extent_io.c 159.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8 9 10 11 12 13
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
14
#include <linux/prefetch.h>
D
Dan Magenheimer 已提交
15
#include <linux/cleancache.h>
16
#include "extent_io.h"
17
#include "extent-io-tree.h"
18
#include "extent_map.h"
19 20
#include "ctree.h"
#include "btrfs_inode.h"
21
#include "volumes.h"
22
#include "check-integrity.h"
23
#include "locking.h"
24
#include "rcu-string.h"
25
#include "backref.h"
26
#include "disk-io.h"
27 28 29

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
30
static struct bio_set btrfs_bioset;
31

32 33 34 35 36
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

37
#ifdef CONFIG_BTRFS_DEBUG
38
static LIST_HEAD(states);
C
Chris Mason 已提交
39
static DEFINE_SPINLOCK(leak_lock);
40

41 42 43
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
44 45 46
{
	unsigned long flags;

47
	spin_lock_irqsave(lock, flags);
48
	list_add(new, head);
49
	spin_unlock_irqrestore(lock, flags);
50 51
}

52 53
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
54 55 56
{
	unsigned long flags;

57
	spin_lock_irqsave(lock, flags);
58
	list_del(entry);
59
	spin_unlock_irqrestore(lock, flags);
60 61
}

62
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 64
{
	struct extent_buffer *eb;
65
	unsigned long flags;
66

67 68 69 70 71 72 73
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

74 75 76 77
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
78 79 80 81
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
82 83 84
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
85
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 87 88 89 90 91
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

92 93
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
94
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 96
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
97
		       refcount_read(&state->refs));
98 99 100 101
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
102

103 104
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106
		struct extent_io_tree *tree, u64 start, u64 end)
107
{
108 109 110 111 112 113 114 115 116 117 118 119
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
120
}
121
#else
122 123
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
124
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
125
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
126
#endif
127 128 129 130 131 132 133 134 135

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

struct extent_page_data {
	struct bio *bio;
136 137 138
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
139 140
	unsigned int extent_locked:1;

141
	/* tells the submit_bio code to use REQ_SYNC */
142
	unsigned int sync_io:1;
143 144
};

145
static int add_extent_changeset(struct extent_state *state, u32 bits,
146 147 148 149 150 151
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
152
		return 0;
153
	if (set && (state->state & bits) == bits)
154
		return 0;
155
	if (!set && (state->state & bits) == 0)
156
		return 0;
157
	changeset->bytes_changed += state->end - state->start + 1;
158
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
159
			GFP_ATOMIC);
160
	return ret;
161 162
}

163 164
int __must_check submit_one_bio(struct bio *bio, int mirror_num,
				unsigned long bio_flags)
165 166 167 168 169 170
{
	blk_status_t ret = 0;
	struct extent_io_tree *tree = bio->bi_private;

	bio->bi_private = NULL;

171 172 173 174
	if (is_data_inode(tree->private_data))
		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
					    bio_flags);
	else
175 176
		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
						mirror_num, bio_flags);
177 178 179 180

	return blk_status_to_errno(ret);
}

181 182 183 184 185 186 187 188 189 190
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
	if (epd->bio) {
		epd->bio->bi_status = errno_to_blk_status(ret);
		bio_endio(epd->bio);
		epd->bio = NULL;
	}
}

191 192 193 194 195 196 197
/*
 * Submit bio from extent page data via submit_one_bio
 *
 * Return 0 if everything is OK.
 * Return <0 for error.
 */
static int __must_check flush_write_bio(struct extent_page_data *epd)
198
{
199
	int ret = 0;
200

201
	if (epd->bio) {
202
		ret = submit_one_bio(epd->bio, 0, 0);
203 204 205 206 207 208 209
		/*
		 * Clean up of epd->bio is handled by its endio function.
		 * And endio is either triggered by successful bio execution
		 * or the error handler of submit bio hook.
		 * So at this point, no matter what happened, we don't need
		 * to clean up epd->bio.
		 */
210 211
		epd->bio = NULL;
	}
212
	return ret;
213
}
214

215
int __init extent_state_cache_init(void)
216
{
D
David Sterba 已提交
217
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
218
			sizeof(struct extent_state), 0,
219
			SLAB_MEM_SPREAD, NULL);
220 221
	if (!extent_state_cache)
		return -ENOMEM;
222 223
	return 0;
}
224

225 226
int __init extent_io_init(void)
{
D
David Sterba 已提交
227
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
228
			sizeof(struct extent_buffer), 0,
229
			SLAB_MEM_SPREAD, NULL);
230
	if (!extent_buffer_cache)
231
		return -ENOMEM;
232

233 234 235
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
			offsetof(struct btrfs_io_bio, bio),
			BIOSET_NEED_BVECS))
236
		goto free_buffer_cache;
237

238
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
239 240
		goto free_bioset;

241 242
	return 0;

243
free_bioset:
244
	bioset_exit(&btrfs_bioset);
245

246 247 248
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
249 250
	return -ENOMEM;
}
251

252 253 254
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
255 256 257
	kmem_cache_destroy(extent_state_cache);
}

258
void __cold extent_io_exit(void)
259
{
260 261 262 263 264
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
265
	kmem_cache_destroy(extent_buffer_cache);
266
	bioset_exit(&btrfs_bioset);
267 268
}

269 270 271 272 273 274 275 276 277
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

278
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
279 280
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
281
{
282
	tree->fs_info = fs_info;
283
	tree->state = RB_ROOT;
284
	tree->dirty_bytes = 0;
285
	spin_lock_init(&tree->lock);
286
	tree->private_data = private_data;
287
	tree->owner = owner;
288 289
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 291
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

321
static struct extent_state *alloc_extent_state(gfp_t mask)
322 323 324
{
	struct extent_state *state;

325 326 327 328 329
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330
	state = kmem_cache_alloc(extent_state_cache, mask);
331
	if (!state)
332 333
		return state;
	state->state = 0;
334
	state->failrec = NULL;
335
	RB_CLEAR_NODE(&state->rb_node);
336
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337
	refcount_set(&state->refs, 1);
338
	init_waitqueue_head(&state->wq);
339
	trace_alloc_extent_state(state, mask, _RET_IP_);
340 341 342
	return state;
}

343
void free_extent_state(struct extent_state *state)
344 345 346
{
	if (!state)
		return;
347
	if (refcount_dec_and_test(&state->refs)) {
348
		WARN_ON(extent_state_in_tree(state));
349
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350
		trace_free_extent_state(state, _RET_IP_);
351 352 353 354
		kmem_cache_free(extent_state_cache, state);
	}
}

355 356 357
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
358 359 360
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
361
{
362
	struct rb_node **p;
C
Chris Mason 已提交
363
	struct rb_node *parent = NULL;
364 365
	struct tree_entry *entry;

366 367 368 369 370 371
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

372
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
373
	while (*p) {
374 375 376 377 378 379 380 381 382 383 384
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

385
do_insert:
386 387 388 389 390
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
/**
 * __etree_search - searche @tree for an entry that contains @offset. Such
 * entry would have entry->start <= offset && entry->end >= offset.
 *
 * @tree - the tree to search
 * @offset - offset that should fall within an entry in @tree
 * @next_ret - pointer to the first entry whose range ends after @offset
 * @prev - pointer to the first entry whose range begins before @offset
 * @p_ret - pointer where new node should be anchored (used when inserting an
 *	    entry in the tree)
 * @parent_ret - points to entry which would have been the parent of the entry,
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
409
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410
				      struct rb_node **next_ret,
411
				      struct rb_node **prev_ret,
412 413
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
414
{
415
	struct rb_root *root = &tree->state;
416
	struct rb_node **n = &root->rb_node;
417 418 419 420 421
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

422 423 424
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
425 426 427
		prev_entry = entry;

		if (offset < entry->start)
428
			n = &(*n)->rb_left;
429
		else if (offset > entry->end)
430
			n = &(*n)->rb_right;
C
Chris Mason 已提交
431
		else
432
			return *n;
433 434
	}

435 436 437 438 439
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

440
	if (next_ret) {
441
		orig_prev = prev;
C
Chris Mason 已提交
442
		while (prev && offset > prev_entry->end) {
443 444 445
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
446
		*next_ret = prev;
447 448 449
		prev = orig_prev;
	}

450
	if (prev_ret) {
451
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
452
		while (prev && offset < prev_entry->start) {
453 454 455
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
456
		*prev_ret = prev;
457 458 459 460
	}
	return NULL;
}

461 462 463 464 465
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
466
{
467
	struct rb_node *next= NULL;
468
	struct rb_node *ret;
469

470
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
471
	if (!ret)
472
		return next;
473 474 475
	return ret;
}

476 477 478 479 480 481
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

482 483 484 485 486 487 488 489 490
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
491 492
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
493 494 495 496
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
497
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498
		return;
499 500 501 502 503 504

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
505 506 507 508
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
509 510
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
511
			RB_CLEAR_NODE(&other->rb_node);
512 513 514 515 516 517 518 519
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
520 521 522 523
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
524 525
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
526
			RB_CLEAR_NODE(&other->rb_node);
527
			free_extent_state(other);
528 529 530 531
		}
	}
}

532
static void set_state_bits(struct extent_io_tree *tree,
533
			   struct extent_state *state, u32 *bits,
534
			   struct extent_changeset *changeset);
535

536 537 538 539 540 541 542 543 544 545 546 547
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
548 549
			struct rb_node ***p,
			struct rb_node **parent,
550
			u32 *bits, struct extent_changeset *changeset)
551 552 553
{
	struct rb_node *node;

554 555 556 557 558
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
559 560
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
561

562
	set_state_bits(tree, state, bits, changeset);
563

564
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565 566 567
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
568 569
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
570
		       found->start, found->end, start, end);
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
595

596 597
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
598

599 600 601 602 603
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

604 605
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
606 607 608 609 610 611 612
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

613 614 615 616 617 618 619 620 621
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

622 623
/*
 * utility function to clear some bits in an extent state struct.
624
 * it will optionally wake up anyone waiting on this state (wake == 1).
625 626 627 628
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
629 630
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
631
					    u32 *bits, int wake,
632
					    struct extent_changeset *changeset)
633
{
634
	struct extent_state *next;
635
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
636
	int ret;
637

638
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639 640 641 642
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
643 644 645 646

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

647 648
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
649
	state->state &= ~bits_to_clear;
650 651
	if (wake)
		wake_up(&state->wq);
652
	if (state->state == 0) {
653
		next = next_state(state);
654
		if (extent_state_in_tree(state)) {
655
			rb_erase(&state->rb_node, &tree->state);
656
			RB_CLEAR_NODE(&state->rb_node);
657 658 659 660 661 662
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
663
		next = next_state(state);
664
	}
665
	return next;
666 667
}

668 669 670 671 672 673 674 675 676
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

677
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678
{
679 680 681 682
	struct inode *inode = tree->private_data;

	btrfs_panic(btrfs_sb(inode->i_sb), err,
	"locking error: extent tree was modified by another thread while locked");
683 684
}

685 686 687 688 689 690 691 692 693 694
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
695
 * This takes the tree lock, and returns 0 on success and < 0 on error.
696
 */
697
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698 699 700
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
701 702
{
	struct extent_state *state;
703
	struct extent_state *cached;
704 705
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
706
	u64 last_end;
707
	int err;
708
	int clear = 0;
709

710
	btrfs_debug_check_extent_io_range(tree, start, end);
711
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712

713 714 715
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

716 717 718
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
719
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720
		clear = 1;
721
again:
722
	if (!prealloc && gfpflags_allow_blocking(mask)) {
723 724 725 726 727 728 729
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
730 731 732
		prealloc = alloc_extent_state(mask);
	}

733
	spin_lock(&tree->lock);
734 735
	if (cached_state) {
		cached = *cached_state;
736 737 738 739 740 741

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

742 743
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
744
			if (clear)
745
				refcount_dec(&cached->refs);
746
			state = cached;
747
			goto hit_next;
748
		}
749 750
		if (clear)
			free_extent_state(cached);
751
	}
752 753 754 755
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
756
	node = tree_search(tree, start);
757 758 759
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
760
hit_next:
761 762 763
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
764
	last_end = state->end;
765

766
	/* the state doesn't have the wanted bits, go ahead */
767 768
	if (!(state->state & bits)) {
		state = next_state(state);
769
		goto next;
770
	}
771

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
789 790
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
791
		err = split_state(tree, state, prealloc, start);
792 793 794
		if (err)
			extent_io_tree_panic(tree, err);

795 796 797 798
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
799 800
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
801
			goto next;
802 803 804 805 806 807 808 809 810 811
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
812 813
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
814
		err = split_state(tree, state, prealloc, end + 1);
815 816 817
		if (err)
			extent_io_tree_panic(tree, err);

818 819
		if (wake)
			wake_up(&state->wq);
820

821
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
822

823 824 825
		prealloc = NULL;
		goto out;
	}
826

827
	state = clear_state_bit(tree, state, &bits, wake, changeset);
828
next:
829 830 831
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
832
	if (start <= end && state && !need_resched())
833
		goto hit_next;
834 835 836 837

search_again:
	if (start > end)
		goto out;
838
	spin_unlock(&tree->lock);
839
	if (gfpflags_allow_blocking(mask))
840 841
		cond_resched();
	goto again;
842 843 844 845 846 847 848 849

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

850 851
}

852 853
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
854 855
		__releases(tree->lock)
		__acquires(tree->lock)
856 857 858
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859
	spin_unlock(&tree->lock);
860
	schedule();
861
	spin_lock(&tree->lock);
862 863 864 865 866 867 868 869
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
870
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871
			    u32 bits)
872 873 874 875
{
	struct extent_state *state;
	struct rb_node *node;

876
	btrfs_debug_check_extent_io_range(tree, start, end);
877

878
	spin_lock(&tree->lock);
879 880 881 882 883 884
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
885
		node = tree_search(tree, start);
886
process_node:
887 888 889 890 891 892 893 894 895 896
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
897
			refcount_inc(&state->refs);
898 899 900 901 902 903 904 905 906
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

907 908 909 910
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
911 912
	}
out:
913
	spin_unlock(&tree->lock);
914 915
}

916
static void set_state_bits(struct extent_io_tree *tree,
917
			   struct extent_state *state,
918
			   u32 *bits, struct extent_changeset *changeset)
919
{
920
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
921
	int ret;
J
Josef Bacik 已提交
922

923 924 925
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

926
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927 928 929
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
930 931
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
932
	state->state |= bits_to_set;
933 934
}

935 936
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
937
				 unsigned flags)
938 939
{
	if (cached_ptr && !(*cached_ptr)) {
940
		if (!flags || (state->state & flags)) {
941
			*cached_ptr = state;
942
			refcount_inc(&state->refs);
943 944 945 946
		}
	}
}

947 948 949 950
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
951
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
952 953
}

954
/*
955 956
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
957
 *
958 959 960
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
961
 *
962
 * [start, end] is inclusive This takes the tree lock.
963
 */
964 965
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
966 967
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
968 969 970 971
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
972 973
	struct rb_node **p;
	struct rb_node *parent;
974 975 976
	int err = 0;
	u64 last_start;
	u64 last_end;
977

978
	btrfs_debug_check_extent_io_range(tree, start, end);
979
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
980

981 982 983 984
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
985
again:
986
	if (!prealloc && gfpflags_allow_blocking(mask)) {
987 988 989 990 991 992 993
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
994 995 996
		prealloc = alloc_extent_state(mask);
	}

997
	spin_lock(&tree->lock);
998 999
	if (cached_state && *cached_state) {
		state = *cached_state;
1000
		if (state->start <= start && state->end > start &&
1001
		    extent_state_in_tree(state)) {
1002 1003 1004 1005
			node = &state->rb_node;
			goto hit_next;
		}
	}
1006 1007 1008 1009
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1010
	node = tree_search_for_insert(tree, start, &p, &parent);
1011
	if (!node) {
1012 1013
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1014
		err = insert_state(tree, prealloc, start, end,
1015
				   &p, &parent, &bits, changeset);
1016 1017 1018
		if (err)
			extent_io_tree_panic(tree, err);

1019
		cache_state(prealloc, cached_state);
1020 1021 1022 1023
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1024
hit_next:
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1035
		if (state->state & exclusive_bits) {
1036 1037 1038 1039
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1040

1041
		set_state_bits(tree, state, &bits, changeset);
1042
		cache_state(state, cached_state);
1043
		merge_state(tree, state);
1044 1045 1046
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1047 1048 1049 1050
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1071
		if (state->state & exclusive_bits) {
1072 1073 1074 1075
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1076

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1087 1088
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1089
		err = split_state(tree, state, prealloc, start);
1090 1091 1092
		if (err)
			extent_io_tree_panic(tree, err);

1093 1094 1095 1096
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1097
			set_state_bits(tree, state, &bits, changeset);
1098
			cache_state(state, cached_state);
1099
			merge_state(tree, state);
1100 1101 1102
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1103 1104 1105 1106
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1122
			this_end = last_start - 1;
1123 1124 1125

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1126 1127 1128 1129 1130

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1131
		err = insert_state(tree, prealloc, start, this_end,
1132
				   NULL, NULL, &bits, changeset);
1133 1134 1135
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1136 1137
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1148
		if (state->state & exclusive_bits) {
1149 1150 1151 1152
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1153 1154 1155

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1156
		err = split_state(tree, state, prealloc, end + 1);
1157 1158
		if (err)
			extent_io_tree_panic(tree, err);
1159

1160
		set_state_bits(tree, prealloc, &bits, changeset);
1161
		cache_state(prealloc, cached_state);
1162 1163 1164 1165 1166
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1167 1168 1169 1170 1171 1172 1173
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1174 1175

out:
1176
	spin_unlock(&tree->lock);
1177 1178 1179 1180 1181 1182 1183
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1184
/**
L
Liu Bo 已提交
1185 1186
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1187 1188 1189 1190 1191
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1192
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1193 1194 1195 1196 1197 1198
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1199 1200
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1201 1202
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1203
		       u32 bits, u32 clear_bits,
1204
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1205 1206 1207 1208
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1209 1210
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1211 1212 1213
	int err = 0;
	u64 last_start;
	u64 last_end;
1214
	bool first_iteration = true;
J
Josef Bacik 已提交
1215

1216
	btrfs_debug_check_extent_io_range(tree, start, end);
1217 1218
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1219

J
Josef Bacik 已提交
1220
again:
1221
	if (!prealloc) {
1222 1223 1224 1225 1226 1227 1228
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1229
		prealloc = alloc_extent_state(GFP_NOFS);
1230
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1231 1232 1233 1234
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1235 1236 1237
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1238
		    extent_state_in_tree(state)) {
1239 1240 1241 1242 1243
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1244 1245 1246 1247
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1248
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1249 1250
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1251 1252 1253 1254
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1255
		err = insert_state(tree, prealloc, start, end,
1256
				   &p, &parent, &bits, NULL);
1257 1258
		if (err)
			extent_io_tree_panic(tree, err);
1259 1260
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1275
		set_state_bits(tree, state, &bits, NULL);
1276
		cache_state(state, cached_state);
1277
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1278 1279 1280
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1281 1282 1283
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1305 1306 1307 1308
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1309
		err = split_state(tree, state, prealloc, start);
1310 1311
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1312 1313 1314 1315
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1316
			set_state_bits(tree, state, &bits, NULL);
1317
			cache_state(state, cached_state);
1318 1319
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1320 1321 1322
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1323 1324 1325
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1344 1345 1346 1347
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1348 1349 1350 1351 1352 1353

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1354
				   NULL, NULL, &bits, NULL);
1355 1356
		if (err)
			extent_io_tree_panic(tree, err);
1357
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1370 1371 1372 1373
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1374 1375

		err = split_state(tree, state, prealloc, end + 1);
1376 1377
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1378

1379
		set_state_bits(tree, prealloc, &bits, NULL);
1380
		cache_state(prealloc, cached_state);
1381
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1382 1383 1384 1385 1386 1387 1388 1389
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1390
	cond_resched();
1391
	first_iteration = false;
J
Josef Bacik 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1402
/* wrappers around set/clear extent bit */
1403
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1404
			   u32 bits, struct extent_changeset *changeset)
1405 1406 1407 1408 1409 1410 1411 1412 1413
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1414 1415
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1416 1417
}

1418
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1419
			   u32 bits)
1420
{
1421 1422
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1423 1424
}

1425
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1426
		     u32 bits, int wake, int delete,
1427
		     struct extent_state **cached)
1428 1429
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1430
				  cached, GFP_NOFS, NULL);
1431 1432 1433
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1434
		u32 bits, struct extent_changeset *changeset)
1435 1436 1437 1438 1439 1440 1441
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1442
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1443 1444 1445
				  changeset);
}

C
Chris Mason 已提交
1446 1447 1448 1449
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1450
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1451
		     struct extent_state **cached_state)
1452 1453 1454
{
	int err;
	u64 failed_start;
1455

1456
	while (1) {
1457 1458 1459
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1460
		if (err == -EEXIST) {
1461 1462
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1463
		} else
1464 1465 1466 1467 1468 1469
			break;
		WARN_ON(start > end);
	}
	return err;
}

1470
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1471 1472 1473 1474
{
	int err;
	u64 failed_start;

1475 1476
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1477 1478 1479
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1480
					 EXTENT_LOCKED, 1, 0, NULL);
1481
		return 0;
Y
Yan Zheng 已提交
1482
	}
1483 1484 1485
	return 1;
}

1486
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1487
{
1488 1489
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1490 1491 1492 1493 1494 1495
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1496
		put_page(page);
1497 1498 1499 1500
		index++;
	}
}

1501
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1502
{
1503 1504
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1505 1506 1507 1508 1509 1510
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		__set_page_dirty_nobuffers(page);
1511
		account_page_redirty(page);
1512
		put_page(page);
1513 1514 1515 1516
		index++;
	}
}

C
Chris Mason 已提交
1517 1518 1519 1520
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1521
static struct extent_state *
1522
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1532
	if (!node)
C
Chris Mason 已提交
1533 1534
		goto out;

C
Chris Mason 已提交
1535
	while (1) {
C
Chris Mason 已提交
1536
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1537
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1538
			return state;
C
Chris Mason 已提交
1539

C
Chris Mason 已提交
1540 1541 1542 1543 1544 1545 1546 1547
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1548
/*
1549
 * Find the first offset in the io tree with one or more @bits set.
1550
 *
1551 1552 1553 1554
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1555 1556
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1557
			  u64 *start_ret, u64 *end_ret, u32 bits,
1558
			  struct extent_state **cached_state)
1559 1560 1561 1562 1563
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1564 1565
	if (cached_state && *cached_state) {
		state = *cached_state;
1566
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1567
			while ((state = next_state(state)) != NULL) {
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1579
	state = find_first_extent_bit_state(tree, start, bits);
1580
got_it:
1581
	if (state) {
1582
		cache_state_if_flags(state, cached_state, 0);
1583 1584 1585 1586
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1587
out:
1588 1589 1590 1591
	spin_unlock(&tree->lock);
	return ret;
}

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
/**
 * find_contiguous_extent_bit: find a contiguous area of bits
 * @tree - io tree to check
 * @start - offset to start the search from
 * @start_ret - the first offset we found with the bits set
 * @end_ret - the final contiguous range of the bits that were set
 * @bits - bits to look for
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1608
			       u64 *start_ret, u64 *end_ret, u32 bits)
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1629
/**
1630 1631
 * find_first_clear_extent_bit - find the first range that has @bits not set.
 * This range could start before @start.
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
 *
 * @tree - the tree to search
 * @start - the offset at/after which the found extent should start
 * @start_ret - records the beginning of the range
 * @end_ret - records the end of the range (inclusive)
 * @bits - the set of bits which must be unset
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1645
				 u64 *start_ret, u64 *end_ret, u32 bits)
1646 1647 1648 1649 1650 1651 1652 1653 1654
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1673 1674
			node = next;
		}
1675 1676 1677 1678
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1679
		state = rb_entry(node, struct extent_state, rb_node);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1702
		} else {
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1746 1747 1748 1749
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1750
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1751
 */
J
Josef Bacik 已提交
1752 1753 1754
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1755 1756 1757 1758
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1759
	bool found = false;
1760 1761
	u64 total_bytes = 0;

1762
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1763

1764 1765 1766 1767
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1768
	node = tree_search(tree, cur_start);
1769
	if (!node) {
1770
		*end = (u64)-1;
1771 1772 1773
		goto out;
	}

C
Chris Mason 已提交
1774
	while (1) {
1775
		state = rb_entry(node, struct extent_state, rb_node);
1776 1777
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1778 1779 1780 1781 1782 1783 1784
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1785
		if (!found) {
1786
			*start = state->start;
1787
			*cached_state = state;
1788
			refcount_inc(&state->refs);
1789
		}
1790
		found = true;
1791 1792 1793 1794
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1795
		if (total_bytes >= max_bytes)
1796 1797
			break;
		if (!node)
1798 1799 1800
			break;
	}
out:
1801
	spin_unlock(&tree->lock);
1802 1803 1804
	return found;
}

1805 1806 1807 1808 1809
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
				  pgoff_t start_index, pgoff_t end_index,
				  unsigned long page_ops, pgoff_t *index_ret);

1810 1811 1812
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1813
{
1814 1815
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1816

1817
	ASSERT(locked_page);
C
Chris Mason 已提交
1818
	if (index == locked_page->index && end_index == index)
1819
		return;
C
Chris Mason 已提交
1820

1821 1822
	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1823 1824 1825 1826 1827 1828 1829
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1830
	unsigned long index = delalloc_start >> PAGE_SHIFT;
1831
	unsigned long index_ret = index;
1832
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
C
Chris Mason 已提交
1833 1834
	int ret;

1835
	ASSERT(locked_page);
C
Chris Mason 已提交
1836 1837 1838
	if (index == locked_page->index && index == end_index)
		return 0;

1839 1840 1841 1842 1843
	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
				     end_index, PAGE_LOCK, &index_ret);
	if (ret == -EAGAIN)
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
				      (u64)index_ret << PAGE_SHIFT);
C
Chris Mason 已提交
1844 1845 1846 1847
	return ret;
}

/*
1848 1849
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 * more than @max_bytes.  @Start and @end are used to return the range,
C
Chris Mason 已提交
1850
 *
1851 1852
 * Return: true if we find something
 *         false if nothing was in the tree
C
Chris Mason 已提交
1853
 */
1854
EXPORT_FOR_TESTS
1855
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1856
				    struct page *locked_page, u64 *start,
1857
				    u64 *end)
C
Chris Mason 已提交
1858
{
1859
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1860
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
1861 1862
	u64 delalloc_start;
	u64 delalloc_end;
1863
	bool found;
1864
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
1865 1866 1867 1868 1869 1870 1871
	int ret;
	int loops = 0;

again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
1872 1873
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
C
Chris Mason 已提交
1874
	if (!found || delalloc_end <= *start) {
C
Chris Mason 已提交
1875 1876
		*start = delalloc_start;
		*end = delalloc_end;
1877
		free_extent_state(cached_state);
1878
		return false;
C
Chris Mason 已提交
1879 1880
	}

C
Chris Mason 已提交
1881 1882 1883 1884 1885
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
1886
	if (delalloc_start < *start)
C
Chris Mason 已提交
1887 1888
		delalloc_start = *start;

C
Chris Mason 已提交
1889 1890 1891
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
1892 1893
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
1894

C
Chris Mason 已提交
1895 1896 1897
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
1898
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
1899 1900 1901 1902
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
1903
		free_extent_state(cached_state);
1904
		cached_state = NULL;
C
Chris Mason 已提交
1905
		if (!loops) {
1906
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
1907 1908 1909
			loops = 1;
			goto again;
		} else {
1910
			found = false;
C
Chris Mason 已提交
1911 1912 1913 1914 1915
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
1916
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
1917 1918 1919

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1920
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
1921
	if (!ret) {
1922
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1923
				     &cached_state);
C
Chris Mason 已提交
1924 1925 1926 1927 1928
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
1929
	free_extent_state(cached_state);
C
Chris Mason 已提交
1930 1931 1932 1933 1934 1935
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

1936 1937 1938 1939
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
				  pgoff_t start_index, pgoff_t end_index,
				  unsigned long page_ops, pgoff_t *index_ret)
C
Chris Mason 已提交
1940
{
1941
	unsigned long nr_pages = end_index - start_index + 1;
1942
	unsigned long pages_processed = 0;
1943
	pgoff_t index = start_index;
C
Chris Mason 已提交
1944
	struct page *pages[16];
1945
	unsigned ret;
1946
	int err = 0;
C
Chris Mason 已提交
1947
	int i;
1948

1949 1950 1951 1952 1953
	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(index_ret && *index_ret == start_index);
	}

1954
	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1955
		mapping_set_error(mapping, -EIO);
1956

C
Chris Mason 已提交
1957
	while (nr_pages > 0) {
1958
		ret = find_get_pages_contig(mapping, index,
1959 1960
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
1961 1962 1963 1964 1965 1966
		if (ret == 0) {
			/*
			 * Only if we're going to lock these pages,
			 * can we find nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
1967 1968
			err = -EAGAIN;
			goto out;
1969
		}
1970

1971
		for (i = 0; i < ret; i++) {
1972
			if (page_ops & PAGE_SET_PRIVATE2)
1973 1974
				SetPagePrivate2(pages[i]);

1975
			if (locked_page && pages[i] == locked_page) {
1976
				put_page(pages[i]);
1977
				pages_processed++;
C
Chris Mason 已提交
1978 1979
				continue;
			}
1980
			if (page_ops & PAGE_CLEAR_DIRTY)
C
Chris Mason 已提交
1981
				clear_page_dirty_for_io(pages[i]);
1982
			if (page_ops & PAGE_SET_WRITEBACK)
C
Chris Mason 已提交
1983
				set_page_writeback(pages[i]);
1984 1985
			if (page_ops & PAGE_SET_ERROR)
				SetPageError(pages[i]);
1986
			if (page_ops & PAGE_END_WRITEBACK)
C
Chris Mason 已提交
1987
				end_page_writeback(pages[i]);
1988
			if (page_ops & PAGE_UNLOCK)
1989
				unlock_page(pages[i]);
1990 1991 1992 1993 1994
			if (page_ops & PAGE_LOCK) {
				lock_page(pages[i]);
				if (!PageDirty(pages[i]) ||
				    pages[i]->mapping != mapping) {
					unlock_page(pages[i]);
1995 1996
					for (; i < ret; i++)
						put_page(pages[i]);
1997 1998 1999 2000
					err = -EAGAIN;
					goto out;
				}
			}
2001
			put_page(pages[i]);
2002
			pages_processed++;
C
Chris Mason 已提交
2003 2004 2005 2006 2007
		}
		nr_pages -= ret;
		index += ret;
		cond_resched();
	}
2008 2009
out:
	if (err && index_ret)
2010
		*index_ret = start_index + pages_processed - 1;
2011
	return err;
C
Chris Mason 已提交
2012 2013
}

2014
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2015
				  struct page *locked_page,
2016
				  u32 clear_bits, unsigned long page_ops)
2017
{
2018
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2019

2020
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2021
			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2022
			       page_ops, NULL);
2023 2024
}

C
Chris Mason 已提交
2025 2026 2027 2028 2029
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2030 2031
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2032
		     u32 bits, int contig)
2033 2034 2035 2036 2037
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2038
	u64 last = 0;
2039 2040
	int found = 0;

2041
	if (WARN_ON(search_end <= cur_start))
2042 2043
		return 0;

2044
	spin_lock(&tree->lock);
2045 2046 2047 2048 2049 2050 2051 2052
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2053
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2054
	if (!node)
2055 2056
		goto out;

C
Chris Mason 已提交
2057
	while (1) {
2058 2059 2060
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2061 2062 2063
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2064 2065 2066 2067 2068
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2069
				*start = max(cur_start, state->start);
2070 2071
				found = 1;
			}
2072 2073 2074
			last = state->end;
		} else if (contig && found) {
			break;
2075 2076 2077 2078 2079 2080
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2081
	spin_unlock(&tree->lock);
2082 2083
	return total_bytes;
}
2084

C
Chris Mason 已提交
2085 2086 2087 2088
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2089 2090
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2091 2092 2093 2094 2095
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2096
	spin_lock(&tree->lock);
2097 2098 2099 2100
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2101
	node = tree_search(tree, start);
2102
	if (!node) {
2103 2104 2105 2106 2107 2108 2109 2110
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2111
	state->failrec = failrec;
2112
out:
2113
	spin_unlock(&tree->lock);
2114 2115 2116
	return ret;
}

2117
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2118 2119 2120
{
	struct rb_node *node;
	struct extent_state *state;
2121
	struct io_failure_record *failrec;
2122

2123
	spin_lock(&tree->lock);
2124 2125 2126 2127
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2128
	node = tree_search(tree, start);
2129
	if (!node) {
2130
		failrec = ERR_PTR(-ENOENT);
2131 2132 2133 2134
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2135
		failrec = ERR_PTR(-ENOENT);
2136 2137
		goto out;
	}
2138 2139

	failrec = state->failrec;
2140
out:
2141
	spin_unlock(&tree->lock);
2142
	return failrec;
2143 2144 2145 2146
}

/*
 * searches a range in the state tree for a given mask.
2147
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2148 2149 2150 2151
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2152
		   u32 bits, int filled, struct extent_state *cached)
2153 2154 2155 2156 2157
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2158
	spin_lock(&tree->lock);
2159
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2160
	    cached->end > start)
2161 2162 2163
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2183 2184 2185 2186

		if (state->end == (u64)-1)
			break;

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2197
	spin_unlock(&tree->lock);
2198 2199 2200 2201 2202 2203 2204
	return bitset;
}

/*
 * helper function to set a given page up to date if all the
 * extents in the tree for that page are up to date
 */
2205
static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2206
{
M
Miao Xie 已提交
2207
	u64 start = page_offset(page);
2208
	u64 end = start + PAGE_SIZE - 1;
2209
	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2210 2211 2212
		SetPageUptodate(page);
}

2213 2214 2215
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2216 2217 2218 2219
{
	int ret;
	int err = 0;

2220
	set_state_failrec(failure_tree, rec->start, NULL);
2221 2222
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2223
				EXTENT_LOCKED | EXTENT_DIRTY);
2224 2225 2226
	if (ret)
		err = ret;

2227
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2228
				rec->start + rec->len - 1,
2229
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2230 2231
	if (ret && !err)
		err = ret;
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2242
 * to avoid any synchronization issues, wait for the data after writing, which
2243 2244 2245 2246
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
2247 2248 2249
int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
		      u64 length, u64 logical, struct page *page,
		      unsigned int pg_offset, int mirror_num)
2250 2251 2252 2253 2254 2255 2256 2257
{
	struct bio *bio;
	struct btrfs_device *dev;
	u64 map_length = 0;
	u64 sector;
	struct btrfs_bio *bbio = NULL;
	int ret;

2258
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2259 2260
	BUG_ON(!mirror_num);

2261
	bio = btrfs_io_bio_alloc(1);
2262
	bio->bi_iter.bi_size = 0;
2263 2264
	map_length = length;

2265 2266 2267 2268 2269 2270
	/*
	 * Avoid races with device replace and make sure our bbio has devices
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2271
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
				      &map_length, &bbio, 0);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		ASSERT(bbio->mirror_num == 1);
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
				      &map_length, &bbio, mirror_num);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		BUG_ON(mirror_num != bbio->mirror_num);
2295
	}
2296 2297

	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2298
	bio->bi_iter.bi_sector = sector;
2299
	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2300
	btrfs_put_bbio(bbio);
2301 2302
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2303
		btrfs_bio_counter_dec(fs_info);
2304 2305 2306
		bio_put(bio);
		return -EIO;
	}
2307
	bio_set_dev(bio, dev->bdev);
2308
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2309
	bio_add_page(bio, page, length, pg_offset);
2310

2311
	if (btrfsic_submit_bio_wait(bio)) {
2312
		/* try to remap that extent elsewhere? */
2313
		btrfs_bio_counter_dec(fs_info);
2314
		bio_put(bio);
2315
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2316 2317 2318
		return -EIO;
	}

2319 2320
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2321
				  ino, start,
2322
				  rcu_str_deref(dev->name), sector);
2323
	btrfs_bio_counter_dec(fs_info);
2324 2325 2326 2327
	bio_put(bio);
	return 0;
}

2328
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2329
{
2330
	struct btrfs_fs_info *fs_info = eb->fs_info;
2331
	u64 start = eb->start;
2332
	int i, num_pages = num_extent_pages(eb);
2333
	int ret = 0;
2334

2335
	if (sb_rdonly(fs_info->sb))
2336 2337
		return -EROFS;

2338
	for (i = 0; i < num_pages; i++) {
2339
		struct page *p = eb->pages[i];
2340

2341
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2342
					start - page_offset(p), mirror_num);
2343 2344
		if (ret)
			break;
2345
		start += PAGE_SIZE;
2346 2347 2348 2349 2350
	}

	return ret;
}

2351 2352 2353 2354
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2355 2356 2357 2358
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2359 2360 2361 2362 2363 2364 2365 2366
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2367 2368
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2369 2370 2371
	if (!ret)
		return 0;

2372 2373
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2374 2375 2376 2377 2378 2379
		return 0;

	BUG_ON(!failrec->this_mirror);

	if (failrec->in_validation) {
		/* there was no real error, just free the record */
2380 2381 2382
		btrfs_debug(fs_info,
			"clean_io_failure: freeing dummy error at %llu",
			failrec->start);
2383 2384
		goto out;
	}
2385
	if (sb_rdonly(fs_info->sb))
2386
		goto out;
2387

2388 2389
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2390 2391
					    failrec->start,
					    EXTENT_LOCKED);
2392
	spin_unlock(&io_tree->lock);
2393

2394 2395
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2396 2397
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2398
		if (num_copies > 1)  {
2399 2400 2401
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2402 2403 2404 2405
		}
	}

out:
2406
	free_io_failure(failure_tree, io_tree, failrec);
2407

2408
	return 0;
2409 2410
}

2411 2412 2413 2414 2415 2416
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2417
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2418
{
2419
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2436
		failrec = state->failrec;
2437 2438 2439 2440 2441 2442 2443 2444
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2445 2446
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
							     u64 start, u64 end)
2447
{
2448
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2449
	struct io_failure_record *failrec;
2450 2451 2452 2453 2454 2455 2456
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
	int ret;
	u64 logical;

2457
	failrec = get_state_failrec(failure_tree, start);
2458
	if (!IS_ERR(failrec)) {
2459 2460 2461 2462
		btrfs_debug(fs_info,
			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
			failrec->logical, failrec->start, failrec->len,
			failrec->in_validation);
2463 2464 2465 2466 2467
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2468 2469

		return failrec;
2470
	}
2471

2472 2473 2474
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2475

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	failrec->start = start;
	failrec->len = end - start + 1;
	failrec->this_mirror = 0;
	failrec->bio_flags = 0;
	failrec->in_validation = 0;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
	ret = set_extent_bits(failure_tree, start, end,
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
		ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2528 2529
}

2530 2531 2532
static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
				   struct io_failure_record *failrec,
				   int failed_mirror)
2533
{
2534
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2535 2536
	int num_copies;

2537
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2538 2539 2540 2541 2542 2543
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2544 2545 2546
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2547
		return false;
2548 2549 2550 2551 2552 2553 2554
	}

	/*
	 * there are two premises:
	 *	a) deliver good data to the caller
	 *	b) correct the bad sectors on disk
	 */
2555
	if (needs_validation) {
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
		/*
		 * to fulfill b), we need to know the exact failing sectors, as
		 * we don't want to rewrite any more than the failed ones. thus,
		 * we need separate read requests for the failed bio
		 *
		 * if the following BUG_ON triggers, our validation request got
		 * merged. we need separate requests for our algorithm to work.
		 */
		BUG_ON(failrec->in_validation);
		failrec->in_validation = 1;
		failrec->this_mirror = failed_mirror;
	} else {
		/*
		 * we're ready to fulfill a) and b) alongside. get a good copy
		 * of the failed sector and if we succeed, we have setup
		 * everything for repair_io_failure to do the rest for us.
		 */
		if (failrec->in_validation) {
			BUG_ON(failrec->this_mirror != failed_mirror);
			failrec->in_validation = 0;
			failrec->this_mirror = 0;
		}
		failrec->failed_mirror = failed_mirror;
		failrec->this_mirror++;
		if (failrec->this_mirror == failed_mirror)
			failrec->this_mirror++;
	}

2584
	if (failrec->this_mirror > num_copies) {
2585 2586 2587
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2588
		return false;
2589 2590
	}

2591
	return true;
2592 2593
}

2594
static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2595
{
2596
	u64 len = 0;
2597
	const u32 blocksize = inode->i_sb->s_blocksize;
2598

2599 2600 2601 2602 2603 2604 2605
	/*
	 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
	 * I/O error. In this case, we already know exactly which sector was
	 * bad, so we don't need to validate.
	 */
	if (bio->bi_status == BLK_STS_OK)
		return false;
2606

2607 2608 2609
	/*
	 * We need to validate each sector individually if the failed I/O was
	 * for multiple sectors.
2610 2611 2612 2613 2614 2615 2616 2617 2618
	 *
	 * There are a few possible bios that can end up here:
	 * 1. A buffered read bio, which is not cloned.
	 * 2. A direct I/O read bio, which is cloned.
	 * 3. A (buffered or direct) repair bio, which is not cloned.
	 *
	 * For cloned bios (case 2), we can get the size from
	 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
	 * it from the bvecs.
2619
	 */
2620 2621
	if (bio_flagged(bio, BIO_CLONED)) {
		if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2622
			return true;
2623 2624 2625
	} else {
		struct bio_vec *bvec;
		int i;
2626

2627 2628 2629 2630 2631
		bio_for_each_bvec_all(bvec, bio, i) {
			len += bvec->bv_len;
			if (len > blocksize)
				return true;
		}
2632
	}
2633
	return false;
2634 2635
}

2636 2637 2638 2639 2640
blk_status_t btrfs_submit_read_repair(struct inode *inode,
				      struct bio *failed_bio, u64 phy_offset,
				      struct page *page, unsigned int pgoff,
				      u64 start, u64 end, int failed_mirror,
				      submit_bio_hook_t *submit_bio_hook)
2641 2642
{
	struct io_failure_record *failrec;
2643
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2644
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2645
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2646
	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2647
	const int icsum = phy_offset >> fs_info->sectorsize_bits;
2648
	bool need_validation;
2649 2650
	struct bio *repair_bio;
	struct btrfs_io_bio *repair_io_bio;
2651
	blk_status_t status;
2652

2653 2654
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2655

2656
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2657

2658 2659 2660
	failrec = btrfs_get_io_failure_record(inode, start, end);
	if (IS_ERR(failrec))
		return errno_to_blk_status(PTR_ERR(failrec));
2661

2662
	need_validation = btrfs_io_needs_validation(inode, failed_bio);
2663

2664
	if (!btrfs_check_repairable(inode, need_validation, failrec,
2665
				    failed_mirror)) {
2666
		free_io_failure(failure_tree, tree, failrec);
2667
		return BLK_STS_IOERR;
2668 2669
	}

2670 2671 2672
	repair_bio = btrfs_io_bio_alloc(1);
	repair_io_bio = btrfs_io_bio(repair_bio);
	repair_bio->bi_opf = REQ_OP_READ;
2673
	if (need_validation)
2674 2675 2676 2677
		repair_bio->bi_opf |= REQ_FAILFAST_DEV;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2678

2679
	if (failed_io_bio->csum) {
2680
		const u32 csum_size = fs_info->csum_size;
2681 2682 2683 2684 2685

		repair_io_bio->csum = repair_io_bio->csum_inline;
		memcpy(repair_io_bio->csum,
		       failed_io_bio->csum + csum_size * icsum, csum_size);
	}
2686

2687 2688 2689
	bio_add_page(repair_bio, page, failrec->len, pgoff);
	repair_io_bio->logical = failrec->start;
	repair_io_bio->iter = repair_bio->bi_iter;
2690

2691
	btrfs_debug(btrfs_sb(inode->i_sb),
2692 2693
"repair read error: submitting new read to mirror %d, in_validation=%d",
		    failrec->this_mirror, failrec->in_validation);
2694

2695 2696
	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
				 failrec->bio_flags);
2697
	if (status) {
2698
		free_io_failure(failure_tree, tree, failrec);
2699
		bio_put(repair_bio);
2700
	}
2701
	return status;
2702 2703
}

2704 2705
/* lots and lots of room for performance fixes in the end_bio funcs */

2706
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2707 2708
{
	int uptodate = (err == 0);
2709
	int ret = 0;
2710

2711
	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2712 2713 2714 2715

	if (!uptodate) {
		ClearPageUptodate(page);
		SetPageError(page);
2716
		ret = err < 0 ? err : -EIO;
2717
		mapping_set_error(page->mapping, ret);
2718 2719 2720
	}
}

2721 2722 2723 2724 2725 2726 2727 2728 2729
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2730
static void end_bio_extent_writepage(struct bio *bio)
2731
{
2732
	int error = blk_status_to_errno(bio->bi_status);
2733
	struct bio_vec *bvec;
2734 2735
	u64 start;
	u64 end;
2736
	struct bvec_iter_all iter_all;
2737

2738
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2739
	bio_for_each_segment_all(bvec, bio, iter_all) {
2740
		struct page *page = bvec->bv_page;
2741 2742
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2743

2744 2745 2746 2747 2748
		/* We always issue full-page reads, but if some block
		 * in a page fails to read, blk_update_request() will
		 * advance bv_offset and adjust bv_len to compensate.
		 * Print a warning for nonzero offsets, and an error
		 * if they don't add up to a full page.  */
2749 2750
		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2751
				btrfs_err(fs_info,
2752 2753 2754
				   "partial page write in btrfs with offset %u and length %u",
					bvec->bv_offset, bvec->bv_len);
			else
2755
				btrfs_info(fs_info,
J
Jeff Mahoney 已提交
2756
				   "incomplete page write in btrfs with offset %u and length %u",
2757 2758
					bvec->bv_offset, bvec->bv_len);
		}
2759

2760 2761
		start = page_offset(page);
		end = start + bvec->bv_offset + bvec->bv_len - 1;
2762

2763
		end_extent_writepage(page, error, start, end);
2764
		end_page_writeback(page);
2765
	}
2766

2767 2768 2769
	bio_put(bio);
}

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
	/* End of the range in in @inode */
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2799 2800
{
	struct extent_state *cached = NULL;
2801 2802 2803 2804 2805
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2806

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2841 2842
}

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
static void endio_readpage_update_page_status(struct page *page, bool uptodate)
{
	if (uptodate) {
		SetPageUptodate(page);
	} else {
		ClearPageUptodate(page);
		SetPageError(page);
	}
	unlock_page(page);
}

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2865
static void end_bio_extent_readpage(struct bio *bio)
2866
{
2867
	struct bio_vec *bvec;
2868
	int uptodate = !bio->bi_status;
2869
	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2870
	struct extent_io_tree *tree, *failure_tree;
2871
	struct processed_extent processed = { 0 };
2872
	u64 offset = 0;
2873 2874
	u64 start;
	u64 end;
2875
	u64 len;
2876
	int mirror;
2877
	int ret;
2878
	struct bvec_iter_all iter_all;
2879

2880
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2881
	bio_for_each_segment_all(bvec, bio, iter_all) {
2882
		struct page *page = bvec->bv_page;
2883
		struct inode *inode = page->mapping->host;
2884
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2885
		u32 sectorsize = fs_info->sectorsize;
2886

2887 2888
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2889
			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2890
			io_bio->mirror_num);
2891
		tree = &BTRFS_I(inode)->io_tree;
2892
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2893

2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2913
		len = bvec->bv_len;
2914

2915
		mirror = io_bio->mirror_num;
2916
		if (likely(uptodate)) {
2917
			if (is_data_inode(inode))
2918 2919 2920 2921
				ret = btrfs_verify_data_csum(io_bio, offset, page,
							     start, end, mirror);
			else
				ret = btrfs_validate_metadata_buffer(io_bio,
2922
					page, start, end, mirror);
2923
			if (ret)
2924
				uptodate = 0;
2925
			else
2926 2927 2928 2929
				clean_io_failure(BTRFS_I(inode)->root->fs_info,
						 failure_tree, tree, start,
						 page,
						 btrfs_ino(BTRFS_I(inode)), 0);
2930
		}
2931

2932 2933 2934
		if (likely(uptodate))
			goto readpage_ok;

2935
		if (is_data_inode(inode)) {
L
Liu Bo 已提交
2936

2937
			/*
2938 2939 2940 2941 2942 2943 2944 2945
			 * The generic bio_readpage_error handles errors the
			 * following way: If possible, new read requests are
			 * created and submitted and will end up in
			 * end_bio_extent_readpage as well (if we're lucky,
			 * not in the !uptodate case). In that case it returns
			 * 0 and we just go on with the next page in our bio.
			 * If it can't handle the error it will return -EIO and
			 * we remain responsible for that page.
2946
			 */
2947 2948 2949
			if (!btrfs_submit_read_repair(inode, bio, offset, page,
						start - page_offset(page),
						start, end, mirror,
2950
						btrfs_submit_data_bio)) {
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
				uptodate = !bio->bi_status;
				offset += len;
				continue;
			}
		} else {
			struct extent_buffer *eb;

			eb = (struct extent_buffer *)page->private;
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
					       &eb->bflags))
				btree_readahead_hook(eb, -EIO);
2965
		}
2966
readpage_ok:
2967
		if (likely(uptodate)) {
2968
			loff_t i_size = i_size_read(inode);
2969
			pgoff_t end_index = i_size >> PAGE_SHIFT;
2970
			unsigned off;
2971 2972

			/* Zero out the end if this page straddles i_size */
2973
			off = offset_in_page(i_size);
2974
			if (page->index == end_index && off)
2975
				zero_user_segment(page, off, PAGE_SIZE);
2976
		}
2977
		offset += len;
2978

2979 2980
		/* Update page status and unlock */
		endio_readpage_update_page_status(page, uptodate);
2981 2982
		endio_readpage_release_extent(&processed, BTRFS_I(inode),
					      start, end, uptodate);
2983
	}
2984 2985
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
2986
	btrfs_io_bio_free_csum(io_bio);
2987 2988 2989
	bio_put(bio);
}

2990
/*
2991 2992 2993
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
2994
 */
2995
static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2996
{
2997 2998
	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
}
2999

3000
/*
3001 3002 3003
 * The following helpers allocate a bio. As it's backed by a bioset, it'll
 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
 * for the appropriate container_of magic
3004
 */
3005
struct bio *btrfs_bio_alloc(u64 first_byte)
3006 3007 3008
{
	struct bio *bio;

3009
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
3010
	bio->bi_iter.bi_sector = first_byte >> 9;
3011
	btrfs_io_bio_init(btrfs_io_bio(bio));
3012 3013 3014
	return bio;
}

3015
struct bio *btrfs_bio_clone(struct bio *bio)
3016
{
3017 3018
	struct btrfs_io_bio *btrfs_bio;
	struct bio *new;
3019

3020
	/* Bio allocation backed by a bioset does not fail */
3021
	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3022
	btrfs_bio = btrfs_io_bio(new);
3023
	btrfs_io_bio_init(btrfs_bio);
3024
	btrfs_bio->iter = bio->bi_iter;
3025 3026
	return new;
}
3027

3028
struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3029
{
3030 3031
	struct bio *bio;

3032
	/* Bio allocation backed by a bioset does not fail */
3033
	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3034
	btrfs_io_bio_init(btrfs_io_bio(bio));
3035
	return bio;
3036 3037
}

3038
struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3039 3040 3041 3042 3043
{
	struct bio *bio;
	struct btrfs_io_bio *btrfs_bio;

	/* this will never fail when it's backed by a bioset */
3044
	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3045 3046 3047
	ASSERT(bio);

	btrfs_bio = btrfs_io_bio(bio);
3048
	btrfs_io_bio_init(btrfs_bio);
3049 3050

	bio_trim(bio, offset >> 9, size >> 9);
3051
	btrfs_bio->iter = bio->bi_iter;
3052 3053
	return bio;
}
3054

3055 3056
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3057 3058 3059 3060 3061 3062
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
 * @size:	portion of page that we want to write
 * @offset:	starting offset in the page
3063
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3064 3065 3066 3067
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
3068
 */
3069
static int submit_extent_page(unsigned int opf,
3070
			      struct writeback_control *wbc,
3071
			      struct page *page, u64 offset,
3072
			      size_t size, unsigned long pg_offset,
3073
			      struct bio **bio_ret,
3074
			      bio_end_io_t end_io_func,
C
Chris Mason 已提交
3075 3076
			      int mirror_num,
			      unsigned long prev_bio_flags,
3077 3078
			      unsigned long bio_flags,
			      bool force_bio_submit)
3079 3080 3081
{
	int ret = 0;
	struct bio *bio;
3082
	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3083
	sector_t sector = offset >> 9;
3084
	struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3085

3086 3087 3088
	ASSERT(bio_ret);

	if (*bio_ret) {
3089 3090 3091
		bool contig;
		bool can_merge = true;

3092
		bio = *bio_ret;
3093
		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3094
			contig = bio->bi_iter.bi_sector == sector;
C
Chris Mason 已提交
3095
		else
K
Kent Overstreet 已提交
3096
			contig = bio_end_sector(bio) == sector;
C
Chris Mason 已提交
3097

3098
		if (btrfs_bio_fits_in_stripe(page, io_size, bio, bio_flags))
3099 3100 3101
			can_merge = false;

		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3102
		    force_bio_submit ||
3103
		    bio_add_page(bio, page, io_size, pg_offset) < io_size) {
3104
			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3105 3106
			if (ret < 0) {
				*bio_ret = NULL;
3107
				return ret;
3108
			}
3109 3110
			bio = NULL;
		} else {
3111
			if (wbc)
3112
				wbc_account_cgroup_owner(wbc, page, io_size);
3113 3114 3115
			return 0;
		}
	}
C
Chris Mason 已提交
3116

3117
	bio = btrfs_bio_alloc(offset);
3118
	bio_add_page(bio, page, io_size, pg_offset);
3119 3120
	bio->bi_end_io = end_io_func;
	bio->bi_private = tree;
3121
	bio->bi_write_hint = page->mapping->host->i_write_hint;
3122
	bio->bi_opf = opf;
3123
	if (wbc) {
3124 3125 3126 3127
		struct block_device *bdev;

		bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
		bio_set_dev(bio, bdev);
3128
		wbc_init_bio(wbc, bio);
3129
		wbc_account_cgroup_owner(wbc, page, io_size);
3130
	}
3131

3132
	*bio_ret = bio;
3133 3134 3135 3136

	return ret;
}

3137 3138
static void attach_extent_buffer_page(struct extent_buffer *eb,
				      struct page *page)
3139
{
3140 3141 3142 3143 3144 3145 3146 3147 3148
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3149 3150 3151
	if (!PagePrivate(page))
		attach_page_private(page, eb);
	else
J
Josef Bacik 已提交
3152
		WARN_ON(page->private != (unsigned long)eb);
3153 3154
}

J
Josef Bacik 已提交
3155
void set_page_extent_mapped(struct page *page)
3156
{
3157 3158
	if (!PagePrivate(page))
		attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3159 3160
}

3161 3162
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3163
		 u64 start, u64 len, struct extent_map **em_cached)
3164 3165 3166 3167 3168
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3169
		if (extent_map_in_tree(em) && start >= em->start &&
3170
		    start < extent_map_end(em)) {
3171
			refcount_inc(&em->refs);
3172 3173 3174 3175 3176 3177 3178
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3179
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3180 3181
	if (em_cached && !IS_ERR_OR_NULL(em)) {
		BUG_ON(*em_cached);
3182
		refcount_inc(&em->refs);
3183 3184 3185 3186
		*em_cached = em;
	}
	return em;
}
3187 3188 3189 3190
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3191
 * XXX JDM: This needs looking at to ensure proper page locking
3192
 * return 0 on success, otherwise return error
3193
 */
3194 3195 3196
int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
		      struct bio **bio, unsigned long *bio_flags,
		      unsigned int read_flags, u64 *prev_em_start)
3197 3198
{
	struct inode *inode = page->mapping->host;
M
Miao Xie 已提交
3199
	u64 start = page_offset(page);
3200
	const u64 end = start + PAGE_SIZE - 1;
3201 3202 3203 3204 3205 3206
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3207
	int ret = 0;
3208
	int nr = 0;
3209
	size_t pg_offset = 0;
3210 3211
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3212
	unsigned long this_bio_flag = 0;
3213
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3214

3215 3216
	set_page_extent_mapped(page);

D
Dan Magenheimer 已提交
3217 3218 3219
	if (!PageUptodate(page)) {
		if (cleancache_get_page(page) == 0) {
			BUG_ON(blocksize != PAGE_SIZE);
3220
			unlock_extent(tree, start, end);
D
Dan Magenheimer 已提交
3221 3222 3223 3224
			goto out;
		}
	}

3225
	if (page->index == last_byte >> PAGE_SHIFT) {
C
Chris Mason 已提交
3226
		char *userpage;
3227
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3228 3229

		if (zero_offset) {
3230
			iosize = PAGE_SIZE - zero_offset;
3231
			userpage = kmap_atomic(page);
C
Chris Mason 已提交
3232 3233
			memset(userpage + zero_offset, 0, iosize);
			flush_dcache_page(page);
3234
			kunmap_atomic(userpage);
C
Chris Mason 已提交
3235 3236
		}
	}
3237
	while (cur <= end) {
3238
		bool force_bio_submit = false;
3239
		u64 offset;
3240

3241 3242
		if (cur >= last_byte) {
			char *userpage;
3243 3244
			struct extent_state *cached = NULL;

3245
			iosize = PAGE_SIZE - pg_offset;
3246
			userpage = kmap_atomic(page);
3247
			memset(userpage + pg_offset, 0, iosize);
3248
			flush_dcache_page(page);
3249
			kunmap_atomic(userpage);
3250
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3251
					    &cached, GFP_NOFS);
3252
			unlock_extent_cached(tree, cur,
3253
					     cur + iosize - 1, &cached);
3254 3255
			break;
		}
3256
		em = __get_extent_map(inode, page, pg_offset, cur,
3257
				      end - cur + 1, em_cached);
3258
		if (IS_ERR_OR_NULL(em)) {
3259
			SetPageError(page);
3260
			unlock_extent(tree, cur, end);
3261 3262 3263 3264 3265 3266
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3267
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3268
			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3269 3270 3271
			extent_set_compress_type(&this_bio_flag,
						 em->compress_type);
		}
C
Chris Mason 已提交
3272

3273 3274
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3275
		iosize = ALIGN(iosize, blocksize);
3276
		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3277
			offset = em->block_start;
3278
		else
3279
			offset = em->block_start + extent_offset;
3280
		block_start = em->block_start;
Y
Yan Zheng 已提交
3281 3282
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3283 3284 3285

		/*
		 * If we have a file range that points to a compressed extent
3286
		 * and it's followed by a consecutive file range that points
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3320
		    *prev_em_start != em->start)
3321 3322 3323
			force_bio_submit = true;

		if (prev_em_start)
3324
			*prev_em_start = em->start;
3325

3326 3327 3328 3329 3330 3331
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
			char *userpage;
3332 3333
			struct extent_state *cached = NULL;

3334
			userpage = kmap_atomic(page);
3335
			memset(userpage + pg_offset, 0, iosize);
3336
			flush_dcache_page(page);
3337
			kunmap_atomic(userpage);
3338 3339

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3340
					    &cached, GFP_NOFS);
3341
			unlock_extent_cached(tree, cur,
3342
					     cur + iosize - 1, &cached);
3343
			cur = cur + iosize;
3344
			pg_offset += iosize;
3345 3346 3347
			continue;
		}
		/* the get_extent function already copied into the page */
3348 3349
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3350
			check_page_uptodate(tree, page);
3351
			unlock_extent(tree, cur, cur + iosize - 1);
3352
			cur = cur + iosize;
3353
			pg_offset += iosize;
3354 3355
			continue;
		}
3356 3357 3358 3359 3360
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
			SetPageError(page);
3361
			unlock_extent(tree, cur, cur + iosize - 1);
3362
			cur = cur + iosize;
3363
			pg_offset += iosize;
3364 3365
			continue;
		}
3366

3367
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3368
					 page, offset, iosize,
3369
					 pg_offset, bio,
3370
					 end_bio_extent_readpage, 0,
C
Chris Mason 已提交
3371
					 *bio_flags,
3372 3373
					 this_bio_flag,
					 force_bio_submit);
3374 3375 3376 3377
		if (!ret) {
			nr++;
			*bio_flags = this_bio_flag;
		} else {
3378
			SetPageError(page);
3379
			unlock_extent(tree, cur, cur + iosize - 1);
3380
			goto out;
3381
		}
3382
		cur = cur + iosize;
3383
		pg_offset += iosize;
3384
	}
D
Dan Magenheimer 已提交
3385
out:
3386 3387 3388 3389 3390
	if (!nr) {
		if (!PageError(page))
			SetPageUptodate(page);
		unlock_page(page);
	}
3391
	return ret;
3392 3393
}

3394
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3395
					     u64 start, u64 end,
3396
					     struct extent_map **em_cached,
3397
					     struct bio **bio,
3398
					     unsigned long *bio_flags,
3399
					     u64 *prev_em_start)
3400
{
3401
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3402 3403
	int index;

3404
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3405 3406

	for (index = 0; index < nr_pages; index++) {
3407 3408
		btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
				  REQ_RAHEAD, prev_em_start);
3409
		put_page(pages[index]);
3410 3411 3412
	}
}

3413
static void update_nr_written(struct writeback_control *wbc,
3414
			      unsigned long nr_written)
3415 3416 3417 3418
{
	wbc->nr_to_write -= nr_written;
}

3419
/*
3420 3421
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3422
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3423 3424 3425 3426 3427
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3428
 */
3429
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3430 3431
		struct page *page, struct writeback_control *wbc,
		u64 delalloc_start, unsigned long *nr_written)
3432
{
3433
	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3434
	bool found;
3435 3436 3437 3438 3439 3440 3441
	u64 delalloc_to_write = 0;
	u64 delalloc_end = 0;
	int ret;
	int page_started = 0;


	while (delalloc_end < page_end) {
3442
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3443
					       &delalloc_start,
3444
					       &delalloc_end);
3445
		if (!found) {
3446 3447 3448
			delalloc_start = delalloc_end + 1;
			continue;
		}
3449
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3450
				delalloc_end, &page_started, nr_written, wbc);
3451 3452
		if (ret) {
			SetPageError(page);
3453 3454 3455 3456 3457
			/*
			 * btrfs_run_delalloc_range should return < 0 for error
			 * but just in case, we use > 0 here meaning the IO is
			 * started, so we don't want to return > 0 unless
			 * things are going well.
3458
			 */
3459
			return ret < 0 ? ret : -EIO;
3460 3461
		}
		/*
3462 3463
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3464 3465
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3466
				      PAGE_SIZE) >> PAGE_SHIFT;
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

	/* did the fill delalloc function already unlock and start
	 * the IO?
	 */
	if (page_started) {
		/*
		 * we've unlocked the page, so we can't update
		 * the mapping's writeback index, just update
		 * nr_to_write.
		 */
		wbc->nr_to_write -= *nr_written;
		return 1;
	}

3491
	return 0;
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
}

/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3502
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3503 3504 3505 3506 3507
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
				 unsigned long nr_written,
3508
				 int *nr_ret)
3509
{
3510
	struct extent_io_tree *tree = &inode->io_tree;
M
Miao Xie 已提交
3511
	u64 start = page_offset(page);
3512
	u64 page_end = start + PAGE_SIZE - 1;
3513 3514 3515 3516 3517 3518
	u64 end;
	u64 cur = start;
	u64 extent_offset;
	u64 block_start;
	u64 iosize;
	struct extent_map *em;
3519
	size_t pg_offset = 0;
3520
	size_t blocksize;
3521 3522
	int ret = 0;
	int nr = 0;
3523
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3524
	bool compressed;
C
Chris Mason 已提交
3525

3526 3527 3528
	ret = btrfs_writepage_cow_fixup(page, start, page_end);
	if (ret) {
		/* Fixup worker will requeue */
3529
		redirty_page_for_writepage(wbc, page);
3530 3531 3532
		update_nr_written(wbc, nr_written);
		unlock_page(page);
		return 1;
3533 3534
	}

3535 3536 3537 3538
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3539
	update_nr_written(wbc, nr_written + 1);
3540

3541
	end = page_end;
3542
	blocksize = inode->vfs_inode.i_sb->s_blocksize;
3543 3544

	while (cur <= end) {
3545
		u64 em_end;
3546
		u64 offset;
3547

3548
		if (cur >= i_size) {
3549
			btrfs_writepage_endio_finish_ordered(page, cur,
3550
							     page_end, 1);
3551 3552
			break;
		}
3553
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3554
		if (IS_ERR_OR_NULL(em)) {
3555
			SetPageError(page);
3556
			ret = PTR_ERR_OR_ZERO(em);
3557 3558 3559 3560
			break;
		}

		extent_offset = cur - em->start;
3561 3562
		em_end = extent_map_end(em);
		BUG_ON(em_end <= cur);
3563
		BUG_ON(end < cur);
3564
		iosize = min(em_end - cur, end - cur + 1);
3565
		iosize = ALIGN(iosize, blocksize);
3566
		offset = em->block_start + extent_offset;
3567
		block_start = em->block_start;
C
Chris Mason 已提交
3568
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3569 3570 3571
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
3572 3573 3574 3575 3576
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
3577
		    block_start == EXTENT_MAP_INLINE) {
3578
			if (compressed)
C
Chris Mason 已提交
3579
				nr++;
3580 3581 3582
			else
				btrfs_writepage_endio_finish_ordered(page, cur,
							cur + iosize - 1, 1);
C
Chris Mason 已提交
3583
			cur += iosize;
3584
			pg_offset += iosize;
3585 3586
			continue;
		}
C
Chris Mason 已提交
3587

3588
		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3589
		if (!PageWriteback(page)) {
3590
			btrfs_err(inode->root->fs_info,
3591 3592
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
3593
		}
3594

3595
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3596
					 page, offset, iosize, pg_offset,
3597
					 &epd->bio,
3598 3599
					 end_bio_extent_writepage,
					 0, 0, 0, false);
3600
		if (ret) {
3601
			SetPageError(page);
3602 3603 3604
			if (PageWriteback(page))
				end_page_writeback(page);
		}
3605 3606

		cur = cur + iosize;
3607
		pg_offset += iosize;
3608 3609
		nr++;
	}
3610 3611 3612 3613 3614 3615 3616 3617 3618
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
3619 3620 3621
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
3622 3623
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3624
			      struct extent_page_data *epd)
3625 3626 3627
{
	struct inode *inode = page->mapping->host;
	u64 start = page_offset(page);
3628
	u64 page_end = start + PAGE_SIZE - 1;
3629 3630
	int ret;
	int nr = 0;
3631
	size_t pg_offset;
3632
	loff_t i_size = i_size_read(inode);
3633
	unsigned long end_index = i_size >> PAGE_SHIFT;
3634 3635 3636 3637 3638 3639 3640 3641
	unsigned long nr_written = 0;

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

	ClearPageError(page);

3642
	pg_offset = offset_in_page(i_size);
3643 3644
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
3645
		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3646 3647 3648 3649 3650 3651 3652 3653 3654
		unlock_page(page);
		return 0;
	}

	if (page->index == end_index) {
		char *userpage;

		userpage = kmap_atomic(page);
		memset(userpage + pg_offset, 0,
3655
		       PAGE_SIZE - pg_offset);
3656 3657 3658 3659 3660 3661
		kunmap_atomic(userpage);
		flush_dcache_page(page);
	}

	set_page_extent_mapped(page);

3662
	if (!epd->extent_locked) {
3663 3664
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
					 &nr_written);
3665
		if (ret == 1)
3666
			return 0;
3667 3668 3669
		if (ret)
			goto done;
	}
3670

3671 3672
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
				    nr_written, &nr);
3673
	if (ret == 1)
3674
		return 0;
3675

3676 3677 3678 3679 3680 3681
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
3682 3683 3684 3685
	if (PageError(page)) {
		ret = ret < 0 ? ret : -EIO;
		end_extent_writepage(page, ret, start, page_end);
	}
3686
	unlock_page(page);
3687
	ASSERT(ret <= 0);
3688
	return ret;
3689 3690
}

3691
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3692
{
3693 3694
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
3695 3696
}

3697 3698 3699 3700 3701 3702 3703
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

3704
/*
3705
 * Lock extent buffer status and pages for writeback.
3706
 *
3707 3708 3709 3710 3711 3712
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
3713
 */
3714
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3715
			  struct extent_page_data *epd)
3716
{
3717
	struct btrfs_fs_info *fs_info = eb->fs_info;
3718
	int i, num_pages, failed_page_nr;
3719 3720 3721 3722
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
3723
		ret = flush_write_bio(epd);
3724 3725 3726
		if (ret < 0)
			return ret;
		flush = 1;
3727 3728 3729 3730 3731 3732 3733 3734
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
3735
			ret = flush_write_bio(epd);
3736 3737
			if (ret < 0)
				return ret;
3738 3739
			flush = 1;
		}
C
Chris Mason 已提交
3740 3741 3742 3743 3744
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
3745 3746 3747 3748
			btrfs_tree_unlock(eb);
		}
	}

3749 3750 3751 3752 3753 3754
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
3755 3756
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3757
		spin_unlock(&eb->refs_lock);
3758
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3759 3760 3761
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
3762
		ret = 1;
3763 3764
	} else {
		spin_unlock(&eb->refs_lock);
3765 3766 3767 3768 3769 3770 3771
	}

	btrfs_tree_unlock(eb);

	if (!ret)
		return ret;

3772
	num_pages = num_extent_pages(eb);
3773
	for (i = 0; i < num_pages; i++) {
3774
		struct page *p = eb->pages[i];
3775 3776 3777

		if (!trylock_page(p)) {
			if (!flush) {
3778 3779 3780 3781 3782
				int err;

				err = flush_write_bio(epd);
				if (err < 0) {
					ret = err;
3783 3784 3785
					failed_page_nr = i;
					goto err_unlock;
				}
3786 3787 3788 3789 3790 3791 3792
				flush = 1;
			}
			lock_page(p);
		}
	}

	return ret;
3793 3794 3795 3796
err_unlock:
	/* Unlock already locked pages */
	for (i = 0; i < failed_page_nr; i++)
		unlock_page(eb->pages[i]);
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
	/*
	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
	 * be made and undo everything done before.
	 */
	btrfs_tree_lock(eb);
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
	end_extent_buffer_writeback(eb);
	spin_unlock(&eb->refs_lock);
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
				 fs_info->dirty_metadata_batch);
	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
	btrfs_tree_unlock(eb);
3811
	return ret;
3812 3813
}

3814 3815 3816
static void set_btree_ioerr(struct page *page)
{
	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3817
	struct btrfs_fs_info *fs_info;
3818 3819 3820 3821 3822

	SetPageError(page);
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

3823 3824 3825 3826 3827 3828 3829 3830
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	fs_info = eb->fs_info;
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
3871
		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3872 3873
		break;
	case 0:
3874
		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3875 3876
		break;
	case 1:
3877
		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3878 3879 3880 3881 3882 3883
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

3884
static void end_bio_extent_buffer_writepage(struct bio *bio)
3885
{
3886
	struct bio_vec *bvec;
3887
	struct extent_buffer *eb;
3888
	int done;
3889
	struct bvec_iter_all iter_all;
3890

3891
	ASSERT(!bio_flagged(bio, BIO_CLONED));
3892
	bio_for_each_segment_all(bvec, bio, iter_all) {
3893 3894 3895 3896 3897 3898
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

3899
		if (bio->bi_status ||
3900
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3901
			ClearPageUptodate(page);
3902
			set_btree_ioerr(page);
3903 3904 3905 3906 3907 3908 3909 3910
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
3911
	}
3912 3913 3914 3915

	bio_put(bio);
}

3916
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3917 3918 3919 3920
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
	u64 offset = eb->start;
3921
	u32 nritems;
3922
	int i, num_pages;
3923
	unsigned long start, end;
3924
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3925
	int ret = 0;
3926

3927
	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3928
	num_pages = num_extent_pages(eb);
3929
	atomic_set(&eb->io_pages, num_pages);
3930

3931 3932
	/* set btree blocks beyond nritems with 0 to avoid stale content. */
	nritems = btrfs_header_nritems(eb);
3933 3934 3935
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);

3936
		memzero_extent_buffer(eb, end, eb->len - end);
3937 3938 3939 3940 3941 3942
	} else {
		/*
		 * leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
3943
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3944
		memzero_extent_buffer(eb, start, end - start);
3945 3946
	}

3947
	for (i = 0; i < num_pages; i++) {
3948
		struct page *p = eb->pages[i];
3949 3950 3951

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
3952
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3953
					 p, offset, PAGE_SIZE, 0,
3954
					 &epd->bio,
3955
					 end_bio_extent_buffer_writepage,
3956
					 0, 0, 0, false);
3957
		if (ret) {
3958
			set_btree_ioerr(p);
3959 3960
			if (PageWriteback(p))
				end_page_writeback(p);
3961 3962 3963 3964 3965
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
3966
		offset += PAGE_SIZE;
3967
		update_nr_written(wbc, 1);
3968 3969 3970 3971 3972
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
3973
			struct page *p = eb->pages[i];
3974
			clear_page_dirty_for_io(p);
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
			unlock_page(p);
		}
	}

	return ret;
}

int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
	struct extent_buffer *eb, *prev_eb = NULL;
	struct extent_page_data epd = {
		.bio = NULL,
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
3991
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3992 3993 3994 3995 3996 3997 3998 3999
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4000
	xa_mark_t tag;
4001

4002
	pagevec_init(&pvec);
4003 4004 4005
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4006 4007 4008 4009 4010
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4011
	} else {
4012 4013
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4024
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4025
			tag))) {
4026 4027 4028 4029 4030 4031 4032 4033
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			if (!PagePrivate(page))
				continue;

4034 4035 4036 4037 4038 4039
			spin_lock(&mapping->private_lock);
			if (!PagePrivate(page)) {
				spin_unlock(&mapping->private_lock);
				continue;
			}

4040
			eb = (struct extent_buffer *)page->private;
4041 4042 4043 4044 4045 4046

			/*
			 * Shouldn't happen and normally this would be a BUG_ON
			 * but no sense in crashing the users box for something
			 * we can survive anyway.
			 */
4047
			if (WARN_ON(!eb)) {
4048
				spin_unlock(&mapping->private_lock);
4049 4050 4051
				continue;
			}

4052 4053
			if (eb == prev_eb) {
				spin_unlock(&mapping->private_lock);
4054
				continue;
4055
			}
4056

4057 4058 4059
			ret = atomic_inc_not_zero(&eb->refs);
			spin_unlock(&mapping->private_lock);
			if (!ret)
4060 4061 4062
				continue;

			prev_eb = eb;
4063
			ret = lock_extent_buffer_for_io(eb, &epd);
4064 4065 4066
			if (!ret) {
				free_extent_buffer(eb);
				continue;
4067 4068 4069 4070
			} else if (ret < 0) {
				done = 1;
				free_extent_buffer(eb);
				break;
4071 4072
			}

4073
			ret = write_one_eb(eb, wbc, &epd);
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
			if (ret) {
				done = 1;
				free_extent_buffer(eb);
				break;
			}
			free_extent_buffer(eb);

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4100 4101 4102 4103 4104
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
	 */
	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
		ret = flush_write_bio(&epd);
	} else {
4135
		ret = -EROFS;
4136 4137
		end_write_bio(&epd, ret);
	}
4138 4139 4140
	return ret;
}

4141
/**
C
Chris Mason 已提交
4142
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4143 4144
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4145
 * @data: data passed to __extent_writepage function
4146 4147 4148 4149 4150 4151 4152 4153 4154
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4155
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4156
			     struct writeback_control *wbc,
4157
			     struct extent_page_data *epd)
4158
{
4159
	struct inode *inode = mapping->host;
4160 4161
	int ret = 0;
	int done = 0;
4162
	int nr_to_write_done = 0;
4163 4164 4165 4166
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4167 4168
	pgoff_t done_index;
	int range_whole = 0;
4169
	int scanned = 0;
M
Matthew Wilcox 已提交
4170
	xa_mark_t tag;
4171

4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4184
	pagevec_init(&pvec);
4185 4186 4187
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4188 4189 4190 4191 4192
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4193
	} else {
4194 4195
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4196 4197
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4198 4199
		scanned = 1;
	}
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4214 4215 4216
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4217
retry:
4218
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4219
		tag_pages_for_writeback(mapping, index, end);
4220
	done_index = index;
4221
	while (!done && !nr_to_write_done && (index <= end) &&
4222 4223
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
4224 4225 4226 4227 4228
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4229
			done_index = page->index + 1;
4230
			/*
M
Matthew Wilcox 已提交
4231 4232 4233 4234 4235
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
4236
			 */
4237
			if (!trylock_page(page)) {
4238 4239
				ret = flush_write_bio(epd);
				BUG_ON(ret < 0);
4240
				lock_page(page);
4241
			}
4242 4243 4244 4245 4246 4247

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
4248
			if (wbc->sync_mode != WB_SYNC_NONE) {
4249 4250 4251 4252
				if (PageWriteback(page)) {
					ret = flush_write_bio(epd);
					BUG_ON(ret < 0);
				}
4253
				wait_on_page_writeback(page);
C
Chris Mason 已提交
4254
			}
4255 4256 4257 4258 4259 4260 4261

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

4262
			ret = __extent_writepage(page, wbc, epd);
4263 4264 4265 4266
			if (ret < 0) {
				done = 1;
				break;
			}
4267 4268 4269 4270 4271 4272 4273

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
4274 4275 4276 4277
		}
		pagevec_release(&pvec);
		cond_resched();
	}
4278
	if (!scanned && !done) {
4279 4280 4281 4282 4283 4284
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
		ret = flush_write_bio(epd);
		if (!ret)
			goto retry;
4295
	}
4296 4297 4298 4299

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

4300
	btrfs_add_delayed_iput(inode);
4301
	return ret;
4302 4303
}

4304
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4305 4306 4307 4308
{
	int ret;
	struct extent_page_data epd = {
		.bio = NULL,
4309
		.extent_locked = 0,
4310
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4311 4312 4313
	};

	ret = __extent_writepage(page, wbc, &epd);
4314 4315 4316 4317 4318
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
4319

4320 4321
	ret = flush_write_bio(&epd);
	ASSERT(ret <= 0);
4322 4323 4324
	return ret;
}

4325
int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4326 4327 4328 4329 4330
			      int mode)
{
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
4331 4332
	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
		PAGE_SHIFT;
4333 4334 4335 4336

	struct extent_page_data epd = {
		.bio = NULL,
		.extent_locked = 1,
4337
		.sync_io = mode == WB_SYNC_ALL,
4338 4339 4340 4341 4342 4343
	};
	struct writeback_control wbc_writepages = {
		.sync_mode	= mode,
		.nr_to_write	= nr_pages * 2,
		.range_start	= start,
		.range_end	= end + 1,
4344 4345 4346
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
4347 4348
	};

4349
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
C
Chris Mason 已提交
4350
	while (start <= end) {
4351
		page = find_get_page(mapping, start >> PAGE_SHIFT);
4352 4353 4354
		if (clear_page_dirty_for_io(page))
			ret = __extent_writepage(page, &wbc_writepages, &epd);
		else {
4355
			btrfs_writepage_endio_finish_ordered(page, start,
4356
						    start + PAGE_SIZE - 1, 1);
4357 4358
			unlock_page(page);
		}
4359 4360
		put_page(page);
		start += PAGE_SIZE;
4361 4362
	}

4363
	ASSERT(ret <= 0);
4364 4365 4366
	if (ret == 0)
		ret = flush_write_bio(&epd);
	else
4367
		end_write_bio(&epd, ret);
4368 4369

	wbc_detach_inode(&wbc_writepages);
4370 4371
	return ret;
}
4372

4373
int extent_writepages(struct address_space *mapping,
4374 4375 4376 4377 4378
		      struct writeback_control *wbc)
{
	int ret = 0;
	struct extent_page_data epd = {
		.bio = NULL,
4379
		.extent_locked = 0,
4380
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4381 4382
	};

4383
	ret = extent_write_cache_pages(mapping, wbc, &epd);
4384 4385 4386 4387 4388 4389
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
	ret = flush_write_bio(&epd);
4390 4391 4392
	return ret;
}

4393
void extent_readahead(struct readahead_control *rac)
4394 4395
{
	struct bio *bio = NULL;
C
Chris Mason 已提交
4396
	unsigned long bio_flags = 0;
L
Liu Bo 已提交
4397
	struct page *pagepool[16];
4398
	struct extent_map *em_cached = NULL;
4399
	u64 prev_em_start = (u64)-1;
4400
	int nr;
4401

4402 4403 4404
	while ((nr = readahead_page_batch(rac, pagepool))) {
		u64 contig_start = page_offset(pagepool[0]);
		u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4405

4406
		ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4407

4408 4409
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
				&em_cached, &bio, &bio_flags, &prev_em_start);
4410
	}
L
Liu Bo 已提交
4411

4412 4413 4414
	if (em_cached)
		free_extent_map(em_cached);

4415 4416 4417 4418
	if (bio) {
		if (submit_one_bio(bio, 0, bio_flags))
			return;
	}
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
}

/*
 * basic invalidatepage code, this waits on any locked or writeback
 * ranges corresponding to the page, and then deletes any extent state
 * records from the tree
 */
int extent_invalidatepage(struct extent_io_tree *tree,
			  struct page *page, unsigned long offset)
{
4429
	struct extent_state *cached_state = NULL;
M
Miao Xie 已提交
4430
	u64 start = page_offset(page);
4431
	u64 end = start + PAGE_SIZE - 1;
4432 4433
	size_t blocksize = page->mapping->host->i_sb->s_blocksize;

4434
	start += ALIGN(offset, blocksize);
4435 4436 4437
	if (start > end)
		return 0;

4438
	lock_extent_bits(tree, start, end, &cached_state);
4439
	wait_on_page_writeback(page);
4440 4441
	clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
			 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4442 4443 4444
	return 0;
}

4445 4446 4447 4448 4449
/*
 * a helper for releasepage, this tests for areas of the page that
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
4450
static int try_release_extent_state(struct extent_io_tree *tree,
4451
				    struct page *page, gfp_t mask)
4452
{
M
Miao Xie 已提交
4453
	u64 start = page_offset(page);
4454
	u64 end = start + PAGE_SIZE - 1;
4455 4456
	int ret = 1;

N
Nikolay Borisov 已提交
4457
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4458
		ret = 0;
N
Nikolay Borisov 已提交
4459
	} else {
4460
		/*
4461 4462 4463 4464
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
4465
		 */
4466
		ret = __clear_extent_bit(tree, start, end,
4467 4468
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
4469 4470 4471 4472 4473 4474 4475 4476

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
4477 4478 4479 4480
	}
	return ret;
}

4481 4482 4483 4484 4485
/*
 * a helper for releasepage.  As long as there are no locked extents
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
4486
int try_release_extent_mapping(struct page *page, gfp_t mask)
4487 4488
{
	struct extent_map *em;
M
Miao Xie 已提交
4489
	u64 start = page_offset(page);
4490
	u64 end = start + PAGE_SIZE - 1;
4491 4492 4493
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4494

4495
	if (gfpflags_allow_blocking(mask) &&
4496
	    page->mapping->host->i_size > SZ_16M) {
4497
		u64 len;
4498
		while (start <= end) {
4499 4500 4501
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

4502
			len = end - start + 1;
4503
			write_lock(&map->lock);
4504
			em = lookup_extent_mapping(map, start, len);
4505
			if (!em) {
4506
				write_unlock(&map->lock);
4507 4508
				break;
			}
4509 4510
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
4511
				write_unlock(&map->lock);
4512 4513 4514
				free_extent_map(em);
				break;
			}
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
4542 4543 4544 4545 4546 4547 4548 4549
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
4550 4551 4552
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
4553
next:
4554
			start = extent_map_end(em);
4555
			write_unlock(&map->lock);
4556 4557

			/* once for us */
4558
			free_extent_map(em);
4559 4560

			cond_resched(); /* Allow large-extent preemption. */
4561 4562
		}
	}
4563
	return try_release_extent_state(tree, page, mask);
4564 4565
}

4566 4567 4568 4569
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
4570
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4571
						u64 offset, u64 last)
4572
{
4573
	u64 sectorsize = btrfs_inode_sectorsize(inode);
4574 4575 4576 4577 4578 4579
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

4580
	while (1) {
4581 4582 4583
		len = last - offset;
		if (len == 0)
			break;
4584
		len = ALIGN(len, sectorsize);
4585
		em = btrfs_get_extent_fiemap(inode, offset, len);
4586
		if (IS_ERR_OR_NULL(em))
4587 4588 4589
			return em;

		/* if this isn't a hole return it */
4590
		if (em->block_start != EXTENT_MAP_HOLE)
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
4636
	 * fiemap extent won't overlap with cached one.
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
4688
 * Emit last fiemap cache
4689
 *
4690 4691 4692 4693 4694 4695 4696
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
4697
 */
4698
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4699
				  struct fiemap_cache *cache)
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

4714
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4715
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
4716
{
J
Josef Bacik 已提交
4717
	int ret = 0;
Y
Yehuda Sadeh 已提交
4718 4719 4720
	u64 off = start;
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
4721 4722
	u32 found_type;
	u64 last;
4723
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
4724
	u64 disko = 0;
4725
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
4726
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
4727
	struct extent_map *em = NULL;
4728
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
4729
	struct btrfs_path *path;
4730
	struct btrfs_root *root = inode->root;
4731
	struct fiemap_cache cache = { 0 };
4732 4733
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
4734
	int end = 0;
4735 4736 4737
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
4738 4739 4740 4741

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
4742 4743 4744 4745
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

4746 4747 4748 4749 4750 4751 4752
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

4753 4754
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4755

4756 4757 4758 4759
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
4760 4761
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
4762
	if (ret < 0) {
4763
		goto out_free_ulist;
4764 4765 4766 4767
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
4768
	}
4769

J
Josef Bacik 已提交
4770 4771
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4772
	found_type = found_key.type;
J
Josef Bacik 已提交
4773

4774
	/* No extents, but there might be delalloc bits */
4775
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
4776
	    found_type != BTRFS_EXTENT_DATA_KEY) {
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
4788
	}
4789
	btrfs_release_path(path);
J
Josef Bacik 已提交
4790

4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

4801
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
4802
			 &cached_state);
4803

4804
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
4805 4806 4807 4808 4809 4810
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
4811

Y
Yehuda Sadeh 已提交
4812
	while (!end) {
4813
		u64 offset_in_extent = 0;
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
4826

4827 4828
		/*
		 * record the offset from the start of the extent
4829 4830 4831
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
4832
		 */
4833 4834
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
4835
		em_end = extent_map_end(em);
4836
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
4837
		flags = 0;
4838 4839 4840 4841
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
4842

4843 4844 4845 4846 4847 4848 4849
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

4850
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
4851 4852
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
4853
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
4854 4855
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
4856
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
4857 4858
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
4859 4860 4861
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
4862 4863 4864 4865

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
4866 4867 4868
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
4869
			 */
4870
			ret = btrfs_check_shared(root, btrfs_ino(inode),
4871
						 bytenr, roots, tmp_ulist);
4872
			if (ret < 0)
4873
				goto out_free;
4874
			if (ret)
4875
				flags |= FIEMAP_EXTENT_SHARED;
4876
			ret = 0;
Y
Yehuda Sadeh 已提交
4877 4878 4879
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
4880 4881
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
4882 4883 4884

		free_extent_map(em);
		em = NULL;
4885 4886
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
4887 4888 4889 4890
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

4891
		/* now scan forward to see if this is really the last extent. */
4892
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4893 4894 4895 4896 4897
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
4898 4899 4900
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
4901 4902
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
4903 4904 4905
		if (ret) {
			if (ret == 1)
				ret = 0;
4906
			goto out_free;
4907
		}
Y
Yehuda Sadeh 已提交
4908 4909
	}
out_free:
4910
	if (!ret)
4911
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
4912 4913
	free_extent_map(em);
out:
4914
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
4915
			     &cached_state);
4916 4917

out_free_ulist:
4918
	btrfs_free_path(path);
4919 4920
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
4921 4922 4923
	return ret;
}

4924 4925 4926 4927 4928
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

4929
int extent_buffer_under_io(const struct extent_buffer *eb)
4930 4931 4932 4933 4934 4935 4936
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

/*
4937
 * Release all pages attached to the extent buffer.
4938
 */
4939
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4940
{
4941 4942
	int i;
	int num_pages;
4943
	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4944 4945 4946

	BUG_ON(extent_buffer_under_io(eb));

4947 4948 4949
	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];
4950

4951 4952 4953
		if (!page)
			continue;
		if (mapped)
4954
			spin_lock(&page->mapping->private_lock);
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
4967
			/*
4968 4969
			 * We need to make sure we haven't be attached
			 * to a new eb.
4970
			 */
4971
			detach_page_private(page);
4972
		}
4973 4974 4975 4976

		if (mapped)
			spin_unlock(&page->mapping->private_lock);

4977
		/* One for when we allocated the page */
4978
		put_page(page);
4979
	}
4980 4981 4982 4983 4984 4985 4986
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
4987
	btrfs_release_extent_buffer_pages(eb);
4988
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4989 4990 4991
	__free_extent_buffer(eb);
}

4992 4993
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4994
		      unsigned long len)
4995 4996 4997
{
	struct extent_buffer *eb = NULL;

4998
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4999 5000
	eb->start = start;
	eb->len = len;
5001
	eb->fs_info = fs_info;
5002
	eb->bflags = 0;
5003
	init_rwsem(&eb->lock);
5004

5005 5006
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5007

5008
	spin_lock_init(&eb->refs_lock);
5009
	atomic_set(&eb->refs, 1);
5010
	atomic_set(&eb->io_pages, 0);
5011

5012 5013 5014 5015 5016 5017
	/*
	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
	 */
	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
		> MAX_INLINE_EXTENT_BUFFER_SIZE);
	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
5018 5019 5020 5021

	return eb;
}

5022
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5023
{
5024
	int i;
5025 5026
	struct page *p;
	struct extent_buffer *new;
5027
	int num_pages = num_extent_pages(src);
5028

5029
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5030 5031 5032 5033
	if (new == NULL)
		return NULL;

	for (i = 0; i < num_pages; i++) {
5034
		p = alloc_page(GFP_NOFS);
5035 5036 5037 5038
		if (!p) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5039 5040 5041 5042
		attach_extent_buffer_page(new, p);
		WARN_ON(PageDirty(p));
		SetPageUptodate(p);
		new->pages[i] = p;
5043
		copy_page(page_address(p), page_address(src->pages[i]));
5044 5045 5046
	}

	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5047
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5048 5049 5050 5051

	return new;
}

5052 5053
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5054 5055
{
	struct extent_buffer *eb;
5056 5057
	int num_pages;
	int i;
5058

5059
	eb = __alloc_extent_buffer(fs_info, start, len);
5060 5061 5062
	if (!eb)
		return NULL;

5063
	num_pages = num_extent_pages(eb);
5064
	for (i = 0; i < num_pages; i++) {
5065
		eb->pages[i] = alloc_page(GFP_NOFS);
5066 5067 5068 5069 5070
		if (!eb->pages[i])
			goto err;
	}
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5071
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5072 5073 5074

	return eb;
err:
5075 5076
	for (; i > 0; i--)
		__free_page(eb->pages[i - 1]);
5077 5078 5079 5080
	__free_extent_buffer(eb);
	return NULL;
}

5081
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5082
						u64 start)
5083
{
5084
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5085 5086
}

5087 5088
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5089
	int refs;
5090 5091 5092 5093
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5094
	 *
5095 5096 5097
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
	 * calling releasepage when the tree reference is the only reference.
5098
	 *
5099 5100 5101 5102 5103
	 * In both cases, care is taken to ensure that the extent_buffer's
	 * pages are not under io. However, releasepage can be concurrently
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5104
	 *
5105 5106 5107 5108 5109 5110 5111
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
5112
	 */
5113 5114 5115 5116
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

5117 5118
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5119
		atomic_inc(&eb->refs);
5120
	spin_unlock(&eb->refs_lock);
5121 5122
}

5123 5124
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
5125
{
5126
	int num_pages, i;
5127

5128 5129
	check_buffer_tree_ref(eb);

5130
	num_pages = num_extent_pages(eb);
5131
	for (i = 0; i < num_pages; i++) {
5132 5133
		struct page *p = eb->pages[i];

5134 5135
		if (p != accessed)
			mark_page_accessed(p);
5136 5137 5138
	}
}

5139 5140
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
5141 5142 5143 5144
{
	struct extent_buffer *eb;

	rcu_read_lock();
5145
	eb = radix_tree_lookup(&fs_info->buffer_radix,
5146
			       start >> fs_info->sectorsize_bits);
5147 5148
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
		/*
		 * Lock our eb's refs_lock to avoid races with
		 * free_extent_buffer. When we get our eb it might be flagged
		 * with EXTENT_BUFFER_STALE and another task running
		 * free_extent_buffer might have seen that flag set,
		 * eb->refs == 2, that the buffer isn't under IO (dirty and
		 * writeback flags not set) and it's still in the tree (flag
		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
		 * of decrementing the extent buffer's reference count twice.
		 * So here we could race and increment the eb's reference count,
		 * clear its stale flag, mark it as dirty and drop our reference
		 * before the other task finishes executing free_extent_buffer,
		 * which would later result in an attempt to free an extent
		 * buffer that is dirty.
		 */
		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
			spin_lock(&eb->refs_lock);
			spin_unlock(&eb->refs_lock);
		}
5168
		mark_extent_buffer_accessed(eb, NULL);
5169 5170 5171 5172 5173 5174 5175
		return eb;
	}
	rcu_read_unlock();

	return NULL;
}

5176 5177
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5178
					u64 start)
5179 5180 5181 5182 5183 5184 5185
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
5186
	eb = alloc_dummy_extent_buffer(fs_info, start);
5187
	if (!eb)
5188
		return ERR_PTR(-ENOMEM);
5189 5190
	eb->fs_info = fs_info;
again:
5191
	ret = radix_tree_preload(GFP_NOFS);
5192 5193
	if (ret) {
		exists = ERR_PTR(ret);
5194
		goto free_eb;
5195
	}
5196 5197
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
5198
				start >> fs_info->sectorsize_bits, eb);
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
			goto free_eb;
		else
			goto again;
	}
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

5218
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5219
					  u64 start, u64 owner_root, int level)
5220
{
5221
	unsigned long len = fs_info->nodesize;
5222 5223
	int num_pages;
	int i;
5224
	unsigned long index = start >> PAGE_SHIFT;
5225
	struct extent_buffer *eb;
5226
	struct extent_buffer *exists = NULL;
5227
	struct page *p;
5228
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5229
	int uptodate = 1;
5230
	int ret;
5231

5232
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5233 5234 5235 5236
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return ERR_PTR(-EINVAL);
	}

5237
	eb = find_extent_buffer(fs_info, start);
5238
	if (eb)
5239 5240
		return eb;

5241
	eb = __alloc_extent_buffer(fs_info, start, len);
5242
	if (!eb)
5243
		return ERR_PTR(-ENOMEM);
5244
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
5245

5246
	num_pages = num_extent_pages(eb);
5247
	for (i = 0; i < num_pages; i++, index++) {
5248
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5249 5250
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
5251
			goto free_eb;
5252
		}
J
Josef Bacik 已提交
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266

		spin_lock(&mapping->private_lock);
		if (PagePrivate(p)) {
			/*
			 * We could have already allocated an eb for this page
			 * and attached one so lets see if we can get a ref on
			 * the existing eb, and if we can we know it's good and
			 * we can just return that one, else we know we can just
			 * overwrite page->private.
			 */
			exists = (struct extent_buffer *)p->private;
			if (atomic_inc_not_zero(&exists->refs)) {
				spin_unlock(&mapping->private_lock);
				unlock_page(p);
5267
				put_page(p);
5268
				mark_extent_buffer_accessed(exists, p);
J
Josef Bacik 已提交
5269 5270
				goto free_eb;
			}
5271
			exists = NULL;
J
Josef Bacik 已提交
5272

5273
			/*
J
Josef Bacik 已提交
5274 5275 5276 5277
			 * Do this so attach doesn't complain and we need to
			 * drop the ref the old guy had.
			 */
			ClearPagePrivate(p);
5278
			WARN_ON(PageDirty(p));
5279
			put_page(p);
5280
		}
J
Josef Bacik 已提交
5281 5282
		attach_extent_buffer_page(eb, p);
		spin_unlock(&mapping->private_lock);
5283
		WARN_ON(PageDirty(p));
5284
		eb->pages[i] = p;
5285 5286
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
5287 5288

		/*
5289 5290 5291 5292 5293
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
		 * opens a race with btree_releasepage which can free a page
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
5294
		 */
5295 5296
	}
	if (uptodate)
5297
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5298
again:
5299
	ret = radix_tree_preload(GFP_NOFS);
5300 5301
	if (ret) {
		exists = ERR_PTR(ret);
5302
		goto free_eb;
5303
	}
5304

5305 5306
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
5307
				start >> fs_info->sectorsize_bits, eb);
5308
	spin_unlock(&fs_info->buffer_lock);
5309
	radix_tree_preload_end();
5310
	if (ret == -EEXIST) {
5311
		exists = find_extent_buffer(fs_info, start);
5312 5313 5314
		if (exists)
			goto free_eb;
		else
5315
			goto again;
5316 5317
	}
	/* add one reference for the tree */
5318
	check_buffer_tree_ref(eb);
5319
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
5320 5321

	/*
5322 5323 5324
	 * Now it's safe to unlock the pages because any calls to
	 * btree_releasepage will correctly detect that a page belongs to a
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
5325
	 */
5326 5327
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
5328 5329
	return eb;

5330
free_eb:
5331
	WARN_ON(!atomic_dec_and_test(&eb->refs));
5332 5333 5334 5335
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
5336

5337
	btrfs_release_extent_buffer(eb);
5338
	return exists;
5339 5340
}

5341 5342 5343 5344 5345 5346 5347 5348
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

5349
static int release_extent_buffer(struct extent_buffer *eb)
5350
	__releases(&eb->refs_lock)
5351
{
5352 5353
	lockdep_assert_held(&eb->refs_lock);

5354 5355
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
5356
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5357
			struct btrfs_fs_info *fs_info = eb->fs_info;
5358

5359
			spin_unlock(&eb->refs_lock);
5360

5361 5362
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
5363
					  eb->start >> fs_info->sectorsize_bits);
5364
			spin_unlock(&fs_info->buffer_lock);
5365 5366
		} else {
			spin_unlock(&eb->refs_lock);
5367
		}
5368

5369
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5370
		/* Should be safe to release our pages at this point */
5371
		btrfs_release_extent_buffer_pages(eb);
5372
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5373
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5374 5375 5376 5377
			__free_extent_buffer(eb);
			return 1;
		}
#endif
5378
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5379
		return 1;
5380 5381
	}
	spin_unlock(&eb->refs_lock);
5382 5383

	return 0;
5384 5385
}

5386 5387
void free_extent_buffer(struct extent_buffer *eb)
{
5388 5389
	int refs;
	int old;
5390 5391 5392
	if (!eb)
		return;

5393 5394
	while (1) {
		refs = atomic_read(&eb->refs);
5395 5396 5397
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
5398 5399 5400 5401 5402 5403
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

5404 5405 5406
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5407
	    !extent_buffer_under_io(eb) &&
5408 5409 5410 5411 5412 5413 5414
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
5415
	release_extent_buffer(eb);
5416 5417 5418 5419 5420
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
5421 5422
		return;

5423 5424 5425
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

5426
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5427 5428
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
5429
	release_extent_buffer(eb);
5430 5431
}

5432
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5433
{
5434 5435
	int i;
	int num_pages;
5436 5437
	struct page *page;

5438
	num_pages = num_extent_pages(eb);
5439 5440

	for (i = 0; i < num_pages; i++) {
5441
		page = eb->pages[i];
5442
		if (!PageDirty(page))
C
Chris Mason 已提交
5443 5444
			continue;

5445
		lock_page(page);
C
Chris Mason 已提交
5446 5447
		WARN_ON(!PagePrivate(page));

5448
		clear_page_dirty_for_io(page);
M
Matthew Wilcox 已提交
5449
		xa_lock_irq(&page->mapping->i_pages);
5450 5451 5452
		if (!PageDirty(page))
			__xa_clear_mark(&page->mapping->i_pages,
					page_index(page), PAGECACHE_TAG_DIRTY);
M
Matthew Wilcox 已提交
5453
		xa_unlock_irq(&page->mapping->i_pages);
5454
		ClearPageError(page);
5455
		unlock_page(page);
5456
	}
5457
	WARN_ON(atomic_read(&eb->refs) == 0);
5458 5459
}

5460
bool set_extent_buffer_dirty(struct extent_buffer *eb)
5461
{
5462 5463
	int i;
	int num_pages;
5464
	bool was_dirty;
5465

5466 5467
	check_buffer_tree_ref(eb);

5468
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5469

5470
	num_pages = num_extent_pages(eb);
5471
	WARN_ON(atomic_read(&eb->refs) == 0);
5472 5473
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

5474 5475 5476
	if (!was_dirty)
		for (i = 0; i < num_pages; i++)
			set_page_dirty(eb->pages[i]);
5477 5478 5479 5480 5481 5482

#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

5483
	return was_dirty;
5484 5485
}

5486
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5487
{
5488
	int i;
5489
	struct page *page;
5490
	int num_pages;
5491

5492
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5493
	num_pages = num_extent_pages(eb);
5494
	for (i = 0; i < num_pages; i++) {
5495
		page = eb->pages[i];
C
Chris Mason 已提交
5496 5497
		if (page)
			ClearPageUptodate(page);
5498 5499 5500
	}
}

5501
void set_extent_buffer_uptodate(struct extent_buffer *eb)
5502
{
5503
	int i;
5504
	struct page *page;
5505
	int num_pages;
5506

5507
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5508
	num_pages = num_extent_pages(eb);
5509
	for (i = 0; i < num_pages; i++) {
5510
		page = eb->pages[i];
5511 5512 5513 5514
		SetPageUptodate(page);
	}
}

5515
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5516
{
5517
	int i;
5518 5519 5520
	struct page *page;
	int err;
	int ret = 0;
5521 5522
	int locked_pages = 0;
	int all_uptodate = 1;
5523
	int num_pages;
5524
	unsigned long num_reads = 0;
5525
	struct bio *bio = NULL;
C
Chris Mason 已提交
5526
	unsigned long bio_flags = 0;
5527

5528
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5529 5530
		return 0;

5531
	num_pages = num_extent_pages(eb);
5532
	for (i = 0; i < num_pages; i++) {
5533
		page = eb->pages[i];
5534
		if (wait == WAIT_NONE) {
5535
			if (!trylock_page(page))
5536
				goto unlock_exit;
5537 5538 5539
		} else {
			lock_page(page);
		}
5540
		locked_pages++;
5541 5542 5543 5544 5545 5546
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
5547
	for (i = 0; i < num_pages; i++) {
5548
		page = eb->pages[i];
5549 5550
		if (!PageUptodate(page)) {
			num_reads++;
5551
			all_uptodate = 0;
5552
		}
5553
	}
5554

5555
	if (all_uptodate) {
5556
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5557 5558 5559
		goto unlock_exit;
	}

5560
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5561
	eb->read_mirror = 0;
5562
	atomic_set(&eb->io_pages, num_reads);
5563 5564 5565 5566 5567
	/*
	 * It is possible for releasepage to clear the TREE_REF bit before we
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
5568
	for (i = 0; i < num_pages; i++) {
5569
		page = eb->pages[i];
5570

5571
		if (!PageUptodate(page)) {
5572 5573 5574 5575 5576 5577
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

5578
			ClearPageError(page);
5579 5580 5581 5582
			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
					 page, page_offset(page), PAGE_SIZE, 0,
					 &bio, end_bio_extent_readpage,
					 mirror_num, 0, 0, false);
5583 5584
			if (err) {
				/*
5585 5586 5587
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
5588
				 */
5589 5590 5591
				ret = err;
				SetPageError(page);
				unlock_page(page);
5592 5593
				atomic_dec(&eb->io_pages);
			}
5594 5595 5596 5597 5598
		} else {
			unlock_page(page);
		}
	}

5599
	if (bio) {
5600
		err = submit_one_bio(bio, mirror_num, bio_flags);
5601 5602
		if (err)
			return err;
5603
	}
5604

5605
	if (ret || wait != WAIT_COMPLETE)
5606
		return ret;
C
Chris Mason 已提交
5607

5608
	for (i = 0; i < num_pages; i++) {
5609
		page = eb->pages[i];
5610
		wait_on_page_locked(page);
C
Chris Mason 已提交
5611
		if (!PageUptodate(page))
5612 5613
			ret = -EIO;
	}
C
Chris Mason 已提交
5614

5615
	return ret;
5616 5617

unlock_exit:
C
Chris Mason 已提交
5618
	while (locked_pages > 0) {
5619
		locked_pages--;
5620 5621
		page = eb->pages[locked_pages];
		unlock_page(page);
5622 5623
	}
	return ret;
5624 5625
}

5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

5656 5657
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
5658 5659 5660 5661 5662 5663
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
5664
	unsigned long i = start >> PAGE_SHIFT;
5665

5666
	if (check_eb_range(eb, start, len))
5667
		return;
5668

5669
	offset = offset_in_page(start);
5670

C
Chris Mason 已提交
5671
	while (len > 0) {
5672
		page = eb->pages[i];
5673

5674
		cur = min(len, (PAGE_SIZE - offset));
5675
		kaddr = page_address(page);
5676 5677 5678 5679 5680 5681 5682 5683 5684
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

5685 5686 5687
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
5688 5689 5690 5691 5692 5693
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
5694
	unsigned long i = start >> PAGE_SHIFT;
5695 5696 5697 5698 5699
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

5700
	offset = offset_in_page(start);
5701 5702

	while (len > 0) {
5703
		page = eb->pages[i];
5704

5705
		cur = min(len, (PAGE_SIZE - offset));
5706
		kaddr = page_address(page);
5707
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

5721 5722
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
5723 5724 5725 5726 5727 5728
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
5729
	unsigned long i = start >> PAGE_SHIFT;
5730 5731
	int ret = 0;

5732 5733
	if (check_eb_range(eb, start, len))
		return -EINVAL;
5734

5735
	offset = offset_in_page(start);
5736

C
Chris Mason 已提交
5737
	while (len > 0) {
5738
		page = eb->pages[i];
5739

5740
		cur = min(len, (PAGE_SIZE - offset));
5741

5742
		kaddr = page_address(page);
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

5755
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
		const void *srcv)
{
	char *kaddr;

	WARN_ON(!PageUptodate(eb->pages[0]));
	kaddr = page_address(eb->pages[0]);
	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
			BTRFS_FSID_SIZE);
}

5766
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5767 5768 5769 5770 5771 5772 5773 5774 5775
{
	char *kaddr;

	WARN_ON(!PageUptodate(eb->pages[0]));
	kaddr = page_address(eb->pages[0]);
	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
			BTRFS_FSID_SIZE);
}

5776
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5777 5778 5779 5780 5781 5782 5783
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
5784
	unsigned long i = start >> PAGE_SHIFT;
5785

5786 5787
	if (check_eb_range(eb, start, len))
		return;
5788

5789
	offset = offset_in_page(start);
5790

C
Chris Mason 已提交
5791
	while (len > 0) {
5792
		page = eb->pages[i];
5793 5794
		WARN_ON(!PageUptodate(page));

5795
		cur = min(len, PAGE_SIZE - offset);
5796
		kaddr = page_address(page);
5797 5798 5799 5800 5801 5802 5803 5804 5805
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

5806
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5807
		unsigned long len)
5808 5809 5810 5811 5812
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
5813
	unsigned long i = start >> PAGE_SHIFT;
5814

5815 5816
	if (check_eb_range(eb, start, len))
		return;
5817

5818
	offset = offset_in_page(start);
5819

C
Chris Mason 已提交
5820
	while (len > 0) {
5821
		page = eb->pages[i];
5822 5823
		WARN_ON(!PageUptodate(page));

5824
		cur = min(len, PAGE_SIZE - offset);
5825
		kaddr = page_address(page);
5826
		memset(kaddr + offset, 0, cur);
5827 5828 5829 5830 5831 5832 5833

		len -= cur;
		offset = 0;
		i++;
	}
}

5834 5835
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
5836 5837
{
	int i;
5838
	int num_pages;
5839 5840 5841

	ASSERT(dst->len == src->len);

5842
	num_pages = num_extent_pages(dst);
5843 5844 5845 5846 5847
	for (i = 0; i < num_pages; i++)
		copy_page(page_address(dst->pages[i]),
				page_address(src->pages[i]));
}

5848 5849
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
5850 5851 5852 5853 5854 5855 5856 5857
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
5858
	unsigned long i = dst_offset >> PAGE_SHIFT;
5859

5860 5861 5862 5863
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

5864 5865
	WARN_ON(src->len != dst_len);

5866
	offset = offset_in_page(dst_offset);
5867

C
Chris Mason 已提交
5868
	while (len > 0) {
5869
		page = dst->pages[i];
5870 5871
		WARN_ON(!PageUptodate(page));

5872
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5873

5874
		kaddr = page_address(page);
5875 5876 5877 5878 5879 5880 5881 5882 5883
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
5897
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
5910
	offset = start + byte_offset;
5911

5912
	*page_index = offset >> PAGE_SHIFT;
5913
	*page_offset = offset_in_page(offset);
5914 5915 5916 5917 5918 5919 5920 5921
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
5922
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5923 5924
			   unsigned long nr)
{
5925
	u8 *kaddr;
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
	WARN_ON(!PageUptodate(page));
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
5944
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5945 5946
			      unsigned long pos, unsigned long len)
{
5947
	u8 *kaddr;
5948 5949 5950 5951 5952
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5953
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5954 5955 5956 5957 5958 5959 5960 5961 5962 5963

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
	WARN_ON(!PageUptodate(page));
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
5964
		mask_to_set = ~0;
5965
		if (++offset >= PAGE_SIZE && len > 0) {
5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
			offset = 0;
			page = eb->pages[++i];
			WARN_ON(!PageUptodate(page));
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
5986 5987 5988
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
5989
{
5990
	u8 *kaddr;
5991 5992 5993 5994 5995
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5996
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
	WARN_ON(!PageUptodate(page));
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6007
		mask_to_clear = ~0;
6008
		if (++offset >= PAGE_SIZE && len > 0) {
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
			offset = 0;
			page = eb->pages[++i];
			WARN_ON(!PageUptodate(page));
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

6021 6022 6023 6024 6025 6026
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

6027 6028 6029 6030
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
6031
	char *dst_kaddr = page_address(dst_page);
6032
	char *src_kaddr;
6033
	int must_memmove = 0;
6034

6035
	if (dst_page != src_page) {
6036
		src_kaddr = page_address(src_page);
6037
	} else {
6038
		src_kaddr = dst_kaddr;
6039 6040
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
6041
	}
6042

6043 6044 6045 6046
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6047 6048
}

6049 6050 6051
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
6052 6053 6054 6055 6056 6057 6058
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

6059 6060 6061
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6062

C
Chris Mason 已提交
6063
	while (len > 0) {
6064 6065
		dst_off_in_page = offset_in_page(dst_offset);
		src_off_in_page = offset_in_page(src_offset);
6066

6067 6068
		dst_i = dst_offset >> PAGE_SHIFT;
		src_i = src_offset >> PAGE_SHIFT;
6069

6070
		cur = min(len, (unsigned long)(PAGE_SIZE -
6071 6072
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
6073
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6074

6075
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6076 6077 6078 6079 6080 6081 6082 6083
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

6084 6085 6086
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
6087 6088 6089 6090 6091 6092 6093 6094 6095
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

6096 6097 6098
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6099
	if (dst_offset < src_offset) {
6100 6101 6102
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
6103
	while (len > 0) {
6104 6105
		dst_i = dst_end >> PAGE_SHIFT;
		src_i = src_end >> PAGE_SHIFT;
6106

6107 6108
		dst_off_in_page = offset_in_page(dst_end);
		src_off_in_page = offset_in_page(src_end);
6109 6110 6111

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
6112
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6113 6114 6115 6116 6117 6118 6119 6120
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
6121

6122
int try_release_extent_buffer(struct page *page)
6123
{
6124 6125
	struct extent_buffer *eb;

6126
	/*
6127
	 * We need to make sure nobody is attaching this page to an eb right
6128 6129 6130 6131 6132
	 * now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
6133
		return 1;
6134
	}
6135

6136 6137
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
6138 6139

	/*
6140 6141 6142
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
6143
	 */
6144
	spin_lock(&eb->refs_lock);
6145
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6146 6147 6148
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
6149
	}
6150
	spin_unlock(&page->mapping->private_lock);
6151

6152
	/*
6153 6154
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
6155
	 */
6156 6157 6158
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
6159
	}
6160

6161
	return release_extent_buffer(eb);
6162
}
6163 6164 6165 6166 6167

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
6168
 * @owner_root: objectid of the root that owns this eb
6169
 * @gen:	generation for the uptodate check, can be 0
6170
 * @level:	level for the eb
6171 6172 6173 6174 6175 6176
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
6177
				u64 bytenr, u64 owner_root, u64 gen, int level)
6178 6179 6180 6181
{
	struct extent_buffer *eb;
	int ret;

6182
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
6210 6211 6212
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
6213
}