extent_io.c 187.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8 9 10 11 12 13
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
14
#include <linux/prefetch.h>
D
Dan Magenheimer 已提交
15
#include <linux/cleancache.h>
16
#include "misc.h"
17
#include "extent_io.h"
18
#include "extent-io-tree.h"
19
#include "extent_map.h"
20 21
#include "ctree.h"
#include "btrfs_inode.h"
22
#include "volumes.h"
23
#include "check-integrity.h"
24
#include "locking.h"
25
#include "rcu-string.h"
26
#include "backref.h"
27
#include "disk-io.h"
28
#include "subpage.h"
29
#include "zoned.h"
30
#include "block-group.h"
31 32 33

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
34
static struct bio_set btrfs_bioset;
35

36 37 38 39 40
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

41
#ifdef CONFIG_BTRFS_DEBUG
42
static LIST_HEAD(states);
C
Chris Mason 已提交
43
static DEFINE_SPINLOCK(leak_lock);
44

45 46 47
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
48 49 50
{
	unsigned long flags;

51
	spin_lock_irqsave(lock, flags);
52
	list_add(new, head);
53
	spin_unlock_irqrestore(lock, flags);
54 55
}

56 57
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
58 59 60
{
	unsigned long flags;

61
	spin_lock_irqsave(lock, flags);
62
	list_del(entry);
63
	spin_unlock_irqrestore(lock, flags);
64 65
}

66
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
67 68
{
	struct extent_buffer *eb;
69
	unsigned long flags;
70

71 72 73 74 75 76 77
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

78 79 80 81
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
82 83 84 85
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
86 87 88
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
89
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
90 91 92 93 94 95
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

96 97
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
98
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
99 100
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
101
		       refcount_read(&state->refs));
102 103 104 105
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
106

107 108
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
109
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
110
		struct extent_io_tree *tree, u64 start, u64 end)
111
{
112 113 114 115 116 117 118 119 120 121 122 123
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
124
}
125
#else
126 127
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
128
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
129
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
130
#endif
131 132 133 134 135 136 137 138

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

struct extent_page_data {
139
	struct btrfs_bio_ctrl bio_ctrl;
140 141 142
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
143 144
	unsigned int extent_locked:1;

145
	/* tells the submit_bio code to use REQ_SYNC */
146
	unsigned int sync_io:1;
147 148
};

149
static int add_extent_changeset(struct extent_state *state, u32 bits,
150 151 152 153 154 155
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
156
		return 0;
157
	if (set && (state->state & bits) == bits)
158
		return 0;
159
	if (!set && (state->state & bits) == 0)
160
		return 0;
161
	changeset->bytes_changed += state->end - state->start + 1;
162
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
163
			GFP_ATOMIC);
164
	return ret;
165 166
}

167 168
int __must_check submit_one_bio(struct bio *bio, int mirror_num,
				unsigned long bio_flags)
169 170 171 172 173 174
{
	blk_status_t ret = 0;
	struct extent_io_tree *tree = bio->bi_private;

	bio->bi_private = NULL;

175 176 177 178
	if (is_data_inode(tree->private_data))
		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
					    bio_flags);
	else
179 180
		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
						mirror_num, bio_flags);
181 182 183 184

	return blk_status_to_errno(ret);
}

185 186 187
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
188 189 190 191 192 193
	struct bio *bio = epd->bio_ctrl.bio;

	if (bio) {
		bio->bi_status = errno_to_blk_status(ret);
		bio_endio(bio);
		epd->bio_ctrl.bio = NULL;
194 195 196
	}
}

197 198 199 200 201 202 203
/*
 * Submit bio from extent page data via submit_one_bio
 *
 * Return 0 if everything is OK.
 * Return <0 for error.
 */
static int __must_check flush_write_bio(struct extent_page_data *epd)
204
{
205
	int ret = 0;
206
	struct bio *bio = epd->bio_ctrl.bio;
207

208 209
	if (bio) {
		ret = submit_one_bio(bio, 0, 0);
210 211 212 213 214 215 216
		/*
		 * Clean up of epd->bio is handled by its endio function.
		 * And endio is either triggered by successful bio execution
		 * or the error handler of submit bio hook.
		 * So at this point, no matter what happened, we don't need
		 * to clean up epd->bio.
		 */
217
		epd->bio_ctrl.bio = NULL;
218
	}
219
	return ret;
220
}
221

222
int __init extent_state_cache_init(void)
223
{
D
David Sterba 已提交
224
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
225
			sizeof(struct extent_state), 0,
226
			SLAB_MEM_SPREAD, NULL);
227 228
	if (!extent_state_cache)
		return -ENOMEM;
229 230
	return 0;
}
231

232 233
int __init extent_io_init(void)
{
D
David Sterba 已提交
234
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
235
			sizeof(struct extent_buffer), 0,
236
			SLAB_MEM_SPREAD, NULL);
237
	if (!extent_buffer_cache)
238
		return -ENOMEM;
239

240 241 242
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
			offsetof(struct btrfs_io_bio, bio),
			BIOSET_NEED_BVECS))
243
		goto free_buffer_cache;
244

245
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
246 247
		goto free_bioset;

248 249
	return 0;

250
free_bioset:
251
	bioset_exit(&btrfs_bioset);
252

253 254 255
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
256 257
	return -ENOMEM;
}
258

259 260 261
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
262 263 264
	kmem_cache_destroy(extent_state_cache);
}

265
void __cold extent_io_exit(void)
266
{
267 268 269 270 271
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
272
	kmem_cache_destroy(extent_buffer_cache);
273
	bioset_exit(&btrfs_bioset);
274 275
}

276 277 278 279 280 281 282 283 284
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

285
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
286 287
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
288
{
289
	tree->fs_info = fs_info;
290
	tree->state = RB_ROOT;
291
	tree->dirty_bytes = 0;
292
	spin_lock_init(&tree->lock);
293
	tree->private_data = private_data;
294
	tree->owner = owner;
295 296
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
297 298
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

328
static struct extent_state *alloc_extent_state(gfp_t mask)
329 330 331
{
	struct extent_state *state;

332 333 334 335 336
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
337
	state = kmem_cache_alloc(extent_state_cache, mask);
338
	if (!state)
339 340
		return state;
	state->state = 0;
341
	state->failrec = NULL;
342
	RB_CLEAR_NODE(&state->rb_node);
343
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
344
	refcount_set(&state->refs, 1);
345
	init_waitqueue_head(&state->wq);
346
	trace_alloc_extent_state(state, mask, _RET_IP_);
347 348 349
	return state;
}

350
void free_extent_state(struct extent_state *state)
351 352 353
{
	if (!state)
		return;
354
	if (refcount_dec_and_test(&state->refs)) {
355
		WARN_ON(extent_state_in_tree(state));
356
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
357
		trace_free_extent_state(state, _RET_IP_);
358 359 360 361
		kmem_cache_free(extent_state_cache, state);
	}
}

362 363 364
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
365 366 367
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
368
{
369
	struct rb_node **p;
C
Chris Mason 已提交
370
	struct rb_node *parent = NULL;
371 372
	struct tree_entry *entry;

373 374 375 376 377 378
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

379
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
380
	while (*p) {
381 382 383 384 385 386 387 388 389 390 391
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

392
do_insert:
393 394 395 396 397
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
398
/**
399 400
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
401
 *
402 403 404 405 406 407 408
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
409 410 411 412 413 414 415
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
416
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
417
				      struct rb_node **next_ret,
418
				      struct rb_node **prev_ret,
419 420
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
421
{
422
	struct rb_root *root = &tree->state;
423
	struct rb_node **n = &root->rb_node;
424 425 426 427 428
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

429 430 431
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
432 433 434
		prev_entry = entry;

		if (offset < entry->start)
435
			n = &(*n)->rb_left;
436
		else if (offset > entry->end)
437
			n = &(*n)->rb_right;
C
Chris Mason 已提交
438
		else
439
			return *n;
440 441
	}

442 443 444 445 446
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

447
	if (next_ret) {
448
		orig_prev = prev;
C
Chris Mason 已提交
449
		while (prev && offset > prev_entry->end) {
450 451 452
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
453
		*next_ret = prev;
454 455 456
		prev = orig_prev;
	}

457
	if (prev_ret) {
458
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
459
		while (prev && offset < prev_entry->start) {
460 461 462
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
463
		*prev_ret = prev;
464 465 466 467
	}
	return NULL;
}

468 469 470 471 472
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
473
{
474
	struct rb_node *next= NULL;
475
	struct rb_node *ret;
476

477
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
478
	if (!ret)
479
		return next;
480 481 482
	return ret;
}

483 484 485 486 487 488
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

489 490 491 492 493 494 495 496 497
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
498 499
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
500 501 502 503
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
504
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
505
		return;
506 507 508 509 510 511

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
512 513 514 515
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
516 517
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
518
			RB_CLEAR_NODE(&other->rb_node);
519 520 521 522 523 524 525 526
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
527 528 529 530
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
531 532
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
533
			RB_CLEAR_NODE(&other->rb_node);
534
			free_extent_state(other);
535 536 537 538
		}
	}
}

539
static void set_state_bits(struct extent_io_tree *tree,
540
			   struct extent_state *state, u32 *bits,
541
			   struct extent_changeset *changeset);
542

543 544 545 546 547 548 549 550 551 552 553 554
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
555 556
			struct rb_node ***p,
			struct rb_node **parent,
557
			u32 *bits, struct extent_changeset *changeset)
558 559 560
{
	struct rb_node *node;

561 562 563 564 565
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
566 567
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
568

569
	set_state_bits(tree, state, bits, changeset);
570

571
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
572 573 574
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
575 576
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
577
		       found->start, found->end, start, end);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
602

603 604
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
605

606 607 608 609 610
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

611 612
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
613 614 615 616 617 618 619
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

620 621 622 623 624 625 626 627 628
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

629 630
/*
 * utility function to clear some bits in an extent state struct.
631
 * it will optionally wake up anyone waiting on this state (wake == 1).
632 633 634 635
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
636 637
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
638
					    u32 *bits, int wake,
639
					    struct extent_changeset *changeset)
640
{
641
	struct extent_state *next;
642
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
643
	int ret;
644

645
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
646 647 648 649
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
650 651 652 653

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

654 655
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
656
	state->state &= ~bits_to_clear;
657 658
	if (wake)
		wake_up(&state->wq);
659
	if (state->state == 0) {
660
		next = next_state(state);
661
		if (extent_state_in_tree(state)) {
662
			rb_erase(&state->rb_node, &tree->state);
663
			RB_CLEAR_NODE(&state->rb_node);
664 665 666 667 668 669
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
670
		next = next_state(state);
671
	}
672
	return next;
673 674
}

675 676 677 678 679 680 681 682 683
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

684
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
685
{
686
	btrfs_panic(tree->fs_info, err,
687
	"locking error: extent tree was modified by another thread while locked");
688 689
}

690 691 692 693 694 695 696 697 698 699
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
700
 * This takes the tree lock, and returns 0 on success and < 0 on error.
701
 */
702
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
703 704 705
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
706 707
{
	struct extent_state *state;
708
	struct extent_state *cached;
709 710
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
711
	u64 last_end;
712
	int err;
713
	int clear = 0;
714

715
	btrfs_debug_check_extent_io_range(tree, start, end);
716
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
717

718 719 720
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

721 722 723
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
724
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
725
		clear = 1;
726
again:
727
	if (!prealloc && gfpflags_allow_blocking(mask)) {
728 729 730 731 732 733 734
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
735 736 737
		prealloc = alloc_extent_state(mask);
	}

738
	spin_lock(&tree->lock);
739 740
	if (cached_state) {
		cached = *cached_state;
741 742 743 744 745 746

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

747 748
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
749
			if (clear)
750
				refcount_dec(&cached->refs);
751
			state = cached;
752
			goto hit_next;
753
		}
754 755
		if (clear)
			free_extent_state(cached);
756
	}
757 758 759 760
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
761
	node = tree_search(tree, start);
762 763 764
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
765
hit_next:
766 767 768
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
769
	last_end = state->end;
770

771
	/* the state doesn't have the wanted bits, go ahead */
772 773
	if (!(state->state & bits)) {
		state = next_state(state);
774
		goto next;
775
	}
776

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
794 795
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
796
		err = split_state(tree, state, prealloc, start);
797 798 799
		if (err)
			extent_io_tree_panic(tree, err);

800 801 802 803
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
804 805
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
806
			goto next;
807 808 809 810 811 812 813 814 815 816
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
817 818
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
819
		err = split_state(tree, state, prealloc, end + 1);
820 821 822
		if (err)
			extent_io_tree_panic(tree, err);

823 824
		if (wake)
			wake_up(&state->wq);
825

826
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
827

828 829 830
		prealloc = NULL;
		goto out;
	}
831

832
	state = clear_state_bit(tree, state, &bits, wake, changeset);
833
next:
834 835 836
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
837
	if (start <= end && state && !need_resched())
838
		goto hit_next;
839 840 841 842

search_again:
	if (start > end)
		goto out;
843
	spin_unlock(&tree->lock);
844
	if (gfpflags_allow_blocking(mask))
845 846
		cond_resched();
	goto again;
847 848 849 850 851 852 853 854

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

855 856
}

857 858
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
859 860
		__releases(tree->lock)
		__acquires(tree->lock)
861 862 863
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
864
	spin_unlock(&tree->lock);
865
	schedule();
866
	spin_lock(&tree->lock);
867 868 869 870 871 872 873 874
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
875
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
876
			    u32 bits)
877 878 879 880
{
	struct extent_state *state;
	struct rb_node *node;

881
	btrfs_debug_check_extent_io_range(tree, start, end);
882

883
	spin_lock(&tree->lock);
884 885 886 887 888 889
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
890
		node = tree_search(tree, start);
891
process_node:
892 893 894 895 896 897 898 899 900 901
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
902
			refcount_inc(&state->refs);
903 904 905 906 907 908 909 910 911
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

912 913 914 915
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
916 917
	}
out:
918
	spin_unlock(&tree->lock);
919 920
}

921
static void set_state_bits(struct extent_io_tree *tree,
922
			   struct extent_state *state,
923
			   u32 *bits, struct extent_changeset *changeset)
924
{
925
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
926
	int ret;
J
Josef Bacik 已提交
927

928 929 930
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

931
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
932 933 934
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
935 936
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
937
	state->state |= bits_to_set;
938 939
}

940 941
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
942
				 unsigned flags)
943 944
{
	if (cached_ptr && !(*cached_ptr)) {
945
		if (!flags || (state->state & flags)) {
946
			*cached_ptr = state;
947
			refcount_inc(&state->refs);
948 949 950 951
		}
	}
}

952 953 954 955
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
956
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
957 958
}

959
/*
960 961
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
962
 *
963 964 965
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
966
 *
967
 * [start, end] is inclusive This takes the tree lock.
968
 */
969 970
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
971 972
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
973 974 975 976
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
977 978
	struct rb_node **p;
	struct rb_node *parent;
979 980 981
	int err = 0;
	u64 last_start;
	u64 last_end;
982

983
	btrfs_debug_check_extent_io_range(tree, start, end);
984
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
985

986 987 988 989
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
990
again:
991
	if (!prealloc && gfpflags_allow_blocking(mask)) {
992 993 994 995 996 997 998
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
999 1000 1001
		prealloc = alloc_extent_state(mask);
	}

1002
	spin_lock(&tree->lock);
1003 1004
	if (cached_state && *cached_state) {
		state = *cached_state;
1005
		if (state->start <= start && state->end > start &&
1006
		    extent_state_in_tree(state)) {
1007 1008 1009 1010
			node = &state->rb_node;
			goto hit_next;
		}
	}
1011 1012 1013 1014
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1015
	node = tree_search_for_insert(tree, start, &p, &parent);
1016
	if (!node) {
1017 1018
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1019
		err = insert_state(tree, prealloc, start, end,
1020
				   &p, &parent, &bits, changeset);
1021 1022 1023
		if (err)
			extent_io_tree_panic(tree, err);

1024
		cache_state(prealloc, cached_state);
1025 1026 1027 1028
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1029
hit_next:
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1040
		if (state->state & exclusive_bits) {
1041 1042 1043 1044
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1045

1046
		set_state_bits(tree, state, &bits, changeset);
1047
		cache_state(state, cached_state);
1048
		merge_state(tree, state);
1049 1050 1051
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1052 1053 1054 1055
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1076
		if (state->state & exclusive_bits) {
1077 1078 1079 1080
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1092 1093
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1094
		err = split_state(tree, state, prealloc, start);
1095 1096 1097
		if (err)
			extent_io_tree_panic(tree, err);

1098 1099 1100 1101
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1102
			set_state_bits(tree, state, &bits, changeset);
1103
			cache_state(state, cached_state);
1104
			merge_state(tree, state);
1105 1106 1107
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1108 1109 1110 1111
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1127
			this_end = last_start - 1;
1128 1129 1130

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1131 1132 1133 1134 1135

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1136
		err = insert_state(tree, prealloc, start, this_end,
1137
				   NULL, NULL, &bits, changeset);
1138 1139 1140
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1141 1142
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1153
		if (state->state & exclusive_bits) {
1154 1155 1156 1157
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1158 1159 1160

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1161
		err = split_state(tree, state, prealloc, end + 1);
1162 1163
		if (err)
			extent_io_tree_panic(tree, err);
1164

1165
		set_state_bits(tree, prealloc, &bits, changeset);
1166
		cache_state(prealloc, cached_state);
1167 1168 1169 1170 1171
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1172 1173 1174 1175 1176 1177 1178
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1179 1180

out:
1181
	spin_unlock(&tree->lock);
1182 1183 1184 1185 1186 1187 1188
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1189
/**
L
Liu Bo 已提交
1190 1191
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1192 1193 1194 1195 1196
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1197
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1198 1199 1200 1201 1202 1203
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1204 1205
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1206 1207
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1208
		       u32 bits, u32 clear_bits,
1209
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1210 1211 1212 1213
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1214 1215
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1216 1217 1218
	int err = 0;
	u64 last_start;
	u64 last_end;
1219
	bool first_iteration = true;
J
Josef Bacik 已提交
1220

1221
	btrfs_debug_check_extent_io_range(tree, start, end);
1222 1223
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1224

J
Josef Bacik 已提交
1225
again:
1226
	if (!prealloc) {
1227 1228 1229 1230 1231 1232 1233
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1234
		prealloc = alloc_extent_state(GFP_NOFS);
1235
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1236 1237 1238 1239
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1240 1241 1242
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1243
		    extent_state_in_tree(state)) {
1244 1245 1246 1247 1248
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1249 1250 1251 1252
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1253
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1254 1255
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1256 1257 1258 1259
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1260
		err = insert_state(tree, prealloc, start, end,
1261
				   &p, &parent, &bits, NULL);
1262 1263
		if (err)
			extent_io_tree_panic(tree, err);
1264 1265
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1280
		set_state_bits(tree, state, &bits, NULL);
1281
		cache_state(state, cached_state);
1282
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1283 1284 1285
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1286 1287 1288
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1310 1311 1312 1313
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1314
		err = split_state(tree, state, prealloc, start);
1315 1316
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1317 1318 1319 1320
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1321
			set_state_bits(tree, state, &bits, NULL);
1322
			cache_state(state, cached_state);
1323 1324
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1325 1326 1327
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1328 1329 1330
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1349 1350 1351 1352
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1353 1354 1355 1356 1357 1358

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1359
				   NULL, NULL, &bits, NULL);
1360 1361
		if (err)
			extent_io_tree_panic(tree, err);
1362
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1375 1376 1377 1378
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1379 1380

		err = split_state(tree, state, prealloc, end + 1);
1381 1382
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1383

1384
		set_state_bits(tree, prealloc, &bits, NULL);
1385
		cache_state(prealloc, cached_state);
1386
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1387 1388 1389 1390 1391 1392 1393 1394
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1395
	cond_resched();
1396
	first_iteration = false;
J
Josef Bacik 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1407
/* wrappers around set/clear extent bit */
1408
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1409
			   u32 bits, struct extent_changeset *changeset)
1410 1411 1412 1413 1414 1415 1416 1417 1418
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1419 1420
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1421 1422
}

1423
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1424
			   u32 bits)
1425
{
1426 1427
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1428 1429
}

1430
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1431
		     u32 bits, int wake, int delete,
1432
		     struct extent_state **cached)
1433 1434
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1435
				  cached, GFP_NOFS, NULL);
1436 1437 1438
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1439
		u32 bits, struct extent_changeset *changeset)
1440 1441 1442 1443 1444 1445 1446
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1447
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1448 1449 1450
				  changeset);
}

C
Chris Mason 已提交
1451 1452 1453 1454
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1455
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456
		     struct extent_state **cached_state)
1457 1458 1459
{
	int err;
	u64 failed_start;
1460

1461
	while (1) {
1462 1463 1464
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1465
		if (err == -EEXIST) {
1466 1467
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1468
		} else
1469 1470 1471 1472 1473 1474
			break;
		WARN_ON(start > end);
	}
	return err;
}

1475
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1476 1477 1478 1479
{
	int err;
	u64 failed_start;

1480 1481
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1482 1483 1484
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1485
					 EXTENT_LOCKED, 1, 0, NULL);
1486
		return 0;
Y
Yan Zheng 已提交
1487
	}
1488 1489 1490
	return 1;
}

1491
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1492
{
1493 1494
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1495 1496 1497 1498 1499 1500
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1501
		put_page(page);
1502 1503 1504 1505
		index++;
	}
}

1506
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1507
{
1508 1509
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1510 1511 1512 1513 1514 1515
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		__set_page_dirty_nobuffers(page);
1516
		account_page_redirty(page);
1517
		put_page(page);
1518 1519 1520 1521
		index++;
	}
}

C
Chris Mason 已提交
1522 1523 1524 1525
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1526
static struct extent_state *
1527
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1537
	if (!node)
C
Chris Mason 已提交
1538 1539
		goto out;

C
Chris Mason 已提交
1540
	while (1) {
C
Chris Mason 已提交
1541
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1542
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1543
			return state;
C
Chris Mason 已提交
1544

C
Chris Mason 已提交
1545 1546 1547 1548 1549 1550 1551 1552
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1553
/*
1554
 * Find the first offset in the io tree with one or more @bits set.
1555
 *
1556 1557 1558 1559
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1560 1561
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1562
			  u64 *start_ret, u64 *end_ret, u32 bits,
1563
			  struct extent_state **cached_state)
1564 1565 1566 1567 1568
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1569 1570
	if (cached_state && *cached_state) {
		state = *cached_state;
1571
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1572
			while ((state = next_state(state)) != NULL) {
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1584
	state = find_first_extent_bit_state(tree, start, bits);
1585
got_it:
1586
	if (state) {
1587
		cache_state_if_flags(state, cached_state, 0);
1588 1589 1590 1591
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1592
out:
1593 1594 1595 1596
	spin_unlock(&tree->lock);
	return ret;
}

1597
/**
1598 1599 1600 1601 1602 1603 1604
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1605 1606 1607 1608 1609 1610 1611 1612 1613
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1614
			       u64 *start_ret, u64 *end_ret, u32 bits)
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1635
/**
1636 1637
 * Find the first range that has @bits not set. This range could start before
 * @start.
1638
 *
1639 1640 1641 1642 1643
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1644 1645 1646 1647 1648 1649 1650
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1651
				 u64 *start_ret, u64 *end_ret, u32 bits)
1652 1653 1654 1655 1656 1657 1658 1659 1660
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1679 1680
			node = next;
		}
1681 1682 1683 1684
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1685
		state = rb_entry(node, struct extent_state, rb_node);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1708
		} else {
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1752 1753 1754 1755
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1756
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1757
 */
J
Josef Bacik 已提交
1758 1759 1760
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1761 1762 1763 1764
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1765
	bool found = false;
1766 1767
	u64 total_bytes = 0;

1768
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1769

1770 1771 1772 1773
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1774
	node = tree_search(tree, cur_start);
1775
	if (!node) {
1776
		*end = (u64)-1;
1777 1778 1779
		goto out;
	}

C
Chris Mason 已提交
1780
	while (1) {
1781
		state = rb_entry(node, struct extent_state, rb_node);
1782 1783
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1784 1785 1786 1787 1788 1789 1790
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1791
		if (!found) {
1792
			*start = state->start;
1793
			*cached_state = state;
1794
			refcount_inc(&state->refs);
1795
		}
1796
		found = true;
1797 1798 1799 1800
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1801
		if (total_bytes >= max_bytes)
1802 1803
			break;
		if (!node)
1804 1805 1806
			break;
	}
out:
1807
	spin_unlock(&tree->lock);
1808 1809 1810
	return found;
}

1811 1812 1813 1814 1815 1816 1817 1818
/*
 * Process one page for __process_pages_contig().
 *
 * Return >0 if we hit @page == @locked_page.
 * Return 0 if we updated the page status.
 * Return -EGAIN if the we need to try again.
 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 */
1819 1820
static int process_one_page(struct btrfs_fs_info *fs_info,
			    struct address_space *mapping,
1821
			    struct page *page, struct page *locked_page,
1822
			    unsigned long page_ops, u64 start, u64 end)
1823
{
1824 1825 1826 1827 1828
	u32 len;

	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
	len = end + 1 - start;

1829
	if (page_ops & PAGE_SET_ORDERED)
1830
		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1831
	if (page_ops & PAGE_SET_ERROR)
1832
		btrfs_page_clamp_set_error(fs_info, page, start, len);
1833
	if (page_ops & PAGE_START_WRITEBACK) {
1834 1835
		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1836 1837
	}
	if (page_ops & PAGE_END_WRITEBACK)
1838
		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1839 1840 1841 1842

	if (page == locked_page)
		return 1;

1843
	if (page_ops & PAGE_LOCK) {
1844 1845 1846 1847 1848
		int ret;

		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
		if (ret)
			return ret;
1849
		if (!PageDirty(page) || page->mapping != mapping) {
1850
			btrfs_page_end_writer_lock(fs_info, page, start, len);
1851 1852 1853 1854
			return -EAGAIN;
		}
	}
	if (page_ops & PAGE_UNLOCK)
1855
		btrfs_page_end_writer_lock(fs_info, page, start, len);
1856 1857 1858
	return 0;
}

1859 1860
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
1861
				  u64 start, u64 end, unsigned long page_ops,
1862 1863
				  u64 *processed_end)
{
1864
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	pgoff_t start_index = start >> PAGE_SHIFT;
	pgoff_t end_index = end >> PAGE_SHIFT;
	pgoff_t index = start_index;
	unsigned long nr_pages = end_index - start_index + 1;
	unsigned long pages_processed = 0;
	struct page *pages[16];
	int err = 0;
	int i;

	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(processed_end && *processed_end == start);
	}

	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
		mapping_set_error(mapping, -EIO);

	while (nr_pages > 0) {
		int found_pages;

		found_pages = find_get_pages_contig(mapping, index,
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
		if (found_pages == 0) {
			/*
			 * Only if we're going to lock these pages, we can find
			 * nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
			err = -EAGAIN;
			goto out;
		}

		for (i = 0; i < found_pages; i++) {
			int process_ret;

1901 1902 1903
			process_ret = process_one_page(fs_info, mapping,
					pages[i], locked_page, page_ops,
					start, end);
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
			if (process_ret < 0) {
				for (; i < found_pages; i++)
					put_page(pages[i]);
				err = -EAGAIN;
				goto out;
			}
			put_page(pages[i]);
			pages_processed++;
		}
		nr_pages -= found_pages;
		index += found_pages;
		cond_resched();
	}
out:
	if (err && processed_end) {
		/*
		 * Update @processed_end. I know this is awful since it has
		 * two different return value patterns (inclusive vs exclusive).
		 *
		 * But the exclusive pattern is necessary if @start is 0, or we
		 * underflow and check against processed_end won't work as
		 * expected.
		 */
		if (pages_processed)
			*processed_end = min(end,
			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
		else
			*processed_end = start;
	}
	return err;
}
1935

1936 1937 1938
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1939
{
1940 1941
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1942

1943
	ASSERT(locked_page);
C
Chris Mason 已提交
1944
	if (index == locked_page->index && end_index == index)
1945
		return;
C
Chris Mason 已提交
1946

1947
	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1948
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1949 1950 1951 1952 1953 1954 1955
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1956 1957
	unsigned long index = delalloc_start >> PAGE_SHIFT;
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1958
	u64 processed_end = delalloc_start;
C
Chris Mason 已提交
1959 1960
	int ret;

1961
	ASSERT(locked_page);
C
Chris Mason 已提交
1962 1963 1964
	if (index == locked_page->index && index == end_index)
		return 0;

1965 1966 1967
	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
				     delalloc_end, PAGE_LOCK, &processed_end);
	if (ret == -EAGAIN && processed_end > delalloc_start)
1968
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1969
				      processed_end);
C
Chris Mason 已提交
1970 1971 1972 1973
	return ret;
}

/*
1974 1975
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 * more than @max_bytes.  @Start and @end are used to return the range,
C
Chris Mason 已提交
1976
 *
1977 1978
 * Return: true if we find something
 *         false if nothing was in the tree
C
Chris Mason 已提交
1979
 */
1980
EXPORT_FOR_TESTS
1981
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1982
				    struct page *locked_page, u64 *start,
1983
				    u64 *end)
C
Chris Mason 已提交
1984
{
1985
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1986
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
1987 1988
	u64 delalloc_start;
	u64 delalloc_end;
1989
	bool found;
1990
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
1991 1992 1993 1994 1995 1996 1997
	int ret;
	int loops = 0;

again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
1998 1999
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
C
Chris Mason 已提交
2000
	if (!found || delalloc_end <= *start) {
C
Chris Mason 已提交
2001 2002
		*start = delalloc_start;
		*end = delalloc_end;
2003
		free_extent_state(cached_state);
2004
		return false;
C
Chris Mason 已提交
2005 2006
	}

C
Chris Mason 已提交
2007 2008 2009 2010 2011
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
2012
	if (delalloc_start < *start)
C
Chris Mason 已提交
2013 2014
		delalloc_start = *start;

C
Chris Mason 已提交
2015 2016 2017
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
2018 2019
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
2020

C
Chris Mason 已提交
2021 2022 2023
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
2024
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
2025 2026 2027 2028
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
2029
		free_extent_state(cached_state);
2030
		cached_state = NULL;
C
Chris Mason 已提交
2031
		if (!loops) {
2032
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
2033 2034 2035
			loops = 1;
			goto again;
		} else {
2036
			found = false;
C
Chris Mason 已提交
2037 2038 2039 2040 2041
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
2042
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
2043 2044 2045

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2046
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
2047
	if (!ret) {
2048
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2049
				     &cached_state);
C
Chris Mason 已提交
2050 2051 2052 2053 2054
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
2055
	free_extent_state(cached_state);
C
Chris Mason 已提交
2056 2057 2058 2059 2060 2061
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

2062
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2063
				  struct page *locked_page,
2064
				  u32 clear_bits, unsigned long page_ops)
2065
{
2066
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2067

2068
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2069
			       start, end, page_ops, NULL);
2070 2071
}

C
Chris Mason 已提交
2072 2073 2074 2075 2076
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2077 2078
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2079
		     u32 bits, int contig)
2080 2081 2082 2083 2084
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2085
	u64 last = 0;
2086 2087
	int found = 0;

2088
	if (WARN_ON(search_end <= cur_start))
2089 2090
		return 0;

2091
	spin_lock(&tree->lock);
2092 2093 2094 2095 2096 2097 2098 2099
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2100
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2101
	if (!node)
2102 2103
		goto out;

C
Chris Mason 已提交
2104
	while (1) {
2105 2106 2107
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2108 2109 2110
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2111 2112 2113 2114 2115
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2116
				*start = max(cur_start, state->start);
2117 2118
				found = 1;
			}
2119 2120 2121
			last = state->end;
		} else if (contig && found) {
			break;
2122 2123 2124 2125 2126 2127
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2128
	spin_unlock(&tree->lock);
2129 2130
	return total_bytes;
}
2131

C
Chris Mason 已提交
2132 2133 2134 2135
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2136 2137
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2138 2139 2140 2141 2142
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2143
	spin_lock(&tree->lock);
2144 2145 2146 2147
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2148
	node = tree_search(tree, start);
2149
	if (!node) {
2150 2151 2152 2153 2154 2155 2156 2157
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2158
	state->failrec = failrec;
2159
out:
2160
	spin_unlock(&tree->lock);
2161 2162 2163
	return ret;
}

2164
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2165 2166 2167
{
	struct rb_node *node;
	struct extent_state *state;
2168
	struct io_failure_record *failrec;
2169

2170
	spin_lock(&tree->lock);
2171 2172 2173 2174
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2175
	node = tree_search(tree, start);
2176
	if (!node) {
2177
		failrec = ERR_PTR(-ENOENT);
2178 2179 2180 2181
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2182
		failrec = ERR_PTR(-ENOENT);
2183 2184
		goto out;
	}
2185 2186

	failrec = state->failrec;
2187
out:
2188
	spin_unlock(&tree->lock);
2189
	return failrec;
2190 2191 2192 2193
}

/*
 * searches a range in the state tree for a given mask.
2194
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2195 2196 2197 2198
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2199
		   u32 bits, int filled, struct extent_state *cached)
2200 2201 2202 2203 2204
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2205
	spin_lock(&tree->lock);
2206
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2207
	    cached->end > start)
2208 2209 2210
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2230 2231 2232 2233

		if (state->end == (u64)-1)
			break;

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2244
	spin_unlock(&tree->lock);
2245 2246 2247 2248 2249 2250 2251
	return bitset;
}

/*
 * helper function to set a given page up to date if all the
 * extents in the tree for that page are up to date
 */
2252
static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2253
{
M
Miao Xie 已提交
2254
	u64 start = page_offset(page);
2255
	u64 end = start + PAGE_SIZE - 1;
2256
	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2257 2258 2259
		SetPageUptodate(page);
}

2260 2261 2262
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2263 2264 2265 2266
{
	int ret;
	int err = 0;

2267
	set_state_failrec(failure_tree, rec->start, NULL);
2268 2269
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2270
				EXTENT_LOCKED | EXTENT_DIRTY);
2271 2272 2273
	if (ret)
		err = ret;

2274
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2275
				rec->start + rec->len - 1,
2276
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2277 2278
	if (ret && !err)
		err = ret;
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2289
 * to avoid any synchronization issues, wait for the data after writing, which
2290 2291 2292 2293
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
2294 2295 2296
int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
		      u64 length, u64 logical, struct page *page,
		      unsigned int pg_offset, int mirror_num)
2297 2298 2299 2300 2301 2302 2303 2304
{
	struct bio *bio;
	struct btrfs_device *dev;
	u64 map_length = 0;
	u64 sector;
	struct btrfs_bio *bbio = NULL;
	int ret;

2305
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2306 2307
	BUG_ON(!mirror_num);

2308 2309 2310
	if (btrfs_is_zoned(fs_info))
		return btrfs_repair_one_zone(fs_info, logical);

2311
	bio = btrfs_io_bio_alloc(1);
2312
	bio->bi_iter.bi_size = 0;
2313 2314
	map_length = length;

2315 2316 2317 2318 2319 2320
	/*
	 * Avoid races with device replace and make sure our bbio has devices
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2321
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
				      &map_length, &bbio, 0);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		ASSERT(bbio->mirror_num == 1);
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
				      &map_length, &bbio, mirror_num);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		BUG_ON(mirror_num != bbio->mirror_num);
2345
	}
2346 2347

	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2348
	bio->bi_iter.bi_sector = sector;
2349
	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2350
	btrfs_put_bbio(bbio);
2351 2352
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2353
		btrfs_bio_counter_dec(fs_info);
2354 2355 2356
		bio_put(bio);
		return -EIO;
	}
2357
	bio_set_dev(bio, dev->bdev);
2358
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2359
	bio_add_page(bio, page, length, pg_offset);
2360

2361
	if (btrfsic_submit_bio_wait(bio)) {
2362
		/* try to remap that extent elsewhere? */
2363
		btrfs_bio_counter_dec(fs_info);
2364
		bio_put(bio);
2365
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2366 2367 2368
		return -EIO;
	}

2369 2370
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2371
				  ino, start,
2372
				  rcu_str_deref(dev->name), sector);
2373
	btrfs_bio_counter_dec(fs_info);
2374 2375 2376 2377
	bio_put(bio);
	return 0;
}

2378
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2379
{
2380
	struct btrfs_fs_info *fs_info = eb->fs_info;
2381
	u64 start = eb->start;
2382
	int i, num_pages = num_extent_pages(eb);
2383
	int ret = 0;
2384

2385
	if (sb_rdonly(fs_info->sb))
2386 2387
		return -EROFS;

2388
	for (i = 0; i < num_pages; i++) {
2389
		struct page *p = eb->pages[i];
2390

2391
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2392
					start - page_offset(p), mirror_num);
2393 2394
		if (ret)
			break;
2395
		start += PAGE_SIZE;
2396 2397 2398 2399 2400
	}

	return ret;
}

2401 2402 2403 2404
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2405 2406 2407 2408
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2409 2410 2411 2412 2413 2414 2415 2416
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2417 2418
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2419 2420 2421
	if (!ret)
		return 0;

2422 2423
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2424 2425 2426 2427
		return 0;

	BUG_ON(!failrec->this_mirror);

2428
	if (sb_rdonly(fs_info->sb))
2429
		goto out;
2430

2431 2432
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2433 2434
					    failrec->start,
					    EXTENT_LOCKED);
2435
	spin_unlock(&io_tree->lock);
2436

2437 2438
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2439 2440
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2441
		if (num_copies > 1)  {
2442 2443 2444
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2445 2446 2447 2448
		}
	}

out:
2449
	free_io_failure(failure_tree, io_tree, failrec);
2450

2451
	return 0;
2452 2453
}

2454 2455 2456 2457 2458 2459
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2460
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2461
{
2462
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2479
		failrec = state->failrec;
2480 2481 2482 2483 2484 2485 2486 2487
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2488
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2489
							     u64 start)
2490
{
2491
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2492
	struct io_failure_record *failrec;
2493 2494 2495 2496
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2497
	const u32 sectorsize = fs_info->sectorsize;
2498 2499 2500
	int ret;
	u64 logical;

2501
	failrec = get_state_failrec(failure_tree, start);
2502
	if (!IS_ERR(failrec)) {
2503
		btrfs_debug(fs_info,
2504 2505
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
			failrec->logical, failrec->start, failrec->len);
2506 2507 2508 2509 2510
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2511 2512

		return failrec;
2513
	}
2514

2515 2516 2517
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2518

2519
	failrec->start = start;
2520
	failrec->len = sectorsize;
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	failrec->this_mirror = 0;
	failrec->bio_flags = 0;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
2558
	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2559 2560 2561 2562
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
2563 2564
		ret = set_extent_bits(tree, start, start + sectorsize - 1,
				      EXTENT_DAMAGED);
2565 2566 2567 2568 2569 2570
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2571 2572
}

2573
static bool btrfs_check_repairable(struct inode *inode,
2574 2575
				   struct io_failure_record *failrec,
				   int failed_mirror)
2576
{
2577
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2578 2579
	int num_copies;

2580
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2581 2582 2583 2584 2585 2586
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2587 2588 2589
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2590
		return false;
2591 2592
	}

2593 2594 2595
	/* The failure record should only contain one sector */
	ASSERT(failrec->len == fs_info->sectorsize);

2596
	/*
2597 2598 2599 2600 2601 2602 2603
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
2604
	 */
2605 2606 2607
	failrec->failed_mirror = failed_mirror;
	failrec->this_mirror++;
	if (failrec->this_mirror == failed_mirror)
2608 2609
		failrec->this_mirror++;

2610
	if (failrec->this_mirror > num_copies) {
2611 2612 2613
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2614
		return false;
2615 2616
	}

2617
	return true;
2618 2619
}

2620 2621 2622 2623 2624
int btrfs_repair_one_sector(struct inode *inode,
			    struct bio *failed_bio, u32 bio_offset,
			    struct page *page, unsigned int pgoff,
			    u64 start, int failed_mirror,
			    submit_bio_hook_t *submit_bio_hook)
2625 2626
{
	struct io_failure_record *failrec;
2627
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2628
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2629
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2630
	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2631
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2632 2633
	struct bio *repair_bio;
	struct btrfs_io_bio *repair_io_bio;
2634
	blk_status_t status;
2635

2636 2637
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2638

2639
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2640

2641
	failrec = btrfs_get_io_failure_record(inode, start);
2642
	if (IS_ERR(failrec))
2643
		return PTR_ERR(failrec);
2644

2645 2646

	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2647
		free_io_failure(failure_tree, tree, failrec);
2648
		return -EIO;
2649 2650
	}

2651 2652 2653 2654 2655 2656
	repair_bio = btrfs_io_bio_alloc(1);
	repair_io_bio = btrfs_io_bio(repair_bio);
	repair_bio->bi_opf = REQ_OP_READ;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2657

2658
	if (failed_io_bio->csum) {
2659
		const u32 csum_size = fs_info->csum_size;
2660 2661 2662 2663 2664

		repair_io_bio->csum = repair_io_bio->csum_inline;
		memcpy(repair_io_bio->csum,
		       failed_io_bio->csum + csum_size * icsum, csum_size);
	}
2665

2666 2667 2668
	bio_add_page(repair_bio, page, failrec->len, pgoff);
	repair_io_bio->logical = failrec->start;
	repair_io_bio->iter = repair_bio->bi_iter;
2669

2670
	btrfs_debug(btrfs_sb(inode->i_sb),
2671 2672
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2673

2674 2675
	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
				 failrec->bio_flags);
2676
	if (status) {
2677
		free_io_failure(failure_tree, tree, failrec);
2678
		bio_put(repair_bio);
2679
	}
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	return blk_status_to_errno(status);
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	/*
	 * For subapge metadata case, all btrfs_page_* helpers need page to
	 * have page::private populated.
	 * But we can have rare case where the last eb in the page is only
	 * referred by the IO, and it gets released immedately after it's
	 * read and verified.
	 *
	 * This can detach the page private completely.
	 * In that case, we can just skip the page status update completely,
	 * as the page has no eb anymore.
	 */
	if (fs_info->sectorsize < PAGE_SIZE && unlikely(!PagePrivate(page))) {
		ASSERT(!is_data_inode(page->mapping->host));
		return;
	}
	if (uptodate) {
		btrfs_page_set_uptodate(fs_info, page, start, len);
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

	if (fs_info->sectorsize == PAGE_SIZE)
		unlock_page(page);
	else if (is_data_inode(page->mapping->host))
		/*
		 * For subpage data, unlock the page if we're the last reader.
		 * For subpage metadata, page lock is not utilized for read.
		 */
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

static blk_status_t submit_read_repair(struct inode *inode,
				      struct bio *failed_bio, u32 bio_offset,
				      struct page *page, unsigned int pgoff,
				      u64 start, u64 end, int failed_mirror,
				      unsigned int error_bitmap,
				      submit_bio_hook_t *submit_bio_hook)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int error = 0;
	int i;

	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);

	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		struct extent_state *cached = NULL;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

		ret = btrfs_repair_one_sector(inode, failed_bio,
				bio_offset + offset,
				page, pgoff + offset, start + offset,
				failed_mirror, submit_bio_hook);
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
		 * Repair failed, just record the error but still continue.
		 * Or the remaining sectors will not be properly unlocked.
		 */
		if (!error)
			error = ret;
next:
		end_page_read(page, uptodate, start + offset, sectorsize);
		if (uptodate)
			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
					start + offset,
					start + offset + sectorsize - 1,
					&cached, GFP_ATOMIC);
		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
				start + offset,
				start + offset + sectorsize - 1,
				&cached);
	}
	return errno_to_blk_status(error);
2794 2795
}

2796 2797
/* lots and lots of room for performance fixes in the end_bio funcs */

2798
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2799
{
2800
	struct btrfs_inode *inode;
2801
	int uptodate = (err == 0);
2802
	int ret = 0;
2803

2804 2805 2806
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2807 2808 2809 2810

	if (!uptodate) {
		ClearPageUptodate(page);
		SetPageError(page);
2811
		ret = err < 0 ? err : -EIO;
2812
		mapping_set_error(page->mapping, ret);
2813 2814 2815
	}
}

2816 2817 2818 2819 2820 2821 2822 2823 2824
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2825
static void end_bio_extent_writepage(struct bio *bio)
2826
{
2827
	int error = blk_status_to_errno(bio->bi_status);
2828
	struct bio_vec *bvec;
2829 2830
	u64 start;
	u64 end;
2831
	struct bvec_iter_all iter_all;
2832
	bool first_bvec = true;
2833

2834
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2835
	bio_for_each_segment_all(bvec, bio, iter_all) {
2836
		struct page *page = bvec->bv_page;
2837 2838
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
		const u32 sectorsize = fs_info->sectorsize;

		/* Our read/write should always be sector aligned. */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page write in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
			btrfs_info(fs_info,
		"incomplete page write with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2853

2854 2855 2856 2857 2858
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2859
		end_extent_writepage(page, error, start, end);
2860 2861

		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2862
	}
2863

2864 2865 2866
	bio_put(bio);
}

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2877
	/* End of the range in @inode */
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2896 2897
{
	struct extent_state *cached = NULL;
2898 2899 2900 2901 2902
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2903

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2938 2939
}

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
	if (fs_info->sectorsize == PAGE_SIZE)
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
/*
 * Find extent buffer for a givne bytenr.
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
	if (fs_info->sectorsize == PAGE_SIZE) {
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

	/* For subpage case, we need to lookup buffer radix tree */
	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       bytenr >> fs_info->sectorsize_bits);
	rcu_read_unlock();
	ASSERT(eb);
	return eb;
}

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2990
static void end_bio_extent_readpage(struct bio *bio)
2991
{
2992
	struct bio_vec *bvec;
2993
	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2994
	struct extent_io_tree *tree, *failure_tree;
2995
	struct processed_extent processed = { 0 };
2996 2997 2998 2999 3000
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
3001
	int mirror;
3002
	int ret;
3003
	struct bvec_iter_all iter_all;
3004

3005
	ASSERT(!bio_flagged(bio, BIO_CLONED));
3006
	bio_for_each_segment_all(bvec, bio, iter_all) {
3007
		bool uptodate = !bio->bi_status;
3008
		struct page *page = bvec->bv_page;
3009
		struct inode *inode = page->mapping->host;
3010
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3011
		const u32 sectorsize = fs_info->sectorsize;
3012
		unsigned int error_bitmap = (unsigned int)-1;
3013 3014 3015
		u64 start;
		u64 end;
		u32 len;
3016

3017 3018
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
3019
			bio->bi_iter.bi_sector, bio->bi_status,
3020
			io_bio->mirror_num);
3021
		tree = &BTRFS_I(inode)->io_tree;
3022
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3023

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
3043
		len = bvec->bv_len;
3044

3045
		mirror = io_bio->mirror_num;
3046
		if (likely(uptodate)) {
3047 3048
			if (is_data_inode(inode)) {
				error_bitmap = btrfs_verify_data_csum(io_bio,
3049
						bio_offset, page, start, end);
3050 3051
				ret = error_bitmap;
			} else {
3052
				ret = btrfs_validate_metadata_buffer(io_bio,
3053
					page, start, end, mirror);
3054
			}
3055
			if (ret)
3056
				uptodate = false;
3057
			else
3058 3059 3060 3061
				clean_io_failure(BTRFS_I(inode)->root->fs_info,
						 failure_tree, tree, start,
						 page,
						 btrfs_ino(BTRFS_I(inode)), 0);
3062
		}
3063

3064 3065 3066
		if (likely(uptodate))
			goto readpage_ok;

3067
		if (is_data_inode(inode)) {
3068
			/*
3069 3070
			 * btrfs_submit_read_repair() will handle all the good
			 * and bad sectors, we just continue to the next bvec.
3071
			 */
3072 3073 3074 3075 3076 3077 3078 3079
			submit_read_repair(inode, bio, bio_offset, page,
					   start - page_offset(page), start,
					   end, mirror, error_bitmap,
					   btrfs_submit_data_bio);

			ASSERT(bio_offset + len > bio_offset);
			bio_offset += len;
			continue;
3080 3081 3082
		} else {
			struct extent_buffer *eb;

3083
			eb = find_extent_buffer_readpage(fs_info, page, start);
3084 3085 3086 3087 3088 3089
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
					       &eb->bflags))
				btree_readahead_hook(eb, -EIO);
3090
		}
3091
readpage_ok:
3092
		if (likely(uptodate)) {
3093
			loff_t i_size = i_size_read(inode);
3094
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3095

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3107
						     offset_in_page(start));
3108 3109 3110 3111

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3112
		}
3113 3114
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3115

3116
		/* Update page status and unlock */
3117
		end_page_read(page, uptodate, start, len);
3118 3119
		endio_readpage_release_extent(&processed, BTRFS_I(inode),
					      start, end, uptodate);
3120
	}
3121 3122
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3123
	btrfs_io_bio_free_csum(io_bio);
3124 3125 3126
	bio_put(bio);
}

3127
/*
3128 3129 3130
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3131
 */
3132
static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3133
{
3134 3135
	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
}
3136

3137
/*
3138 3139 3140
 * The following helpers allocate a bio. As it's backed by a bioset, it'll
 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
 * for the appropriate container_of magic
3141
 */
3142
struct bio *btrfs_bio_alloc(u64 first_byte)
3143 3144 3145
{
	struct bio *bio;

3146
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3147
	bio->bi_iter.bi_sector = first_byte >> 9;
3148
	btrfs_io_bio_init(btrfs_io_bio(bio));
3149 3150 3151
	return bio;
}

3152
struct bio *btrfs_bio_clone(struct bio *bio)
3153
{
3154 3155
	struct btrfs_io_bio *btrfs_bio;
	struct bio *new;
3156

3157
	/* Bio allocation backed by a bioset does not fail */
3158
	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3159
	btrfs_bio = btrfs_io_bio(new);
3160
	btrfs_io_bio_init(btrfs_bio);
3161
	btrfs_bio->iter = bio->bi_iter;
3162 3163
	return new;
}
3164

3165
struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3166
{
3167 3168
	struct bio *bio;

3169
	/* Bio allocation backed by a bioset does not fail */
3170
	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3171
	btrfs_io_bio_init(btrfs_io_bio(bio));
3172
	return bio;
3173 3174
}

3175
struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3176 3177 3178 3179 3180
{
	struct bio *bio;
	struct btrfs_io_bio *btrfs_bio;

	/* this will never fail when it's backed by a bioset */
3181
	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3182 3183 3184
	ASSERT(bio);

	btrfs_bio = btrfs_io_bio(bio);
3185
	btrfs_io_bio_init(btrfs_bio);
3186 3187

	bio_trim(bio, offset >> 9, size >> 9);
3188
	btrfs_bio->iter = bio->bi_iter;
3189 3190
	return bio;
}
3191

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
/**
 * Attempt to add a page to bio
 *
 * @bio:	destination bio
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @pg_offset:	starting offset in the page
 * @size:	portion of page that we want to write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
 * @return:	true if page was added, false otherwise
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
 * Return true if successfully page added. Otherwise, return false.
 */
3209 3210
static bool btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			       struct page *page,
3211 3212 3213 3214
			       u64 disk_bytenr, unsigned int size,
			       unsigned int pg_offset,
			       unsigned long bio_flags)
{
3215 3216
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
3217 3218
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3219
	int ret;
3220

3221 3222 3223 3224
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
	if (bio_ctrl->bio_flags != bio_flags)
3225 3226
		return false;

3227
	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3228 3229 3230 3231 3232 3233
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
		return false;

3234 3235
	if (bio_size + size > bio_ctrl->len_to_oe_boundary ||
	    bio_size + size > bio_ctrl->len_to_stripe_boundary)
3236 3237
		return false;

3238
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3239
		ret = bio_add_zone_append_page(bio, page, size, pg_offset);
3240
	else
3241 3242 3243
		ret = bio_add_page(bio, page, size, pg_offset);

	return ret == size;
3244 3245
}

3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
			       struct btrfs_inode *inode)
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

	if (!btrfs_is_zoned(fs_info) ||
	    bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	ASSERT(fs_info->max_zone_append_size > 0);
	/* Ordered extent not yet created, so we're good */
	ordered = btrfs_lookup_ordered_extent(inode, logical);
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3302 3303
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3304 3305
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3306 3307
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3308 3309
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3310
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3311 3312 3313 3314
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
3315
 */
3316
static int submit_extent_page(unsigned int opf,
3317
			      struct writeback_control *wbc,
3318
			      struct btrfs_bio_ctrl *bio_ctrl,
3319
			      struct page *page, u64 disk_bytenr,
3320
			      size_t size, unsigned long pg_offset,
3321
			      bio_end_io_t end_io_func,
C
Chris Mason 已提交
3322
			      int mirror_num,
3323 3324
			      unsigned long bio_flags,
			      bool force_bio_submit)
3325 3326 3327
{
	int ret = 0;
	struct bio *bio;
3328
	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3329 3330 3331
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &inode->io_tree;
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3332

3333
	ASSERT(bio_ctrl);
3334

3335 3336 3337 3338
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
	if (bio_ctrl->bio) {
		bio = bio_ctrl->bio;
3339
		if (force_bio_submit ||
3340 3341 3342 3343 3344
		    !btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, io_size,
					pg_offset, bio_flags)) {
			ret = submit_one_bio(bio, mirror_num, bio_ctrl->bio_flags);
			bio_ctrl->bio = NULL;
			if (ret < 0)
3345
				return ret;
3346
		} else {
3347
			if (wbc)
3348
				wbc_account_cgroup_owner(wbc, page, io_size);
3349 3350 3351
			return 0;
		}
	}
C
Chris Mason 已提交
3352

3353
	bio = btrfs_bio_alloc(disk_bytenr);
3354
	bio_add_page(bio, page, io_size, pg_offset);
3355 3356
	bio->bi_end_io = end_io_func;
	bio->bi_private = tree;
3357
	bio->bi_write_hint = page->mapping->host->i_write_hint;
3358
	bio->bi_opf = opf;
3359
	if (wbc) {
3360 3361
		struct block_device *bdev;

3362
		bdev = fs_info->fs_devices->latest_bdev;
3363
		bio_set_dev(bio, bdev);
3364
		wbc_init_bio(wbc, bio);
3365
		wbc_account_cgroup_owner(wbc, page, io_size);
3366
	}
3367
	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3368
		struct btrfs_device *device;
3369

3370 3371 3372
		device = btrfs_zoned_get_device(fs_info, disk_bytenr, io_size);
		if (IS_ERR(device))
			return PTR_ERR(device);
3373

3374
		btrfs_io_bio(bio)->device = device;
3375
	}
3376

3377 3378 3379
	bio_ctrl->bio = bio;
	bio_ctrl->bio_flags = bio_flags;
	ret = calc_bio_boundaries(bio_ctrl, inode);
3380 3381 3382 3383

	return ret;
}

3384 3385 3386
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3387
{
3388 3389 3390
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3391 3392 3393 3394 3395 3396 3397 3398 3399
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
	if (fs_info->sectorsize == PAGE_SIZE) {
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3417
	else
3418 3419 3420 3421
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3422 3423
}

3424
int set_page_extent_mapped(struct page *page)
3425
{
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3448
	if (!PagePrivate(page))
3449 3450 3451 3452 3453 3454 3455
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3456 3457
}

3458 3459
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3460
		 u64 start, u64 len, struct extent_map **em_cached)
3461 3462 3463 3464 3465
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3466
		if (extent_map_in_tree(em) && start >= em->start &&
3467
		    start < extent_map_end(em)) {
3468
			refcount_inc(&em->refs);
3469 3470 3471 3472 3473 3474 3475
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3476
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3477 3478
	if (em_cached && !IS_ERR_OR_NULL(em)) {
		BUG_ON(*em_cached);
3479
		refcount_inc(&em->refs);
3480 3481 3482 3483
		*em_cached = em;
	}
	return em;
}
3484 3485 3486 3487
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3488
 * XXX JDM: This needs looking at to ensure proper page locking
3489
 * return 0 on success, otherwise return error
3490
 */
3491
int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3492
		      struct btrfs_bio_ctrl *bio_ctrl,
3493
		      unsigned int read_flags, u64 *prev_em_start)
3494 3495
{
	struct inode *inode = page->mapping->host;
3496
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3497
	u64 start = page_offset(page);
3498
	const u64 end = start + PAGE_SIZE - 1;
3499 3500 3501 3502 3503 3504
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3505
	int ret = 0;
3506
	int nr = 0;
3507
	size_t pg_offset = 0;
3508 3509
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3510
	unsigned long this_bio_flag = 0;
3511
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3512

3513 3514 3515
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3516 3517
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3518 3519
		goto out;
	}
3520

D
Dan Magenheimer 已提交
3521 3522 3523
	if (!PageUptodate(page)) {
		if (cleancache_get_page(page) == 0) {
			BUG_ON(blocksize != PAGE_SIZE);
3524
			unlock_extent(tree, start, end);
3525
			unlock_page(page);
D
Dan Magenheimer 已提交
3526 3527 3528 3529
			goto out;
		}
	}

3530
	if (page->index == last_byte >> PAGE_SHIFT) {
3531
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3532 3533

		if (zero_offset) {
3534
			iosize = PAGE_SIZE - zero_offset;
3535
			memzero_page(page, zero_offset, iosize);
C
Chris Mason 已提交
3536 3537 3538
			flush_dcache_page(page);
		}
	}
3539
	begin_page_read(fs_info, page);
3540
	while (cur <= end) {
3541
		bool force_bio_submit = false;
3542
		u64 disk_bytenr;
3543

3544
		if (cur >= last_byte) {
3545 3546
			struct extent_state *cached = NULL;

3547
			iosize = PAGE_SIZE - pg_offset;
3548
			memzero_page(page, pg_offset, iosize);
3549 3550
			flush_dcache_page(page);
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3551
					    &cached, GFP_NOFS);
3552
			unlock_extent_cached(tree, cur,
3553
					     cur + iosize - 1, &cached);
3554
			end_page_read(page, true, cur, iosize);
3555 3556
			break;
		}
3557
		em = __get_extent_map(inode, page, pg_offset, cur,
3558
				      end - cur + 1, em_cached);
3559
		if (IS_ERR_OR_NULL(em)) {
3560
			unlock_extent(tree, cur, end);
3561
			end_page_read(page, false, cur, end + 1 - cur);
3562 3563 3564 3565 3566 3567
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3568
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3569
			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3570 3571 3572
			extent_set_compress_type(&this_bio_flag,
						 em->compress_type);
		}
C
Chris Mason 已提交
3573

3574 3575
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3576
		iosize = ALIGN(iosize, blocksize);
3577
		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3578
			disk_bytenr = em->block_start;
3579
		else
3580
			disk_bytenr = em->block_start + extent_offset;
3581
		block_start = em->block_start;
Y
Yan Zheng 已提交
3582 3583
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3584 3585 3586

		/*
		 * If we have a file range that points to a compressed extent
3587
		 * and it's followed by a consecutive file range that points
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3621
		    *prev_em_start != em->start)
3622 3623 3624
			force_bio_submit = true;

		if (prev_em_start)
3625
			*prev_em_start = em->start;
3626

3627 3628 3629 3630 3631
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3632 3633
			struct extent_state *cached = NULL;

3634
			memzero_page(page, pg_offset, iosize);
3635 3636 3637
			flush_dcache_page(page);

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3638
					    &cached, GFP_NOFS);
3639
			unlock_extent_cached(tree, cur,
3640
					     cur + iosize - 1, &cached);
3641
			end_page_read(page, true, cur, iosize);
3642
			cur = cur + iosize;
3643
			pg_offset += iosize;
3644 3645 3646
			continue;
		}
		/* the get_extent function already copied into the page */
3647 3648
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3649
			check_page_uptodate(tree, page);
3650
			unlock_extent(tree, cur, cur + iosize - 1);
3651
			end_page_read(page, true, cur, iosize);
3652
			cur = cur + iosize;
3653
			pg_offset += iosize;
3654 3655
			continue;
		}
3656 3657 3658 3659
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3660
			unlock_extent(tree, cur, cur + iosize - 1);
3661
			end_page_read(page, false, cur, iosize);
3662
			cur = cur + iosize;
3663
			pg_offset += iosize;
3664 3665
			continue;
		}
3666

3667
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3668 3669
					 bio_ctrl, page, disk_bytenr, iosize,
					 pg_offset,
3670
					 end_bio_extent_readpage, 0,
3671 3672
					 this_bio_flag,
					 force_bio_submit);
3673 3674 3675
		if (!ret) {
			nr++;
		} else {
3676
			unlock_extent(tree, cur, cur + iosize - 1);
3677
			end_page_read(page, false, cur, iosize);
3678
			goto out;
3679
		}
3680
		cur = cur + iosize;
3681
		pg_offset += iosize;
3682
	}
D
Dan Magenheimer 已提交
3683
out:
3684
	return ret;
3685 3686
}

3687
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3688 3689 3690 3691
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3692
{
3693
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3694 3695
	int index;

3696
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3697 3698

	for (index = 0; index < nr_pages; index++) {
3699
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3700
				  REQ_RAHEAD, prev_em_start);
3701
		put_page(pages[index]);
3702 3703 3704
	}
}

3705
static void update_nr_written(struct writeback_control *wbc,
3706
			      unsigned long nr_written)
3707 3708 3709 3710
{
	wbc->nr_to_write -= nr_written;
}

3711
/*
3712 3713
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3714
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3715 3716 3717 3718 3719
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3720
 */
3721
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3722 3723
		struct page *page, struct writeback_control *wbc,
		u64 delalloc_start, unsigned long *nr_written)
3724
{
3725
	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3726
	bool found;
3727 3728 3729 3730 3731 3732 3733
	u64 delalloc_to_write = 0;
	u64 delalloc_end = 0;
	int ret;
	int page_started = 0;


	while (delalloc_end < page_end) {
3734
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3735
					       &delalloc_start,
3736
					       &delalloc_end);
3737
		if (!found) {
3738 3739 3740
			delalloc_start = delalloc_end + 1;
			continue;
		}
3741
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3742
				delalloc_end, &page_started, nr_written, wbc);
3743 3744
		if (ret) {
			SetPageError(page);
3745 3746 3747 3748 3749
			/*
			 * btrfs_run_delalloc_range should return < 0 for error
			 * but just in case, we use > 0 here meaning the IO is
			 * started, so we don't want to return > 0 unless
			 * things are going well.
3750
			 */
3751
			return ret < 0 ? ret : -EIO;
3752 3753
		}
		/*
3754 3755
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3756 3757
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3758
				      PAGE_SIZE) >> PAGE_SHIFT;
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

	/* did the fill delalloc function already unlock and start
	 * the IO?
	 */
	if (page_started) {
		/*
		 * we've unlocked the page, so we can't update
		 * the mapping's writeback index, just update
		 * nr_to_write.
		 */
		wbc->nr_to_write -= *nr_written;
		return 1;
	}

3783
	return 0;
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
}

/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3794
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3795 3796 3797 3798 3799
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
				 unsigned long nr_written,
3800
				 int *nr_ret)
3801
{
3802
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
M
Miao Xie 已提交
3803
	u64 start = page_offset(page);
3804
	u64 end = start + PAGE_SIZE - 1;
3805 3806 3807 3808
	u64 cur = start;
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3809 3810
	int ret = 0;
	int nr = 0;
3811
	u32 opf = REQ_OP_WRITE;
3812
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3813
	bool compressed;
C
Chris Mason 已提交
3814

3815
	ret = btrfs_writepage_cow_fixup(page, start, end);
3816 3817
	if (ret) {
		/* Fixup worker will requeue */
3818
		redirty_page_for_writepage(wbc, page);
3819 3820 3821
		update_nr_written(wbc, nr_written);
		unlock_page(page);
		return 1;
3822 3823
	}

3824 3825 3826 3827
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3828
	update_nr_written(wbc, nr_written + 1);
3829

3830
	while (cur <= end) {
3831
		u64 disk_bytenr;
3832
		u64 em_end;
3833
		u32 iosize;
3834

3835
		if (cur >= i_size) {
3836 3837
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
							     end, 1);
3838 3839
			break;
		}
3840
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3841
		if (IS_ERR_OR_NULL(em)) {
3842
			SetPageError(page);
3843
			ret = PTR_ERR_OR_ZERO(em);
3844 3845 3846 3847
			break;
		}

		extent_offset = cur - em->start;
3848
		em_end = extent_map_end(em);
3849 3850 3851 3852
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3853
		block_start = em->block_start;
C
Chris Mason 已提交
3854
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3855 3856 3857 3858
		disk_bytenr = em->block_start + extent_offset;

		/* Note that em_end from extent_map_end() is exclusive */
		iosize = min(em_end, end + 1) - cur;
3859

3860
		if (btrfs_use_zone_append(inode, em->block_start))
3861 3862
			opf = REQ_OP_ZONE_APPEND;

3863 3864 3865
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
3866 3867 3868 3869 3870
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
3871
		    block_start == EXTENT_MAP_INLINE) {
3872
			if (compressed)
C
Chris Mason 已提交
3873
				nr++;
3874
			else
3875 3876
				btrfs_writepage_endio_finish_ordered(inode,
						page, cur, cur + iosize - 1, 1);
C
Chris Mason 已提交
3877
			cur += iosize;
3878 3879
			continue;
		}
C
Chris Mason 已提交
3880

3881
		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
3882
		if (!PageWriteback(page)) {
3883
			btrfs_err(inode->root->fs_info,
3884 3885
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
3886
		}
3887

3888 3889
		ret = submit_extent_page(opf | write_flags, wbc,
					 &epd->bio_ctrl, page,
3890
					 disk_bytenr, iosize,
3891
					 cur - page_offset(page),
3892
					 end_bio_extent_writepage,
3893
					 0, 0, false);
3894
		if (ret) {
3895
			SetPageError(page);
3896 3897 3898
			if (PageWriteback(page))
				end_page_writeback(page);
		}
3899

3900
		cur += iosize;
3901 3902
		nr++;
	}
3903 3904 3905 3906 3907 3908 3909 3910 3911
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
3912 3913 3914
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
3915 3916
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3917
			      struct extent_page_data *epd)
3918 3919 3920
{
	struct inode *inode = page->mapping->host;
	u64 start = page_offset(page);
3921
	u64 page_end = start + PAGE_SIZE - 1;
3922 3923
	int ret;
	int nr = 0;
3924
	size_t pg_offset;
3925
	loff_t i_size = i_size_read(inode);
3926
	unsigned long end_index = i_size >> PAGE_SHIFT;
3927 3928 3929 3930 3931 3932 3933 3934
	unsigned long nr_written = 0;

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

	ClearPageError(page);

3935
	pg_offset = offset_in_page(i_size);
3936 3937
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
3938
		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3939 3940 3941 3942 3943
		unlock_page(page);
		return 0;
	}

	if (page->index == end_index) {
3944
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
3945 3946 3947
		flush_dcache_page(page);
	}

3948 3949 3950 3951 3952
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
3953

3954
	if (!epd->extent_locked) {
3955 3956
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
					 &nr_written);
3957
		if (ret == 1)
3958
			return 0;
3959 3960 3961
		if (ret)
			goto done;
	}
3962

3963 3964
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
				    nr_written, &nr);
3965
	if (ret == 1)
3966
		return 0;
3967

3968 3969 3970 3971 3972 3973
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
3974 3975 3976 3977
	if (PageError(page)) {
		ret = ret < 0 ? ret : -EIO;
		end_extent_writepage(page, ret, start, page_end);
	}
3978
	unlock_page(page);
3979
	ASSERT(ret <= 0);
3980
	return ret;
3981 3982
}

3983
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3984
{
3985 3986
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
3987 3988
}

3989 3990 3991 3992 3993 3994 3995
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

3996
/*
3997
 * Lock extent buffer status and pages for writeback.
3998
 *
3999 4000 4001 4002 4003 4004
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
4005
 */
4006
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4007
			  struct extent_page_data *epd)
4008
{
4009
	struct btrfs_fs_info *fs_info = eb->fs_info;
4010
	int i, num_pages, failed_page_nr;
4011 4012 4013 4014
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
4015
		ret = flush_write_bio(epd);
4016 4017 4018
		if (ret < 0)
			return ret;
		flush = 1;
4019 4020 4021 4022 4023 4024 4025 4026
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
4027
			ret = flush_write_bio(epd);
4028 4029
			if (ret < 0)
				return ret;
4030 4031
			flush = 1;
		}
C
Chris Mason 已提交
4032 4033 4034 4035 4036
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
4037 4038 4039 4040
			btrfs_tree_unlock(eb);
		}
	}

4041 4042 4043 4044 4045 4046
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4047 4048
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4049
		spin_unlock(&eb->refs_lock);
4050
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4051 4052 4053
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4054
		ret = 1;
4055 4056
	} else {
		spin_unlock(&eb->refs_lock);
4057 4058 4059 4060
	}

	btrfs_tree_unlock(eb);

4061 4062 4063 4064 4065 4066 4067
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
	if (!ret || fs_info->sectorsize < PAGE_SIZE)
4068 4069
		return ret;

4070
	num_pages = num_extent_pages(eb);
4071
	for (i = 0; i < num_pages; i++) {
4072
		struct page *p = eb->pages[i];
4073 4074 4075

		if (!trylock_page(p)) {
			if (!flush) {
4076 4077 4078 4079 4080
				int err;

				err = flush_write_bio(epd);
				if (err < 0) {
					ret = err;
4081 4082 4083
					failed_page_nr = i;
					goto err_unlock;
				}
4084 4085 4086 4087 4088 4089 4090
				flush = 1;
			}
			lock_page(p);
		}
	}

	return ret;
4091 4092 4093 4094
err_unlock:
	/* Unlock already locked pages */
	for (i = 0; i < failed_page_nr; i++)
		unlock_page(eb->pages[i]);
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
	/*
	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
	 * be made and undo everything done before.
	 */
	btrfs_tree_lock(eb);
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
	end_extent_buffer_writeback(eb);
	spin_unlock(&eb->refs_lock);
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
				 fs_info->dirty_metadata_batch);
	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
	btrfs_tree_unlock(eb);
4109
	return ret;
4110 4111
}

4112
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4113
{
4114
	struct btrfs_fs_info *fs_info = eb->fs_info;
4115

4116
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4117 4118 4119
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4120 4121 4122 4123 4124 4125 4126
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4167
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4168 4169
		break;
	case 0:
4170
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4171 4172
		break;
	case 1:
4173
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4174 4175 4176 4177 4178 4179
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       start >> fs_info->sectorsize_bits);
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4206
static void end_bio_subpage_eb_writepage(struct bio *bio)
4207
{
4208
	struct btrfs_fs_info *fs_info;
4209 4210 4211
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4212 4213 4214
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
	ASSERT(fs_info->sectorsize < PAGE_SIZE);

4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4263
static void end_bio_extent_buffer_writepage(struct bio *bio)
4264
{
4265
	struct bio_vec *bvec;
4266
	struct extent_buffer *eb;
4267
	int done;
4268
	struct bvec_iter_all iter_all;
4269

4270
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4271
	bio_for_each_segment_all(bvec, bio, iter_all) {
4272 4273 4274 4275 4276 4277
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4278
		if (bio->bi_status ||
4279
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4280
			ClearPageUptodate(page);
4281
			set_btree_ioerr(page, eb);
4282 4283 4284 4285 4286 4287 4288 4289
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4290
	}
4291 4292 4293 4294

	bio_put(bio);
}

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
	bool no_dirty_ebs = false;
	int ret;

4334 4335
	prepare_eb_write(eb);

4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4346 4347 4348
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4349
			end_bio_subpage_eb_writepage, 0, 0, false);
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
		update_nr_written(wbc, 1);
	return ret;
}

4369
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4370 4371 4372
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4373
	u64 disk_bytenr = eb->start;
4374
	int i, num_pages;
4375
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4376
	int ret = 0;
4377

4378
	prepare_eb_write(eb);
4379

4380
	num_pages = num_extent_pages(eb);
4381
	for (i = 0; i < num_pages; i++) {
4382
		struct page *p = eb->pages[i];
4383 4384 4385

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4386
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4387 4388
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4389
					 end_bio_extent_buffer_writepage,
4390
					 0, 0, false);
4391
		if (ret) {
4392
			set_btree_ioerr(p, eb);
4393 4394
			if (PageWriteback(p))
				end_page_writeback(p);
4395 4396 4397 4398 4399
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4400
		disk_bytenr += PAGE_SIZE;
4401
		update_nr_written(wbc, 1);
4402 4403 4404 4405 4406
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4407
			struct page *p = eb->pages[i];
4408
			clear_page_dirty_for_io(p);
4409 4410 4411 4412 4413 4414 4415
			unlock_page(p);
		}
	}

	return ret;
}

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
	while (bit_start < nbits) {
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
		if (!((1 << bit_start) & subpage->dirty_bitmap)) {
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4494
		ret = write_one_subpage_eb(eb, wbc, epd);
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
	end_write_bio(epd, ret);
	return ret;
}

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4533
	struct btrfs_block_group *cache = NULL;
4534 4535 4536 4537 4538 4539
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4540 4541 4542
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return submit_eb_subpage(page, wbc, epd);

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4582 4583 4584 4585
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4586 4587 4588
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4589 4590 4591
		free_extent_buffer(eb);
		return ret;
	}
4592 4593
	if (cache)
		btrfs_put_block_group(cache);
4594 4595 4596 4597 4598 4599 4600
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4601 4602 4603
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4604
	struct extent_buffer *eb_context = NULL;
4605
	struct extent_page_data epd = {
4606
		.bio_ctrl = { 0 },
4607 4608 4609
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4610
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4611 4612 4613 4614 4615 4616 4617 4618
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4619
	xa_mark_t tag;
4620

4621
	pagevec_init(&pvec);
4622 4623 4624
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4625 4626 4627 4628 4629
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4630
	} else {
4631 4632
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4633 4634 4635 4636 4637 4638
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4639
	btrfs_zoned_meta_io_lock(fs_info);
4640 4641 4642 4643
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4644
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4645
			tag))) {
4646 4647 4648 4649 4650
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4651 4652
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4653
				continue;
4654
			if (ret < 0) {
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4678 4679
	if (ret < 0) {
		end_write_bio(&epd, ret);
4680
		goto out;
4681
	}
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
	 */
	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
		ret = flush_write_bio(&epd);
	} else {
4712
		ret = -EROFS;
4713 4714
		end_write_bio(&epd, ret);
	}
4715 4716
out:
	btrfs_zoned_meta_io_unlock(fs_info);
4717 4718 4719
	return ret;
}

4720
/**
4721 4722
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4723
 * @mapping: address space structure to write
4724 4725
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4726 4727 4728 4729 4730 4731 4732 4733 4734
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4735
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4736
			     struct writeback_control *wbc,
4737
			     struct extent_page_data *epd)
4738
{
4739
	struct inode *inode = mapping->host;
4740 4741
	int ret = 0;
	int done = 0;
4742
	int nr_to_write_done = 0;
4743 4744 4745 4746
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4747 4748
	pgoff_t done_index;
	int range_whole = 0;
4749
	int scanned = 0;
M
Matthew Wilcox 已提交
4750
	xa_mark_t tag;
4751

4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4764
	pagevec_init(&pvec);
4765 4766 4767
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4768 4769 4770 4771 4772
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4773
	} else {
4774 4775
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4776 4777
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4778 4779
		scanned = 1;
	}
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4794 4795 4796
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4797
retry:
4798
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4799
		tag_pages_for_writeback(mapping, index, end);
4800
	done_index = index;
4801
	while (!done && !nr_to_write_done && (index <= end) &&
4802 4803
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
4804 4805 4806 4807 4808
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4809
			done_index = page->index + 1;
4810
			/*
M
Matthew Wilcox 已提交
4811 4812 4813 4814 4815
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
4816
			 */
4817
			if (!trylock_page(page)) {
4818 4819
				ret = flush_write_bio(epd);
				BUG_ON(ret < 0);
4820
				lock_page(page);
4821
			}
4822 4823 4824 4825 4826 4827

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
4828
			if (wbc->sync_mode != WB_SYNC_NONE) {
4829 4830 4831 4832
				if (PageWriteback(page)) {
					ret = flush_write_bio(epd);
					BUG_ON(ret < 0);
				}
4833
				wait_on_page_writeback(page);
C
Chris Mason 已提交
4834
			}
4835 4836 4837 4838 4839 4840 4841

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

4842
			ret = __extent_writepage(page, wbc, epd);
4843 4844 4845 4846
			if (ret < 0) {
				done = 1;
				break;
			}
4847 4848 4849 4850 4851 4852 4853

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
4854 4855 4856 4857
		}
		pagevec_release(&pvec);
		cond_resched();
	}
4858
	if (!scanned && !done) {
4859 4860 4861 4862 4863 4864
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
		ret = flush_write_bio(epd);
		if (!ret)
			goto retry;
4875
	}
4876 4877 4878 4879

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

4880
	btrfs_add_delayed_iput(inode);
4881
	return ret;
4882 4883
}

4884
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4885 4886 4887
{
	int ret;
	struct extent_page_data epd = {
4888
		.bio_ctrl = { 0 },
4889
		.extent_locked = 0,
4890
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4891 4892 4893
	};

	ret = __extent_writepage(page, wbc, &epd);
4894 4895 4896 4897 4898
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
4899

4900 4901
	ret = flush_write_bio(&epd);
	ASSERT(ret <= 0);
4902 4903 4904
	return ret;
}

4905
int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4906 4907 4908 4909 4910
			      int mode)
{
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
4911 4912
	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
		PAGE_SHIFT;
4913 4914

	struct extent_page_data epd = {
4915
		.bio_ctrl = { 0 },
4916
		.extent_locked = 1,
4917
		.sync_io = mode == WB_SYNC_ALL,
4918 4919 4920 4921 4922 4923
	};
	struct writeback_control wbc_writepages = {
		.sync_mode	= mode,
		.nr_to_write	= nr_pages * 2,
		.range_start	= start,
		.range_end	= end + 1,
4924 4925 4926
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
4927 4928
	};

4929
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
C
Chris Mason 已提交
4930
	while (start <= end) {
4931
		page = find_get_page(mapping, start >> PAGE_SHIFT);
4932 4933 4934
		if (clear_page_dirty_for_io(page))
			ret = __extent_writepage(page, &wbc_writepages, &epd);
		else {
4935 4936
			btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
					page, start, start + PAGE_SIZE - 1, 1);
4937 4938
			unlock_page(page);
		}
4939 4940
		put_page(page);
		start += PAGE_SIZE;
4941 4942
	}

4943
	ASSERT(ret <= 0);
4944 4945 4946
	if (ret == 0)
		ret = flush_write_bio(&epd);
	else
4947
		end_write_bio(&epd, ret);
4948 4949

	wbc_detach_inode(&wbc_writepages);
4950 4951
	return ret;
}
4952

4953
int extent_writepages(struct address_space *mapping,
4954 4955 4956 4957
		      struct writeback_control *wbc)
{
	int ret = 0;
	struct extent_page_data epd = {
4958
		.bio_ctrl = { 0 },
4959
		.extent_locked = 0,
4960
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4961 4962
	};

4963
	ret = extent_write_cache_pages(mapping, wbc, &epd);
4964 4965 4966 4967 4968 4969
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
	ret = flush_write_bio(&epd);
4970 4971 4972
	return ret;
}

4973
void extent_readahead(struct readahead_control *rac)
4974
{
4975
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
L
Liu Bo 已提交
4976
	struct page *pagepool[16];
4977
	struct extent_map *em_cached = NULL;
4978
	u64 prev_em_start = (u64)-1;
4979
	int nr;
4980

4981
	while ((nr = readahead_page_batch(rac, pagepool))) {
4982 4983
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
4984

4985
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
4986
				&em_cached, &bio_ctrl, &prev_em_start);
4987
	}
L
Liu Bo 已提交
4988

4989 4990 4991
	if (em_cached)
		free_extent_map(em_cached);

4992 4993
	if (bio_ctrl.bio) {
		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
4994 4995
			return;
	}
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
}

/*
 * basic invalidatepage code, this waits on any locked or writeback
 * ranges corresponding to the page, and then deletes any extent state
 * records from the tree
 */
int extent_invalidatepage(struct extent_io_tree *tree,
			  struct page *page, unsigned long offset)
{
5006
	struct extent_state *cached_state = NULL;
M
Miao Xie 已提交
5007
	u64 start = page_offset(page);
5008
	u64 end = start + PAGE_SIZE - 1;
5009 5010
	size_t blocksize = page->mapping->host->i_sb->s_blocksize;

5011 5012 5013
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

5014
	start += ALIGN(offset, blocksize);
5015 5016 5017
	if (start > end)
		return 0;

5018
	lock_extent_bits(tree, start, end, &cached_state);
5019
	wait_on_page_writeback(page);
5020 5021 5022 5023 5024 5025 5026

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
5027 5028 5029
	return 0;
}

5030 5031 5032 5033 5034
/*
 * a helper for releasepage, this tests for areas of the page that
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
5035
static int try_release_extent_state(struct extent_io_tree *tree,
5036
				    struct page *page, gfp_t mask)
5037
{
M
Miao Xie 已提交
5038
	u64 start = page_offset(page);
5039
	u64 end = start + PAGE_SIZE - 1;
5040 5041
	int ret = 1;

N
Nikolay Borisov 已提交
5042
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5043
		ret = 0;
N
Nikolay Borisov 已提交
5044
	} else {
5045
		/*
5046 5047 5048 5049
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
5050
		 */
5051
		ret = __clear_extent_bit(tree, start, end,
5052 5053
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
5054 5055 5056 5057 5058 5059 5060 5061

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5062 5063 5064 5065
	}
	return ret;
}

5066 5067 5068 5069 5070
/*
 * a helper for releasepage.  As long as there are no locked extents
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5071
int try_release_extent_mapping(struct page *page, gfp_t mask)
5072 5073
{
	struct extent_map *em;
M
Miao Xie 已提交
5074
	u64 start = page_offset(page);
5075
	u64 end = start + PAGE_SIZE - 1;
5076 5077 5078
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5079

5080
	if (gfpflags_allow_blocking(mask) &&
5081
	    page->mapping->host->i_size > SZ_16M) {
5082
		u64 len;
5083
		while (start <= end) {
5084 5085 5086
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5087
			len = end - start + 1;
5088
			write_lock(&map->lock);
5089
			em = lookup_extent_mapping(map, start, len);
5090
			if (!em) {
5091
				write_unlock(&map->lock);
5092 5093
				break;
			}
5094 5095
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5096
				write_unlock(&map->lock);
5097 5098 5099
				free_extent_map(em);
				break;
			}
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5127 5128 5129 5130 5131 5132 5133 5134
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5135 5136 5137
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5138
next:
5139
			start = extent_map_end(em);
5140
			write_unlock(&map->lock);
5141 5142

			/* once for us */
5143
			free_extent_map(em);
5144 5145

			cond_resched(); /* Allow large-extent preemption. */
5146 5147
		}
	}
5148
	return try_release_extent_state(tree, page, mask);
5149 5150
}

5151 5152 5153 5154
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
5155
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5156
						u64 offset, u64 last)
5157
{
5158
	u64 sectorsize = btrfs_inode_sectorsize(inode);
5159 5160 5161 5162 5163 5164
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

5165
	while (1) {
5166 5167 5168
		len = last - offset;
		if (len == 0)
			break;
5169
		len = ALIGN(len, sectorsize);
5170
		em = btrfs_get_extent_fiemap(inode, offset, len);
5171
		if (IS_ERR_OR_NULL(em))
5172 5173 5174
			return em;

		/* if this isn't a hole return it */
5175
		if (em->block_start != EXTENT_MAP_HOLE)
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5221
	 * fiemap extent won't overlap with cached one.
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
5273
 * Emit last fiemap cache
5274
 *
5275 5276 5277 5278 5279 5280 5281
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5282
 */
5283
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5284
				  struct fiemap_cache *cache)
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5299
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5300
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
5301
{
J
Josef Bacik 已提交
5302
	int ret = 0;
5303
	u64 off;
Y
Yehuda Sadeh 已提交
5304 5305
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
5306 5307
	u32 found_type;
	u64 last;
5308
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
5309
	u64 disko = 0;
5310
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
5311
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
5312
	struct extent_map *em = NULL;
5313
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
5314
	struct btrfs_path *path;
5315
	struct btrfs_root *root = inode->root;
5316
	struct fiemap_cache cache = { 0 };
5317 5318
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
5319
	int end = 0;
5320 5321 5322
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
5323 5324 5325 5326

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
5327 5328 5329 5330
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

5331 5332 5333 5334 5335 5336 5337
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

5338 5339 5340 5341 5342
	/*
	 * We can't initialize that to 'start' as this could miss extents due
	 * to extent item merging
	 */
	off = 0;
5343 5344
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5345

5346 5347 5348 5349
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
5350 5351
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
5352
	if (ret < 0) {
5353
		goto out_free_ulist;
5354 5355 5356 5357
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
5358
	}
5359

J
Josef Bacik 已提交
5360 5361
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5362
	found_type = found_key.type;
J
Josef Bacik 已提交
5363

5364
	/* No extents, but there might be delalloc bits */
5365
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
5366
	    found_type != BTRFS_EXTENT_DATA_KEY) {
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
5378
	}
5379
	btrfs_release_path(path);
J
Josef Bacik 已提交
5380

5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5391
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5392
			 &cached_state);
5393

5394
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
5395 5396 5397 5398 5399 5400
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
5401

Y
Yehuda Sadeh 已提交
5402
	while (!end) {
5403
		u64 offset_in_extent = 0;
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5416

5417 5418
		/*
		 * record the offset from the start of the extent
5419 5420 5421
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5422
		 */
5423 5424
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5425
		em_end = extent_map_end(em);
5426
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5427
		flags = 0;
5428 5429 5430 5431
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5432

5433 5434 5435 5436 5437 5438 5439
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5440
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
5441 5442
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5443
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5444 5445
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5446
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5447 5448
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5449 5450 5451
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5452 5453 5454 5455

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5456 5457 5458
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5459
			 */
5460
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5461
						 bytenr, roots, tmp_ulist);
5462
			if (ret < 0)
5463
				goto out_free;
5464
			if (ret)
5465
				flags |= FIEMAP_EXTENT_SHARED;
5466
			ret = 0;
Y
Yehuda Sadeh 已提交
5467 5468 5469
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5470 5471
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5472 5473 5474

		free_extent_map(em);
		em = NULL;
5475 5476
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5477 5478 5479 5480
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5481
		/* now scan forward to see if this is really the last extent. */
5482
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5483 5484 5485 5486 5487
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5488 5489 5490
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5491 5492
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5493 5494 5495
		if (ret) {
			if (ret == 1)
				ret = 0;
5496
			goto out_free;
5497
		}
Y
Yehuda Sadeh 已提交
5498 5499
	}
out_free:
5500
	if (!ret)
5501
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5502 5503
	free_extent_map(em);
out:
5504
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5505
			     &cached_state);
5506 5507

out_free_ulist:
5508
	btrfs_free_path(path);
5509 5510
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5511 5512 5513
	return ret;
}

5514 5515 5516 5517 5518
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5519
int extent_buffer_under_io(const struct extent_buffer *eb)
5520 5521 5522 5523 5524 5525
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5526
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5527
{
5528
	struct btrfs_subpage *subpage;
5529

5530
	lockdep_assert_held(&page->mapping->private_lock);
5531

5532 5533 5534 5535 5536 5537 5538
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
	}
	return false;
}
5539

5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5553
		if (mapped)
5554 5555 5556 5557 5558
			spin_unlock(&page->mapping->private_lock);
		return;
	}

	if (fs_info->sectorsize == PAGE_SIZE) {
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5571
			/*
5572 5573
			 * We need to make sure we haven't be attached
			 * to a new eb.
5574
			 */
5575
			detach_page_private(page);
5576
		}
5577 5578
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
	 * page range.
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5620

5621
		/* One for when we allocated the page */
5622
		put_page(page);
5623
	}
5624 5625 5626 5627 5628 5629 5630
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5631
	btrfs_release_extent_buffer_pages(eb);
5632
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5633 5634 5635
	__free_extent_buffer(eb);
}

5636 5637
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5638
		      unsigned long len)
5639 5640 5641
{
	struct extent_buffer *eb = NULL;

5642
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5643 5644
	eb->start = start;
	eb->len = len;
5645
	eb->fs_info = fs_info;
5646
	eb->bflags = 0;
5647
	init_rwsem(&eb->lock);
5648

5649 5650
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5651
	INIT_LIST_HEAD(&eb->release_list);
5652

5653
	spin_lock_init(&eb->refs_lock);
5654
	atomic_set(&eb->refs, 1);
5655
	atomic_set(&eb->io_pages, 0);
5656

5657
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5658 5659 5660 5661

	return eb;
}

5662
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5663
{
5664
	int i;
5665 5666
	struct page *p;
	struct extent_buffer *new;
5667
	int num_pages = num_extent_pages(src);
5668

5669
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5670 5671 5672
	if (new == NULL)
		return NULL;

5673 5674 5675 5676 5677 5678 5679
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5680
	for (i = 0; i < num_pages; i++) {
5681 5682
		int ret;

5683
		p = alloc_page(GFP_NOFS);
5684 5685 5686 5687
		if (!p) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5688 5689 5690 5691 5692 5693
		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			put_page(p);
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5694 5695
		WARN_ON(PageDirty(p));
		new->pages[i] = p;
5696
		copy_page(page_address(p), page_address(src->pages[i]));
5697
	}
5698
	set_extent_buffer_uptodate(new);
5699 5700 5701 5702

	return new;
}

5703 5704
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5705 5706
{
	struct extent_buffer *eb;
5707 5708
	int num_pages;
	int i;
5709

5710
	eb = __alloc_extent_buffer(fs_info, start, len);
5711 5712 5713
	if (!eb)
		return NULL;

5714
	num_pages = num_extent_pages(eb);
5715
	for (i = 0; i < num_pages; i++) {
5716 5717
		int ret;

5718
		eb->pages[i] = alloc_page(GFP_NOFS);
5719 5720
		if (!eb->pages[i])
			goto err;
5721 5722 5723
		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
		if (ret < 0)
			goto err;
5724 5725 5726
	}
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5727
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5728 5729 5730

	return eb;
err:
5731 5732
	for (; i > 0; i--) {
		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5733
		__free_page(eb->pages[i - 1]);
5734
	}
5735 5736 5737 5738
	__free_extent_buffer(eb);
	return NULL;
}

5739
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5740
						u64 start)
5741
{
5742
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5743 5744
}

5745 5746
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5747
	int refs;
5748 5749 5750 5751
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5752
	 *
5753 5754 5755
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
	 * calling releasepage when the tree reference is the only reference.
5756
	 *
5757 5758 5759 5760 5761
	 * In both cases, care is taken to ensure that the extent_buffer's
	 * pages are not under io. However, releasepage can be concurrently
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5762
	 *
5763 5764 5765 5766 5767 5768 5769
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
5770
	 */
5771 5772 5773 5774
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

5775 5776
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5777
		atomic_inc(&eb->refs);
5778
	spin_unlock(&eb->refs_lock);
5779 5780
}

5781 5782
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
5783
{
5784
	int num_pages, i;
5785

5786 5787
	check_buffer_tree_ref(eb);

5788
	num_pages = num_extent_pages(eb);
5789
	for (i = 0; i < num_pages; i++) {
5790 5791
		struct page *p = eb->pages[i];

5792 5793
		if (p != accessed)
			mark_page_accessed(p);
5794 5795 5796
	}
}

5797 5798
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
5799 5800 5801
{
	struct extent_buffer *eb;

5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
5821
	}
5822 5823
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
5824 5825
}

5826 5827
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5828
					u64 start)
5829 5830 5831 5832 5833 5834 5835
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
5836
	eb = alloc_dummy_extent_buffer(fs_info, start);
5837
	if (!eb)
5838
		return ERR_PTR(-ENOMEM);
5839 5840
	eb->fs_info = fs_info;
again:
5841
	ret = radix_tree_preload(GFP_NOFS);
5842 5843
	if (ret) {
		exists = ERR_PTR(ret);
5844
		goto free_eb;
5845
	}
5846 5847
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
5848
				start >> fs_info->sectorsize_bits, eb);
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
			goto free_eb;
		else
			goto again;
	}
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

5868 5869
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
5870 5871 5872
{
	struct extent_buffer *exists;

5873 5874 5875 5876 5877 5878 5879 5880
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
	if (fs_info->sectorsize < PAGE_SIZE)
		return NULL;

5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

5900
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5901
					  u64 start, u64 owner_root, int level)
5902
{
5903
	unsigned long len = fs_info->nodesize;
5904 5905
	int num_pages;
	int i;
5906
	unsigned long index = start >> PAGE_SHIFT;
5907
	struct extent_buffer *eb;
5908
	struct extent_buffer *exists = NULL;
5909
	struct page *p;
5910
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5911
	int uptodate = 1;
5912
	int ret;
5913

5914
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5915 5916 5917 5918
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return ERR_PTR(-EINVAL);
	}

5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

5930 5931 5932 5933 5934 5935 5936 5937
	if (fs_info->sectorsize < PAGE_SIZE &&
	    offset_in_page(start) + len > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %lu",
			  start, len);
		return ERR_PTR(-EINVAL);
	}

5938
	eb = find_extent_buffer(fs_info, start);
5939
	if (eb)
5940 5941
		return eb;

5942
	eb = __alloc_extent_buffer(fs_info, start, len);
5943
	if (!eb)
5944
		return ERR_PTR(-ENOMEM);
5945
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
5946

5947
	num_pages = num_extent_pages(eb);
5948
	for (i = 0; i < num_pages; i++, index++) {
5949 5950
		struct btrfs_subpage *prealloc = NULL;

5951
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5952 5953
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
5954
			goto free_eb;
5955
		}
J
Josef Bacik 已提交
5956

5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
		ret = btrfs_alloc_subpage(fs_info, &prealloc,
					  BTRFS_SUBPAGE_METADATA);
		if (ret < 0) {
			unlock_page(p);
			put_page(p);
			exists = ERR_PTR(ret);
			goto free_eb;
		}

J
Josef Bacik 已提交
5976
		spin_lock(&mapping->private_lock);
5977
		exists = grab_extent_buffer(fs_info, p);
5978 5979 5980 5981 5982
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
5983
			btrfs_free_subpage(prealloc);
5984
			goto free_eb;
5985
		}
5986 5987 5988
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
5999
		spin_unlock(&mapping->private_lock);
6000

6001
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6002
		eb->pages[i] = p;
6003 6004
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
6005 6006

		/*
6007 6008 6009 6010 6011
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
		 * opens a race with btree_releasepage which can free a page
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
6012
		 */
6013 6014
	}
	if (uptodate)
6015
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6016
again:
6017
	ret = radix_tree_preload(GFP_NOFS);
6018 6019
	if (ret) {
		exists = ERR_PTR(ret);
6020
		goto free_eb;
6021
	}
6022

6023 6024
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
6025
				start >> fs_info->sectorsize_bits, eb);
6026
	spin_unlock(&fs_info->buffer_lock);
6027
	radix_tree_preload_end();
6028
	if (ret == -EEXIST) {
6029
		exists = find_extent_buffer(fs_info, start);
6030 6031 6032
		if (exists)
			goto free_eb;
		else
6033
			goto again;
6034 6035
	}
	/* add one reference for the tree */
6036
	check_buffer_tree_ref(eb);
6037
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
6038 6039

	/*
6040 6041 6042
	 * Now it's safe to unlock the pages because any calls to
	 * btree_releasepage will correctly detect that a page belongs to a
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
6043
	 */
6044 6045
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6046 6047
	return eb;

6048
free_eb:
6049
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6050 6051 6052 6053
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
6054

6055
	btrfs_release_extent_buffer(eb);
6056
	return exists;
6057 6058
}

6059 6060 6061 6062 6063 6064 6065 6066
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6067
static int release_extent_buffer(struct extent_buffer *eb)
6068
	__releases(&eb->refs_lock)
6069
{
6070 6071
	lockdep_assert_held(&eb->refs_lock);

6072 6073
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6074
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6075
			struct btrfs_fs_info *fs_info = eb->fs_info;
6076

6077
			spin_unlock(&eb->refs_lock);
6078

6079 6080
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
6081
					  eb->start >> fs_info->sectorsize_bits);
6082
			spin_unlock(&fs_info->buffer_lock);
6083 6084
		} else {
			spin_unlock(&eb->refs_lock);
6085
		}
6086

6087
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6088
		/* Should be safe to release our pages at this point */
6089
		btrfs_release_extent_buffer_pages(eb);
6090
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6091
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6092 6093 6094 6095
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6096
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6097
		return 1;
6098 6099
	}
	spin_unlock(&eb->refs_lock);
6100 6101

	return 0;
6102 6103
}

6104 6105
void free_extent_buffer(struct extent_buffer *eb)
{
6106 6107
	int refs;
	int old;
6108 6109 6110
	if (!eb)
		return;

6111 6112
	while (1) {
		refs = atomic_read(&eb->refs);
6113 6114 6115
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6116 6117 6118 6119 6120 6121
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

6122 6123 6124
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6125
	    !extent_buffer_under_io(eb) &&
6126 6127 6128 6129 6130 6131 6132
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6133
	release_extent_buffer(eb);
6134 6135 6136 6137 6138
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6139 6140
		return;

6141 6142 6143
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6144
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6145 6146
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6147
	release_extent_buffer(eb);
6148 6149
}

6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6178
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6179
{
6180 6181
	int i;
	int num_pages;
6182 6183
	struct page *page;

6184 6185 6186
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return clear_subpage_extent_buffer_dirty(eb);

6187
	num_pages = num_extent_pages(eb);
6188 6189

	for (i = 0; i < num_pages; i++) {
6190
		page = eb->pages[i];
6191
		if (!PageDirty(page))
C
Chris Mason 已提交
6192
			continue;
6193
		lock_page(page);
6194
		btree_clear_page_dirty(page);
6195
		ClearPageError(page);
6196
		unlock_page(page);
6197
	}
6198
	WARN_ON(atomic_read(&eb->refs) == 0);
6199 6200
}

6201
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6202
{
6203 6204
	int i;
	int num_pages;
6205
	bool was_dirty;
6206

6207 6208
	check_buffer_tree_ref(eb);

6209
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6210

6211
	num_pages = num_extent_pages(eb);
6212
	WARN_ON(atomic_read(&eb->refs) == 0);
6213 6214
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6215 6216
	if (!was_dirty) {
		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6217

6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6237 6238 6239 6240 6241
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6242
	return was_dirty;
6243 6244
}

6245
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6246
{
6247
	struct btrfs_fs_info *fs_info = eb->fs_info;
6248
	struct page *page;
6249
	int num_pages;
6250
	int i;
6251

6252
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6253
	num_pages = num_extent_pages(eb);
6254
	for (i = 0; i < num_pages; i++) {
6255
		page = eb->pages[i];
C
Chris Mason 已提交
6256
		if (page)
6257 6258
			btrfs_page_clear_uptodate(fs_info, page,
						  eb->start, eb->len);
6259 6260 6261
	}
}

6262
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6263
{
6264
	struct btrfs_fs_info *fs_info = eb->fs_info;
6265
	struct page *page;
6266
	int num_pages;
6267
	int i;
6268

6269
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6270
	num_pages = num_extent_pages(eb);
6271
	for (i = 0; i < num_pages; i++) {
6272
		page = eb->pages[i];
6273
		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6274 6275 6276
	}
}

6277 6278 6279 6280 6281 6282
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6283
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6284 6285 6286 6287 6288 6289 6290
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6291 6292
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6314 6315 6316 6317
	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
				 end_bio_extent_readpage, mirror_num, 0,
6318 6319 6320 6321 6322 6323 6324 6325 6326
				 true);
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6327
	if (bio_ctrl.bio) {
6328 6329
		int tmp;

6330 6331
		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
		bio_ctrl.bio = NULL;
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
		if (tmp < 0)
			return tmp;
	}
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6344
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6345
{
6346
	int i;
6347 6348 6349
	struct page *page;
	int err;
	int ret = 0;
6350 6351
	int locked_pages = 0;
	int all_uptodate = 1;
6352
	int num_pages;
6353
	unsigned long num_reads = 0;
6354
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6355

6356
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6357 6358
		return 0;

6359 6360 6361
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6362
	num_pages = num_extent_pages(eb);
6363
	for (i = 0; i < num_pages; i++) {
6364
		page = eb->pages[i];
6365
		if (wait == WAIT_NONE) {
6366 6367 6368 6369 6370 6371 6372
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6373
			if (!trylock_page(page))
6374
				goto unlock_exit;
6375 6376 6377
		} else {
			lock_page(page);
		}
6378
		locked_pages++;
6379 6380 6381 6382 6383 6384
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6385
	for (i = 0; i < num_pages; i++) {
6386
		page = eb->pages[i];
6387 6388
		if (!PageUptodate(page)) {
			num_reads++;
6389
			all_uptodate = 0;
6390
		}
6391
	}
6392

6393
	if (all_uptodate) {
6394
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6395 6396 6397
		goto unlock_exit;
	}

6398
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6399
	eb->read_mirror = 0;
6400
	atomic_set(&eb->io_pages, num_reads);
6401 6402 6403 6404 6405
	/*
	 * It is possible for releasepage to clear the TREE_REF bit before we
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6406
	for (i = 0; i < num_pages; i++) {
6407
		page = eb->pages[i];
6408

6409
		if (!PageUptodate(page)) {
6410 6411 6412 6413 6414 6415
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6416
			ClearPageError(page);
6417
			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6418 6419 6420
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
					 mirror_num, 0, false);
6421 6422
			if (err) {
				/*
6423 6424 6425
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6426
				 */
6427 6428 6429
				ret = err;
				SetPageError(page);
				unlock_page(page);
6430 6431
				atomic_dec(&eb->io_pages);
			}
6432 6433 6434 6435 6436
		} else {
			unlock_page(page);
		}
	}

6437 6438 6439
	if (bio_ctrl.bio) {
		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
		bio_ctrl.bio = NULL;
6440 6441
		if (err)
			return err;
6442
	}
6443

6444
	if (ret || wait != WAIT_COMPLETE)
6445
		return ret;
C
Chris Mason 已提交
6446

6447
	for (i = 0; i < num_pages; i++) {
6448
		page = eb->pages[i];
6449
		wait_on_page_locked(page);
C
Chris Mason 已提交
6450
		if (!PageUptodate(page))
6451 6452
			ret = -EIO;
	}
C
Chris Mason 已提交
6453

6454
	return ret;
6455 6456

unlock_exit:
C
Chris Mason 已提交
6457
	while (locked_pages > 0) {
6458
		locked_pages--;
6459 6460
		page = eb->pages[locked_pages];
		unlock_page(page);
6461 6462
	}
	return ret;
6463 6464
}

6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6495 6496
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6497 6498 6499 6500 6501 6502
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6503
	unsigned long i = get_eb_page_index(start);
6504

6505
	if (check_eb_range(eb, start, len))
6506
		return;
6507

6508
	offset = get_eb_offset_in_page(eb, start);
6509

C
Chris Mason 已提交
6510
	while (len > 0) {
6511
		page = eb->pages[i];
6512

6513
		cur = min(len, (PAGE_SIZE - offset));
6514
		kaddr = page_address(page);
6515 6516 6517 6518 6519 6520 6521 6522 6523
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6524 6525 6526
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6527 6528 6529 6530 6531 6532
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6533
	unsigned long i = get_eb_page_index(start);
6534 6535 6536 6537 6538
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6539
	offset = get_eb_offset_in_page(eb, start);
6540 6541

	while (len > 0) {
6542
		page = eb->pages[i];
6543

6544
		cur = min(len, (PAGE_SIZE - offset));
6545
		kaddr = page_address(page);
6546
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6560 6561
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6562 6563 6564 6565 6566 6567
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6568
	unsigned long i = get_eb_page_index(start);
6569 6570
	int ret = 0;

6571 6572
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6573

6574
	offset = get_eb_offset_in_page(eb, start);
6575

C
Chris Mason 已提交
6576
	while (len > 0) {
6577
		page = eb->pages[i];
6578

6579
		cur = min(len, (PAGE_SIZE - offset));
6580

6581
		kaddr = page_address(page);
6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

	if (fs_info->sectorsize < PAGE_SIZE) {
		bool uptodate;

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
		WARN_ON(!uptodate);
	} else {
		WARN_ON(!PageUptodate(page));
	}
}

6616
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6617 6618 6619 6620
		const void *srcv)
{
	char *kaddr;

6621
	assert_eb_page_uptodate(eb, eb->pages[0]);
6622 6623 6624 6625
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6626 6627
}

6628
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6629 6630 6631
{
	char *kaddr;

6632
	assert_eb_page_uptodate(eb, eb->pages[0]);
6633 6634 6635
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6636 6637
}

6638
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6639 6640 6641 6642 6643 6644 6645
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6646
	unsigned long i = get_eb_page_index(start);
6647

6648 6649
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6650 6651
	if (check_eb_range(eb, start, len))
		return;
6652

6653
	offset = get_eb_offset_in_page(eb, start);
6654

C
Chris Mason 已提交
6655
	while (len > 0) {
6656
		page = eb->pages[i];
6657
		assert_eb_page_uptodate(eb, page);
6658

6659
		cur = min(len, PAGE_SIZE - offset);
6660
		kaddr = page_address(page);
6661 6662 6663 6664 6665 6666 6667 6668 6669
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6670
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6671
		unsigned long len)
6672 6673 6674 6675 6676
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6677
	unsigned long i = get_eb_page_index(start);
6678

6679 6680
	if (check_eb_range(eb, start, len))
		return;
6681

6682
	offset = get_eb_offset_in_page(eb, start);
6683

C
Chris Mason 已提交
6684
	while (len > 0) {
6685
		page = eb->pages[i];
6686
		assert_eb_page_uptodate(eb, page);
6687

6688
		cur = min(len, PAGE_SIZE - offset);
6689
		kaddr = page_address(page);
6690
		memset(kaddr + offset, 0, cur);
6691 6692 6693 6694 6695 6696 6697

		len -= cur;
		offset = 0;
		i++;
	}
}

6698 6699
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6700 6701
{
	int i;
6702
	int num_pages;
6703 6704 6705

	ASSERT(dst->len == src->len);

6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
	if (dst->fs_info->sectorsize == PAGE_SIZE) {
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
6720 6721
}

6722 6723
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
6724 6725 6726 6727 6728 6729 6730 6731
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6732
	unsigned long i = get_eb_page_index(dst_offset);
6733

6734 6735 6736 6737
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

6738 6739
	WARN_ON(src->len != dst_len);

6740
	offset = get_eb_offset_in_page(dst, dst_offset);
6741

C
Chris Mason 已提交
6742
	while (len > 0) {
6743
		page = dst->pages[i];
6744
		assert_eb_page_uptodate(dst, page);
6745

6746
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6747

6748
		kaddr = page_address(page);
6749 6750 6751 6752 6753 6754 6755 6756 6757
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
6771
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
6784
	offset = start + offset_in_page(eb->start) + byte_offset;
6785

6786
	*page_index = offset >> PAGE_SHIFT;
6787
	*page_offset = offset_in_page(offset);
6788 6789 6790 6791 6792 6793 6794 6795
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
6796
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6797 6798
			   unsigned long nr)
{
6799
	u8 *kaddr;
6800 6801 6802 6803 6804 6805
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
6806
	assert_eb_page_uptodate(eb, page);
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
6818
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6819 6820
			      unsigned long pos, unsigned long len)
{
6821
	u8 *kaddr;
6822 6823 6824 6825 6826
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6827
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6828 6829 6830

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
6831
	assert_eb_page_uptodate(eb, page);
6832 6833 6834 6835 6836 6837
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6838
		mask_to_set = ~0;
6839
		if (++offset >= PAGE_SIZE && len > 0) {
6840 6841
			offset = 0;
			page = eb->pages[++i];
6842
			assert_eb_page_uptodate(eb, page);
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
6860 6861 6862
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
6863
{
6864
	u8 *kaddr;
6865 6866 6867 6868 6869
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6870
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6871 6872 6873

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
6874
	assert_eb_page_uptodate(eb, page);
6875 6876 6877 6878 6879 6880
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6881
		mask_to_clear = ~0;
6882
		if (++offset >= PAGE_SIZE && len > 0) {
6883 6884
			offset = 0;
			page = eb->pages[++i];
6885
			assert_eb_page_uptodate(eb, page);
6886 6887 6888 6889 6890 6891 6892 6893 6894
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

6895 6896 6897 6898 6899 6900
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

6901 6902 6903 6904
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
6905
	char *dst_kaddr = page_address(dst_page);
6906
	char *src_kaddr;
6907
	int must_memmove = 0;
6908

6909
	if (dst_page != src_page) {
6910
		src_kaddr = page_address(src_page);
6911
	} else {
6912
		src_kaddr = dst_kaddr;
6913 6914
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
6915
	}
6916

6917 6918 6919 6920
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6921 6922
}

6923 6924 6925
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
6926 6927 6928 6929 6930 6931 6932
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

6933 6934 6935
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6936

C
Chris Mason 已提交
6937
	while (len > 0) {
6938 6939
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6940

6941 6942
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
6943

6944
		cur = min(len, (unsigned long)(PAGE_SIZE -
6945 6946
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
6947
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6948

6949
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6950 6951 6952 6953 6954 6955 6956 6957
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

6958 6959 6960
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
6961 6962 6963 6964 6965 6966 6967 6968 6969
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

6970 6971 6972
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6973
	if (dst_offset < src_offset) {
6974 6975 6976
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
6977
	while (len > 0) {
6978 6979
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
6980

6981 6982
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
6983 6984 6985

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
6986
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6987 6988 6989 6990 6991 6992 6993 6994
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
6995

6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
	struct extent_buffer *found = NULL;
	u64 page_start = page_offset(page);
	int ret;
	int i;

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
	lockdep_assert_held(&fs_info->buffer_lock);

	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
			bytenr >> fs_info->sectorsize_bits,
			PAGE_SIZE / fs_info->nodesize);
	for (i = 0; i < ret; i++) {
		/* Already beyond page end */
		if (gang[i]->start >= page_start + PAGE_SIZE)
			break;
		/* Found one */
		if (gang[i]->start >= bytenr) {
			found = gang[i];
			break;
		}
	}
	return found;
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7095
int try_release_extent_buffer(struct page *page)
7096
{
7097 7098
	struct extent_buffer *eb;

7099 7100 7101
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return try_release_subpage_extent_buffer(page);

7102
	/*
7103 7104
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7105 7106 7107 7108
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
7109
		return 1;
7110
	}
7111

7112 7113
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7114 7115

	/*
7116 7117 7118
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7119
	 */
7120
	spin_lock(&eb->refs_lock);
7121
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7122 7123 7124
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7125
	}
7126
	spin_unlock(&page->mapping->private_lock);
7127

7128
	/*
7129 7130
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7131
	 */
7132 7133 7134
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7135
	}
7136

7137
	return release_extent_buffer(eb);
7138
}
7139 7140 7141 7142 7143

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7144
 * @owner_root: objectid of the root that owns this eb
7145
 * @gen:	generation for the uptodate check, can be 0
7146
 * @level:	level for the eb
7147 7148 7149 7150 7151 7152
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7153
				u64 bytenr, u64 owner_root, u64 gen, int level)
7154 7155 7156 7157
{
	struct extent_buffer *eb;
	int ret;

7158
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7186 7187 7188
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7189
}