291 6292
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
6303
		spin_unlock(&mapping->private_lock);
6304

6305
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6306
		eb->pages[i] = p;
6307 6308
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
6309 6310

		/*
6311 6312 6313 6314 6315
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
		 * opens a race with btree_releasepage which can free a page
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
6316
		 */
6317 6318
	}
	if (uptodate)
6319
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6320 6321 6322 6323 6324 6325 6326

	do {
		ret = xa_insert(&fs_info->extent_buffers,
				start >> fs_info->sectorsize_bits,
				eb, GFP_NOFS);
		if (ret == -ENOMEM) {
			exists = ERR_PTR(ret);
6327
			goto free_eb;
6328 6329 6330 6331 6332 6333 6334 6335
		}
		if (ret == -EBUSY) {
			exists = find_extent_buffer(fs_info, start);
			if (exists)
				goto free_eb;
		}
	} while (ret);

6336
	/* add one reference for the tree */
6337
	check_buffer_tree_ref(eb);
6338
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
6339 6340

	/*
6341 6342 6343
	 * Now it's safe to unlock the pages because any calls to
	 * btree_releasepage will correctly detect that a page belongs to a
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
6344
	 */
6345 6346
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6347 6348
	return eb;

6349
free_eb:
6350
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6351 6352 6353 6354
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
6355

6356
	btrfs_release_extent_buffer(eb);
6357
	return exists;
6358 6359
}

6360 6361 6362 6363 6364 6365 6366 6367
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6368
static int release_extent_buffer(struct extent_buffer *eb)
6369
	__releases(&eb->refs_lock)
6370
{
6371 6372
	lockdep_assert_held(&eb->refs_lock);

6373 6374
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6375
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6376
			struct btrfs_fs_info *fs_info = eb->fs_info;
6377

6378
			spin_unlock(&eb->refs_lock);
6379

6380 6381
			xa_erase(&fs_info->extent_buffers,
				 eb->start >> fs_info->sectorsize_bits);
6382 6383
		} else {
			spin_unlock(&eb->refs_lock);
6384
		}
6385

6386
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6387
		/* Should be safe to release our pages at this point */
6388
		btrfs_release_extent_buffer_pages(eb);
6389
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6390
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6391 6392 6393 6394
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6395
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6396
		return 1;
6397 6398
	}
	spin_unlock(&eb->refs_lock);
6399 6400

	return 0;
6401 6402
}

6403 6404
void free_extent_buffer(struct extent_buffer *eb)
{
6405 6406
	int refs;
	int old;
6407 6408 6409
	if (!eb)
		return;

6410 6411
	while (1) {
		refs = atomic_read(&eb->refs);
6412 6413 6414
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6415 6416 6417 6418 6419 6420
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

6421 6422 6423
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6424
	    !extent_buffer_under_io(eb) &&
6425 6426 6427 6428 6429 6430 6431
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6432
	release_extent_buffer(eb);
6433 6434 6435 6436 6437
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6438 6439
		return;

6440 6441 6442
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6443
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6444 6445
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6446
	release_extent_buffer(eb);
6447 6448
}

6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6477
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6478
{
6479 6480
	int i;
	int num_pages;
6481 6482
	struct page *page;

6483
	if (eb->fs_info->nodesize < PAGE_SIZE)
6484 6485
		return clear_subpage_extent_buffer_dirty(eb);

6486
	num_pages = num_extent_pages(eb);
6487 6488

	for (i = 0; i < num_pages; i++) {
6489
		page = eb->pages[i];
6490
		if (!PageDirty(page))
C
Chris Mason 已提交
6491
			continue;
6492
		lock_page(page);
6493
		btree_clear_page_dirty(page);
6494
		ClearPageError(page);
6495
		unlock_page(page);
6496
	}
6497
	WARN_ON(atomic_read(&eb->refs) == 0);
6498 6499
}

6500
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6501
{
6502 6503
	int i;
	int num_pages;
6504
	bool was_dirty;
6505

6506 6507
	check_buffer_tree_ref(eb);

6508
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6509

6510
	num_pages = num_extent_pages(eb);
6511
	WARN_ON(atomic_read(&eb->refs) == 0);
6512 6513
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6514
	if (!was_dirty) {
6515
		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
6516

6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6536 6537 6538 6539 6540
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6541
	return was_dirty;
6542 6543
}

6544
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6545
{
6546
	struct btrfs_fs_info *fs_info = eb->fs_info;
6547
	struct page *page;
6548
	int num_pages;
6549
	int i;
6550

6551
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6552
	num_pages = num_extent_pages(eb);
6553
	for (i = 0; i < num_pages; i++) {
6554
		page = eb->pages[i];
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566
		if (!page)
			continue;

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			ClearPageUptodate(page);
		else
			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
						     eb->len);
6567 6568 6569
	}
}

6570
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6571
{
6572
	struct btrfs_fs_info *fs_info = eb->fs_info;
6573
	struct page *page;
6574
	int num_pages;
6575
	int i;
6576

6577
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6578
	num_pages = num_extent_pages(eb);
6579
	for (i = 0; i < num_pages; i++) {
6580
		page = eb->pages[i];
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			SetPageUptodate(page);
		else
			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
						   eb->len);
6591 6592 6593
	}
}

6594 6595 6596 6597 6598 6599
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6600
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6601 6602 6603 6604 6605 6606 6607
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6608 6609
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6631
	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6632 6633 6634 6635
	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
				 end_bio_extent_readpage, mirror_num, 0,
6636 6637 6638 6639 6640 6641 6642 6643 6644
				 true);
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6645
	if (bio_ctrl.bio) {
6646
		submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6647
		bio_ctrl.bio = NULL;
6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
	}
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6658
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6659
{
6660
	int i;
6661 6662 6663
	struct page *page;
	int err;
	int ret = 0;
6664 6665
	int locked_pages = 0;
	int all_uptodate = 1;
6666
	int num_pages;
6667
	unsigned long num_reads = 0;
6668
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6669

6670
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6671 6672
		return 0;

6673 6674 6675 6676 6677 6678 6679 6680
	/*
	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
	 * operation, which could potentially still be in flight.  In this case
	 * we simply want to return an error.
	 */
	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
		return -EIO;

6681
	if (eb->fs_info->nodesize < PAGE_SIZE)
6682 6683
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6684
	num_pages = num_extent_pages(eb);
6685
	for (i = 0; i < num_pages; i++) {
6686
		page = eb->pages[i];
6687
		if (wait == WAIT_NONE) {
6688 6689 6690 6691 6692 6693 6694
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6695
			if (!trylock_page(page))
6696
				goto unlock_exit;
6697 6698 6699
		} else {
			lock_page(page);
		}
6700
		locked_pages++;
6701 6702 6703 6704 6705 6706
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6707
	for (i = 0; i < num_pages; i++) {
6708
		page = eb->pages[i];
6709 6710
		if (!PageUptodate(page)) {
			num_reads++;
6711
			all_uptodate = 0;
6712
		}
6713
	}
6714

6715
	if (all_uptodate) {
6716
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6717 6718 6719
		goto unlock_exit;
	}

6720
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6721
	eb->read_mirror = 0;
6722
	atomic_set(&eb->io_pages, num_reads);
6723 6724 6725 6726 6727
	/*
	 * It is possible for releasepage to clear the TREE_REF bit before we
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6728
	for (i = 0; i < num_pages; i++) {
6729
		page = eb->pages[i];
6730

6731
		if (!PageUptodate(page)) {
6732 6733 6734 6735 6736 6737
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6738
			ClearPageError(page);
6739
			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6740 6741 6742
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
					 mirror_num, 0, false);
6743 6744
			if (err) {
				/*
6745 6746 6747
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6748
				 */
6749 6750 6751
				ret = err;
				SetPageError(page);
				unlock_page(page);
6752 6753
				atomic_dec(&eb->io_pages);
			}
6754 6755 6756 6757 6758
		} else {
			unlock_page(page);
		}
	}

6759
	if (bio_ctrl.bio) {
6760
		submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.compress_type);
6761
		bio_ctrl.bio = NULL;
6762
	}
6763

6764
	if (ret || wait != WAIT_COMPLETE)
6765
		return ret;
C
Chris Mason 已提交
6766

6767
	for (i = 0; i < num_pages; i++) {
6768
		page = eb->pages[i];
6769
		wait_on_page_locked(page);
C
Chris Mason 已提交
6770
		if (!PageUptodate(page))
6771 6772
			ret = -EIO;
	}
C
Chris Mason 已提交
6773

6774
	return ret;
6775 6776

unlock_exit:
C
Chris Mason 已提交
6777
	while (locked_pages > 0) {
6778
		locked_pages--;
6779 6780
		page = eb->pages[locked_pages];
		unlock_page(page);
6781 6782
	}
	return ret;
6783 6784
}

6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6815 6816
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6817 6818 6819 6820 6821 6822
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6823
	unsigned long i = get_eb_page_index(start);
6824

6825
	if (check_eb_range(eb, start, len))
6826
		return;
6827

6828
	offset = get_eb_offset_in_page(eb, start);
6829

C
Chris Mason 已提交
6830
	while (len > 0) {
6831
		page = eb->pages[i];
6832

6833
		cur = min(len, (PAGE_SIZE - offset));
6834
		kaddr = page_address(page);
6835 6836 6837 6838 6839 6840 6841 6842 6843
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6844 6845 6846
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6847 6848 6849 6850 6851 6852
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6853
	unsigned long i = get_eb_page_index(start);
6854 6855 6856 6857 6858
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6859
	offset = get_eb_offset_in_page(eb, start);
6860 6861

	while (len > 0) {
6862
		page = eb->pages[i];
6863

6864
		cur = min(len, (PAGE_SIZE - offset));
6865
		kaddr = page_address(page);
6866
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6880 6881
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6882 6883 6884 6885 6886 6887
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6888
	unsigned long i = get_eb_page_index(start);
6889 6890
	int ret = 0;

6891 6892
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6893

6894
	offset = get_eb_offset_in_page(eb, start);
6895

C
Chris Mason 已提交
6896
	while (len > 0) {
6897
		page = eb->pages[i];
6898

6899
		cur = min(len, (PAGE_SIZE - offset));
6900

6901
		kaddr = page_address(page);
6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

6925 6926 6927 6928 6929 6930 6931 6932 6933
	/*
	 * If we are using the commit root we could potentially clear a page
	 * Uptodate while we're using the extent buffer that we've previously
	 * looked up.  We don't want to complain in this case, as the page was
	 * valid before, we just didn't write it out.  Instead we want to catch
	 * the case where we didn't actually read the block properly, which
	 * would have !PageUptodate && !PageError, as we clear PageError before
	 * reading.
	 */
6934
	if (fs_info->nodesize < PAGE_SIZE) {
6935
		bool uptodate, error;
6936 6937 6938

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
6939 6940
		error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
		WARN_ON(!uptodate && !error);
6941
	} else {
6942
		WARN_ON(!PageUptodate(page) && !PageError(page));
6943 6944 6945
	}
}

6946
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6947 6948 6949 6950
		const void *srcv)
{
	char *kaddr;

6951
	assert_eb_page_uptodate(eb, eb->pages[0]);
6952 6953 6954 6955
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6956 6957
}

6958
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6959 6960 6961
{
	char *kaddr;

6962
	assert_eb_page_uptodate(eb, eb->pages[0]);
6963 6964 6965
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6966 6967
}

6968
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6969 6970 6971 6972 6973 6974 6975
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6976
	unsigned long i = get_eb_page_index(start);
6977

6978 6979
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6980 6981
	if (check_eb_range(eb, start, len))
		return;
6982

6983
	offset = get_eb_offset_in_page(eb, start);
6984

C
Chris Mason 已提交
6985
	while (len > 0) {
6986
		page = eb->pages[i];
6987
		assert_eb_page_uptodate(eb, page);
6988

6989
		cur = min(len, PAGE_SIZE - offset);
6990
		kaddr = page_address(page);
6991 6992 6993 6994 6995 6996 6997 6998 6999
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

7000
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
7001
		unsigned long len)
7002 7003 7004 7005 7006
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
7007
	unsigned long i = get_eb_page_index(start);
7008

7009 7010
	if (check_eb_range(eb, start, len))
		return;
7011

7012
	offset = get_eb_offset_in_page(eb, start);
7013

C
Chris Mason 已提交
7014
	while (len > 0) {
7015
		page = eb->pages[i];
7016
		assert_eb_page_uptodate(eb, page);
7017

7018
		cur = min(len, PAGE_SIZE - offset);
7019
		kaddr = page_address(page);
7020
		memset(kaddr + offset, 0, cur);
7021 7022 7023 7024 7025 7026 7027

		len -= cur;
		offset = 0;
		i++;
	}
}

7028 7029
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
7030 7031
{
	int i;
7032
	int num_pages;
7033 7034 7035

	ASSERT(dst->len == src->len);

7036
	if (dst->fs_info->nodesize >= PAGE_SIZE) {
7037 7038 7039 7040 7041 7042 7043 7044
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

7045
		ASSERT(src->fs_info->nodesize < PAGE_SIZE);
7046 7047 7048 7049
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
7050 7051
}

7052 7053
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
7054 7055 7056 7057 7058 7059 7060 7061
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
7062
	unsigned long i = get_eb_page_index(dst_offset);
7063

7064 7065 7066 7067
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

7068 7069
	WARN_ON(src->len != dst_len);

7070
	offset = get_eb_offset_in_page(dst, dst_offset);
7071

C
Chris Mason 已提交
7072
	while (len > 0) {
7073
		page = dst->pages[i];
7074
		assert_eb_page_uptodate(dst, page);
7075

7076
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
7077

7078
		kaddr = page_address(page);
7079 7080 7081 7082 7083 7084 7085 7086 7087
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
7101
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
7114
	offset = start + offset_in_page(eb->start) + byte_offset;
7115

7116
	*page_index = offset >> PAGE_SHIFT;
7117
	*page_offset = offset_in_page(offset);
7118 7119 7120 7121 7122 7123 7124 7125
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
7126
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
7127 7128
			   unsigned long nr)
{
7129
	u8 *kaddr;
7130 7131 7132 7133 7134 7135
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
7136
	assert_eb_page_uptodate(eb, page);
7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
7148
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7149 7150
			      unsigned long pos, unsigned long len)
{
7151
	u8 *kaddr;
7152 7153 7154 7155 7156
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7157
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7158 7159 7160

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7161
	assert_eb_page_uptodate(eb, page);
7162 7163 7164 7165 7166 7167
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7168
		mask_to_set = ~0;
7169
		if (++offset >= PAGE_SIZE && len > 0) {
7170 7171
			offset = 0;
			page = eb->pages[++i];
7172
			assert_eb_page_uptodate(eb, page);
7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
7190 7191 7192
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
7193
{
7194
	u8 *kaddr;
7195 7196 7197 7198 7199
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7200
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7201 7202 7203

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7204
	assert_eb_page_uptodate(eb, page);
7205 7206 7207 7208 7209 7210
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7211
		mask_to_clear = ~0;
7212
		if (++offset >= PAGE_SIZE && len > 0) {
7213 7214
			offset = 0;
			page = eb->pages[++i];
7215
			assert_eb_page_uptodate(eb, page);
7216 7217 7218 7219 7220 7221 7222 7223 7224
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

7225 7226 7227 7228 7229 7230
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

7231 7232 7233 7234
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
7235
	char *dst_kaddr = page_address(dst_page);
7236
	char *src_kaddr;
7237
	int must_memmove = 0;
7238

7239
	if (dst_page != src_page) {
7240
		src_kaddr = page_address(src_page);
7241
	} else {
7242
		src_kaddr = dst_kaddr;
7243 7244
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
7245
	}
7246

7247 7248 7249 7250
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7251 7252
}

7253 7254 7255
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
7256 7257 7258 7259 7260 7261 7262
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

7263 7264 7265
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7266

C
Chris Mason 已提交
7267
	while (len > 0) {
7268 7269
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7270

7271 7272
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
7273

7274
		cur = min(len, (unsigned long)(PAGE_SIZE -
7275 7276
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
7277
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7278

7279
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7280 7281 7282 7283 7284 7285 7286 7287
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

7288 7289 7290
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
7291 7292 7293 7294 7295 7296 7297 7298 7299
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

7300 7301 7302
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7303
	if (dst_offset < src_offset) {
7304 7305 7306
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
7307
	while (len > 0) {
7308 7309
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
7310

7311 7312
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7313 7314 7315

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
7316
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7317 7318 7319 7320 7321 7322 7323 7324
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
7325

7326 7327 7328
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
7329 7330
	struct extent_buffer *eb;
	unsigned long index;
7331 7332 7333 7334 7335
	u64 page_start = page_offset(page);

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	lockdep_assert_held(&fs_info->buffer_lock);

7336 7337 7338 7339 7340 7341 7342
	xa_for_each_start(&fs_info->extent_buffers, index, eb,
			  page_start >> fs_info->sectorsize_bits) {
		if (in_range(eb->start, page_start, PAGE_SIZE))
			return eb;
		else if (eb->start >= page_start + PAGE_SIZE)
		        /* Already beyond page end */
			return NULL;
7343
	}
7344
	return NULL;
7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7417
int try_release_extent_buffer(struct page *page)
7418
{
7419 7420
	struct extent_buffer *eb;

7421
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
7422 7423
		return try_release_subpage_extent_buffer(page);

7424
	/*
7425 7426
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7427 7428 7429 7430
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
7431
		return 1;
7432
	}
7433

7434 7435
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7436 7437

	/*
7438 7439 7440
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7441
	 */
7442
	spin_lock(&eb->refs_lock);
7443
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7444 7445 7446
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7447
	}
7448
	spin_unlock(&page->mapping->private_lock);
7449

7450
	/*
7451 7452
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7453
	 */
7454 7455 7456
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7457
	}
7458

7459
	return release_extent_buffer(eb);
7460
}
7461 7462 7463 7464 7465

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7466
 * @owner_root: objectid of the root that owns this eb
7467
 * @gen:	generation for the uptodate check, can be 0
7468
 * @level:	level for the eb
7469 7470 7471 7472 7473 7474
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7475
				u64 bytenr, u64 owner_root, u64 gen, int level)
7476 7477 7478 7479
{
	struct extent_buffer *eb;
	int ret;

7480
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7508 7509 7510
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7511
}