extent_io.c 193.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8 9 10 11 12 13
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
14
#include <linux/prefetch.h>
D
Dan Magenheimer 已提交
15
#include <linux/cleancache.h>
16
#include "misc.h"
17
#include "extent_io.h"
18
#include "extent-io-tree.h"
19
#include "extent_map.h"
20 21
#include "ctree.h"
#include "btrfs_inode.h"
22
#include "volumes.h"
23
#include "check-integrity.h"
24
#include "locking.h"
25
#include "rcu-string.h"
26
#include "backref.h"
27
#include "disk-io.h"
28
#include "subpage.h"
29
#include "zoned.h"
30
#include "block-group.h"
31 32 33

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
34
static struct bio_set btrfs_bioset;
35

36 37 38 39 40
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

41
#ifdef CONFIG_BTRFS_DEBUG
42
static LIST_HEAD(states);
C
Chris Mason 已提交
43
static DEFINE_SPINLOCK(leak_lock);
44

45 46 47
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
48 49 50
{
	unsigned long flags;

51
	spin_lock_irqsave(lock, flags);
52
	list_add(new, head);
53
	spin_unlock_irqrestore(lock, flags);
54 55
}

56 57
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
58 59 60
{
	unsigned long flags;

61
	spin_lock_irqsave(lock, flags);
62
	list_del(entry);
63
	spin_unlock_irqrestore(lock, flags);
64 65
}

66
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
67 68
{
	struct extent_buffer *eb;
69
	unsigned long flags;
70

71 72 73 74 75 76 77
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

78 79 80 81
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
82 83 84 85
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
86 87 88
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
89
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
90 91 92 93 94 95
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

96 97
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
98
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
99 100
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
101
		       refcount_read(&state->refs));
102 103 104 105
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
106

107 108
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
109
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
110
		struct extent_io_tree *tree, u64 start, u64 end)
111
{
112 113 114 115 116 117 118 119 120 121 122 123
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
124
}
125
#else
126 127
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
128
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
129
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
130
#endif
131 132 133 134 135 136 137 138

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

struct extent_page_data {
139
	struct btrfs_bio_ctrl bio_ctrl;
140 141 142
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
143 144
	unsigned int extent_locked:1;

145
	/* tells the submit_bio code to use REQ_SYNC */
146
	unsigned int sync_io:1;
147 148
};

149
static int add_extent_changeset(struct extent_state *state, u32 bits,
150 151 152 153 154 155
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
156
		return 0;
157
	if (set && (state->state & bits) == bits)
158
		return 0;
159
	if (!set && (state->state & bits) == 0)
160
		return 0;
161
	changeset->bytes_changed += state->end - state->start + 1;
162
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
163
			GFP_ATOMIC);
164
	return ret;
165 166
}

167 168
int __must_check submit_one_bio(struct bio *bio, int mirror_num,
				unsigned long bio_flags)
169 170 171 172 173 174
{
	blk_status_t ret = 0;
	struct extent_io_tree *tree = bio->bi_private;

	bio->bi_private = NULL;

175 176
	/* Caller should ensure the bio has at least some range added */
	ASSERT(bio->bi_iter.bi_size);
177 178 179 180
	if (is_data_inode(tree->private_data))
		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
					    bio_flags);
	else
181 182
		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
						mirror_num, bio_flags);
183 184 185 186

	return blk_status_to_errno(ret);
}

187 188 189
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
190 191 192 193 194 195
	struct bio *bio = epd->bio_ctrl.bio;

	if (bio) {
		bio->bi_status = errno_to_blk_status(ret);
		bio_endio(bio);
		epd->bio_ctrl.bio = NULL;
196 197 198
	}
}

199 200 201 202 203 204 205
/*
 * Submit bio from extent page data via submit_one_bio
 *
 * Return 0 if everything is OK.
 * Return <0 for error.
 */
static int __must_check flush_write_bio(struct extent_page_data *epd)
206
{
207
	int ret = 0;
208
	struct bio *bio = epd->bio_ctrl.bio;
209

210 211
	if (bio) {
		ret = submit_one_bio(bio, 0, 0);
212 213 214 215 216 217 218
		/*
		 * Clean up of epd->bio is handled by its endio function.
		 * And endio is either triggered by successful bio execution
		 * or the error handler of submit bio hook.
		 * So at this point, no matter what happened, we don't need
		 * to clean up epd->bio.
		 */
219
		epd->bio_ctrl.bio = NULL;
220
	}
221
	return ret;
222
}
223

224
int __init extent_state_cache_init(void)
225
{
D
David Sterba 已提交
226
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
227
			sizeof(struct extent_state), 0,
228
			SLAB_MEM_SPREAD, NULL);
229 230
	if (!extent_state_cache)
		return -ENOMEM;
231 232
	return 0;
}
233

234 235
int __init extent_io_init(void)
{
D
David Sterba 已提交
236
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
237
			sizeof(struct extent_buffer), 0,
238
			SLAB_MEM_SPREAD, NULL);
239
	if (!extent_buffer_cache)
240
		return -ENOMEM;
241

242 243 244
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
			offsetof(struct btrfs_io_bio, bio),
			BIOSET_NEED_BVECS))
245
		goto free_buffer_cache;
246

247
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
248 249
		goto free_bioset;

250 251
	return 0;

252
free_bioset:
253
	bioset_exit(&btrfs_bioset);
254

255 256 257
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
258 259
	return -ENOMEM;
}
260

261 262 263
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
264 265 266
	kmem_cache_destroy(extent_state_cache);
}

267
void __cold extent_io_exit(void)
268
{
269 270 271 272 273
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
274
	kmem_cache_destroy(extent_buffer_cache);
275
	bioset_exit(&btrfs_bioset);
276 277
}

278 279 280 281 282 283 284 285 286
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

287
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
288 289
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
290
{
291
	tree->fs_info = fs_info;
292
	tree->state = RB_ROOT;
293
	tree->dirty_bytes = 0;
294
	spin_lock_init(&tree->lock);
295
	tree->private_data = private_data;
296
	tree->owner = owner;
297 298
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
299 300
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

330
static struct extent_state *alloc_extent_state(gfp_t mask)
331 332 333
{
	struct extent_state *state;

334 335 336 337 338
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
339
	state = kmem_cache_alloc(extent_state_cache, mask);
340
	if (!state)
341 342
		return state;
	state->state = 0;
343
	state->failrec = NULL;
344
	RB_CLEAR_NODE(&state->rb_node);
345
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
346
	refcount_set(&state->refs, 1);
347
	init_waitqueue_head(&state->wq);
348
	trace_alloc_extent_state(state, mask, _RET_IP_);
349 350 351
	return state;
}

352
void free_extent_state(struct extent_state *state)
353 354 355
{
	if (!state)
		return;
356
	if (refcount_dec_and_test(&state->refs)) {
357
		WARN_ON(extent_state_in_tree(state));
358
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
359
		trace_free_extent_state(state, _RET_IP_);
360 361 362 363
		kmem_cache_free(extent_state_cache, state);
	}
}

364 365 366
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
367 368 369
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
370
{
371
	struct rb_node **p;
C
Chris Mason 已提交
372
	struct rb_node *parent = NULL;
373 374
	struct tree_entry *entry;

375 376 377 378 379 380
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

381
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
382
	while (*p) {
383 384 385 386 387 388 389 390 391 392 393
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

394
do_insert:
395 396 397 398 399
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
400
/**
401 402
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
403
 *
404 405 406 407 408 409 410
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
411 412 413 414 415 416 417
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
418
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
419
				      struct rb_node **next_ret,
420
				      struct rb_node **prev_ret,
421 422
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
423
{
424
	struct rb_root *root = &tree->state;
425
	struct rb_node **n = &root->rb_node;
426 427 428 429 430
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

431 432 433
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
434 435 436
		prev_entry = entry;

		if (offset < entry->start)
437
			n = &(*n)->rb_left;
438
		else if (offset > entry->end)
439
			n = &(*n)->rb_right;
C
Chris Mason 已提交
440
		else
441
			return *n;
442 443
	}

444 445 446 447 448
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

449
	if (next_ret) {
450
		orig_prev = prev;
C
Chris Mason 已提交
451
		while (prev && offset > prev_entry->end) {
452 453 454
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
455
		*next_ret = prev;
456 457 458
		prev = orig_prev;
	}

459
	if (prev_ret) {
460
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
461
		while (prev && offset < prev_entry->start) {
462 463 464
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
465
		*prev_ret = prev;
466 467 468 469
	}
	return NULL;
}

470 471 472 473 474
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
475
{
476
	struct rb_node *next= NULL;
477
	struct rb_node *ret;
478

479
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
480
	if (!ret)
481
		return next;
482 483 484
	return ret;
}

485 486 487 488 489 490
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

491 492 493 494 495 496 497 498 499
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
500 501
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
502 503 504 505
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
506
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
507
		return;
508 509 510 511 512 513

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
514 515 516 517
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
518 519
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
520
			RB_CLEAR_NODE(&other->rb_node);
521 522 523 524 525 526 527 528
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
529 530 531 532
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
533 534
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
535
			RB_CLEAR_NODE(&other->rb_node);
536
			free_extent_state(other);
537 538 539 540
		}
	}
}

541
static void set_state_bits(struct extent_io_tree *tree,
542
			   struct extent_state *state, u32 *bits,
543
			   struct extent_changeset *changeset);
544

545 546 547 548 549 550 551 552 553 554 555 556
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
557 558
			struct rb_node ***p,
			struct rb_node **parent,
559
			u32 *bits, struct extent_changeset *changeset)
560 561 562
{
	struct rb_node *node;

563 564 565 566 567
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
568 569
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
570

571
	set_state_bits(tree, state, bits, changeset);
572

573
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
574 575 576
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
577 578
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
579
		       found->start, found->end, start, end);
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
604

605 606
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
607

608 609 610 611 612
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

613 614
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
615 616 617 618 619 620 621
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

622 623 624 625 626 627 628 629 630
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

631 632
/*
 * utility function to clear some bits in an extent state struct.
633
 * it will optionally wake up anyone waiting on this state (wake == 1).
634 635 636 637
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
638 639
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
640
					    u32 *bits, int wake,
641
					    struct extent_changeset *changeset)
642
{
643
	struct extent_state *next;
644
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
645
	int ret;
646

647
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
648 649 650 651
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
652 653 654 655

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

656 657
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
658
	state->state &= ~bits_to_clear;
659 660
	if (wake)
		wake_up(&state->wq);
661
	if (state->state == 0) {
662
		next = next_state(state);
663
		if (extent_state_in_tree(state)) {
664
			rb_erase(&state->rb_node, &tree->state);
665
			RB_CLEAR_NODE(&state->rb_node);
666 667 668 669 670 671
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
672
		next = next_state(state);
673
	}
674
	return next;
675 676
}

677 678 679 680 681 682 683 684 685
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

686
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
687
{
688
	btrfs_panic(tree->fs_info, err,
689
	"locking error: extent tree was modified by another thread while locked");
690 691
}

692 693 694 695 696 697 698 699 700 701
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
702
 * This takes the tree lock, and returns 0 on success and < 0 on error.
703
 */
704
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705 706 707
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
708 709
{
	struct extent_state *state;
710
	struct extent_state *cached;
711 712
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
713
	u64 last_end;
714
	int err;
715
	int clear = 0;
716

717
	btrfs_debug_check_extent_io_range(tree, start, end);
718
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
719

720 721 722
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

723 724 725
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
726
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
727
		clear = 1;
728
again:
729
	if (!prealloc && gfpflags_allow_blocking(mask)) {
730 731 732 733 734 735 736
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
737 738 739
		prealloc = alloc_extent_state(mask);
	}

740
	spin_lock(&tree->lock);
741 742
	if (cached_state) {
		cached = *cached_state;
743 744 745 746 747 748

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

749 750
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
751
			if (clear)
752
				refcount_dec(&cached->refs);
753
			state = cached;
754
			goto hit_next;
755
		}
756 757
		if (clear)
			free_extent_state(cached);
758
	}
759 760 761 762
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
763
	node = tree_search(tree, start);
764 765 766
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
767
hit_next:
768 769 770
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
771
	last_end = state->end;
772

773
	/* the state doesn't have the wanted bits, go ahead */
774 775
	if (!(state->state & bits)) {
		state = next_state(state);
776
		goto next;
777
	}
778

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
796 797
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
798
		err = split_state(tree, state, prealloc, start);
799 800 801
		if (err)
			extent_io_tree_panic(tree, err);

802 803 804 805
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
806 807
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
808
			goto next;
809 810 811 812 813 814 815 816 817 818
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
819 820
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
821
		err = split_state(tree, state, prealloc, end + 1);
822 823 824
		if (err)
			extent_io_tree_panic(tree, err);

825 826
		if (wake)
			wake_up(&state->wq);
827

828
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
829

830 831 832
		prealloc = NULL;
		goto out;
	}
833

834
	state = clear_state_bit(tree, state, &bits, wake, changeset);
835
next:
836 837 838
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
839
	if (start <= end && state && !need_resched())
840
		goto hit_next;
841 842 843 844

search_again:
	if (start > end)
		goto out;
845
	spin_unlock(&tree->lock);
846
	if (gfpflags_allow_blocking(mask))
847 848
		cond_resched();
	goto again;
849 850 851 852 853 854 855 856

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

857 858
}

859 860
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
861 862
		__releases(tree->lock)
		__acquires(tree->lock)
863 864 865
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
866
	spin_unlock(&tree->lock);
867
	schedule();
868
	spin_lock(&tree->lock);
869 870 871 872 873 874 875 876
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
877
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
878
			    u32 bits)
879 880 881 882
{
	struct extent_state *state;
	struct rb_node *node;

883
	btrfs_debug_check_extent_io_range(tree, start, end);
884

885
	spin_lock(&tree->lock);
886 887 888 889 890 891
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
892
		node = tree_search(tree, start);
893
process_node:
894 895 896 897 898 899 900 901 902 903
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
904
			refcount_inc(&state->refs);
905 906 907 908 909 910 911 912 913
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

914 915 916 917
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
918 919
	}
out:
920
	spin_unlock(&tree->lock);
921 922
}

923
static void set_state_bits(struct extent_io_tree *tree,
924
			   struct extent_state *state,
925
			   u32 *bits, struct extent_changeset *changeset)
926
{
927
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
928
	int ret;
J
Josef Bacik 已提交
929

930 931 932
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

933
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
934 935 936
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
937 938
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
939
	state->state |= bits_to_set;
940 941
}

942 943
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
944
				 unsigned flags)
945 946
{
	if (cached_ptr && !(*cached_ptr)) {
947
		if (!flags || (state->state & flags)) {
948
			*cached_ptr = state;
949
			refcount_inc(&state->refs);
950 951 952 953
		}
	}
}

954 955 956 957
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
958
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
959 960
}

961
/*
962 963
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
964
 *
965 966 967
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
968
 *
969
 * [start, end] is inclusive This takes the tree lock.
970
 */
971 972
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
973 974
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
975 976 977 978
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
979 980
	struct rb_node **p;
	struct rb_node *parent;
981 982 983
	int err = 0;
	u64 last_start;
	u64 last_end;
984

985
	btrfs_debug_check_extent_io_range(tree, start, end);
986
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
987

988 989 990 991
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
992
again:
993
	if (!prealloc && gfpflags_allow_blocking(mask)) {
994 995 996 997 998 999 1000
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
1001 1002 1003
		prealloc = alloc_extent_state(mask);
	}

1004
	spin_lock(&tree->lock);
1005 1006
	if (cached_state && *cached_state) {
		state = *cached_state;
1007
		if (state->start <= start && state->end > start &&
1008
		    extent_state_in_tree(state)) {
1009 1010 1011 1012
			node = &state->rb_node;
			goto hit_next;
		}
	}
1013 1014 1015 1016
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1017
	node = tree_search_for_insert(tree, start, &p, &parent);
1018
	if (!node) {
1019 1020
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1021
		err = insert_state(tree, prealloc, start, end,
1022
				   &p, &parent, &bits, changeset);
1023 1024 1025
		if (err)
			extent_io_tree_panic(tree, err);

1026
		cache_state(prealloc, cached_state);
1027 1028 1029 1030
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1031
hit_next:
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1042
		if (state->state & exclusive_bits) {
1043 1044 1045 1046
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1047

1048
		set_state_bits(tree, state, &bits, changeset);
1049
		cache_state(state, cached_state);
1050
		merge_state(tree, state);
1051 1052 1053
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1054 1055 1056 1057
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1078
		if (state->state & exclusive_bits) {
1079 1080 1081 1082
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1094 1095
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1096
		err = split_state(tree, state, prealloc, start);
1097 1098 1099
		if (err)
			extent_io_tree_panic(tree, err);

1100 1101 1102 1103
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1104
			set_state_bits(tree, state, &bits, changeset);
1105
			cache_state(state, cached_state);
1106
			merge_state(tree, state);
1107 1108 1109
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1110 1111 1112 1113
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1129
			this_end = last_start - 1;
1130 1131 1132

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1133 1134 1135 1136 1137

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1138
		err = insert_state(tree, prealloc, start, this_end,
1139
				   NULL, NULL, &bits, changeset);
1140 1141 1142
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1143 1144
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1155
		if (state->state & exclusive_bits) {
1156 1157 1158 1159
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1160 1161 1162

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1163
		err = split_state(tree, state, prealloc, end + 1);
1164 1165
		if (err)
			extent_io_tree_panic(tree, err);
1166

1167
		set_state_bits(tree, prealloc, &bits, changeset);
1168
		cache_state(prealloc, cached_state);
1169 1170 1171 1172 1173
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1174 1175 1176 1177 1178 1179 1180
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1181 1182

out:
1183
	spin_unlock(&tree->lock);
1184 1185 1186 1187 1188 1189 1190
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1191
/**
L
Liu Bo 已提交
1192 1193
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1194 1195 1196 1197 1198
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1199
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1200 1201 1202 1203 1204 1205
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1206 1207
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1208 1209
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210
		       u32 bits, u32 clear_bits,
1211
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1212 1213 1214 1215
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1216 1217
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1218 1219 1220
	int err = 0;
	u64 last_start;
	u64 last_end;
1221
	bool first_iteration = true;
J
Josef Bacik 已提交
1222

1223
	btrfs_debug_check_extent_io_range(tree, start, end);
1224 1225
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1226

J
Josef Bacik 已提交
1227
again:
1228
	if (!prealloc) {
1229 1230 1231 1232 1233 1234 1235
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1236
		prealloc = alloc_extent_state(GFP_NOFS);
1237
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1238 1239 1240 1241
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1242 1243 1244
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1245
		    extent_state_in_tree(state)) {
1246 1247 1248 1249 1250
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1251 1252 1253 1254
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1255
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1256 1257
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1258 1259 1260 1261
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1262
		err = insert_state(tree, prealloc, start, end,
1263
				   &p, &parent, &bits, NULL);
1264 1265
		if (err)
			extent_io_tree_panic(tree, err);
1266 1267
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1282
		set_state_bits(tree, state, &bits, NULL);
1283
		cache_state(state, cached_state);
1284
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1285 1286 1287
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1288 1289 1290
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1312 1313 1314 1315
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1316
		err = split_state(tree, state, prealloc, start);
1317 1318
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1319 1320 1321 1322
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1323
			set_state_bits(tree, state, &bits, NULL);
1324
			cache_state(state, cached_state);
1325 1326
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1327 1328 1329
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1330 1331 1332
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1351 1352 1353 1354
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1355 1356 1357 1358 1359 1360

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1361
				   NULL, NULL, &bits, NULL);
1362 1363
		if (err)
			extent_io_tree_panic(tree, err);
1364
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1377 1378 1379 1380
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1381 1382

		err = split_state(tree, state, prealloc, end + 1);
1383 1384
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1385

1386
		set_state_bits(tree, prealloc, &bits, NULL);
1387
		cache_state(prealloc, cached_state);
1388
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1389 1390 1391 1392 1393 1394 1395 1396
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1397
	cond_resched();
1398
	first_iteration = false;
J
Josef Bacik 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1409
/* wrappers around set/clear extent bit */
1410
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411
			   u32 bits, struct extent_changeset *changeset)
1412 1413 1414 1415 1416 1417 1418 1419 1420
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1421 1422
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1423 1424
}

1425
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426
			   u32 bits)
1427
{
1428 1429
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1430 1431
}

1432
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433
		     u32 bits, int wake, int delete,
1434
		     struct extent_state **cached)
1435 1436
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437
				  cached, GFP_NOFS, NULL);
1438 1439 1440
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441
		u32 bits, struct extent_changeset *changeset)
1442 1443 1444 1445 1446 1447 1448
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1449
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450 1451 1452
				  changeset);
}

C
Chris Mason 已提交
1453 1454 1455 1456
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1457
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458
		     struct extent_state **cached_state)
1459 1460 1461
{
	int err;
	u64 failed_start;
1462

1463
	while (1) {
1464 1465 1466
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1467
		if (err == -EEXIST) {
1468 1469
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1470
		} else
1471 1472 1473 1474 1475 1476
			break;
		WARN_ON(start > end);
	}
	return err;
}

1477
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478 1479 1480 1481
{
	int err;
	u64 failed_start;

1482 1483
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1484 1485 1486
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1487
					 EXTENT_LOCKED, 1, 0, NULL);
1488
		return 0;
Y
Yan Zheng 已提交
1489
	}
1490 1491 1492
	return 1;
}

1493
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494
{
1495 1496
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1497 1498 1499 1500 1501 1502
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1503
		put_page(page);
1504 1505 1506 1507
		index++;
	}
}

1508
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509
{
1510 1511
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1512 1513 1514 1515 1516 1517
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		__set_page_dirty_nobuffers(page);
1518
		account_page_redirty(page);
1519
		put_page(page);
1520 1521 1522 1523
		index++;
	}
}

C
Chris Mason 已提交
1524 1525 1526 1527
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1528
static struct extent_state *
1529
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1539
	if (!node)
C
Chris Mason 已提交
1540 1541
		goto out;

C
Chris Mason 已提交
1542
	while (1) {
C
Chris Mason 已提交
1543
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1544
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1545
			return state;
C
Chris Mason 已提交
1546

C
Chris Mason 已提交
1547 1548 1549 1550 1551 1552 1553 1554
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1555
/*
1556
 * Find the first offset in the io tree with one or more @bits set.
1557
 *
1558 1559 1560 1561
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1562 1563
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564
			  u64 *start_ret, u64 *end_ret, u32 bits,
1565
			  struct extent_state **cached_state)
1566 1567 1568 1569 1570
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1571 1572
	if (cached_state && *cached_state) {
		state = *cached_state;
1573
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1574
			while ((state = next_state(state)) != NULL) {
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1586
	state = find_first_extent_bit_state(tree, start, bits);
1587
got_it:
1588
	if (state) {
1589
		cache_state_if_flags(state, cached_state, 0);
1590 1591 1592 1593
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1594
out:
1595 1596 1597 1598
	spin_unlock(&tree->lock);
	return ret;
}

1599
/**
1600 1601 1602 1603 1604 1605 1606
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1607 1608 1609 1610 1611 1612 1613 1614 1615
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1616
			       u64 *start_ret, u64 *end_ret, u32 bits)
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1637
/**
1638 1639
 * Find the first range that has @bits not set. This range could start before
 * @start.
1640
 *
1641 1642 1643 1644 1645
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1646 1647 1648 1649 1650 1651 1652
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1653
				 u64 *start_ret, u64 *end_ret, u32 bits)
1654 1655 1656 1657 1658 1659 1660 1661 1662
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1681 1682
			node = next;
		}
1683 1684 1685 1686
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1687
		state = rb_entry(node, struct extent_state, rb_node);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1710
		} else {
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1754 1755 1756 1757
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1758
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1759
 */
J
Josef Bacik 已提交
1760 1761 1762
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1763 1764 1765 1766
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1767
	bool found = false;
1768 1769
	u64 total_bytes = 0;

1770
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1771

1772 1773 1774 1775
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1776
	node = tree_search(tree, cur_start);
1777
	if (!node) {
1778
		*end = (u64)-1;
1779 1780 1781
		goto out;
	}

C
Chris Mason 已提交
1782
	while (1) {
1783
		state = rb_entry(node, struct extent_state, rb_node);
1784 1785
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1786 1787 1788 1789 1790 1791 1792
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1793
		if (!found) {
1794
			*start = state->start;
1795
			*cached_state = state;
1796
			refcount_inc(&state->refs);
1797
		}
1798
		found = true;
1799 1800 1801 1802
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1803
		if (total_bytes >= max_bytes)
1804 1805
			break;
		if (!node)
1806 1807 1808
			break;
	}
out:
1809
	spin_unlock(&tree->lock);
1810 1811 1812
	return found;
}

1813 1814 1815 1816 1817 1818 1819 1820
/*
 * Process one page for __process_pages_contig().
 *
 * Return >0 if we hit @page == @locked_page.
 * Return 0 if we updated the page status.
 * Return -EGAIN if the we need to try again.
 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 */
1821 1822
static int process_one_page(struct btrfs_fs_info *fs_info,
			    struct address_space *mapping,
1823
			    struct page *page, struct page *locked_page,
1824
			    unsigned long page_ops, u64 start, u64 end)
1825
{
1826 1827 1828 1829 1830
	u32 len;

	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
	len = end + 1 - start;

1831
	if (page_ops & PAGE_SET_ORDERED)
1832
		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1833
	if (page_ops & PAGE_SET_ERROR)
1834
		btrfs_page_clamp_set_error(fs_info, page, start, len);
1835
	if (page_ops & PAGE_START_WRITEBACK) {
1836 1837
		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1838 1839
	}
	if (page_ops & PAGE_END_WRITEBACK)
1840
		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1841 1842 1843 1844

	if (page == locked_page)
		return 1;

1845
	if (page_ops & PAGE_LOCK) {
1846 1847 1848 1849 1850
		int ret;

		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
		if (ret)
			return ret;
1851
		if (!PageDirty(page) || page->mapping != mapping) {
1852
			btrfs_page_end_writer_lock(fs_info, page, start, len);
1853 1854 1855 1856
			return -EAGAIN;
		}
	}
	if (page_ops & PAGE_UNLOCK)
1857
		btrfs_page_end_writer_lock(fs_info, page, start, len);
1858 1859 1860
	return 0;
}

1861 1862
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
1863
				  u64 start, u64 end, unsigned long page_ops,
1864 1865
				  u64 *processed_end)
{
1866
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	pgoff_t start_index = start >> PAGE_SHIFT;
	pgoff_t end_index = end >> PAGE_SHIFT;
	pgoff_t index = start_index;
	unsigned long nr_pages = end_index - start_index + 1;
	unsigned long pages_processed = 0;
	struct page *pages[16];
	int err = 0;
	int i;

	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(processed_end && *processed_end == start);
	}

	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
		mapping_set_error(mapping, -EIO);

	while (nr_pages > 0) {
		int found_pages;

		found_pages = find_get_pages_contig(mapping, index,
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
		if (found_pages == 0) {
			/*
			 * Only if we're going to lock these pages, we can find
			 * nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
			err = -EAGAIN;
			goto out;
		}

		for (i = 0; i < found_pages; i++) {
			int process_ret;

1903 1904 1905
			process_ret = process_one_page(fs_info, mapping,
					pages[i], locked_page, page_ops,
					start, end);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
			if (process_ret < 0) {
				for (; i < found_pages; i++)
					put_page(pages[i]);
				err = -EAGAIN;
				goto out;
			}
			put_page(pages[i]);
			pages_processed++;
		}
		nr_pages -= found_pages;
		index += found_pages;
		cond_resched();
	}
out:
	if (err && processed_end) {
		/*
		 * Update @processed_end. I know this is awful since it has
		 * two different return value patterns (inclusive vs exclusive).
		 *
		 * But the exclusive pattern is necessary if @start is 0, or we
		 * underflow and check against processed_end won't work as
		 * expected.
		 */
		if (pages_processed)
			*processed_end = min(end,
			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
		else
			*processed_end = start;
	}
	return err;
}
1937

1938 1939 1940
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1941
{
1942 1943
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1944

1945
	ASSERT(locked_page);
C
Chris Mason 已提交
1946
	if (index == locked_page->index && end_index == index)
1947
		return;
C
Chris Mason 已提交
1948

1949
	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1950
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1951 1952 1953 1954 1955 1956 1957
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1958 1959
	unsigned long index = delalloc_start >> PAGE_SHIFT;
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1960
	u64 processed_end = delalloc_start;
C
Chris Mason 已提交
1961 1962
	int ret;

1963
	ASSERT(locked_page);
C
Chris Mason 已提交
1964 1965 1966
	if (index == locked_page->index && index == end_index)
		return 0;

1967 1968 1969
	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
				     delalloc_end, PAGE_LOCK, &processed_end);
	if (ret == -EAGAIN && processed_end > delalloc_start)
1970
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1971
				      processed_end);
C
Chris Mason 已提交
1972 1973 1974 1975
	return ret;
}

/*
1976 1977
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 * more than @max_bytes.  @Start and @end are used to return the range,
C
Chris Mason 已提交
1978
 *
1979 1980
 * Return: true if we find something
 *         false if nothing was in the tree
C
Chris Mason 已提交
1981
 */
1982
EXPORT_FOR_TESTS
1983
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1984
				    struct page *locked_page, u64 *start,
1985
				    u64 *end)
C
Chris Mason 已提交
1986
{
1987
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1988
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
1989 1990
	u64 delalloc_start;
	u64 delalloc_end;
1991
	bool found;
1992
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
1993 1994 1995 1996 1997 1998 1999
	int ret;
	int loops = 0;

again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
2000 2001
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
C
Chris Mason 已提交
2002
	if (!found || delalloc_end <= *start) {
C
Chris Mason 已提交
2003 2004
		*start = delalloc_start;
		*end = delalloc_end;
2005
		free_extent_state(cached_state);
2006
		return false;
C
Chris Mason 已提交
2007 2008
	}

C
Chris Mason 已提交
2009 2010 2011 2012 2013
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
2014
	if (delalloc_start < *start)
C
Chris Mason 已提交
2015 2016
		delalloc_start = *start;

C
Chris Mason 已提交
2017 2018 2019
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
2020 2021
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
2022

C
Chris Mason 已提交
2023 2024 2025
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
2026
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
2027 2028 2029 2030
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
2031
		free_extent_state(cached_state);
2032
		cached_state = NULL;
C
Chris Mason 已提交
2033
		if (!loops) {
2034
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
2035 2036 2037
			loops = 1;
			goto again;
		} else {
2038
			found = false;
C
Chris Mason 已提交
2039 2040 2041 2042 2043
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
2044
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
2045 2046 2047

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2048
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
2049
	if (!ret) {
2050
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2051
				     &cached_state);
C
Chris Mason 已提交
2052 2053 2054 2055 2056
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
2057
	free_extent_state(cached_state);
C
Chris Mason 已提交
2058 2059 2060 2061 2062 2063
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

2064
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2065
				  struct page *locked_page,
2066
				  u32 clear_bits, unsigned long page_ops)
2067
{
2068
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2069

2070
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2071
			       start, end, page_ops, NULL);
2072 2073
}

C
Chris Mason 已提交
2074 2075 2076 2077 2078
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2079 2080
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2081
		     u32 bits, int contig)
2082 2083 2084 2085 2086
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2087
	u64 last = 0;
2088 2089
	int found = 0;

2090
	if (WARN_ON(search_end <= cur_start))
2091 2092
		return 0;

2093
	spin_lock(&tree->lock);
2094 2095 2096 2097 2098 2099 2100 2101
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2102
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2103
	if (!node)
2104 2105
		goto out;

C
Chris Mason 已提交
2106
	while (1) {
2107 2108 2109
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2110 2111 2112
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2113 2114 2115 2116 2117
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2118
				*start = max(cur_start, state->start);
2119 2120
				found = 1;
			}
2121 2122 2123
			last = state->end;
		} else if (contig && found) {
			break;
2124 2125 2126 2127 2128 2129
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2130
	spin_unlock(&tree->lock);
2131 2132
	return total_bytes;
}
2133

C
Chris Mason 已提交
2134 2135 2136 2137
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2138 2139
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2140 2141 2142 2143 2144
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2145
	spin_lock(&tree->lock);
2146 2147 2148 2149
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2150
	node = tree_search(tree, start);
2151
	if (!node) {
2152 2153 2154 2155 2156 2157 2158 2159
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2160
	state->failrec = failrec;
2161
out:
2162
	spin_unlock(&tree->lock);
2163 2164 2165
	return ret;
}

2166
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2167 2168 2169
{
	struct rb_node *node;
	struct extent_state *state;
2170
	struct io_failure_record *failrec;
2171

2172
	spin_lock(&tree->lock);
2173 2174 2175 2176
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2177
	node = tree_search(tree, start);
2178
	if (!node) {
2179
		failrec = ERR_PTR(-ENOENT);
2180 2181 2182 2183
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2184
		failrec = ERR_PTR(-ENOENT);
2185 2186
		goto out;
	}
2187 2188

	failrec = state->failrec;
2189
out:
2190
	spin_unlock(&tree->lock);
2191
	return failrec;
2192 2193 2194 2195
}

/*
 * searches a range in the state tree for a given mask.
2196
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2197 2198 2199 2200
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2201
		   u32 bits, int filled, struct extent_state *cached)
2202 2203 2204 2205 2206
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2207
	spin_lock(&tree->lock);
2208
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2209
	    cached->end > start)
2210 2211 2212
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2232 2233 2234 2235

		if (state->end == (u64)-1)
			break;

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2246
	spin_unlock(&tree->lock);
2247 2248 2249 2250 2251 2252 2253
	return bitset;
}

/*
 * helper function to set a given page up to date if all the
 * extents in the tree for that page are up to date
 */
2254
static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2255
{
M
Miao Xie 已提交
2256
	u64 start = page_offset(page);
2257
	u64 end = start + PAGE_SIZE - 1;
2258
	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2259 2260 2261
		SetPageUptodate(page);
}

2262 2263 2264
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2265 2266 2267 2268
{
	int ret;
	int err = 0;

2269
	set_state_failrec(failure_tree, rec->start, NULL);
2270 2271
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2272
				EXTENT_LOCKED | EXTENT_DIRTY);
2273 2274 2275
	if (ret)
		err = ret;

2276
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2277
				rec->start + rec->len - 1,
2278
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2279 2280
	if (ret && !err)
		err = ret;
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2291
 * to avoid any synchronization issues, wait for the data after writing, which
2292 2293 2294 2295
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
2296 2297 2298
int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
		      u64 length, u64 logical, struct page *page,
		      unsigned int pg_offset, int mirror_num)
2299 2300 2301 2302 2303 2304 2305 2306
{
	struct bio *bio;
	struct btrfs_device *dev;
	u64 map_length = 0;
	u64 sector;
	struct btrfs_bio *bbio = NULL;
	int ret;

2307
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2308 2309
	BUG_ON(!mirror_num);

2310 2311 2312
	if (btrfs_is_zoned(fs_info))
		return btrfs_repair_one_zone(fs_info, logical);

2313
	bio = btrfs_io_bio_alloc(1);
2314
	bio->bi_iter.bi_size = 0;
2315 2316
	map_length = length;

2317 2318 2319 2320 2321 2322
	/*
	 * Avoid races with device replace and make sure our bbio has devices
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2323
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
				      &map_length, &bbio, 0);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		ASSERT(bbio->mirror_num == 1);
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
				      &map_length, &bbio, mirror_num);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		BUG_ON(mirror_num != bbio->mirror_num);
2347
	}
2348 2349

	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2350
	bio->bi_iter.bi_sector = sector;
2351
	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2352
	btrfs_put_bbio(bbio);
2353 2354
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2355
		btrfs_bio_counter_dec(fs_info);
2356 2357 2358
		bio_put(bio);
		return -EIO;
	}
2359
	bio_set_dev(bio, dev->bdev);
2360
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2361
	bio_add_page(bio, page, length, pg_offset);
2362

2363
	if (btrfsic_submit_bio_wait(bio)) {
2364
		/* try to remap that extent elsewhere? */
2365
		btrfs_bio_counter_dec(fs_info);
2366
		bio_put(bio);
2367
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2368 2369 2370
		return -EIO;
	}

2371 2372
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2373
				  ino, start,
2374
				  rcu_str_deref(dev->name), sector);
2375
	btrfs_bio_counter_dec(fs_info);
2376 2377 2378 2379
	bio_put(bio);
	return 0;
}

2380
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2381
{
2382
	struct btrfs_fs_info *fs_info = eb->fs_info;
2383
	u64 start = eb->start;
2384
	int i, num_pages = num_extent_pages(eb);
2385
	int ret = 0;
2386

2387
	if (sb_rdonly(fs_info->sb))
2388 2389
		return -EROFS;

2390
	for (i = 0; i < num_pages; i++) {
2391
		struct page *p = eb->pages[i];
2392

2393
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2394
					start - page_offset(p), mirror_num);
2395 2396
		if (ret)
			break;
2397
		start += PAGE_SIZE;
2398 2399 2400 2401 2402
	}

	return ret;
}

2403 2404 2405 2406
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2407 2408 2409 2410
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2411 2412 2413 2414 2415 2416 2417 2418
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2419 2420
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2421 2422 2423
	if (!ret)
		return 0;

2424 2425
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2426 2427 2428 2429
		return 0;

	BUG_ON(!failrec->this_mirror);

2430
	if (sb_rdonly(fs_info->sb))
2431
		goto out;
2432

2433 2434
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2435 2436
					    failrec->start,
					    EXTENT_LOCKED);
2437
	spin_unlock(&io_tree->lock);
2438

2439 2440
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2441 2442
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2443
		if (num_copies > 1)  {
2444 2445 2446
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2447 2448 2449 2450
		}
	}

out:
2451
	free_io_failure(failure_tree, io_tree, failrec);
2452

2453
	return 0;
2454 2455
}

2456 2457 2458 2459 2460 2461
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2462
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2463
{
2464
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2481
		failrec = state->failrec;
2482 2483 2484 2485 2486 2487 2488 2489
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2490
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2491
							     u64 start)
2492
{
2493
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2494
	struct io_failure_record *failrec;
2495 2496 2497 2498
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2499
	const u32 sectorsize = fs_info->sectorsize;
2500 2501 2502
	int ret;
	u64 logical;

2503
	failrec = get_state_failrec(failure_tree, start);
2504
	if (!IS_ERR(failrec)) {
2505
		btrfs_debug(fs_info,
2506 2507
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
			failrec->logical, failrec->start, failrec->len);
2508 2509 2510 2511 2512
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2513 2514

		return failrec;
2515
	}
2516

2517 2518 2519
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2520

2521
	failrec->start = start;
2522
	failrec->len = sectorsize;
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	failrec->this_mirror = 0;
	failrec->bio_flags = 0;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
2560
	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2561 2562 2563 2564
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
2565 2566
		ret = set_extent_bits(tree, start, start + sectorsize - 1,
				      EXTENT_DAMAGED);
2567 2568 2569 2570 2571 2572
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2573 2574
}

2575
static bool btrfs_check_repairable(struct inode *inode,
2576 2577
				   struct io_failure_record *failrec,
				   int failed_mirror)
2578
{
2579
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2580 2581
	int num_copies;

2582
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2583 2584 2585 2586 2587 2588
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2589 2590 2591
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2592
		return false;
2593 2594
	}

2595 2596 2597
	/* The failure record should only contain one sector */
	ASSERT(failrec->len == fs_info->sectorsize);

2598
	/*
2599 2600 2601 2602 2603 2604 2605
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
2606
	 */
2607 2608 2609
	failrec->failed_mirror = failed_mirror;
	failrec->this_mirror++;
	if (failrec->this_mirror == failed_mirror)
2610 2611
		failrec->this_mirror++;

2612
	if (failrec->this_mirror > num_copies) {
2613 2614 2615
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2616
		return false;
2617 2618
	}

2619
	return true;
2620 2621
}

2622 2623 2624 2625 2626
int btrfs_repair_one_sector(struct inode *inode,
			    struct bio *failed_bio, u32 bio_offset,
			    struct page *page, unsigned int pgoff,
			    u64 start, int failed_mirror,
			    submit_bio_hook_t *submit_bio_hook)
2627 2628
{
	struct io_failure_record *failrec;
2629
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2630
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2631
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2632
	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2633
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2634 2635
	struct bio *repair_bio;
	struct btrfs_io_bio *repair_io_bio;
2636
	blk_status_t status;
2637

2638 2639
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2640

2641
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2642

2643
	failrec = btrfs_get_io_failure_record(inode, start);
2644
	if (IS_ERR(failrec))
2645
		return PTR_ERR(failrec);
2646

2647 2648

	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2649
		free_io_failure(failure_tree, tree, failrec);
2650
		return -EIO;
2651 2652
	}

2653 2654 2655 2656 2657 2658
	repair_bio = btrfs_io_bio_alloc(1);
	repair_io_bio = btrfs_io_bio(repair_bio);
	repair_bio->bi_opf = REQ_OP_READ;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2659

2660
	if (failed_io_bio->csum) {
2661
		const u32 csum_size = fs_info->csum_size;
2662 2663 2664 2665 2666

		repair_io_bio->csum = repair_io_bio->csum_inline;
		memcpy(repair_io_bio->csum,
		       failed_io_bio->csum + csum_size * icsum, csum_size);
	}
2667

2668 2669 2670
	bio_add_page(repair_bio, page, failrec->len, pgoff);
	repair_io_bio->logical = failrec->start;
	repair_io_bio->iter = repair_bio->bi_iter;
2671

2672
	btrfs_debug(btrfs_sb(inode->i_sb),
2673 2674
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2675

2676 2677
	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
				 failrec->bio_flags);
2678
	if (status) {
2679
		free_io_failure(failure_tree, tree, failrec);
2680
		bio_put(repair_bio);
2681
	}
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
	return blk_status_to_errno(status);
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	if (uptodate) {
		btrfs_page_set_uptodate(fs_info, page, start, len);
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

	if (fs_info->sectorsize == PAGE_SIZE)
		unlock_page(page);
2701
	else
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

static blk_status_t submit_read_repair(struct inode *inode,
				      struct bio *failed_bio, u32 bio_offset,
				      struct page *page, unsigned int pgoff,
				      u64 start, u64 end, int failed_mirror,
				      unsigned int error_bitmap,
				      submit_bio_hook_t *submit_bio_hook)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int error = 0;
	int i;

	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);

	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		struct extent_state *cached = NULL;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

		ret = btrfs_repair_one_sector(inode, failed_bio,
				bio_offset + offset,
				page, pgoff + offset, start + offset,
				failed_mirror, submit_bio_hook);
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
		 * Repair failed, just record the error but still continue.
		 * Or the remaining sectors will not be properly unlocked.
		 */
		if (!error)
			error = ret;
next:
		end_page_read(page, uptodate, start + offset, sectorsize);
		if (uptodate)
			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
					start + offset,
					start + offset + sectorsize - 1,
					&cached, GFP_ATOMIC);
		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
				start + offset,
				start + offset + sectorsize - 1,
				&cached);
	}
	return errno_to_blk_status(error);
2777 2778
}

2779 2780
/* lots and lots of room for performance fixes in the end_bio funcs */

2781
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2782
{
2783
	struct btrfs_inode *inode;
2784
	const bool uptodate = (err == 0);
2785
	int ret = 0;
2786

2787 2788 2789
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2790 2791

	if (!uptodate) {
2792 2793 2794 2795 2796 2797 2798 2799
		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
		u32 len;

		ASSERT(end + 1 - start <= U32_MAX);
		len = end + 1 - start;

		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2800
		ret = err < 0 ? err : -EIO;
2801
		mapping_set_error(page->mapping, ret);
2802 2803 2804
	}
}

2805 2806 2807 2808 2809 2810 2811 2812 2813
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2814
static void end_bio_extent_writepage(struct bio *bio)
2815
{
2816
	int error = blk_status_to_errno(bio->bi_status);
2817
	struct bio_vec *bvec;
2818 2819
	u64 start;
	u64 end;
2820
	struct bvec_iter_all iter_all;
2821
	bool first_bvec = true;
2822

2823
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2824
	bio_for_each_segment_all(bvec, bio, iter_all) {
2825
		struct page *page = bvec->bv_page;
2826 2827
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
		const u32 sectorsize = fs_info->sectorsize;

		/* Our read/write should always be sector aligned. */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page write in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
			btrfs_info(fs_info,
		"incomplete page write with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2842

2843 2844 2845 2846 2847
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2848
		end_extent_writepage(page, error, start, end);
2849 2850

		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2851
	}
2852

2853 2854 2855
	bio_put(bio);
}

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2866
	/* End of the range in @inode */
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2885 2886
{
	struct extent_state *cached = NULL;
2887 2888 2889 2890 2891
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2892

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2927 2928
}

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
	if (fs_info->sectorsize == PAGE_SIZE)
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
/*
 * Find extent buffer for a givne bytenr.
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
	if (fs_info->sectorsize == PAGE_SIZE) {
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

	/* For subpage case, we need to lookup buffer radix tree */
	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       bytenr >> fs_info->sectorsize_bits);
	rcu_read_unlock();
	ASSERT(eb);
	return eb;
}

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2979
static void end_bio_extent_readpage(struct bio *bio)
2980
{
2981
	struct bio_vec *bvec;
2982
	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2983
	struct extent_io_tree *tree, *failure_tree;
2984
	struct processed_extent processed = { 0 };
2985 2986 2987 2988 2989
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
2990
	int mirror;
2991
	int ret;
2992
	struct bvec_iter_all iter_all;
2993

2994
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2995
	bio_for_each_segment_all(bvec, bio, iter_all) {
2996
		bool uptodate = !bio->bi_status;
2997
		struct page *page = bvec->bv_page;
2998
		struct inode *inode = page->mapping->host;
2999
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3000
		const u32 sectorsize = fs_info->sectorsize;
3001
		unsigned int error_bitmap = (unsigned int)-1;
3002 3003 3004
		u64 start;
		u64 end;
		u32 len;
3005

3006 3007
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
3008
			bio->bi_iter.bi_sector, bio->bi_status,
3009
			io_bio->mirror_num);
3010
		tree = &BTRFS_I(inode)->io_tree;
3011
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3012

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
3032
		len = bvec->bv_len;
3033

3034
		mirror = io_bio->mirror_num;
3035
		if (likely(uptodate)) {
3036 3037
			if (is_data_inode(inode)) {
				error_bitmap = btrfs_verify_data_csum(io_bio,
3038
						bio_offset, page, start, end);
3039 3040
				ret = error_bitmap;
			} else {
3041
				ret = btrfs_validate_metadata_buffer(io_bio,
3042
					page, start, end, mirror);
3043
			}
3044
			if (ret)
3045
				uptodate = false;
3046
			else
3047 3048 3049 3050
				clean_io_failure(BTRFS_I(inode)->root->fs_info,
						 failure_tree, tree, start,
						 page,
						 btrfs_ino(BTRFS_I(inode)), 0);
3051
		}
3052

3053 3054 3055
		if (likely(uptodate))
			goto readpage_ok;

3056
		if (is_data_inode(inode)) {
3057
			/*
3058 3059
			 * btrfs_submit_read_repair() will handle all the good
			 * and bad sectors, we just continue to the next bvec.
3060
			 */
3061 3062 3063 3064 3065 3066 3067 3068
			submit_read_repair(inode, bio, bio_offset, page,
					   start - page_offset(page), start,
					   end, mirror, error_bitmap,
					   btrfs_submit_data_bio);

			ASSERT(bio_offset + len > bio_offset);
			bio_offset += len;
			continue;
3069 3070 3071
		} else {
			struct extent_buffer *eb;

3072
			eb = find_extent_buffer_readpage(fs_info, page, start);
3073 3074 3075 3076 3077 3078
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
					       &eb->bflags))
				btree_readahead_hook(eb, -EIO);
3079
		}
3080
readpage_ok:
3081
		if (likely(uptodate)) {
3082
			loff_t i_size = i_size_read(inode);
3083
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3084

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3096
						     offset_in_page(start));
3097 3098 3099 3100

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3101
		}
3102 3103
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3104

3105
		/* Update page status and unlock */
3106
		end_page_read(page, uptodate, start, len);
3107 3108
		endio_readpage_release_extent(&processed, BTRFS_I(inode),
					      start, end, uptodate);
3109
	}
3110 3111
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3112
	btrfs_io_bio_free_csum(io_bio);
3113 3114 3115
	bio_put(bio);
}

3116
/*
3117 3118 3119
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3120
 */
3121
static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3122
{
3123 3124
	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
}
3125

3126
/*
3127 3128 3129
 * The following helpers allocate a bio. As it's backed by a bioset, it'll
 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
 * for the appropriate container_of magic
3130
 */
3131
struct bio *btrfs_bio_alloc(u64 first_byte)
3132 3133 3134
{
	struct bio *bio;

3135
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3136
	bio->bi_iter.bi_sector = first_byte >> 9;
3137
	btrfs_io_bio_init(btrfs_io_bio(bio));
3138 3139 3140
	return bio;
}

3141
struct bio *btrfs_bio_clone(struct bio *bio)
3142
{
3143 3144
	struct btrfs_io_bio *btrfs_bio;
	struct bio *new;
3145

3146
	/* Bio allocation backed by a bioset does not fail */
3147
	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3148
	btrfs_bio = btrfs_io_bio(new);
3149
	btrfs_io_bio_init(btrfs_bio);
3150
	btrfs_bio->iter = bio->bi_iter;
3151 3152
	return new;
}
3153

3154
struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3155
{
3156 3157
	struct bio *bio;

3158
	/* Bio allocation backed by a bioset does not fail */
3159
	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3160
	btrfs_io_bio_init(btrfs_io_bio(bio));
3161
	return bio;
3162 3163
}

3164
struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3165 3166 3167 3168
{
	struct bio *bio;
	struct btrfs_io_bio *btrfs_bio;

3169 3170
	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);

3171
	/* this will never fail when it's backed by a bioset */
3172
	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3173 3174 3175
	ASSERT(bio);

	btrfs_bio = btrfs_io_bio(bio);
3176
	btrfs_io_bio_init(btrfs_bio);
3177 3178

	bio_trim(bio, offset >> 9, size >> 9);
3179
	btrfs_bio->iter = bio->bi_iter;
3180 3181
	return bio;
}
3182

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
/**
 * Attempt to add a page to bio
 *
 * @bio:	destination bio
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @pg_offset:	starting offset in the page
 * @size:	portion of page that we want to write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
3197 3198 3199
 * Return >= 0 for the number of bytes added to the bio.
 * Can return 0 if the current bio is already at stripe/zone boundary.
 * Return <0 for error.
3200
 */
3201 3202 3203 3204 3205
static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			      struct page *page,
			      u64 disk_bytenr, unsigned int size,
			      unsigned int pg_offset,
			      unsigned long bio_flags)
3206
{
3207 3208
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
3209
	u32 real_size;
3210 3211
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3212
	int ret;
3213

3214 3215 3216 3217
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
	if (bio_ctrl->bio_flags != bio_flags)
3218
		return 0;
3219

3220
	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3221 3222 3223 3224
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
3225
		return 0;
3226

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
	real_size = min(bio_ctrl->len_to_oe_boundary,
			bio_ctrl->len_to_stripe_boundary) - bio_size;
	real_size = min(real_size, size);

	/*
	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
	 * bio will still execute its endio function on the page!
	 */
	if (real_size == 0)
		return 0;
3237

3238
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3239
		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3240
	else
3241
		ret = bio_add_page(bio, page, real_size, pg_offset);
3242

3243
	return ret;
3244 3245
}

3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
			       struct btrfs_inode *inode)
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

	if (!btrfs_is_zoned(fs_info) ||
	    bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	/* Ordered extent not yet created, so we're good */
	ordered = btrfs_lookup_ordered_extent(inode, logical);
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
static int alloc_new_bio(struct btrfs_inode *inode,
			 struct btrfs_bio_ctrl *bio_ctrl,
			 struct writeback_control *wbc,
			 unsigned int opf,
			 bio_end_io_t end_io_func,
			 u64 disk_bytenr, u32 offset,
			 unsigned long bio_flags)
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct bio *bio;
	int ret;

	/*
	 * For compressed page range, its disk_bytenr is always @disk_bytenr
	 * passed in, no matter if we have added any range into previous bio.
	 */
	if (bio_flags & EXTENT_BIO_COMPRESSED)
		bio = btrfs_bio_alloc(disk_bytenr);
	else
		bio = btrfs_bio_alloc(disk_bytenr + offset);
	bio_ctrl->bio = bio;
	bio_ctrl->bio_flags = bio_flags;
	ret = calc_bio_boundaries(bio_ctrl, inode);
	if (ret < 0)
		goto error;
	bio->bi_end_io = end_io_func;
	bio->bi_private = &inode->io_tree;
	bio->bi_write_hint = inode->vfs_inode.i_write_hint;
	bio->bi_opf = opf;
	if (wbc) {
		struct block_device *bdev;

		bdev = fs_info->fs_devices->latest_bdev;
		bio_set_dev(bio, bdev);
		wbc_init_bio(wbc, bio);
	}
	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
		struct btrfs_device *device;

		device = btrfs_zoned_get_device(fs_info, disk_bytenr,
						fs_info->sectorsize);
		if (IS_ERR(device)) {
			ret = PTR_ERR(device);
			goto error;
		}

		btrfs_io_bio(bio)->device = device;
	}
	return 0;
error:
	bio_ctrl->bio = NULL;
	bio->bi_status = errno_to_blk_status(ret);
	bio_endio(bio);
	return ret;
}

3357 3358
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3359 3360
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3361 3362
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3363 3364
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3365
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3366 3367 3368 3369
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
3370
 */
3371
static int submit_extent_page(unsigned int opf,
3372
			      struct writeback_control *wbc,
3373
			      struct btrfs_bio_ctrl *bio_ctrl,
3374
			      struct page *page, u64 disk_bytenr,
3375
			      size_t size, unsigned long pg_offset,
3376
			      bio_end_io_t end_io_func,
C
Chris Mason 已提交
3377
			      int mirror_num,
3378 3379
			      unsigned long bio_flags,
			      bool force_bio_submit)
3380 3381
{
	int ret = 0;
3382
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3383
	unsigned int cur = pg_offset;
3384

3385
	ASSERT(bio_ctrl);
3386

3387 3388
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
	if (force_bio_submit && bio_ctrl->bio) {
		ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
		bio_ctrl->bio = NULL;
		if (ret < 0)
			return ret;
	}

	while (cur < pg_offset + size) {
		u32 offset = cur - pg_offset;
		int added;

		/* Allocate new bio if needed */
		if (!bio_ctrl->bio) {
			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
					    end_io_func, disk_bytenr, offset,
					    bio_flags);
			if (ret < 0)
				return ret;
		}
		/*
		 * We must go through btrfs_bio_add_page() to ensure each
		 * page range won't cross various boundaries.
		 */
		if (bio_flags & EXTENT_BIO_COMPRESSED)
			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
					size - offset, pg_offset + offset,
					bio_flags);
		else
			added = btrfs_bio_add_page(bio_ctrl, page,
					disk_bytenr + offset, size - offset,
					pg_offset + offset, bio_flags);

		/* Metadata page range should never be split */
		if (!is_data_inode(&inode->vfs_inode))
			ASSERT(added == 0 || added == size - offset);

		/* At least we added some page, update the account */
		if (wbc && added)
			wbc_account_cgroup_owner(wbc, page, added);

		/* We have reached boundary, submit right now */
		if (added < size - offset) {
			/* The bio should contain some page(s) */
			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
			ret = submit_one_bio(bio_ctrl->bio, mirror_num,
					bio_ctrl->bio_flags);
3435 3436
			bio_ctrl->bio = NULL;
			if (ret < 0)
3437
				return ret;
3438
		}
3439
		cur += added;
3440
	}
3441
	return 0;
3442 3443
}

3444 3445 3446
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3447
{
3448 3449 3450
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3451 3452 3453 3454 3455 3456 3457 3458 3459
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
	if (fs_info->sectorsize == PAGE_SIZE) {
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3477
	else
3478 3479 3480 3481
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3482 3483
}

3484
int set_page_extent_mapped(struct page *page)
3485
{
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3508
	if (!PagePrivate(page))
3509 3510 3511 3512 3513 3514 3515
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3516 3517
}

3518 3519
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3520
		 u64 start, u64 len, struct extent_map **em_cached)
3521 3522 3523 3524 3525
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3526
		if (extent_map_in_tree(em) && start >= em->start &&
3527
		    start < extent_map_end(em)) {
3528
			refcount_inc(&em->refs);
3529 3530 3531 3532 3533 3534 3535
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3536
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3537 3538
	if (em_cached && !IS_ERR_OR_NULL(em)) {
		BUG_ON(*em_cached);
3539
		refcount_inc(&em->refs);
3540 3541 3542 3543
		*em_cached = em;
	}
	return em;
}
3544 3545 3546 3547
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3548
 * XXX JDM: This needs looking at to ensure proper page locking
3549
 * return 0 on success, otherwise return error
3550
 */
3551
int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3552
		      struct btrfs_bio_ctrl *bio_ctrl,
3553
		      unsigned int read_flags, u64 *prev_em_start)
3554 3555
{
	struct inode *inode = page->mapping->host;
3556
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3557
	u64 start = page_offset(page);
3558
	const u64 end = start + PAGE_SIZE - 1;
3559 3560 3561 3562 3563 3564
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3565
	int ret = 0;
3566
	int nr = 0;
3567
	size_t pg_offset = 0;
3568 3569
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3570
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3571

3572 3573 3574
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3575 3576
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3577 3578
		goto out;
	}
3579

D
Dan Magenheimer 已提交
3580 3581 3582
	if (!PageUptodate(page)) {
		if (cleancache_get_page(page) == 0) {
			BUG_ON(blocksize != PAGE_SIZE);
3583
			unlock_extent(tree, start, end);
3584
			unlock_page(page);
D
Dan Magenheimer 已提交
3585 3586 3587 3588
			goto out;
		}
	}

3589
	if (page->index == last_byte >> PAGE_SHIFT) {
3590
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3591 3592

		if (zero_offset) {
3593
			iosize = PAGE_SIZE - zero_offset;
3594
			memzero_page(page, zero_offset, iosize);
C
Chris Mason 已提交
3595 3596 3597
			flush_dcache_page(page);
		}
	}
3598
	begin_page_read(fs_info, page);
3599
	while (cur <= end) {
3600
		unsigned long this_bio_flag = 0;
3601
		bool force_bio_submit = false;
3602
		u64 disk_bytenr;
3603

3604
		if (cur >= last_byte) {
3605 3606
			struct extent_state *cached = NULL;

3607
			iosize = PAGE_SIZE - pg_offset;
3608
			memzero_page(page, pg_offset, iosize);
3609 3610
			flush_dcache_page(page);
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3611
					    &cached, GFP_NOFS);
3612
			unlock_extent_cached(tree, cur,
3613
					     cur + iosize - 1, &cached);
3614
			end_page_read(page, true, cur, iosize);
3615 3616
			break;
		}
3617
		em = __get_extent_map(inode, page, pg_offset, cur,
3618
				      end - cur + 1, em_cached);
3619
		if (IS_ERR_OR_NULL(em)) {
3620
			unlock_extent(tree, cur, end);
3621
			end_page_read(page, false, cur, end + 1 - cur);
3622 3623 3624 3625 3626 3627
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3628
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3629
			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3630 3631 3632
			extent_set_compress_type(&this_bio_flag,
						 em->compress_type);
		}
C
Chris Mason 已提交
3633

3634 3635
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3636
		iosize = ALIGN(iosize, blocksize);
3637
		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3638
			disk_bytenr = em->block_start;
3639
		else
3640
			disk_bytenr = em->block_start + extent_offset;
3641
		block_start = em->block_start;
Y
Yan Zheng 已提交
3642 3643
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3644 3645 3646

		/*
		 * If we have a file range that points to a compressed extent
3647
		 * and it's followed by a consecutive file range that points
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3681
		    *prev_em_start != em->start)
3682 3683 3684
			force_bio_submit = true;

		if (prev_em_start)
3685
			*prev_em_start = em->start;
3686

3687 3688 3689 3690 3691
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3692 3693
			struct extent_state *cached = NULL;

3694
			memzero_page(page, pg_offset, iosize);
3695 3696 3697
			flush_dcache_page(page);

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3698
					    &cached, GFP_NOFS);
3699
			unlock_extent_cached(tree, cur,
3700
					     cur + iosize - 1, &cached);
3701
			end_page_read(page, true, cur, iosize);
3702
			cur = cur + iosize;
3703
			pg_offset += iosize;
3704 3705 3706
			continue;
		}
		/* the get_extent function already copied into the page */
3707 3708
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3709
			check_page_uptodate(tree, page);
3710
			unlock_extent(tree, cur, cur + iosize - 1);
3711
			end_page_read(page, true, cur, iosize);
3712
			cur = cur + iosize;
3713
			pg_offset += iosize;
3714 3715
			continue;
		}
3716 3717 3718 3719
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3720
			unlock_extent(tree, cur, cur + iosize - 1);
3721
			end_page_read(page, false, cur, iosize);
3722
			cur = cur + iosize;
3723
			pg_offset += iosize;
3724 3725
			continue;
		}
3726

3727
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3728 3729
					 bio_ctrl, page, disk_bytenr, iosize,
					 pg_offset,
3730
					 end_bio_extent_readpage, 0,
3731 3732
					 this_bio_flag,
					 force_bio_submit);
3733 3734 3735
		if (!ret) {
			nr++;
		} else {
3736
			unlock_extent(tree, cur, cur + iosize - 1);
3737
			end_page_read(page, false, cur, iosize);
3738
			goto out;
3739
		}
3740
		cur = cur + iosize;
3741
		pg_offset += iosize;
3742
	}
D
Dan Magenheimer 已提交
3743
out:
3744
	return ret;
3745 3746
}

3747
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3748 3749 3750 3751
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3752
{
3753
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3754 3755
	int index;

3756
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3757 3758

	for (index = 0; index < nr_pages; index++) {
3759
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3760
				  REQ_RAHEAD, prev_em_start);
3761
		put_page(pages[index]);
3762 3763 3764
	}
}

3765
static void update_nr_written(struct writeback_control *wbc,
3766
			      unsigned long nr_written)
3767 3768 3769 3770
{
	wbc->nr_to_write -= nr_written;
}

3771
/*
3772 3773
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3774
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3775 3776 3777 3778 3779
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3780
 */
3781
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3782 3783
		struct page *page, struct writeback_control *wbc,
		u64 delalloc_start, unsigned long *nr_written)
3784
{
3785
	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3786
	bool found;
3787 3788 3789 3790 3791 3792 3793
	u64 delalloc_to_write = 0;
	u64 delalloc_end = 0;
	int ret;
	int page_started = 0;


	while (delalloc_end < page_end) {
3794
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3795
					       &delalloc_start,
3796
					       &delalloc_end);
3797
		if (!found) {
3798 3799 3800
			delalloc_start = delalloc_end + 1;
			continue;
		}
3801
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3802
				delalloc_end, &page_started, nr_written, wbc);
3803
		if (ret) {
3804 3805
			btrfs_page_set_error(inode->root->fs_info, page,
					     page_offset(page), PAGE_SIZE);
3806
			return ret;
3807 3808
		}
		/*
3809 3810
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3811 3812
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3813
				      PAGE_SIZE) >> PAGE_SHIFT;
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

	/* did the fill delalloc function already unlock and start
	 * the IO?
	 */
	if (page_started) {
		/*
		 * we've unlocked the page, so we can't update
		 * the mapping's writeback index, just update
		 * nr_to_write.
		 */
		wbc->nr_to_write -= *nr_written;
		return 1;
	}

3838
	return 0;
3839 3840
}

3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
/*
 * Find the first byte we need to write.
 *
 * For subpage, one page can contain several sectors, and
 * __extent_writepage_io() will just grab all extent maps in the page
 * range and try to submit all non-inline/non-compressed extents.
 *
 * This is a big problem for subpage, we shouldn't re-submit already written
 * data at all.
 * This function will lookup subpage dirty bit to find which range we really
 * need to submit.
 *
 * Return the next dirty range in [@start, @end).
 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
 */
static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
				 struct page *page, u64 *start, u64 *end)
{
	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
	u64 orig_start = *start;
	/* Declare as unsigned long so we can use bitmap ops */
	unsigned long dirty_bitmap;
	unsigned long flags;
	int nbits = (orig_start - page_offset(page)) >> fs_info->sectorsize_bits;
	int range_start_bit = nbits;
	int range_end_bit;

	/*
	 * For regular sector size == page size case, since one page only
	 * contains one sector, we return the page offset directly.
	 */
	if (fs_info->sectorsize == PAGE_SIZE) {
		*start = page_offset(page);
		*end = page_offset(page) + PAGE_SIZE;
		return;
	}

	/* We should have the page locked, but just in case */
	spin_lock_irqsave(&subpage->lock, flags);
	dirty_bitmap = subpage->dirty_bitmap;
	spin_unlock_irqrestore(&subpage->lock, flags);

	bitmap_next_set_region(&dirty_bitmap, &range_start_bit, &range_end_bit,
			       BTRFS_SUBPAGE_BITMAP_SIZE);
	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
}

3889 3890 3891 3892 3893 3894 3895 3896
/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3897
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3898 3899 3900 3901 3902
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
				 unsigned long nr_written,
3903
				 int *nr_ret)
3904
{
3905
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3906 3907
	u64 cur = page_offset(page);
	u64 end = cur + PAGE_SIZE - 1;
3908 3909 3910
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3911 3912
	int ret = 0;
	int nr = 0;
3913
	u32 opf = REQ_OP_WRITE;
3914
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3915
	bool compressed;
C
Chris Mason 已提交
3916

3917
	ret = btrfs_writepage_cow_fixup(page);
3918 3919
	if (ret) {
		/* Fixup worker will requeue */
3920
		redirty_page_for_writepage(wbc, page);
3921 3922 3923
		update_nr_written(wbc, nr_written);
		unlock_page(page);
		return 1;
3924 3925
	}

3926 3927 3928 3929
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3930
	update_nr_written(wbc, nr_written + 1);
3931

3932
	while (cur <= end) {
3933
		u64 disk_bytenr;
3934
		u64 em_end;
3935 3936
		u64 dirty_range_start = cur;
		u64 dirty_range_end;
3937
		u32 iosize;
3938

3939
		if (cur >= i_size) {
3940
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3941
							     end, true);
3942 3943 3944 3945 3946 3947 3948 3949 3950
			/*
			 * This range is beyond i_size, thus we don't need to
			 * bother writing back.
			 * But we still need to clear the dirty subpage bit, or
			 * the next time the page gets dirtied, we will try to
			 * writeback the sectors with subpage dirty bits,
			 * causing writeback without ordered extent.
			 */
			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
3951 3952
			break;
		}
3953 3954 3955 3956 3957 3958 3959 3960

		find_next_dirty_byte(fs_info, page, &dirty_range_start,
				     &dirty_range_end);
		if (cur < dirty_range_start) {
			cur = dirty_range_start;
			continue;
		}

3961
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3962
		if (IS_ERR_OR_NULL(em)) {
3963
			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3964
			ret = PTR_ERR_OR_ZERO(em);
3965 3966 3967 3968
			break;
		}

		extent_offset = cur - em->start;
3969
		em_end = extent_map_end(em);
3970 3971 3972 3973
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3974
		block_start = em->block_start;
C
Chris Mason 已提交
3975
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3976 3977
		disk_bytenr = em->block_start + extent_offset;

3978 3979 3980 3981 3982
		/*
		 * Note that em_end from extent_map_end() and dirty_range_end from
		 * find_next_dirty_byte() are all exclusive
		 */
		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3983

3984
		if (btrfs_use_zone_append(inode, em->block_start))
3985 3986
			opf = REQ_OP_ZONE_APPEND;

3987 3988 3989
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
3990 3991 3992 3993 3994
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
3995
		    block_start == EXTENT_MAP_INLINE) {
3996
			if (compressed)
C
Chris Mason 已提交
3997
				nr++;
3998
			else
3999
				btrfs_writepage_endio_finish_ordered(inode,
4000
						page, cur, cur + iosize - 1, true);
4001
			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
C
Chris Mason 已提交
4002
			cur += iosize;
4003 4004
			continue;
		}
C
Chris Mason 已提交
4005

4006
		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4007
		if (!PageWriteback(page)) {
4008
			btrfs_err(inode->root->fs_info,
4009 4010
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
4011
		}
4012

4013 4014 4015 4016 4017 4018 4019 4020
		/*
		 * Although the PageDirty bit is cleared before entering this
		 * function, subpage dirty bit is not cleared.
		 * So clear subpage dirty bit here so next time we won't submit
		 * page for range already written to disk.
		 */
		btrfs_page_clear_dirty(fs_info, page, cur, iosize);

4021 4022
		ret = submit_extent_page(opf | write_flags, wbc,
					 &epd->bio_ctrl, page,
4023
					 disk_bytenr, iosize,
4024
					 cur - page_offset(page),
4025
					 end_bio_extent_writepage,
4026
					 0, 0, false);
4027
		if (ret) {
4028
			btrfs_page_set_error(fs_info, page, cur, iosize);
4029
			if (PageWriteback(page))
4030 4031
				btrfs_page_clear_writeback(fs_info, page, cur,
							   iosize);
4032
		}
4033

4034
		cur += iosize;
4035 4036
		nr++;
	}
4037 4038 4039 4040 4041 4042
	/*
	 * If we finish without problem, we should not only clear page dirty,
	 * but also empty subpage dirty bits
	 */
	if (!ret)
		btrfs_page_assert_not_dirty(fs_info, page);
4043 4044 4045 4046 4047 4048 4049 4050 4051
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
4052 4053 4054
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
4055 4056
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4057
			      struct extent_page_data *epd)
4058 4059 4060
{
	struct inode *inode = page->mapping->host;
	u64 start = page_offset(page);
4061
	u64 page_end = start + PAGE_SIZE - 1;
4062 4063
	int ret;
	int nr = 0;
4064
	size_t pg_offset;
4065
	loff_t i_size = i_size_read(inode);
4066
	unsigned long end_index = i_size >> PAGE_SHIFT;
4067 4068 4069 4070 4071 4072
	unsigned long nr_written = 0;

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

4073 4074
	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
			       page_offset(page), PAGE_SIZE);
4075

4076
	pg_offset = offset_in_page(i_size);
4077 4078
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
4079
		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
4080 4081 4082 4083 4084
		unlock_page(page);
		return 0;
	}

	if (page->index == end_index) {
4085
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4086 4087 4088
		flush_dcache_page(page);
	}

4089 4090 4091 4092 4093
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
4094

4095
	if (!epd->extent_locked) {
4096 4097
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
					 &nr_written);
4098
		if (ret == 1)
4099
			return 0;
4100 4101 4102
		if (ret)
			goto done;
	}
4103

4104 4105
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
				    nr_written, &nr);
4106
	if (ret == 1)
4107
		return 0;
4108

4109 4110 4111 4112 4113 4114
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
	/*
	 * Here we used to have a check for PageError() and then set @ret and
	 * call end_extent_writepage().
	 *
	 * But in fact setting @ret here will cause different error paths
	 * between subpage and regular sectorsize.
	 *
	 * For regular page size, we never submit current page, but only add
	 * current page to current bio.
	 * The bio submission can only happen in next page.
	 * Thus if we hit the PageError() branch, @ret is already set to
	 * non-zero value and will not get updated for regular sectorsize.
	 *
	 * But for subpage case, it's possible we submit part of current page,
	 * thus can get PageError() set by submitted bio of the same page,
	 * while our @ret is still 0.
	 *
	 * So here we unify the behavior and don't set @ret.
	 * Error can still be properly passed to higher layer as page will
	 * be set error, here we just don't handle the IO failure.
	 *
	 * NOTE: This is just a hotfix for subpage.
	 * The root fix will be properly ending ordered extent when we hit
	 * an error during writeback.
	 *
	 * But that needs a bigger refactoring, as we not only need to grab the
	 * submitted OE, but also need to know exactly at which bytenr we hit
	 * the error.
	 * Currently the full page based __extent_writepage_io() is not
	 * capable of that.
	 */
	if (PageError(page))
4147
		end_extent_writepage(page, ret, start, page_end);
4148
	unlock_page(page);
4149
	ASSERT(ret <= 0);
4150
	return ret;
4151 4152
}

4153
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4154
{
4155 4156
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
4157 4158
}

4159 4160 4161 4162 4163 4164 4165
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

4166
/*
4167
 * Lock extent buffer status and pages for writeback.
4168
 *
4169 4170 4171 4172 4173 4174
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
4175
 */
4176
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4177
			  struct extent_page_data *epd)
4178
{
4179
	struct btrfs_fs_info *fs_info = eb->fs_info;
4180
	int i, num_pages, failed_page_nr;
4181 4182 4183 4184
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
4185
		ret = flush_write_bio(epd);
4186 4187 4188
		if (ret < 0)
			return ret;
		flush = 1;
4189 4190 4191 4192 4193 4194 4195 4196
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
4197
			ret = flush_write_bio(epd);
4198 4199
			if (ret < 0)
				return ret;
4200 4201
			flush = 1;
		}
C
Chris Mason 已提交
4202 4203 4204 4205 4206
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
4207 4208 4209 4210
			btrfs_tree_unlock(eb);
		}
	}

4211 4212 4213 4214 4215 4216
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4217 4218
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4219
		spin_unlock(&eb->refs_lock);
4220
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4221 4222 4223
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4224
		ret = 1;
4225 4226
	} else {
		spin_unlock(&eb->refs_lock);
4227 4228 4229 4230
	}

	btrfs_tree_unlock(eb);

4231 4232 4233 4234 4235 4236 4237
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
	if (!ret || fs_info->sectorsize < PAGE_SIZE)
4238 4239
		return ret;

4240
	num_pages = num_extent_pages(eb);
4241
	for (i = 0; i < num_pages; i++) {
4242
		struct page *p = eb->pages[i];
4243 4244 4245

		if (!trylock_page(p)) {
			if (!flush) {
4246 4247 4248 4249 4250
				int err;

				err = flush_write_bio(epd);
				if (err < 0) {
					ret = err;
4251 4252 4253
					failed_page_nr = i;
					goto err_unlock;
				}
4254 4255 4256 4257 4258 4259 4260
				flush = 1;
			}
			lock_page(p);
		}
	}

	return ret;
4261 4262 4263 4264
err_unlock:
	/* Unlock already locked pages */
	for (i = 0; i < failed_page_nr; i++)
		unlock_page(eb->pages[i]);
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
	/*
	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
	 * be made and undo everything done before.
	 */
	btrfs_tree_lock(eb);
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
	end_extent_buffer_writeback(eb);
	spin_unlock(&eb->refs_lock);
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
				 fs_info->dirty_metadata_batch);
	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
	btrfs_tree_unlock(eb);
4279
	return ret;
4280 4281
}

4282
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4283
{
4284
	struct btrfs_fs_info *fs_info = eb->fs_info;
4285

4286
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4287 4288 4289
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4290 4291 4292 4293 4294 4295 4296
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4337
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4338 4339
		break;
	case 0:
4340
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4341 4342
		break;
	case 1:
4343
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4344 4345 4346 4347 4348 4349
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       start >> fs_info->sectorsize_bits);
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4376
static void end_bio_subpage_eb_writepage(struct bio *bio)
4377
{
4378
	struct btrfs_fs_info *fs_info;
4379 4380 4381
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4382 4383 4384
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
	ASSERT(fs_info->sectorsize < PAGE_SIZE);

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4433
static void end_bio_extent_buffer_writepage(struct bio *bio)
4434
{
4435
	struct bio_vec *bvec;
4436
	struct extent_buffer *eb;
4437
	int done;
4438
	struct bvec_iter_all iter_all;
4439

4440
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4441
	bio_for_each_segment_all(bvec, bio, iter_all) {
4442 4443 4444 4445 4446 4447
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4448
		if (bio->bi_status ||
4449
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4450
			ClearPageUptodate(page);
4451
			set_btree_ioerr(page, eb);
4452 4453 4454 4455 4456 4457 4458 4459
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4460
	}
4461 4462 4463 4464

	bio_put(bio);
}

4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
	bool no_dirty_ebs = false;
	int ret;

4504 4505
	prepare_eb_write(eb);

4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4516 4517 4518
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4519
			end_bio_subpage_eb_writepage, 0, 0, false);
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
		update_nr_written(wbc, 1);
	return ret;
}

4539
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4540 4541 4542
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4543
	u64 disk_bytenr = eb->start;
4544
	int i, num_pages;
4545
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4546
	int ret = 0;
4547

4548
	prepare_eb_write(eb);
4549

4550
	num_pages = num_extent_pages(eb);
4551
	for (i = 0; i < num_pages; i++) {
4552
		struct page *p = eb->pages[i];
4553 4554 4555

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4556
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4557 4558
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4559
					 end_bio_extent_buffer_writepage,
4560
					 0, 0, false);
4561
		if (ret) {
4562
			set_btree_ioerr(p, eb);
4563 4564
			if (PageWriteback(p))
				end_page_writeback(p);
4565 4566 4567 4568 4569
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4570
		disk_bytenr += PAGE_SIZE;
4571
		update_nr_written(wbc, 1);
4572 4573 4574 4575 4576
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4577
			struct page *p = eb->pages[i];
4578
			clear_page_dirty_for_io(p);
4579 4580 4581 4582 4583 4584 4585
			unlock_page(p);
		}
	}

	return ret;
}

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
	while (bit_start < nbits) {
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
		if (!((1 << bit_start) & subpage->dirty_bitmap)) {
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4664
		ret = write_one_subpage_eb(eb, wbc, epd);
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
	end_write_bio(epd, ret);
	return ret;
}

4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4703
	struct btrfs_block_group *cache = NULL;
4704 4705 4706 4707 4708 4709
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4710 4711 4712
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return submit_eb_subpage(page, wbc, epd);

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4752 4753 4754 4755
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4756 4757 4758
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4759 4760 4761
		free_extent_buffer(eb);
		return ret;
	}
4762 4763
	if (cache)
		btrfs_put_block_group(cache);
4764 4765 4766 4767 4768 4769 4770
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4771 4772 4773
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4774
	struct extent_buffer *eb_context = NULL;
4775
	struct extent_page_data epd = {
4776
		.bio_ctrl = { 0 },
4777 4778 4779
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4780
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4781 4782 4783 4784 4785 4786 4787 4788
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4789
	xa_mark_t tag;
4790

4791
	pagevec_init(&pvec);
4792 4793 4794
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4795 4796 4797 4798 4799
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4800
	} else {
4801 4802
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4803 4804 4805 4806 4807 4808
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4809
	btrfs_zoned_meta_io_lock(fs_info);
4810 4811 4812 4813
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4814
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4815
			tag))) {
4816 4817 4818 4819 4820
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4821 4822
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4823
				continue;
4824
			if (ret < 0) {
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4848 4849
	if (ret < 0) {
		end_write_bio(&epd, ret);
4850
		goto out;
4851
	}
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
	 */
	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
		ret = flush_write_bio(&epd);
	} else {
4882
		ret = -EROFS;
4883 4884
		end_write_bio(&epd, ret);
	}
4885 4886
out:
	btrfs_zoned_meta_io_unlock(fs_info);
4887 4888 4889
	return ret;
}

4890
/**
4891 4892
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4893
 * @mapping: address space structure to write
4894 4895
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4896 4897 4898 4899 4900 4901 4902 4903 4904
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4905
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4906
			     struct writeback_control *wbc,
4907
			     struct extent_page_data *epd)
4908
{
4909
	struct inode *inode = mapping->host;
4910 4911
	int ret = 0;
	int done = 0;
4912
	int nr_to_write_done = 0;
4913 4914 4915 4916
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4917 4918
	pgoff_t done_index;
	int range_whole = 0;
4919
	int scanned = 0;
M
Matthew Wilcox 已提交
4920
	xa_mark_t tag;
4921

4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4934
	pagevec_init(&pvec);
4935 4936 4937
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4938 4939 4940 4941 4942
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4943
	} else {
4944 4945
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4946 4947
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4948 4949
		scanned = 1;
	}
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4964 4965 4966
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4967
retry:
4968
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4969
		tag_pages_for_writeback(mapping, index, end);
4970
	done_index = index;
4971
	while (!done && !nr_to_write_done && (index <= end) &&
4972 4973
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
4974 4975 4976 4977 4978
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4979
			done_index = page->index + 1;
4980
			/*
M
Matthew Wilcox 已提交
4981 4982 4983 4984 4985
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
4986
			 */
4987
			if (!trylock_page(page)) {
4988 4989
				ret = flush_write_bio(epd);
				BUG_ON(ret < 0);
4990
				lock_page(page);
4991
			}
4992 4993 4994 4995 4996 4997

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
4998
			if (wbc->sync_mode != WB_SYNC_NONE) {
4999 5000 5001 5002
				if (PageWriteback(page)) {
					ret = flush_write_bio(epd);
					BUG_ON(ret < 0);
				}
5003
				wait_on_page_writeback(page);
C
Chris Mason 已提交
5004
			}
5005 5006 5007 5008 5009 5010 5011

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

5012
			ret = __extent_writepage(page, wbc, epd);
5013 5014 5015 5016
			if (ret < 0) {
				done = 1;
				break;
			}
5017 5018 5019 5020 5021 5022 5023

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
5024 5025 5026 5027
		}
		pagevec_release(&pvec);
		cond_resched();
	}
5028
	if (!scanned && !done) {
5029 5030 5031 5032 5033 5034
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
		ret = flush_write_bio(epd);
		if (!ret)
			goto retry;
5045
	}
5046 5047 5048 5049

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

5050
	btrfs_add_delayed_iput(inode);
5051
	return ret;
5052 5053
}

5054
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
5055 5056 5057
{
	int ret;
	struct extent_page_data epd = {
5058
		.bio_ctrl = { 0 },
5059
		.extent_locked = 0,
5060
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5061 5062 5063
	};

	ret = __extent_writepage(page, wbc, &epd);
5064 5065 5066 5067 5068
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
5069

5070 5071
	ret = flush_write_bio(&epd);
	ASSERT(ret <= 0);
5072 5073 5074
	return ret;
}

5075
int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
5076 5077 5078 5079 5080
			      int mode)
{
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
5081 5082
	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
		PAGE_SHIFT;
5083 5084

	struct extent_page_data epd = {
5085
		.bio_ctrl = { 0 },
5086
		.extent_locked = 1,
5087
		.sync_io = mode == WB_SYNC_ALL,
5088 5089 5090 5091 5092 5093
	};
	struct writeback_control wbc_writepages = {
		.sync_mode	= mode,
		.nr_to_write	= nr_pages * 2,
		.range_start	= start,
		.range_end	= end + 1,
5094 5095 5096
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
5097 5098
	};

5099
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
C
Chris Mason 已提交
5100
	while (start <= end) {
5101
		page = find_get_page(mapping, start >> PAGE_SHIFT);
5102 5103 5104
		if (clear_page_dirty_for_io(page))
			ret = __extent_writepage(page, &wbc_writepages, &epd);
		else {
5105
			btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
5106
					page, start, start + PAGE_SIZE - 1, true);
5107 5108
			unlock_page(page);
		}
5109 5110
		put_page(page);
		start += PAGE_SIZE;
5111 5112
	}

5113
	ASSERT(ret <= 0);
5114 5115 5116
	if (ret == 0)
		ret = flush_write_bio(&epd);
	else
5117
		end_write_bio(&epd, ret);
5118 5119

	wbc_detach_inode(&wbc_writepages);
5120 5121
	return ret;
}
5122

5123
int extent_writepages(struct address_space *mapping,
5124 5125 5126 5127
		      struct writeback_control *wbc)
{
	int ret = 0;
	struct extent_page_data epd = {
5128
		.bio_ctrl = { 0 },
5129
		.extent_locked = 0,
5130
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5131 5132
	};

5133
	ret = extent_write_cache_pages(mapping, wbc, &epd);
5134 5135 5136 5137 5138 5139
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
	ret = flush_write_bio(&epd);
5140 5141 5142
	return ret;
}

5143
void extent_readahead(struct readahead_control *rac)
5144
{
5145
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
L
Liu Bo 已提交
5146
	struct page *pagepool[16];
5147
	struct extent_map *em_cached = NULL;
5148
	u64 prev_em_start = (u64)-1;
5149
	int nr;
5150

5151
	while ((nr = readahead_page_batch(rac, pagepool))) {
5152 5153
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5154

5155
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5156
				&em_cached, &bio_ctrl, &prev_em_start);
5157
	}
L
Liu Bo 已提交
5158

5159 5160 5161
	if (em_cached)
		free_extent_map(em_cached);

5162 5163
	if (bio_ctrl.bio) {
		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5164 5165
			return;
	}
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
}

/*
 * basic invalidatepage code, this waits on any locked or writeback
 * ranges corresponding to the page, and then deletes any extent state
 * records from the tree
 */
int extent_invalidatepage(struct extent_io_tree *tree,
			  struct page *page, unsigned long offset)
{
5176
	struct extent_state *cached_state = NULL;
M
Miao Xie 已提交
5177
	u64 start = page_offset(page);
5178
	u64 end = start + PAGE_SIZE - 1;
5179 5180
	size_t blocksize = page->mapping->host->i_sb->s_blocksize;

5181 5182 5183
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

5184
	start += ALIGN(offset, blocksize);
5185 5186 5187
	if (start > end)
		return 0;

5188
	lock_extent_bits(tree, start, end, &cached_state);
5189
	wait_on_page_writeback(page);
5190 5191 5192 5193 5194 5195 5196

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
5197 5198 5199
	return 0;
}

5200 5201 5202 5203 5204
/*
 * a helper for releasepage, this tests for areas of the page that
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
5205
static int try_release_extent_state(struct extent_io_tree *tree,
5206
				    struct page *page, gfp_t mask)
5207
{
M
Miao Xie 已提交
5208
	u64 start = page_offset(page);
5209
	u64 end = start + PAGE_SIZE - 1;
5210 5211
	int ret = 1;

N
Nikolay Borisov 已提交
5212
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5213
		ret = 0;
N
Nikolay Borisov 已提交
5214
	} else {
5215
		/*
5216 5217 5218 5219
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
5220
		 */
5221
		ret = __clear_extent_bit(tree, start, end,
5222 5223
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
5224 5225 5226 5227 5228 5229 5230 5231

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5232 5233 5234 5235
	}
	return ret;
}

5236 5237 5238 5239 5240
/*
 * a helper for releasepage.  As long as there are no locked extents
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5241
int try_release_extent_mapping(struct page *page, gfp_t mask)
5242 5243
{
	struct extent_map *em;
M
Miao Xie 已提交
5244
	u64 start = page_offset(page);
5245
	u64 end = start + PAGE_SIZE - 1;
5246 5247 5248
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5249

5250
	if (gfpflags_allow_blocking(mask) &&
5251
	    page->mapping->host->i_size > SZ_16M) {
5252
		u64 len;
5253
		while (start <= end) {
5254 5255 5256
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5257
			len = end - start + 1;
5258
			write_lock(&map->lock);
5259
			em = lookup_extent_mapping(map, start, len);
5260
			if (!em) {
5261
				write_unlock(&map->lock);
5262 5263
				break;
			}
5264 5265
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5266
				write_unlock(&map->lock);
5267 5268 5269
				free_extent_map(em);
				break;
			}
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5297 5298 5299 5300 5301 5302 5303 5304
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5305 5306 5307
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5308
next:
5309
			start = extent_map_end(em);
5310
			write_unlock(&map->lock);
5311 5312

			/* once for us */
5313
			free_extent_map(em);
5314 5315

			cond_resched(); /* Allow large-extent preemption. */
5316 5317
		}
	}
5318
	return try_release_extent_state(tree, page, mask);
5319 5320
}

5321 5322 5323 5324
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
5325
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5326
						u64 offset, u64 last)
5327
{
5328
	u64 sectorsize = btrfs_inode_sectorsize(inode);
5329 5330 5331 5332 5333 5334
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

5335
	while (1) {
5336 5337 5338
		len = last - offset;
		if (len == 0)
			break;
5339
		len = ALIGN(len, sectorsize);
5340
		em = btrfs_get_extent_fiemap(inode, offset, len);
5341
		if (IS_ERR_OR_NULL(em))
5342 5343 5344
			return em;

		/* if this isn't a hole return it */
5345
		if (em->block_start != EXTENT_MAP_HOLE)
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5391
	 * fiemap extent won't overlap with cached one.
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
5443
 * Emit last fiemap cache
5444
 *
5445 5446 5447 5448 5449 5450 5451
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5452
 */
5453
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5454
				  struct fiemap_cache *cache)
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5469
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5470
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
5471
{
J
Josef Bacik 已提交
5472
	int ret = 0;
5473
	u64 off;
Y
Yehuda Sadeh 已提交
5474 5475
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
5476 5477
	u32 found_type;
	u64 last;
5478
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
5479
	u64 disko = 0;
5480
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
5481
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
5482
	struct extent_map *em = NULL;
5483
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
5484
	struct btrfs_path *path;
5485
	struct btrfs_root *root = inode->root;
5486
	struct fiemap_cache cache = { 0 };
5487 5488
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
5489
	int end = 0;
5490 5491 5492
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
5493 5494 5495 5496

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
5497 5498 5499 5500
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

5501 5502 5503 5504 5505 5506 5507
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

5508 5509 5510 5511 5512
	/*
	 * We can't initialize that to 'start' as this could miss extents due
	 * to extent item merging
	 */
	off = 0;
5513 5514
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5515

5516 5517 5518 5519
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
5520 5521
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
5522
	if (ret < 0) {
5523
		goto out_free_ulist;
5524 5525 5526 5527
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
5528
	}
5529

J
Josef Bacik 已提交
5530 5531
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5532
	found_type = found_key.type;
J
Josef Bacik 已提交
5533

5534
	/* No extents, but there might be delalloc bits */
5535
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
5536
	    found_type != BTRFS_EXTENT_DATA_KEY) {
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
5548
	}
5549
	btrfs_release_path(path);
J
Josef Bacik 已提交
5550

5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5561
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5562
			 &cached_state);
5563

5564
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
5565 5566 5567 5568 5569 5570
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
5571

Y
Yehuda Sadeh 已提交
5572
	while (!end) {
5573
		u64 offset_in_extent = 0;
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5586

5587 5588
		/*
		 * record the offset from the start of the extent
5589 5590 5591
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5592
		 */
5593 5594
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5595
		em_end = extent_map_end(em);
5596
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5597
		flags = 0;
5598 5599 5600 5601
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5602

5603 5604 5605 5606 5607 5608 5609
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5610
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
5611 5612
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5613
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5614 5615
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5616
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5617 5618
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5619 5620 5621
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5622 5623 5624 5625

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5626 5627 5628
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5629
			 */
5630
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5631
						 bytenr, roots, tmp_ulist);
5632
			if (ret < 0)
5633
				goto out_free;
5634
			if (ret)
5635
				flags |= FIEMAP_EXTENT_SHARED;
5636
			ret = 0;
Y
Yehuda Sadeh 已提交
5637 5638 5639
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5640 5641
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5642 5643 5644

		free_extent_map(em);
		em = NULL;
5645 5646
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5647 5648 5649 5650
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5651
		/* now scan forward to see if this is really the last extent. */
5652
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5653 5654 5655 5656 5657
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5658 5659 5660
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5661 5662
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5663 5664 5665
		if (ret) {
			if (ret == 1)
				ret = 0;
5666
			goto out_free;
5667
		}
Y
Yehuda Sadeh 已提交
5668 5669
	}
out_free:
5670
	if (!ret)
5671
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5672 5673
	free_extent_map(em);
out:
5674
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5675
			     &cached_state);
5676 5677

out_free_ulist:
5678
	btrfs_free_path(path);
5679 5680
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5681 5682 5683
	return ret;
}

5684 5685 5686 5687 5688
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5689
int extent_buffer_under_io(const struct extent_buffer *eb)
5690 5691 5692 5693 5694 5695
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5696
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5697
{
5698
	struct btrfs_subpage *subpage;
5699

5700
	lockdep_assert_held(&page->mapping->private_lock);
5701

5702 5703 5704 5705
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
5706 5707 5708 5709 5710 5711
		/*
		 * Even there is no eb refs here, we may still have
		 * end_page_read() call relying on page::private.
		 */
		if (atomic_read(&subpage->readers))
			return true;
5712 5713 5714
	}
	return false;
}
5715

5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5729
		if (mapped)
5730 5731 5732 5733 5734
			spin_unlock(&page->mapping->private_lock);
		return;
	}

	if (fs_info->sectorsize == PAGE_SIZE) {
5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5747
			/*
5748 5749
			 * We need to make sure we haven't be attached
			 * to a new eb.
5750
			 */
5751
			detach_page_private(page);
5752
		}
5753 5754
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
5772
	 * page range and no unfinished IO.
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5796

5797
		/* One for when we allocated the page */
5798
		put_page(page);
5799
	}
5800 5801 5802 5803 5804 5805 5806
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5807
	btrfs_release_extent_buffer_pages(eb);
5808
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5809 5810 5811
	__free_extent_buffer(eb);
}

5812 5813
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5814
		      unsigned long len)
5815 5816 5817
{
	struct extent_buffer *eb = NULL;

5818
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5819 5820
	eb->start = start;
	eb->len = len;
5821
	eb->fs_info = fs_info;
5822
	eb->bflags = 0;
5823
	init_rwsem(&eb->lock);
5824

5825 5826
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5827
	INIT_LIST_HEAD(&eb->release_list);
5828

5829
	spin_lock_init(&eb->refs_lock);
5830
	atomic_set(&eb->refs, 1);
5831
	atomic_set(&eb->io_pages, 0);
5832

5833
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5834 5835 5836 5837

	return eb;
}

5838
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5839
{
5840
	int i;
5841 5842
	struct page *p;
	struct extent_buffer *new;
5843
	int num_pages = num_extent_pages(src);
5844

5845
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5846 5847 5848
	if (new == NULL)
		return NULL;

5849 5850 5851 5852 5853 5854 5855
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5856
	for (i = 0; i < num_pages; i++) {
5857 5858
		int ret;

5859
		p = alloc_page(GFP_NOFS);
5860 5861 5862 5863
		if (!p) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5864 5865 5866 5867 5868 5869
		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			put_page(p);
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5870 5871
		WARN_ON(PageDirty(p));
		new->pages[i] = p;
5872
		copy_page(page_address(p), page_address(src->pages[i]));
5873
	}
5874
	set_extent_buffer_uptodate(new);
5875 5876 5877 5878

	return new;
}

5879 5880
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5881 5882
{
	struct extent_buffer *eb;
5883 5884
	int num_pages;
	int i;
5885

5886
	eb = __alloc_extent_buffer(fs_info, start, len);
5887 5888 5889
	if (!eb)
		return NULL;

5890
	num_pages = num_extent_pages(eb);
5891
	for (i = 0; i < num_pages; i++) {
5892 5893
		int ret;

5894
		eb->pages[i] = alloc_page(GFP_NOFS);
5895 5896
		if (!eb->pages[i])
			goto err;
5897 5898 5899
		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
		if (ret < 0)
			goto err;
5900 5901 5902
	}
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5903
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5904 5905 5906

	return eb;
err:
5907 5908
	for (; i > 0; i--) {
		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5909
		__free_page(eb->pages[i - 1]);
5910
	}
5911 5912 5913 5914
	__free_extent_buffer(eb);
	return NULL;
}

5915
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5916
						u64 start)
5917
{
5918
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5919 5920
}

5921 5922
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5923
	int refs;
5924 5925 5926 5927
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5928
	 *
5929 5930 5931
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
	 * calling releasepage when the tree reference is the only reference.
5932
	 *
5933 5934 5935 5936 5937
	 * In both cases, care is taken to ensure that the extent_buffer's
	 * pages are not under io. However, releasepage can be concurrently
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5938
	 *
5939 5940 5941 5942 5943 5944 5945
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
5946
	 */
5947 5948 5949 5950
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

5951 5952
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5953
		atomic_inc(&eb->refs);
5954
	spin_unlock(&eb->refs_lock);
5955 5956
}

5957 5958
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
5959
{
5960
	int num_pages, i;
5961

5962 5963
	check_buffer_tree_ref(eb);

5964
	num_pages = num_extent_pages(eb);
5965
	for (i = 0; i < num_pages; i++) {
5966 5967
		struct page *p = eb->pages[i];

5968 5969
		if (p != accessed)
			mark_page_accessed(p);
5970 5971 5972
	}
}

5973 5974
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
5975 5976 5977
{
	struct extent_buffer *eb;

5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
5997
	}
5998 5999
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
6000 6001
}

6002 6003
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6004
					u64 start)
6005 6006 6007 6008 6009 6010 6011
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
6012
	eb = alloc_dummy_extent_buffer(fs_info, start);
6013
	if (!eb)
6014
		return ERR_PTR(-ENOMEM);
6015 6016
	eb->fs_info = fs_info;
again:
6017
	ret = radix_tree_preload(GFP_NOFS);
6018 6019
	if (ret) {
		exists = ERR_PTR(ret);
6020
		goto free_eb;
6021
	}
6022 6023
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
6024
				start >> fs_info->sectorsize_bits, eb);
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
			goto free_eb;
		else
			goto again;
	}
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

6044 6045
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
6046 6047 6048
{
	struct extent_buffer *exists;

6049 6050 6051 6052 6053 6054 6055 6056
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
	if (fs_info->sectorsize < PAGE_SIZE)
		return NULL;

6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

6076
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6077
					  u64 start, u64 owner_root, int level)
6078
{
6079
	unsigned long len = fs_info->nodesize;
6080 6081
	int num_pages;
	int i;
6082
	unsigned long index = start >> PAGE_SHIFT;
6083
	struct extent_buffer *eb;
6084
	struct extent_buffer *exists = NULL;
6085
	struct page *p;
6086
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
6087
	int uptodate = 1;
6088
	int ret;
6089

6090
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
6091 6092 6093 6094
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return ERR_PTR(-EINVAL);
	}

6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

6106 6107 6108 6109 6110 6111 6112 6113
	if (fs_info->sectorsize < PAGE_SIZE &&
	    offset_in_page(start) + len > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %lu",
			  start, len);
		return ERR_PTR(-EINVAL);
	}

6114
	eb = find_extent_buffer(fs_info, start);
6115
	if (eb)
6116 6117
		return eb;

6118
	eb = __alloc_extent_buffer(fs_info, start, len);
6119
	if (!eb)
6120
		return ERR_PTR(-ENOMEM);
6121
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6122

6123
	num_pages = num_extent_pages(eb);
6124
	for (i = 0; i < num_pages; i++, index++) {
6125 6126
		struct btrfs_subpage *prealloc = NULL;

6127
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6128 6129
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
6130
			goto free_eb;
6131
		}
J
Josef Bacik 已提交
6132

6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
		ret = btrfs_alloc_subpage(fs_info, &prealloc,
					  BTRFS_SUBPAGE_METADATA);
		if (ret < 0) {
			unlock_page(p);
			put_page(p);
			exists = ERR_PTR(ret);
			goto free_eb;
		}

J
Josef Bacik 已提交
6152
		spin_lock(&mapping->private_lock);
6153
		exists = grab_extent_buffer(fs_info, p);
6154 6155 6156 6157 6158
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
6159
			btrfs_free_subpage(prealloc);
6160
			goto free_eb;
6161
		}
6162 6163 6164
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
6175
		spin_unlock(&mapping->private_lock);
6176

6177
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6178
		eb->pages[i] = p;
6179 6180
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
6181 6182

		/*
6183 6184 6185 6186 6187
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
		 * opens a race with btree_releasepage which can free a page
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
6188
		 */
6189 6190
	}
	if (uptodate)
6191
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6192
again:
6193
	ret = radix_tree_preload(GFP_NOFS);
6194 6195
	if (ret) {
		exists = ERR_PTR(ret);
6196
		goto free_eb;
6197
	}
6198

6199 6200
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
6201
				start >> fs_info->sectorsize_bits, eb);
6202
	spin_unlock(&fs_info->buffer_lock);
6203
	radix_tree_preload_end();
6204
	if (ret == -EEXIST) {
6205
		exists = find_extent_buffer(fs_info, start);
6206 6207 6208
		if (exists)
			goto free_eb;
		else
6209
			goto again;
6210 6211
	}
	/* add one reference for the tree */
6212
	check_buffer_tree_ref(eb);
6213
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
6214 6215

	/*
6216 6217 6218
	 * Now it's safe to unlock the pages because any calls to
	 * btree_releasepage will correctly detect that a page belongs to a
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
6219
	 */
6220 6221
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6222 6223
	return eb;

6224
free_eb:
6225
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6226 6227 6228 6229
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
6230

6231
	btrfs_release_extent_buffer(eb);
6232
	return exists;
6233 6234
}

6235 6236 6237 6238 6239 6240 6241 6242
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6243
static int release_extent_buffer(struct extent_buffer *eb)
6244
	__releases(&eb->refs_lock)
6245
{
6246 6247
	lockdep_assert_held(&eb->refs_lock);

6248 6249
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6250
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6251
			struct btrfs_fs_info *fs_info = eb->fs_info;
6252

6253
			spin_unlock(&eb->refs_lock);
6254

6255 6256
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
6257
					  eb->start >> fs_info->sectorsize_bits);
6258
			spin_unlock(&fs_info->buffer_lock);
6259 6260
		} else {
			spin_unlock(&eb->refs_lock);
6261
		}
6262

6263
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6264
		/* Should be safe to release our pages at this point */
6265
		btrfs_release_extent_buffer_pages(eb);
6266
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6267
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6268 6269 6270 6271
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6272
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6273
		return 1;
6274 6275
	}
	spin_unlock(&eb->refs_lock);
6276 6277

	return 0;
6278 6279
}

6280 6281
void free_extent_buffer(struct extent_buffer *eb)
{
6282 6283
	int refs;
	int old;
6284 6285 6286
	if (!eb)
		return;

6287 6288
	while (1) {
		refs = atomic_read(&eb->refs);
6289 6290 6291
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6292 6293 6294 6295 6296 6297
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

6298 6299 6300
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6301
	    !extent_buffer_under_io(eb) &&
6302 6303 6304 6305 6306 6307 6308
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6309
	release_extent_buffer(eb);
6310 6311 6312 6313 6314
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6315 6316
		return;

6317 6318 6319
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6320
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6321 6322
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6323
	release_extent_buffer(eb);
6324 6325
}

6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6354
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6355
{
6356 6357
	int i;
	int num_pages;
6358 6359
	struct page *page;

6360 6361 6362
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return clear_subpage_extent_buffer_dirty(eb);

6363
	num_pages = num_extent_pages(eb);
6364 6365

	for (i = 0; i < num_pages; i++) {
6366
		page = eb->pages[i];
6367
		if (!PageDirty(page))
C
Chris Mason 已提交
6368
			continue;
6369
		lock_page(page);
6370
		btree_clear_page_dirty(page);
6371
		ClearPageError(page);
6372
		unlock_page(page);
6373
	}
6374
	WARN_ON(atomic_read(&eb->refs) == 0);
6375 6376
}

6377
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6378
{
6379 6380
	int i;
	int num_pages;
6381
	bool was_dirty;
6382

6383 6384
	check_buffer_tree_ref(eb);

6385
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6386

6387
	num_pages = num_extent_pages(eb);
6388
	WARN_ON(atomic_read(&eb->refs) == 0);
6389 6390
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6391 6392
	if (!was_dirty) {
		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6393

6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6413 6414 6415 6416 6417
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6418
	return was_dirty;
6419 6420
}

6421
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6422
{
6423
	struct btrfs_fs_info *fs_info = eb->fs_info;
6424
	struct page *page;
6425
	int num_pages;
6426
	int i;
6427

6428
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6429
	num_pages = num_extent_pages(eb);
6430
	for (i = 0; i < num_pages; i++) {
6431
		page = eb->pages[i];
C
Chris Mason 已提交
6432
		if (page)
6433 6434
			btrfs_page_clear_uptodate(fs_info, page,
						  eb->start, eb->len);
6435 6436 6437
	}
}

6438
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6439
{
6440
	struct btrfs_fs_info *fs_info = eb->fs_info;
6441
	struct page *page;
6442
	int num_pages;
6443
	int i;
6444

6445
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6446
	num_pages = num_extent_pages(eb);
6447
	for (i = 0; i < num_pages; i++) {
6448
		page = eb->pages[i];
6449
		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6450 6451 6452
	}
}

6453 6454 6455 6456 6457 6458
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6459
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6460 6461 6462 6463 6464 6465 6466
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6467 6468
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6490
	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6491 6492 6493 6494
	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
				 end_bio_extent_readpage, mirror_num, 0,
6495 6496 6497 6498 6499 6500 6501 6502 6503
				 true);
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6504
	if (bio_ctrl.bio) {
6505 6506
		int tmp;

6507 6508
		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
		bio_ctrl.bio = NULL;
6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520
		if (tmp < 0)
			return tmp;
	}
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6521
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6522
{
6523
	int i;
6524 6525 6526
	struct page *page;
	int err;
	int ret = 0;
6527 6528
	int locked_pages = 0;
	int all_uptodate = 1;
6529
	int num_pages;
6530
	unsigned long num_reads = 0;
6531
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6532

6533
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6534 6535
		return 0;

6536 6537 6538
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6539
	num_pages = num_extent_pages(eb);
6540
	for (i = 0; i < num_pages; i++) {
6541
		page = eb->pages[i];
6542
		if (wait == WAIT_NONE) {
6543 6544 6545 6546 6547 6548 6549
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6550
			if (!trylock_page(page))
6551
				goto unlock_exit;
6552 6553 6554
		} else {
			lock_page(page);
		}
6555
		locked_pages++;
6556 6557 6558 6559 6560 6561
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6562
	for (i = 0; i < num_pages; i++) {
6563
		page = eb->pages[i];
6564 6565
		if (!PageUptodate(page)) {
			num_reads++;
6566
			all_uptodate = 0;
6567
		}
6568
	}
6569

6570
	if (all_uptodate) {
6571
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6572 6573 6574
		goto unlock_exit;
	}

6575
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6576
	eb->read_mirror = 0;
6577
	atomic_set(&eb->io_pages, num_reads);
6578 6579 6580 6581 6582
	/*
	 * It is possible for releasepage to clear the TREE_REF bit before we
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6583
	for (i = 0; i < num_pages; i++) {
6584
		page = eb->pages[i];
6585

6586
		if (!PageUptodate(page)) {
6587 6588 6589 6590 6591 6592
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6593
			ClearPageError(page);
6594
			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6595 6596 6597
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
					 mirror_num, 0, false);
6598 6599
			if (err) {
				/*
6600 6601 6602
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6603
				 */
6604 6605 6606
				ret = err;
				SetPageError(page);
				unlock_page(page);
6607 6608
				atomic_dec(&eb->io_pages);
			}
6609 6610 6611 6612 6613
		} else {
			unlock_page(page);
		}
	}

6614 6615 6616
	if (bio_ctrl.bio) {
		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
		bio_ctrl.bio = NULL;
6617 6618
		if (err)
			return err;
6619
	}
6620

6621
	if (ret || wait != WAIT_COMPLETE)
6622
		return ret;
C
Chris Mason 已提交
6623

6624
	for (i = 0; i < num_pages; i++) {
6625
		page = eb->pages[i];
6626
		wait_on_page_locked(page);
C
Chris Mason 已提交
6627
		if (!PageUptodate(page))
6628 6629
			ret = -EIO;
	}
C
Chris Mason 已提交
6630

6631
	return ret;
6632 6633

unlock_exit:
C
Chris Mason 已提交
6634
	while (locked_pages > 0) {
6635
		locked_pages--;
6636 6637
		page = eb->pages[locked_pages];
		unlock_page(page);
6638 6639
	}
	return ret;
6640 6641
}

6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6672 6673
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6674 6675 6676 6677 6678 6679
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6680
	unsigned long i = get_eb_page_index(start);
6681

6682
	if (check_eb_range(eb, start, len))
6683
		return;
6684

6685
	offset = get_eb_offset_in_page(eb, start);
6686

C
Chris Mason 已提交
6687
	while (len > 0) {
6688
		page = eb->pages[i];
6689

6690
		cur = min(len, (PAGE_SIZE - offset));
6691
		kaddr = page_address(page);
6692 6693 6694 6695 6696 6697 6698 6699 6700
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6701 6702 6703
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6704 6705 6706 6707 6708 6709
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6710
	unsigned long i = get_eb_page_index(start);
6711 6712 6713 6714 6715
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6716
	offset = get_eb_offset_in_page(eb, start);
6717 6718

	while (len > 0) {
6719
		page = eb->pages[i];
6720

6721
		cur = min(len, (PAGE_SIZE - offset));
6722
		kaddr = page_address(page);
6723
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6737 6738
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6739 6740 6741 6742 6743 6744
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6745
	unsigned long i = get_eb_page_index(start);
6746 6747
	int ret = 0;

6748 6749
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6750

6751
	offset = get_eb_offset_in_page(eb, start);
6752

C
Chris Mason 已提交
6753
	while (len > 0) {
6754
		page = eb->pages[i];
6755

6756
		cur = min(len, (PAGE_SIZE - offset));
6757

6758
		kaddr = page_address(page);
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

	if (fs_info->sectorsize < PAGE_SIZE) {
		bool uptodate;

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
		WARN_ON(!uptodate);
	} else {
		WARN_ON(!PageUptodate(page));
	}
}

6793
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6794 6795 6796 6797
		const void *srcv)
{
	char *kaddr;

6798
	assert_eb_page_uptodate(eb, eb->pages[0]);
6799 6800 6801 6802
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6803 6804
}

6805
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6806 6807 6808
{
	char *kaddr;

6809
	assert_eb_page_uptodate(eb, eb->pages[0]);
6810 6811 6812
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6813 6814
}

6815
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6816 6817 6818 6819 6820 6821 6822
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6823
	unsigned long i = get_eb_page_index(start);
6824

6825 6826
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6827 6828
	if (check_eb_range(eb, start, len))
		return;
6829

6830
	offset = get_eb_offset_in_page(eb, start);
6831

C
Chris Mason 已提交
6832
	while (len > 0) {
6833
		page = eb->pages[i];
6834
		assert_eb_page_uptodate(eb, page);
6835

6836
		cur = min(len, PAGE_SIZE - offset);
6837
		kaddr = page_address(page);
6838 6839 6840 6841 6842 6843 6844 6845 6846
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6847
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6848
		unsigned long len)
6849 6850 6851 6852 6853
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6854
	unsigned long i = get_eb_page_index(start);
6855

6856 6857
	if (check_eb_range(eb, start, len))
		return;
6858

6859
	offset = get_eb_offset_in_page(eb, start);
6860

C
Chris Mason 已提交
6861
	while (len > 0) {
6862
		page = eb->pages[i];
6863
		assert_eb_page_uptodate(eb, page);
6864

6865
		cur = min(len, PAGE_SIZE - offset);
6866
		kaddr = page_address(page);
6867
		memset(kaddr + offset, 0, cur);
6868 6869 6870 6871 6872 6873 6874

		len -= cur;
		offset = 0;
		i++;
	}
}

6875 6876
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6877 6878
{
	int i;
6879
	int num_pages;
6880 6881 6882

	ASSERT(dst->len == src->len);

6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896
	if (dst->fs_info->sectorsize == PAGE_SIZE) {
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
6897 6898
}

6899 6900
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
6901 6902 6903 6904 6905 6906 6907 6908
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6909
	unsigned long i = get_eb_page_index(dst_offset);
6910

6911 6912 6913 6914
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

6915 6916
	WARN_ON(src->len != dst_len);

6917
	offset = get_eb_offset_in_page(dst, dst_offset);
6918

C
Chris Mason 已提交
6919
	while (len > 0) {
6920
		page = dst->pages[i];
6921
		assert_eb_page_uptodate(dst, page);
6922

6923
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6924

6925
		kaddr = page_address(page);
6926 6927 6928 6929 6930 6931 6932 6933 6934
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
6948
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
6961
	offset = start + offset_in_page(eb->start) + byte_offset;
6962

6963
	*page_index = offset >> PAGE_SHIFT;
6964
	*page_offset = offset_in_page(offset);
6965 6966 6967 6968 6969 6970 6971 6972
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
6973
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6974 6975
			   unsigned long nr)
{
6976
	u8 *kaddr;
6977 6978 6979 6980 6981 6982
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
6983
	assert_eb_page_uptodate(eb, page);
6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
6995
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6996 6997
			      unsigned long pos, unsigned long len)
{
6998
	u8 *kaddr;
6999 7000 7001 7002 7003
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7004
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7005 7006 7007

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7008
	assert_eb_page_uptodate(eb, page);
7009 7010 7011 7012 7013 7014
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7015
		mask_to_set = ~0;
7016
		if (++offset >= PAGE_SIZE && len > 0) {
7017 7018
			offset = 0;
			page = eb->pages[++i];
7019
			assert_eb_page_uptodate(eb, page);
7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
7037 7038 7039
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
7040
{
7041
	u8 *kaddr;
7042 7043 7044 7045 7046
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7047
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7048 7049 7050

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7051
	assert_eb_page_uptodate(eb, page);
7052 7053 7054 7055 7056 7057
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7058
		mask_to_clear = ~0;
7059
		if (++offset >= PAGE_SIZE && len > 0) {
7060 7061
			offset = 0;
			page = eb->pages[++i];
7062
			assert_eb_page_uptodate(eb, page);
7063 7064 7065 7066 7067 7068 7069 7070 7071
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

7072 7073 7074 7075 7076 7077
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

7078 7079 7080 7081
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
7082
	char *dst_kaddr = page_address(dst_page);
7083
	char *src_kaddr;
7084
	int must_memmove = 0;
7085

7086
	if (dst_page != src_page) {
7087
		src_kaddr = page_address(src_page);
7088
	} else {
7089
		src_kaddr = dst_kaddr;
7090 7091
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
7092
	}
7093

7094 7095 7096 7097
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7098 7099
}

7100 7101 7102
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
7103 7104 7105 7106 7107 7108 7109
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

7110 7111 7112
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7113

C
Chris Mason 已提交
7114
	while (len > 0) {
7115 7116
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7117

7118 7119
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
7120

7121
		cur = min(len, (unsigned long)(PAGE_SIZE -
7122 7123
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
7124
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7125

7126
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7127 7128 7129 7130 7131 7132 7133 7134
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

7135 7136 7137
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
7138 7139 7140 7141 7142 7143 7144 7145 7146
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

7147 7148 7149
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7150
	if (dst_offset < src_offset) {
7151 7152 7153
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
7154
	while (len > 0) {
7155 7156
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
7157

7158 7159
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7160 7161 7162

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
7163
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7164 7165 7166 7167 7168 7169 7170 7171
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
7172

7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
	struct extent_buffer *found = NULL;
	u64 page_start = page_offset(page);
	int ret;
	int i;

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
	lockdep_assert_held(&fs_info->buffer_lock);

	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
			bytenr >> fs_info->sectorsize_bits,
			PAGE_SIZE / fs_info->nodesize);
	for (i = 0; i < ret; i++) {
		/* Already beyond page end */
		if (gang[i]->start >= page_start + PAGE_SIZE)
			break;
		/* Found one */
		if (gang[i]->start >= bytenr) {
			found = gang[i];
			break;
		}
	}
	return found;
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7272
int try_release_extent_buffer(struct page *page)
7273
{
7274 7275
	struct extent_buffer *eb;

7276 7277 7278
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return try_release_subpage_extent_buffer(page);

7279
	/*
7280 7281
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7282 7283 7284 7285
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
7286
		return 1;
7287
	}
7288

7289 7290
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7291 7292

	/*
7293 7294 7295
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7296
	 */
7297
	spin_lock(&eb->refs_lock);
7298
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7299 7300 7301
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7302
	}
7303
	spin_unlock(&page->mapping->private_lock);
7304

7305
	/*
7306 7307
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7308
	 */
7309 7310 7311
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7312
	}
7313

7314
	return release_extent_buffer(eb);
7315
}
7316 7317 7318 7319 7320

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7321
 * @owner_root: objectid of the root that owns this eb
7322
 * @gen:	generation for the uptodate check, can be 0
7323
 * @level:	level for the eb
7324 7325 7326 7327 7328 7329
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7330
				u64 bytenr, u64 owner_root, u64 gen, int level)
7331 7332 7333 7334
{
	struct extent_buffer *eb;
	int ret;

7335
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7363 7364 7365
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7366
}