extent_io.c 196.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8 9 10 11 12 13
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
14
#include <linux/prefetch.h>
D
Dan Magenheimer 已提交
15
#include <linux/cleancache.h>
B
Boris Burkov 已提交
16
#include <linux/fsverity.h>
17
#include "misc.h"
18
#include "extent_io.h"
19
#include "extent-io-tree.h"
20
#include "extent_map.h"
21 22
#include "ctree.h"
#include "btrfs_inode.h"
23
#include "volumes.h"
24
#include "check-integrity.h"
25
#include "locking.h"
26
#include "rcu-string.h"
27
#include "backref.h"
28
#include "disk-io.h"
29
#include "subpage.h"
30
#include "zoned.h"
31
#include "block-group.h"
32 33 34

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
35
static struct bio_set btrfs_bioset;
36

37 38 39 40 41
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

42
#ifdef CONFIG_BTRFS_DEBUG
43
static LIST_HEAD(states);
C
Chris Mason 已提交
44
static DEFINE_SPINLOCK(leak_lock);
45

46 47 48
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
49 50 51
{
	unsigned long flags;

52
	spin_lock_irqsave(lock, flags);
53
	list_add(new, head);
54
	spin_unlock_irqrestore(lock, flags);
55 56
}

57 58
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
59 60 61
{
	unsigned long flags;

62
	spin_lock_irqsave(lock, flags);
63
	list_del(entry);
64
	spin_unlock_irqrestore(lock, flags);
65 66
}

67
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
68 69
{
	struct extent_buffer *eb;
70
	unsigned long flags;
71

72 73 74 75 76 77 78
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

79 80 81 82
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
83 84 85 86
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
87 88 89
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
90
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
91 92 93 94 95 96
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

97 98
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
99
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
100 101
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
102
		       refcount_read(&state->refs));
103 104 105 106
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
107

108 109
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
110
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
111
		struct extent_io_tree *tree, u64 start, u64 end)
112
{
113 114 115 116 117 118 119 120 121 122 123 124
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
125
}
126
#else
127 128
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
129
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
130
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
131
#endif
132 133 134 135 136 137 138 139

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

struct extent_page_data {
140
	struct btrfs_bio_ctrl bio_ctrl;
141 142 143
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
144 145
	unsigned int extent_locked:1;

146
	/* tells the submit_bio code to use REQ_SYNC */
147
	unsigned int sync_io:1;
148 149
};

150
static int add_extent_changeset(struct extent_state *state, u32 bits,
151 152 153 154 155 156
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
157
		return 0;
158
	if (set && (state->state & bits) == bits)
159
		return 0;
160
	if (!set && (state->state & bits) == 0)
161
		return 0;
162
	changeset->bytes_changed += state->end - state->start + 1;
163
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
164
			GFP_ATOMIC);
165
	return ret;
166 167
}

168 169
int __must_check submit_one_bio(struct bio *bio, int mirror_num,
				unsigned long bio_flags)
170 171 172 173 174 175
{
	blk_status_t ret = 0;
	struct extent_io_tree *tree = bio->bi_private;

	bio->bi_private = NULL;

176 177
	/* Caller should ensure the bio has at least some range added */
	ASSERT(bio->bi_iter.bi_size);
178 179 180 181
	if (is_data_inode(tree->private_data))
		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
					    bio_flags);
	else
182 183
		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
						mirror_num, bio_flags);
184 185 186 187

	return blk_status_to_errno(ret);
}

188 189 190
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
191 192 193 194 195 196
	struct bio *bio = epd->bio_ctrl.bio;

	if (bio) {
		bio->bi_status = errno_to_blk_status(ret);
		bio_endio(bio);
		epd->bio_ctrl.bio = NULL;
197 198 199
	}
}

200 201 202 203 204 205 206
/*
 * Submit bio from extent page data via submit_one_bio
 *
 * Return 0 if everything is OK.
 * Return <0 for error.
 */
static int __must_check flush_write_bio(struct extent_page_data *epd)
207
{
208
	int ret = 0;
209
	struct bio *bio = epd->bio_ctrl.bio;
210

211 212
	if (bio) {
		ret = submit_one_bio(bio, 0, 0);
213 214 215 216 217 218 219
		/*
		 * Clean up of epd->bio is handled by its endio function.
		 * And endio is either triggered by successful bio execution
		 * or the error handler of submit bio hook.
		 * So at this point, no matter what happened, we don't need
		 * to clean up epd->bio.
		 */
220
		epd->bio_ctrl.bio = NULL;
221
	}
222
	return ret;
223
}
224

225
int __init extent_state_cache_init(void)
226
{
D
David Sterba 已提交
227
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
228
			sizeof(struct extent_state), 0,
229
			SLAB_MEM_SPREAD, NULL);
230 231
	if (!extent_state_cache)
		return -ENOMEM;
232 233
	return 0;
}
234

235 236
int __init extent_io_init(void)
{
D
David Sterba 已提交
237
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
238
			sizeof(struct extent_buffer), 0,
239
			SLAB_MEM_SPREAD, NULL);
240
	if (!extent_buffer_cache)
241
		return -ENOMEM;
242

243
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
244
			offsetof(struct btrfs_bio, bio),
245
			BIOSET_NEED_BVECS))
246
		goto free_buffer_cache;
247

248
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
249 250
		goto free_bioset;

251 252
	return 0;

253
free_bioset:
254
	bioset_exit(&btrfs_bioset);
255

256 257 258
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
259 260
	return -ENOMEM;
}
261

262 263 264
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
265 266 267
	kmem_cache_destroy(extent_state_cache);
}

268
void __cold extent_io_exit(void)
269
{
270 271 272 273 274
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
275
	kmem_cache_destroy(extent_buffer_cache);
276
	bioset_exit(&btrfs_bioset);
277 278
}

279 280 281 282 283 284 285 286 287
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

288
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
289 290
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
291
{
292
	tree->fs_info = fs_info;
293
	tree->state = RB_ROOT;
294
	tree->dirty_bytes = 0;
295
	spin_lock_init(&tree->lock);
296
	tree->private_data = private_data;
297
	tree->owner = owner;
298 299
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
300 301
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

331
static struct extent_state *alloc_extent_state(gfp_t mask)
332 333 334
{
	struct extent_state *state;

335 336 337 338 339
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
340
	state = kmem_cache_alloc(extent_state_cache, mask);
341
	if (!state)
342 343
		return state;
	state->state = 0;
344
	state->failrec = NULL;
345
	RB_CLEAR_NODE(&state->rb_node);
346
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
347
	refcount_set(&state->refs, 1);
348
	init_waitqueue_head(&state->wq);
349
	trace_alloc_extent_state(state, mask, _RET_IP_);
350 351 352
	return state;
}

353
void free_extent_state(struct extent_state *state)
354 355 356
{
	if (!state)
		return;
357
	if (refcount_dec_and_test(&state->refs)) {
358
		WARN_ON(extent_state_in_tree(state));
359
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
360
		trace_free_extent_state(state, _RET_IP_);
361 362 363 364
		kmem_cache_free(extent_state_cache, state);
	}
}

365 366 367
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
368 369 370
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
371
{
372
	struct rb_node **p;
C
Chris Mason 已提交
373
	struct rb_node *parent = NULL;
374 375
	struct tree_entry *entry;

376 377 378 379 380 381
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

382
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
383
	while (*p) {
384 385 386 387 388 389 390 391 392 393 394
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

395
do_insert:
396 397 398 399 400
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
401
/**
402 403
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
404
 *
405 406 407 408 409 410 411
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
412 413 414 415 416 417 418
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
419
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
420
				      struct rb_node **next_ret,
421
				      struct rb_node **prev_ret,
422 423
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
424
{
425
	struct rb_root *root = &tree->state;
426
	struct rb_node **n = &root->rb_node;
427 428 429 430 431
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

432 433 434
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
435 436 437
		prev_entry = entry;

		if (offset < entry->start)
438
			n = &(*n)->rb_left;
439
		else if (offset > entry->end)
440
			n = &(*n)->rb_right;
C
Chris Mason 已提交
441
		else
442
			return *n;
443 444
	}

445 446 447 448 449
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

450
	if (next_ret) {
451
		orig_prev = prev;
C
Chris Mason 已提交
452
		while (prev && offset > prev_entry->end) {
453 454 455
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
456
		*next_ret = prev;
457 458 459
		prev = orig_prev;
	}

460
	if (prev_ret) {
461
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
462
		while (prev && offset < prev_entry->start) {
463 464 465
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
466
		*prev_ret = prev;
467 468 469 470
	}
	return NULL;
}

471 472 473 474 475
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
476
{
477
	struct rb_node *next= NULL;
478
	struct rb_node *ret;
479

480
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
481
	if (!ret)
482
		return next;
483 484 485
	return ret;
}

486 487 488 489 490 491
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

492 493 494 495 496 497 498 499 500
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
501 502
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
503 504 505 506
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
507
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
508
		return;
509 510 511 512 513 514

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
515 516 517 518
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
519 520
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
521
			RB_CLEAR_NODE(&other->rb_node);
522 523 524 525 526 527 528 529
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
530 531 532 533
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
534 535
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
536
			RB_CLEAR_NODE(&other->rb_node);
537
			free_extent_state(other);
538 539 540 541
		}
	}
}

542
static void set_state_bits(struct extent_io_tree *tree,
543
			   struct extent_state *state, u32 *bits,
544
			   struct extent_changeset *changeset);
545

546 547 548 549 550 551 552 553 554 555 556 557
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
558 559
			struct rb_node ***p,
			struct rb_node **parent,
560
			u32 *bits, struct extent_changeset *changeset)
561 562 563
{
	struct rb_node *node;

564 565 566 567 568
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
569 570
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
571

572
	set_state_bits(tree, state, bits, changeset);
573

574
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
575 576 577
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
578 579
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
580
		       found->start, found->end, start, end);
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
605

606 607
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
608

609 610 611 612 613
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

614 615
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
616 617 618 619 620 621 622
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

623 624 625 626 627 628 629 630 631
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

632 633
/*
 * utility function to clear some bits in an extent state struct.
634
 * it will optionally wake up anyone waiting on this state (wake == 1).
635 636 637 638
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
639 640
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
641
					    u32 *bits, int wake,
642
					    struct extent_changeset *changeset)
643
{
644
	struct extent_state *next;
645
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
646
	int ret;
647

648
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
649 650 651 652
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
653 654 655 656

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

657 658
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
659
	state->state &= ~bits_to_clear;
660 661
	if (wake)
		wake_up(&state->wq);
662
	if (state->state == 0) {
663
		next = next_state(state);
664
		if (extent_state_in_tree(state)) {
665
			rb_erase(&state->rb_node, &tree->state);
666
			RB_CLEAR_NODE(&state->rb_node);
667 668 669 670 671 672
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
673
		next = next_state(state);
674
	}
675
	return next;
676 677
}

678 679 680 681 682 683 684 685 686
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

687
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
688
{
689
	btrfs_panic(tree->fs_info, err,
690
	"locking error: extent tree was modified by another thread while locked");
691 692
}

693 694 695 696 697 698 699 700 701 702
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
703
 * This takes the tree lock, and returns 0 on success and < 0 on error.
704
 */
705
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
706 707 708
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
709 710
{
	struct extent_state *state;
711
	struct extent_state *cached;
712 713
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
714
	u64 last_end;
715
	int err;
716
	int clear = 0;
717

718
	btrfs_debug_check_extent_io_range(tree, start, end);
719
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
720

721 722 723
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

724 725 726
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
727
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
728
		clear = 1;
729
again:
730
	if (!prealloc && gfpflags_allow_blocking(mask)) {
731 732 733 734 735 736 737
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
738 739 740
		prealloc = alloc_extent_state(mask);
	}

741
	spin_lock(&tree->lock);
742 743
	if (cached_state) {
		cached = *cached_state;
744 745 746 747 748 749

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

750 751
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
752
			if (clear)
753
				refcount_dec(&cached->refs);
754
			state = cached;
755
			goto hit_next;
756
		}
757 758
		if (clear)
			free_extent_state(cached);
759
	}
760 761 762 763
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
764
	node = tree_search(tree, start);
765 766 767
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
768
hit_next:
769 770 771
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
772
	last_end = state->end;
773

774
	/* the state doesn't have the wanted bits, go ahead */
775 776
	if (!(state->state & bits)) {
		state = next_state(state);
777
		goto next;
778
	}
779

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
797 798
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
799
		err = split_state(tree, state, prealloc, start);
800 801 802
		if (err)
			extent_io_tree_panic(tree, err);

803 804 805 806
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
807 808
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
809
			goto next;
810 811 812 813 814 815 816 817 818 819
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
820 821
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
822
		err = split_state(tree, state, prealloc, end + 1);
823 824 825
		if (err)
			extent_io_tree_panic(tree, err);

826 827
		if (wake)
			wake_up(&state->wq);
828

829
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
830

831 832 833
		prealloc = NULL;
		goto out;
	}
834

835
	state = clear_state_bit(tree, state, &bits, wake, changeset);
836
next:
837 838 839
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
840
	if (start <= end && state && !need_resched())
841
		goto hit_next;
842 843 844 845

search_again:
	if (start > end)
		goto out;
846
	spin_unlock(&tree->lock);
847
	if (gfpflags_allow_blocking(mask))
848 849
		cond_resched();
	goto again;
850 851 852 853 854 855 856 857

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

858 859
}

860 861
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
862 863
		__releases(tree->lock)
		__acquires(tree->lock)
864 865 866
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
867
	spin_unlock(&tree->lock);
868
	schedule();
869
	spin_lock(&tree->lock);
870 871 872 873 874 875 876 877
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
878
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
879
			    u32 bits)
880 881 882 883
{
	struct extent_state *state;
	struct rb_node *node;

884
	btrfs_debug_check_extent_io_range(tree, start, end);
885

886
	spin_lock(&tree->lock);
887 888 889 890 891 892
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
893
		node = tree_search(tree, start);
894
process_node:
895 896 897 898 899 900 901 902 903 904
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
905
			refcount_inc(&state->refs);
906 907 908 909 910 911 912 913 914
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

915 916 917 918
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
919 920
	}
out:
921
	spin_unlock(&tree->lock);
922 923
}

924
static void set_state_bits(struct extent_io_tree *tree,
925
			   struct extent_state *state,
926
			   u32 *bits, struct extent_changeset *changeset)
927
{
928
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
929
	int ret;
J
Josef Bacik 已提交
930

931 932 933
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

934
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
935 936 937
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
938 939
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
940
	state->state |= bits_to_set;
941 942
}

943 944
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
945
				 unsigned flags)
946 947
{
	if (cached_ptr && !(*cached_ptr)) {
948
		if (!flags || (state->state & flags)) {
949
			*cached_ptr = state;
950
			refcount_inc(&state->refs);
951 952 953 954
		}
	}
}

955 956 957 958
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
959
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
960 961
}

962
/*
963 964
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
965
 *
966 967 968
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
969
 *
970
 * [start, end] is inclusive This takes the tree lock.
971
 */
972 973
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
974 975
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
976 977 978 979
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
980 981
	struct rb_node **p;
	struct rb_node *parent;
982 983 984
	int err = 0;
	u64 last_start;
	u64 last_end;
985

986
	btrfs_debug_check_extent_io_range(tree, start, end);
987
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
988

989 990 991 992
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
993
again:
994
	if (!prealloc && gfpflags_allow_blocking(mask)) {
995 996 997 998 999 1000 1001
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
1002 1003 1004
		prealloc = alloc_extent_state(mask);
	}

1005
	spin_lock(&tree->lock);
1006 1007
	if (cached_state && *cached_state) {
		state = *cached_state;
1008
		if (state->start <= start && state->end > start &&
1009
		    extent_state_in_tree(state)) {
1010 1011 1012 1013
			node = &state->rb_node;
			goto hit_next;
		}
	}
1014 1015 1016 1017
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1018
	node = tree_search_for_insert(tree, start, &p, &parent);
1019
	if (!node) {
1020 1021
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1022
		err = insert_state(tree, prealloc, start, end,
1023
				   &p, &parent, &bits, changeset);
1024 1025 1026
		if (err)
			extent_io_tree_panic(tree, err);

1027
		cache_state(prealloc, cached_state);
1028 1029 1030 1031
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1032
hit_next:
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1043
		if (state->state & exclusive_bits) {
1044 1045 1046 1047
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1048

1049
		set_state_bits(tree, state, &bits, changeset);
1050
		cache_state(state, cached_state);
1051
		merge_state(tree, state);
1052 1053 1054
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1055 1056 1057 1058
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1079
		if (state->state & exclusive_bits) {
1080 1081 1082 1083
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1095 1096
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1097
		err = split_state(tree, state, prealloc, start);
1098 1099 1100
		if (err)
			extent_io_tree_panic(tree, err);

1101 1102 1103 1104
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1105
			set_state_bits(tree, state, &bits, changeset);
1106
			cache_state(state, cached_state);
1107
			merge_state(tree, state);
1108 1109 1110
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1111 1112 1113 1114
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1130
			this_end = last_start - 1;
1131 1132 1133

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1134 1135 1136 1137 1138

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1139
		err = insert_state(tree, prealloc, start, this_end,
1140
				   NULL, NULL, &bits, changeset);
1141 1142 1143
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1144 1145
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1156
		if (state->state & exclusive_bits) {
1157 1158 1159 1160
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1161 1162 1163

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1164
		err = split_state(tree, state, prealloc, end + 1);
1165 1166
		if (err)
			extent_io_tree_panic(tree, err);
1167

1168
		set_state_bits(tree, prealloc, &bits, changeset);
1169
		cache_state(prealloc, cached_state);
1170 1171 1172 1173 1174
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1175 1176 1177 1178 1179 1180 1181
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1182 1183

out:
1184
	spin_unlock(&tree->lock);
1185 1186 1187 1188 1189 1190 1191
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1192
/**
L
Liu Bo 已提交
1193 1194
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1195 1196 1197 1198 1199
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1200
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1201 1202 1203 1204 1205 1206
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1207 1208
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1209 1210
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1211
		       u32 bits, u32 clear_bits,
1212
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1213 1214 1215 1216
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1217 1218
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1219 1220 1221
	int err = 0;
	u64 last_start;
	u64 last_end;
1222
	bool first_iteration = true;
J
Josef Bacik 已提交
1223

1224
	btrfs_debug_check_extent_io_range(tree, start, end);
1225 1226
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1227

J
Josef Bacik 已提交
1228
again:
1229
	if (!prealloc) {
1230 1231 1232 1233 1234 1235 1236
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1237
		prealloc = alloc_extent_state(GFP_NOFS);
1238
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1239 1240 1241 1242
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1243 1244 1245
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1246
		    extent_state_in_tree(state)) {
1247 1248 1249 1250 1251
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1252 1253 1254 1255
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1256
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1257 1258
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1259 1260 1261 1262
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1263
		err = insert_state(tree, prealloc, start, end,
1264
				   &p, &parent, &bits, NULL);
1265 1266
		if (err)
			extent_io_tree_panic(tree, err);
1267 1268
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1283
		set_state_bits(tree, state, &bits, NULL);
1284
		cache_state(state, cached_state);
1285
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1286 1287 1288
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1289 1290 1291
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1313 1314 1315 1316
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1317
		err = split_state(tree, state, prealloc, start);
1318 1319
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1320 1321 1322 1323
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1324
			set_state_bits(tree, state, &bits, NULL);
1325
			cache_state(state, cached_state);
1326 1327
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1328 1329 1330
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1331 1332 1333
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1352 1353 1354 1355
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1356 1357 1358 1359 1360 1361

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1362
				   NULL, NULL, &bits, NULL);
1363 1364
		if (err)
			extent_io_tree_panic(tree, err);
1365
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1378 1379 1380 1381
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1382 1383

		err = split_state(tree, state, prealloc, end + 1);
1384 1385
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1386

1387
		set_state_bits(tree, prealloc, &bits, NULL);
1388
		cache_state(prealloc, cached_state);
1389
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1390 1391 1392 1393 1394 1395 1396 1397
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1398
	cond_resched();
1399
	first_iteration = false;
J
Josef Bacik 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1410
/* wrappers around set/clear extent bit */
1411
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1412
			   u32 bits, struct extent_changeset *changeset)
1413 1414 1415 1416 1417 1418 1419 1420 1421
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1422 1423
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1424 1425
}

1426
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1427
			   u32 bits)
1428
{
1429 1430
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1431 1432
}

1433
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1434
		     u32 bits, int wake, int delete,
1435
		     struct extent_state **cached)
1436 1437
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1438
				  cached, GFP_NOFS, NULL);
1439 1440 1441
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1442
		u32 bits, struct extent_changeset *changeset)
1443 1444 1445 1446 1447 1448 1449
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1450
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1451 1452 1453
				  changeset);
}

C
Chris Mason 已提交
1454 1455 1456 1457
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1458
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1459
		     struct extent_state **cached_state)
1460 1461 1462
{
	int err;
	u64 failed_start;
1463

1464
	while (1) {
1465 1466 1467
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1468
		if (err == -EEXIST) {
1469 1470
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1471
		} else
1472 1473 1474 1475 1476 1477
			break;
		WARN_ON(start > end);
	}
	return err;
}

1478
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1479 1480 1481 1482
{
	int err;
	u64 failed_start;

1483 1484
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1485 1486 1487
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1488
					 EXTENT_LOCKED, 1, 0, NULL);
1489
		return 0;
Y
Yan Zheng 已提交
1490
	}
1491 1492 1493
	return 1;
}

1494
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1495
{
1496 1497
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1498 1499 1500 1501 1502 1503
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1504
		put_page(page);
1505 1506 1507 1508
		index++;
	}
}

1509
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1510
{
1511 1512
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1513 1514 1515 1516 1517 1518
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		__set_page_dirty_nobuffers(page);
1519
		account_page_redirty(page);
1520
		put_page(page);
1521 1522 1523 1524
		index++;
	}
}

C
Chris Mason 已提交
1525 1526 1527 1528
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1529
static struct extent_state *
1530
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1540
	if (!node)
C
Chris Mason 已提交
1541 1542
		goto out;

C
Chris Mason 已提交
1543
	while (1) {
C
Chris Mason 已提交
1544
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1545
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1546
			return state;
C
Chris Mason 已提交
1547

C
Chris Mason 已提交
1548 1549 1550 1551 1552 1553 1554 1555
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1556
/*
1557
 * Find the first offset in the io tree with one or more @bits set.
1558
 *
1559 1560 1561 1562
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1563 1564
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1565
			  u64 *start_ret, u64 *end_ret, u32 bits,
1566
			  struct extent_state **cached_state)
1567 1568 1569 1570 1571
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1572 1573
	if (cached_state && *cached_state) {
		state = *cached_state;
1574
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1575
			while ((state = next_state(state)) != NULL) {
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1587
	state = find_first_extent_bit_state(tree, start, bits);
1588
got_it:
1589
	if (state) {
1590
		cache_state_if_flags(state, cached_state, 0);
1591 1592 1593 1594
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1595
out:
1596 1597 1598 1599
	spin_unlock(&tree->lock);
	return ret;
}

1600
/**
1601 1602 1603 1604 1605 1606 1607
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1608 1609 1610 1611 1612 1613 1614 1615 1616
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1617
			       u64 *start_ret, u64 *end_ret, u32 bits)
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1638
/**
1639 1640
 * Find the first range that has @bits not set. This range could start before
 * @start.
1641
 *
1642 1643 1644 1645 1646
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1647 1648 1649 1650 1651 1652 1653
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1654
				 u64 *start_ret, u64 *end_ret, u32 bits)
1655 1656 1657 1658 1659 1660 1661 1662 1663
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1682 1683
			node = next;
		}
1684 1685 1686 1687
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1688
		state = rb_entry(node, struct extent_state, rb_node);
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1711
		} else {
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1755 1756 1757 1758
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1759
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1760
 */
J
Josef Bacik 已提交
1761 1762 1763
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1764 1765 1766 1767
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1768
	bool found = false;
1769 1770
	u64 total_bytes = 0;

1771
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1772

1773 1774 1775 1776
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1777
	node = tree_search(tree, cur_start);
1778
	if (!node) {
1779
		*end = (u64)-1;
1780 1781 1782
		goto out;
	}

C
Chris Mason 已提交
1783
	while (1) {
1784
		state = rb_entry(node, struct extent_state, rb_node);
1785 1786
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1787 1788 1789 1790 1791 1792 1793
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1794
		if (!found) {
1795
			*start = state->start;
1796
			*cached_state = state;
1797
			refcount_inc(&state->refs);
1798
		}
1799
		found = true;
1800 1801 1802 1803
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1804
		if (total_bytes >= max_bytes)
1805 1806
			break;
		if (!node)
1807 1808 1809
			break;
	}
out:
1810
	spin_unlock(&tree->lock);
1811 1812 1813
	return found;
}

1814 1815 1816 1817 1818 1819 1820 1821
/*
 * Process one page for __process_pages_contig().
 *
 * Return >0 if we hit @page == @locked_page.
 * Return 0 if we updated the page status.
 * Return -EGAIN if the we need to try again.
 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 */
1822 1823
static int process_one_page(struct btrfs_fs_info *fs_info,
			    struct address_space *mapping,
1824
			    struct page *page, struct page *locked_page,
1825
			    unsigned long page_ops, u64 start, u64 end)
1826
{
1827 1828 1829 1830 1831
	u32 len;

	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
	len = end + 1 - start;

1832
	if (page_ops & PAGE_SET_ORDERED)
1833
		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1834
	if (page_ops & PAGE_SET_ERROR)
1835
		btrfs_page_clamp_set_error(fs_info, page, start, len);
1836
	if (page_ops & PAGE_START_WRITEBACK) {
1837 1838
		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1839 1840
	}
	if (page_ops & PAGE_END_WRITEBACK)
1841
		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1842 1843 1844 1845

	if (page == locked_page)
		return 1;

1846
	if (page_ops & PAGE_LOCK) {
1847 1848 1849 1850 1851
		int ret;

		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
		if (ret)
			return ret;
1852
		if (!PageDirty(page) || page->mapping != mapping) {
1853
			btrfs_page_end_writer_lock(fs_info, page, start, len);
1854 1855 1856 1857
			return -EAGAIN;
		}
	}
	if (page_ops & PAGE_UNLOCK)
1858
		btrfs_page_end_writer_lock(fs_info, page, start, len);
1859 1860 1861
	return 0;
}

1862 1863
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
1864
				  u64 start, u64 end, unsigned long page_ops,
1865 1866
				  u64 *processed_end)
{
1867
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	pgoff_t start_index = start >> PAGE_SHIFT;
	pgoff_t end_index = end >> PAGE_SHIFT;
	pgoff_t index = start_index;
	unsigned long nr_pages = end_index - start_index + 1;
	unsigned long pages_processed = 0;
	struct page *pages[16];
	int err = 0;
	int i;

	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(processed_end && *processed_end == start);
	}

	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
		mapping_set_error(mapping, -EIO);

	while (nr_pages > 0) {
		int found_pages;

		found_pages = find_get_pages_contig(mapping, index,
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
		if (found_pages == 0) {
			/*
			 * Only if we're going to lock these pages, we can find
			 * nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
			err = -EAGAIN;
			goto out;
		}

		for (i = 0; i < found_pages; i++) {
			int process_ret;

1904 1905 1906
			process_ret = process_one_page(fs_info, mapping,
					pages[i], locked_page, page_ops,
					start, end);
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
			if (process_ret < 0) {
				for (; i < found_pages; i++)
					put_page(pages[i]);
				err = -EAGAIN;
				goto out;
			}
			put_page(pages[i]);
			pages_processed++;
		}
		nr_pages -= found_pages;
		index += found_pages;
		cond_resched();
	}
out:
	if (err && processed_end) {
		/*
		 * Update @processed_end. I know this is awful since it has
		 * two different return value patterns (inclusive vs exclusive).
		 *
		 * But the exclusive pattern is necessary if @start is 0, or we
		 * underflow and check against processed_end won't work as
		 * expected.
		 */
		if (pages_processed)
			*processed_end = min(end,
			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
		else
			*processed_end = start;
	}
	return err;
}
1938

1939 1940 1941
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1942
{
1943 1944
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1945

1946
	ASSERT(locked_page);
C
Chris Mason 已提交
1947
	if (index == locked_page->index && end_index == index)
1948
		return;
C
Chris Mason 已提交
1949

1950
	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1951
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1952 1953 1954 1955 1956 1957 1958
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1959 1960
	unsigned long index = delalloc_start >> PAGE_SHIFT;
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1961
	u64 processed_end = delalloc_start;
C
Chris Mason 已提交
1962 1963
	int ret;

1964
	ASSERT(locked_page);
C
Chris Mason 已提交
1965 1966 1967
	if (index == locked_page->index && index == end_index)
		return 0;

1968 1969 1970
	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
				     delalloc_end, PAGE_LOCK, &processed_end);
	if (ret == -EAGAIN && processed_end > delalloc_start)
1971
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1972
				      processed_end);
C
Chris Mason 已提交
1973 1974 1975 1976
	return ret;
}

/*
1977
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1978
 * more than @max_bytes.
C
Chris Mason 已提交
1979
 *
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
 * @start:	The original start bytenr to search.
 *		Will store the extent range start bytenr.
 * @end:	The original end bytenr of the search range
 *		Will store the extent range end bytenr.
 *
 * Return true if we find a delalloc range which starts inside the original
 * range, and @start/@end will store the delalloc range start/end.
 *
 * Return false if we can't find any delalloc range which starts inside the
 * original range, and @start/@end will be the non-delalloc range start/end.
C
Chris Mason 已提交
1990
 */
1991
EXPORT_FOR_TESTS
1992
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1993
				    struct page *locked_page, u64 *start,
1994
				    u64 *end)
C
Chris Mason 已提交
1995
{
1996
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1997 1998
	const u64 orig_start = *start;
	const u64 orig_end = *end;
1999
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
2000 2001
	u64 delalloc_start;
	u64 delalloc_end;
2002
	bool found;
2003
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
2004 2005 2006
	int ret;
	int loops = 0;

2007 2008 2009 2010 2011 2012
	/* Caller should pass a valid @end to indicate the search range end */
	ASSERT(orig_end > orig_start);

	/* The range should at least cover part of the page */
	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
		 orig_end <= page_offset(locked_page)));
C
Chris Mason 已提交
2013 2014 2015 2016
again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
2017 2018
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
2019
	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
C
Chris Mason 已提交
2020
		*start = delalloc_start;
2021 2022 2023

		/* @delalloc_end can be -1, never go beyond @orig_end */
		*end = min(delalloc_end, orig_end);
2024
		free_extent_state(cached_state);
2025
		return false;
C
Chris Mason 已提交
2026 2027
	}

C
Chris Mason 已提交
2028 2029 2030 2031 2032
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
2033
	if (delalloc_start < *start)
C
Chris Mason 已提交
2034 2035
		delalloc_start = *start;

C
Chris Mason 已提交
2036 2037 2038
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
2039 2040
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
2041

C
Chris Mason 已提交
2042 2043 2044
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
2045
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
2046 2047 2048 2049
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
2050
		free_extent_state(cached_state);
2051
		cached_state = NULL;
C
Chris Mason 已提交
2052
		if (!loops) {
2053
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
2054 2055 2056
			loops = 1;
			goto again;
		} else {
2057
			found = false;
C
Chris Mason 已提交
2058 2059 2060 2061 2062
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
2063
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
2064 2065 2066

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2067
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
2068
	if (!ret) {
2069
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2070
				     &cached_state);
C
Chris Mason 已提交
2071 2072 2073 2074 2075
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
2076
	free_extent_state(cached_state);
C
Chris Mason 已提交
2077 2078 2079 2080 2081 2082
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

2083
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2084
				  struct page *locked_page,
2085
				  u32 clear_bits, unsigned long page_ops)
2086
{
2087
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2088

2089
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2090
			       start, end, page_ops, NULL);
2091 2092
}

C
Chris Mason 已提交
2093 2094 2095 2096 2097
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2098 2099
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2100
		     u32 bits, int contig)
2101 2102 2103 2104 2105
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2106
	u64 last = 0;
2107 2108
	int found = 0;

2109
	if (WARN_ON(search_end <= cur_start))
2110 2111
		return 0;

2112
	spin_lock(&tree->lock);
2113 2114 2115 2116 2117 2118 2119 2120
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2121
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2122
	if (!node)
2123 2124
		goto out;

C
Chris Mason 已提交
2125
	while (1) {
2126 2127 2128
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2129 2130 2131
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2132 2133 2134 2135 2136
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2137
				*start = max(cur_start, state->start);
2138 2139
				found = 1;
			}
2140 2141 2142
			last = state->end;
		} else if (contig && found) {
			break;
2143 2144 2145 2146 2147 2148
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2149
	spin_unlock(&tree->lock);
2150 2151
	return total_bytes;
}
2152

C
Chris Mason 已提交
2153 2154 2155 2156
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2157 2158
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2159 2160 2161 2162 2163
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2164
	spin_lock(&tree->lock);
2165 2166 2167 2168
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2169
	node = tree_search(tree, start);
2170
	if (!node) {
2171 2172 2173 2174 2175 2176 2177 2178
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2179
	state->failrec = failrec;
2180
out:
2181
	spin_unlock(&tree->lock);
2182 2183 2184
	return ret;
}

2185
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2186 2187 2188
{
	struct rb_node *node;
	struct extent_state *state;
2189
	struct io_failure_record *failrec;
2190

2191
	spin_lock(&tree->lock);
2192 2193 2194 2195
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2196
	node = tree_search(tree, start);
2197
	if (!node) {
2198
		failrec = ERR_PTR(-ENOENT);
2199 2200 2201 2202
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2203
		failrec = ERR_PTR(-ENOENT);
2204 2205
		goto out;
	}
2206 2207

	failrec = state->failrec;
2208
out:
2209
	spin_unlock(&tree->lock);
2210
	return failrec;
2211 2212 2213 2214
}

/*
 * searches a range in the state tree for a given mask.
2215
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2216 2217 2218 2219
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2220
		   u32 bits, int filled, struct extent_state *cached)
2221 2222 2223 2224 2225
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2226
	spin_lock(&tree->lock);
2227
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2228
	    cached->end > start)
2229 2230 2231
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2251 2252 2253 2254

		if (state->end == (u64)-1)
			break;

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2265
	spin_unlock(&tree->lock);
2266 2267 2268
	return bitset;
}

2269 2270 2271
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2272 2273 2274 2275
{
	int ret;
	int err = 0;

2276
	set_state_failrec(failure_tree, rec->start, NULL);
2277 2278
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2279
				EXTENT_LOCKED | EXTENT_DIRTY);
2280 2281 2282
	if (ret)
		err = ret;

2283
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2284
				rec->start + rec->len - 1,
2285
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2286 2287
	if (ret && !err)
		err = ret;
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2298
 * to avoid any synchronization issues, wait for the data after writing, which
2299 2300 2301 2302
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
Q
Qu Wenruo 已提交
2303 2304 2305
static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
			     u64 length, u64 logical, struct page *page,
			     unsigned int pg_offset, int mirror_num)
2306 2307 2308 2309 2310
{
	struct bio *bio;
	struct btrfs_device *dev;
	u64 map_length = 0;
	u64 sector;
2311
	struct btrfs_io_context *bioc = NULL;
2312 2313
	int ret;

2314
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2315 2316
	BUG_ON(!mirror_num);

2317 2318
	if (btrfs_repair_one_zone(fs_info, logical))
		return 0;
2319

2320
	bio = btrfs_bio_alloc(1);
2321
	bio->bi_iter.bi_size = 0;
2322 2323
	map_length = length;

2324
	/*
2325
	 * Avoid races with device replace and make sure our bioc has devices
2326 2327 2328 2329
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2330
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2331 2332 2333 2334 2335 2336 2337
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2338
				      &map_length, &bioc, 0);
2339 2340 2341 2342 2343
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
2344
		ASSERT(bioc->mirror_num == 1);
2345 2346
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2347
				      &map_length, &bioc, mirror_num);
2348 2349 2350 2351 2352
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
2353
		BUG_ON(mirror_num != bioc->mirror_num);
2354
	}
2355

2356
	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
2357
	bio->bi_iter.bi_sector = sector;
2358 2359
	dev = bioc->stripes[bioc->mirror_num - 1].dev;
	btrfs_put_bioc(bioc);
2360 2361
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2362
		btrfs_bio_counter_dec(fs_info);
2363 2364 2365
		bio_put(bio);
		return -EIO;
	}
2366
	bio_set_dev(bio, dev->bdev);
2367
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2368
	bio_add_page(bio, page, length, pg_offset);
2369

2370
	if (btrfsic_submit_bio_wait(bio)) {
2371
		/* try to remap that extent elsewhere? */
2372
		btrfs_bio_counter_dec(fs_info);
2373
		bio_put(bio);
2374
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2375 2376 2377
		return -EIO;
	}

2378 2379
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2380
				  ino, start,
2381
				  rcu_str_deref(dev->name), sector);
2382
	btrfs_bio_counter_dec(fs_info);
2383 2384 2385 2386
	bio_put(bio);
	return 0;
}

2387
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2388
{
2389
	struct btrfs_fs_info *fs_info = eb->fs_info;
2390
	u64 start = eb->start;
2391
	int i, num_pages = num_extent_pages(eb);
2392
	int ret = 0;
2393

2394
	if (sb_rdonly(fs_info->sb))
2395 2396
		return -EROFS;

2397
	for (i = 0; i < num_pages; i++) {
2398
		struct page *p = eb->pages[i];
2399

2400
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2401
					start - page_offset(p), mirror_num);
2402 2403
		if (ret)
			break;
2404
		start += PAGE_SIZE;
2405 2406 2407 2408 2409
	}

	return ret;
}

2410 2411 2412 2413
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2414 2415 2416 2417
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2418 2419 2420 2421 2422 2423 2424 2425
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2426 2427
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2428 2429 2430
	if (!ret)
		return 0;

2431 2432
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2433 2434 2435 2436
		return 0;

	BUG_ON(!failrec->this_mirror);

2437
	if (sb_rdonly(fs_info->sb))
2438
		goto out;
2439

2440 2441
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2442 2443
					    failrec->start,
					    EXTENT_LOCKED);
2444
	spin_unlock(&io_tree->lock);
2445

2446 2447
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2448 2449
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2450
		if (num_copies > 1)  {
2451 2452 2453
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2454 2455 2456 2457
		}
	}

out:
2458
	free_io_failure(failure_tree, io_tree, failrec);
2459

2460
	return 0;
2461 2462
}

2463 2464 2465 2466 2467 2468
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2469
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2470
{
2471
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2488
		failrec = state->failrec;
2489 2490 2491 2492 2493 2494 2495 2496
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2497
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2498
							     u64 start)
2499
{
2500
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2501
	struct io_failure_record *failrec;
2502 2503 2504 2505
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2506
	const u32 sectorsize = fs_info->sectorsize;
2507 2508 2509
	int ret;
	u64 logical;

2510
	failrec = get_state_failrec(failure_tree, start);
2511
	if (!IS_ERR(failrec)) {
2512
		btrfs_debug(fs_info,
2513 2514
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
			failrec->logical, failrec->start, failrec->len);
2515 2516 2517 2518 2519
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2520 2521

		return failrec;
2522
	}
2523

2524 2525 2526
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2527

2528
	failrec->start = start;
2529
	failrec->len = sectorsize;
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	failrec->this_mirror = 0;
	failrec->bio_flags = 0;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
2567
	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2568 2569 2570 2571
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
2572 2573
		ret = set_extent_bits(tree, start, start + sectorsize - 1,
				      EXTENT_DAMAGED);
2574 2575 2576 2577 2578 2579
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2580 2581
}

2582
static bool btrfs_check_repairable(struct inode *inode,
2583 2584
				   struct io_failure_record *failrec,
				   int failed_mirror)
2585
{
2586
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2587 2588
	int num_copies;

2589
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2590 2591 2592 2593 2594 2595
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2596 2597 2598
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2599
		return false;
2600 2601
	}

2602 2603 2604
	/* The failure record should only contain one sector */
	ASSERT(failrec->len == fs_info->sectorsize);

2605
	/*
2606 2607 2608 2609 2610 2611 2612
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
2613
	 */
2614 2615 2616
	failrec->failed_mirror = failed_mirror;
	failrec->this_mirror++;
	if (failrec->this_mirror == failed_mirror)
2617 2618
		failrec->this_mirror++;

2619
	if (failrec->this_mirror > num_copies) {
2620 2621 2622
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2623
		return false;
2624 2625
	}

2626
	return true;
2627 2628
}

2629 2630 2631 2632 2633
int btrfs_repair_one_sector(struct inode *inode,
			    struct bio *failed_bio, u32 bio_offset,
			    struct page *page, unsigned int pgoff,
			    u64 start, int failed_mirror,
			    submit_bio_hook_t *submit_bio_hook)
2634 2635
{
	struct io_failure_record *failrec;
2636
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2637
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2638
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2639
	struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
2640
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2641
	struct bio *repair_bio;
2642
	struct btrfs_bio *repair_bbio;
2643
	blk_status_t status;
2644

2645 2646
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2647

2648
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2649

2650
	failrec = btrfs_get_io_failure_record(inode, start);
2651
	if (IS_ERR(failrec))
2652
		return PTR_ERR(failrec);
2653

2654 2655

	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2656
		free_io_failure(failure_tree, tree, failrec);
2657
		return -EIO;
2658 2659
	}

2660 2661
	repair_bio = btrfs_bio_alloc(1);
	repair_bbio = btrfs_bio(repair_bio);
2662 2663 2664 2665
	repair_bio->bi_opf = REQ_OP_READ;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2666

2667
	if (failed_bbio->csum) {
2668
		const u32 csum_size = fs_info->csum_size;
2669

2670 2671 2672
		repair_bbio->csum = repair_bbio->csum_inline;
		memcpy(repair_bbio->csum,
		       failed_bbio->csum + csum_size * icsum, csum_size);
2673
	}
2674

2675
	bio_add_page(repair_bio, page, failrec->len, pgoff);
2676
	repair_bbio->iter = repair_bio->bi_iter;
2677

2678
	btrfs_debug(btrfs_sb(inode->i_sb),
2679 2680
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2681

2682 2683
	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
				 failrec->bio_flags);
2684
	if (status) {
2685
		free_io_failure(failure_tree, tree, failrec);
2686
		bio_put(repair_bio);
2687
	}
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	return blk_status_to_errno(status);
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	if (uptodate) {
B
Boris Burkov 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707
		if (fsverity_active(page->mapping->host) &&
		    !PageError(page) &&
		    !PageUptodate(page) &&
		    start < i_size_read(page->mapping->host) &&
		    !fsverity_verify_page(page)) {
			btrfs_page_set_error(fs_info, page, start, len);
		} else {
			btrfs_page_set_uptodate(fs_info, page, start, len);
		}
2708 2709 2710 2711 2712 2713 2714
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

	if (fs_info->sectorsize == PAGE_SIZE)
		unlock_page(page);
2715
	else
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

static blk_status_t submit_read_repair(struct inode *inode,
				      struct bio *failed_bio, u32 bio_offset,
				      struct page *page, unsigned int pgoff,
				      u64 start, u64 end, int failed_mirror,
				      unsigned int error_bitmap,
				      submit_bio_hook_t *submit_bio_hook)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int error = 0;
	int i;

	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);

	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		struct extent_state *cached = NULL;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

		ret = btrfs_repair_one_sector(inode, failed_bio,
				bio_offset + offset,
				page, pgoff + offset, start + offset,
				failed_mirror, submit_bio_hook);
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
		 * Repair failed, just record the error but still continue.
		 * Or the remaining sectors will not be properly unlocked.
		 */
		if (!error)
			error = ret;
next:
		end_page_read(page, uptodate, start + offset, sectorsize);
		if (uptodate)
			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
					start + offset,
					start + offset + sectorsize - 1,
					&cached, GFP_ATOMIC);
		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
				start + offset,
				start + offset + sectorsize - 1,
				&cached);
	}
	return errno_to_blk_status(error);
2791 2792
}

2793 2794
/* lots and lots of room for performance fixes in the end_bio funcs */

2795
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2796
{
2797
	struct btrfs_inode *inode;
2798
	const bool uptodate = (err == 0);
2799
	int ret = 0;
2800

2801 2802 2803
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2804 2805

	if (!uptodate) {
2806 2807 2808 2809 2810 2811 2812 2813
		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
		u32 len;

		ASSERT(end + 1 - start <= U32_MAX);
		len = end + 1 - start;

		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2814
		ret = err < 0 ? err : -EIO;
2815
		mapping_set_error(page->mapping, ret);
2816 2817 2818
	}
}

2819 2820 2821 2822 2823 2824 2825 2826 2827
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2828
static void end_bio_extent_writepage(struct bio *bio)
2829
{
2830
	int error = blk_status_to_errno(bio->bi_status);
2831
	struct bio_vec *bvec;
2832 2833
	u64 start;
	u64 end;
2834
	struct bvec_iter_all iter_all;
2835
	bool first_bvec = true;
2836

2837
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2838
	bio_for_each_segment_all(bvec, bio, iter_all) {
2839
		struct page *page = bvec->bv_page;
2840 2841
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
		const u32 sectorsize = fs_info->sectorsize;

		/* Our read/write should always be sector aligned. */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page write in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
			btrfs_info(fs_info,
		"incomplete page write with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2856

2857 2858 2859 2860 2861
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2862
		end_extent_writepage(page, error, start, end);
2863 2864

		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2865
	}
2866

2867 2868 2869
	bio_put(bio);
}

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2880
	/* End of the range in @inode */
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2899 2900
{
	struct extent_state *cached = NULL;
2901 2902 2903 2904 2905
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2906

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2941 2942
}

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
	if (fs_info->sectorsize == PAGE_SIZE)
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
/*
 * Find extent buffer for a givne bytenr.
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
	if (fs_info->sectorsize == PAGE_SIZE) {
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

	/* For subpage case, we need to lookup buffer radix tree */
	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       bytenr >> fs_info->sectorsize_bits);
	rcu_read_unlock();
	ASSERT(eb);
	return eb;
}

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2993
static void end_bio_extent_readpage(struct bio *bio)
2994
{
2995
	struct bio_vec *bvec;
2996
	struct btrfs_bio *bbio = btrfs_bio(bio);
2997
	struct extent_io_tree *tree, *failure_tree;
2998
	struct processed_extent processed = { 0 };
2999 3000 3001 3002 3003
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
3004
	int mirror;
3005
	int ret;
3006
	struct bvec_iter_all iter_all;
3007

3008
	ASSERT(!bio_flagged(bio, BIO_CLONED));
3009
	bio_for_each_segment_all(bvec, bio, iter_all) {
3010
		bool uptodate = !bio->bi_status;
3011
		struct page *page = bvec->bv_page;
3012
		struct inode *inode = page->mapping->host;
3013
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3014
		const u32 sectorsize = fs_info->sectorsize;
3015
		unsigned int error_bitmap = (unsigned int)-1;
3016 3017 3018
		u64 start;
		u64 end;
		u32 len;
3019

3020 3021
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
3022
			bio->bi_iter.bi_sector, bio->bi_status,
3023
			bbio->mirror_num);
3024
		tree = &BTRFS_I(inode)->io_tree;
3025
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3026

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
3046
		len = bvec->bv_len;
3047

3048
		mirror = bbio->mirror_num;
3049
		if (likely(uptodate)) {
3050
			if (is_data_inode(inode)) {
3051
				error_bitmap = btrfs_verify_data_csum(bbio,
3052
						bio_offset, page, start, end);
3053 3054
				ret = error_bitmap;
			} else {
3055
				ret = btrfs_validate_metadata_buffer(bbio,
3056
					page, start, end, mirror);
3057
			}
3058
			if (ret)
3059
				uptodate = false;
3060
			else
3061 3062 3063 3064
				clean_io_failure(BTRFS_I(inode)->root->fs_info,
						 failure_tree, tree, start,
						 page,
						 btrfs_ino(BTRFS_I(inode)), 0);
3065
		}
3066

3067 3068 3069
		if (likely(uptodate))
			goto readpage_ok;

3070
		if (is_data_inode(inode)) {
3071
			/*
3072 3073
			 * btrfs_submit_read_repair() will handle all the good
			 * and bad sectors, we just continue to the next bvec.
3074
			 */
3075 3076 3077 3078 3079 3080 3081 3082
			submit_read_repair(inode, bio, bio_offset, page,
					   start - page_offset(page), start,
					   end, mirror, error_bitmap,
					   btrfs_submit_data_bio);

			ASSERT(bio_offset + len > bio_offset);
			bio_offset += len;
			continue;
3083 3084 3085
		} else {
			struct extent_buffer *eb;

3086
			eb = find_extent_buffer_readpage(fs_info, page, start);
3087 3088 3089 3090 3091 3092
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
					       &eb->bflags))
				btree_readahead_hook(eb, -EIO);
3093
		}
3094
readpage_ok:
3095
		if (likely(uptodate)) {
3096
			loff_t i_size = i_size_read(inode);
3097
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3098

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3110
						     offset_in_page(start));
3111 3112 3113 3114

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3115
		}
3116 3117
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3118

3119
		/* Update page status and unlock */
3120
		end_page_read(page, uptodate, start, len);
3121
		endio_readpage_release_extent(&processed, BTRFS_I(inode),
B
Boris Burkov 已提交
3122
					      start, end, PageUptodate(page));
3123
	}
3124 3125
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3126
	btrfs_bio_free_csum(bbio);
3127 3128 3129
	bio_put(bio);
}

3130
/*
3131 3132 3133
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3134
 */
3135
static inline void btrfs_bio_init(struct btrfs_bio *bbio)
3136
{
3137
	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
3138
}
3139

3140
/*
Q
Qu Wenruo 已提交
3141 3142 3143
 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
 *
 * The bio allocation is backed by bioset and does not fail.
3144
 */
3145
struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
3146 3147 3148
{
	struct bio *bio;

Q
Qu Wenruo 已提交
3149 3150
	ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3151
	btrfs_bio_init(btrfs_bio(bio));
3152 3153 3154
	return bio;
}

3155
struct bio *btrfs_bio_clone(struct bio *bio)
3156
{
3157
	struct btrfs_bio *bbio;
3158
	struct bio *new;
3159

3160
	/* Bio allocation backed by a bioset does not fail */
3161
	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3162 3163 3164
	bbio = btrfs_bio(new);
	btrfs_bio_init(bbio);
	bbio->iter = bio->bi_iter;
3165 3166
	return new;
}
3167

3168
struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3169 3170
{
	struct bio *bio;
3171
	struct btrfs_bio *bbio;
3172

3173 3174
	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);

3175
	/* this will never fail when it's backed by a bioset */
3176
	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3177 3178
	ASSERT(bio);

3179 3180
	bbio = btrfs_bio(bio);
	btrfs_bio_init(bbio);
3181 3182

	bio_trim(bio, offset >> 9, size >> 9);
3183
	bbio->iter = bio->bi_iter;
3184 3185
	return bio;
}
3186

3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
/**
 * Attempt to add a page to bio
 *
 * @bio:	destination bio
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @pg_offset:	starting offset in the page
 * @size:	portion of page that we want to write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
3201 3202 3203
 * Return >= 0 for the number of bytes added to the bio.
 * Can return 0 if the current bio is already at stripe/zone boundary.
 * Return <0 for error.
3204
 */
3205 3206 3207 3208 3209
static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			      struct page *page,
			      u64 disk_bytenr, unsigned int size,
			      unsigned int pg_offset,
			      unsigned long bio_flags)
3210
{
3211 3212
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
3213
	u32 real_size;
3214 3215
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3216
	int ret;
3217

3218 3219 3220 3221
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
	if (bio_ctrl->bio_flags != bio_flags)
3222
		return 0;
3223

3224
	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3225 3226 3227 3228
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
3229
		return 0;
3230

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	real_size = min(bio_ctrl->len_to_oe_boundary,
			bio_ctrl->len_to_stripe_boundary) - bio_size;
	real_size = min(real_size, size);

	/*
	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
	 * bio will still execute its endio function on the page!
	 */
	if (real_size == 0)
		return 0;
3241

3242
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3243
		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3244
	else
3245
		ret = bio_add_page(bio, page, real_size, pg_offset);
3246

3247
	return ret;
3248 3249
}

3250
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3251
			       struct btrfs_inode *inode, u64 file_offset)
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

	if (!btrfs_is_zoned(fs_info) ||
	    bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	/* Ordered extent not yet created, so we're good */
3293
	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3305 3306 3307 3308 3309
static int alloc_new_bio(struct btrfs_inode *inode,
			 struct btrfs_bio_ctrl *bio_ctrl,
			 struct writeback_control *wbc,
			 unsigned int opf,
			 bio_end_io_t end_io_func,
3310
			 u64 disk_bytenr, u32 offset, u64 file_offset,
3311 3312 3313 3314 3315 3316
			 unsigned long bio_flags)
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct bio *bio;
	int ret;

3317
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
3318 3319 3320 3321 3322
	/*
	 * For compressed page range, its disk_bytenr is always @disk_bytenr
	 * passed in, no matter if we have added any range into previous bio.
	 */
	if (bio_flags & EXTENT_BIO_COMPRESSED)
Q
Qu Wenruo 已提交
3323
		bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
3324
	else
Q
Qu Wenruo 已提交
3325
		bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
3326 3327 3328 3329 3330 3331
	bio_ctrl->bio = bio;
	bio_ctrl->bio_flags = bio_flags;
	bio->bi_end_io = end_io_func;
	bio->bi_private = &inode->io_tree;
	bio->bi_write_hint = inode->vfs_inode.i_write_hint;
	bio->bi_opf = opf;
3332 3333 3334
	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
	if (ret < 0)
		goto error;
3335 3336 3337
	if (wbc) {
		struct block_device *bdev;

3338
		bdev = fs_info->fs_devices->latest_dev->bdev;
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
		bio_set_dev(bio, bdev);
		wbc_init_bio(wbc, bio);
	}
	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
		struct btrfs_device *device;

		device = btrfs_zoned_get_device(fs_info, disk_bytenr,
						fs_info->sectorsize);
		if (IS_ERR(device)) {
			ret = PTR_ERR(device);
			goto error;
		}

3352
		btrfs_bio(bio)->device = device;
3353 3354 3355 3356 3357 3358 3359 3360 3361
	}
	return 0;
error:
	bio_ctrl->bio = NULL;
	bio->bi_status = errno_to_blk_status(ret);
	bio_endio(bio);
	return ret;
}

3362 3363
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3364 3365
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3366 3367
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3368 3369
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3370
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3371 3372 3373 3374
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
3375
 */
3376
static int submit_extent_page(unsigned int opf,
3377
			      struct writeback_control *wbc,
3378
			      struct btrfs_bio_ctrl *bio_ctrl,
3379
			      struct page *page, u64 disk_bytenr,
3380
			      size_t size, unsigned long pg_offset,
3381
			      bio_end_io_t end_io_func,
C
Chris Mason 已提交
3382
			      int mirror_num,
3383 3384
			      unsigned long bio_flags,
			      bool force_bio_submit)
3385 3386
{
	int ret = 0;
3387
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3388
	unsigned int cur = pg_offset;
3389

3390
	ASSERT(bio_ctrl);
3391

3392 3393
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	if (force_bio_submit && bio_ctrl->bio) {
		ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
		bio_ctrl->bio = NULL;
		if (ret < 0)
			return ret;
	}

	while (cur < pg_offset + size) {
		u32 offset = cur - pg_offset;
		int added;

		/* Allocate new bio if needed */
		if (!bio_ctrl->bio) {
			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
					    end_io_func, disk_bytenr, offset,
3409
					    page_offset(page) + cur,
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
					    bio_flags);
			if (ret < 0)
				return ret;
		}
		/*
		 * We must go through btrfs_bio_add_page() to ensure each
		 * page range won't cross various boundaries.
		 */
		if (bio_flags & EXTENT_BIO_COMPRESSED)
			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
					size - offset, pg_offset + offset,
					bio_flags);
		else
			added = btrfs_bio_add_page(bio_ctrl, page,
					disk_bytenr + offset, size - offset,
					pg_offset + offset, bio_flags);

		/* Metadata page range should never be split */
		if (!is_data_inode(&inode->vfs_inode))
			ASSERT(added == 0 || added == size - offset);

		/* At least we added some page, update the account */
		if (wbc && added)
			wbc_account_cgroup_owner(wbc, page, added);

		/* We have reached boundary, submit right now */
		if (added < size - offset) {
			/* The bio should contain some page(s) */
			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
			ret = submit_one_bio(bio_ctrl->bio, mirror_num,
					bio_ctrl->bio_flags);
3441 3442
			bio_ctrl->bio = NULL;
			if (ret < 0)
3443
				return ret;
3444
		}
3445
		cur += added;
3446
	}
3447
	return 0;
3448 3449
}

3450 3451 3452
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3453
{
3454 3455 3456
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3457 3458 3459 3460 3461 3462 3463 3464 3465
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	if (fs_info->sectorsize == PAGE_SIZE) {
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3483
	else
3484 3485 3486 3487
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3488 3489
}

3490
int set_page_extent_mapped(struct page *page)
3491
{
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3514
	if (!PagePrivate(page))
3515 3516 3517 3518 3519 3520 3521
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3522 3523
}

3524 3525
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3526
		 u64 start, u64 len, struct extent_map **em_cached)
3527 3528 3529 3530 3531
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3532
		if (extent_map_in_tree(em) && start >= em->start &&
3533
		    start < extent_map_end(em)) {
3534
			refcount_inc(&em->refs);
3535 3536 3537 3538 3539 3540 3541
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3542
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3543 3544
	if (em_cached && !IS_ERR_OR_NULL(em)) {
		BUG_ON(*em_cached);
3545
		refcount_inc(&em->refs);
3546 3547 3548 3549
		*em_cached = em;
	}
	return em;
}
3550 3551 3552 3553
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3554
 * XXX JDM: This needs looking at to ensure proper page locking
3555
 * return 0 on success, otherwise return error
3556
 */
3557
int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3558
		      struct btrfs_bio_ctrl *bio_ctrl,
3559
		      unsigned int read_flags, u64 *prev_em_start)
3560 3561
{
	struct inode *inode = page->mapping->host;
3562
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3563
	u64 start = page_offset(page);
3564
	const u64 end = start + PAGE_SIZE - 1;
3565 3566 3567 3568 3569 3570
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3571
	int ret = 0;
3572
	int nr = 0;
3573
	size_t pg_offset = 0;
3574 3575
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3576
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3577

3578 3579 3580
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3581 3582
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3583 3584
		goto out;
	}
3585

D
Dan Magenheimer 已提交
3586 3587 3588
	if (!PageUptodate(page)) {
		if (cleancache_get_page(page) == 0) {
			BUG_ON(blocksize != PAGE_SIZE);
3589
			unlock_extent(tree, start, end);
3590
			unlock_page(page);
D
Dan Magenheimer 已提交
3591 3592 3593 3594
			goto out;
		}
	}

3595
	if (page->index == last_byte >> PAGE_SHIFT) {
3596
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3597 3598

		if (zero_offset) {
3599
			iosize = PAGE_SIZE - zero_offset;
3600
			memzero_page(page, zero_offset, iosize);
C
Chris Mason 已提交
3601 3602 3603
			flush_dcache_page(page);
		}
	}
3604
	begin_page_read(fs_info, page);
3605
	while (cur <= end) {
3606
		unsigned long this_bio_flag = 0;
3607
		bool force_bio_submit = false;
3608
		u64 disk_bytenr;
3609

3610
		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
3611
		if (cur >= last_byte) {
3612 3613
			struct extent_state *cached = NULL;

3614
			iosize = PAGE_SIZE - pg_offset;
3615
			memzero_page(page, pg_offset, iosize);
3616 3617
			flush_dcache_page(page);
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3618
					    &cached, GFP_NOFS);
3619
			unlock_extent_cached(tree, cur,
3620
					     cur + iosize - 1, &cached);
3621
			end_page_read(page, true, cur, iosize);
3622 3623
			break;
		}
3624
		em = __get_extent_map(inode, page, pg_offset, cur,
3625
				      end - cur + 1, em_cached);
3626
		if (IS_ERR_OR_NULL(em)) {
3627
			unlock_extent(tree, cur, end);
3628
			end_page_read(page, false, cur, end + 1 - cur);
3629 3630 3631 3632 3633 3634
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3635
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3636
			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3637 3638 3639
			extent_set_compress_type(&this_bio_flag,
						 em->compress_type);
		}
C
Chris Mason 已提交
3640

3641 3642
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3643
		iosize = ALIGN(iosize, blocksize);
3644
		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3645
			disk_bytenr = em->block_start;
3646
		else
3647
			disk_bytenr = em->block_start + extent_offset;
3648
		block_start = em->block_start;
Y
Yan Zheng 已提交
3649 3650
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3651 3652 3653

		/*
		 * If we have a file range that points to a compressed extent
3654
		 * and it's followed by a consecutive file range that points
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3688
		    *prev_em_start != em->start)
3689 3690 3691
			force_bio_submit = true;

		if (prev_em_start)
3692
			*prev_em_start = em->start;
3693

3694 3695 3696 3697 3698
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3699 3700
			struct extent_state *cached = NULL;

3701
			memzero_page(page, pg_offset, iosize);
3702 3703 3704
			flush_dcache_page(page);

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3705
					    &cached, GFP_NOFS);
3706
			unlock_extent_cached(tree, cur,
3707
					     cur + iosize - 1, &cached);
3708
			end_page_read(page, true, cur, iosize);
3709
			cur = cur + iosize;
3710
			pg_offset += iosize;
3711 3712 3713
			continue;
		}
		/* the get_extent function already copied into the page */
3714 3715
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3716
			unlock_extent(tree, cur, cur + iosize - 1);
3717
			end_page_read(page, true, cur, iosize);
3718
			cur = cur + iosize;
3719
			pg_offset += iosize;
3720 3721
			continue;
		}
3722 3723 3724 3725
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3726
			unlock_extent(tree, cur, cur + iosize - 1);
3727
			end_page_read(page, false, cur, iosize);
3728
			cur = cur + iosize;
3729
			pg_offset += iosize;
3730 3731
			continue;
		}
3732

3733
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3734 3735
					 bio_ctrl, page, disk_bytenr, iosize,
					 pg_offset,
3736
					 end_bio_extent_readpage, 0,
3737 3738
					 this_bio_flag,
					 force_bio_submit);
3739 3740 3741
		if (!ret) {
			nr++;
		} else {
3742
			unlock_extent(tree, cur, cur + iosize - 1);
3743
			end_page_read(page, false, cur, iosize);
3744
			goto out;
3745
		}
3746
		cur = cur + iosize;
3747
		pg_offset += iosize;
3748
	}
D
Dan Magenheimer 已提交
3749
out:
3750
	return ret;
3751 3752
}

3753
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3754 3755 3756 3757
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3758
{
3759
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3760 3761
	int index;

3762
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3763 3764

	for (index = 0; index < nr_pages; index++) {
3765
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3766
				  REQ_RAHEAD, prev_em_start);
3767
		put_page(pages[index]);
3768 3769 3770
	}
}

3771
static void update_nr_written(struct writeback_control *wbc,
3772
			      unsigned long nr_written)
3773 3774 3775 3776
{
	wbc->nr_to_write -= nr_written;
}

3777
/*
3778 3779
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3780
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3781 3782 3783 3784 3785
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3786
 */
3787
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3788
		struct page *page, struct writeback_control *wbc)
3789
{
3790
	const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3791
	u64 delalloc_start = page_offset(page);
3792
	u64 delalloc_to_write = 0;
3793 3794
	/* How many pages are started by btrfs_run_delalloc_range() */
	unsigned long nr_written = 0;
3795 3796 3797
	int ret;
	int page_started = 0;

3798 3799 3800
	while (delalloc_start < page_end) {
		u64 delalloc_end = page_end;
		bool found;
3801

3802
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3803
					       &delalloc_start,
3804
					       &delalloc_end);
3805
		if (!found) {
3806 3807 3808
			delalloc_start = delalloc_end + 1;
			continue;
		}
3809
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3810
				delalloc_end, &page_started, &nr_written, wbc);
3811
		if (ret) {
3812 3813
			btrfs_page_set_error(inode->root->fs_info, page,
					     page_offset(page), PAGE_SIZE);
3814
			return ret;
3815 3816
		}
		/*
3817 3818
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3819 3820
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3821
				      PAGE_SIZE) >> PAGE_SHIFT;
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

3833
	/* Did btrfs_run_dealloc_range() already unlock and start the IO? */
3834 3835
	if (page_started) {
		/*
3836 3837
		 * We've unlocked the page, so we can't update the mapping's
		 * writeback index, just update nr_to_write.
3838
		 */
3839
		wbc->nr_to_write -= nr_written;
3840 3841 3842
		return 1;
	}

3843
	return 0;
3844 3845
}

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
/*
 * Find the first byte we need to write.
 *
 * For subpage, one page can contain several sectors, and
 * __extent_writepage_io() will just grab all extent maps in the page
 * range and try to submit all non-inline/non-compressed extents.
 *
 * This is a big problem for subpage, we shouldn't re-submit already written
 * data at all.
 * This function will lookup subpage dirty bit to find which range we really
 * need to submit.
 *
 * Return the next dirty range in [@start, @end).
 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
 */
static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
				 struct page *page, u64 *start, u64 *end)
{
	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3865
	struct btrfs_subpage_info *spi = fs_info->subpage_info;
3866 3867 3868
	u64 orig_start = *start;
	/* Declare as unsigned long so we can use bitmap ops */
	unsigned long flags;
3869
	int range_start_bit;
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
	int range_end_bit;

	/*
	 * For regular sector size == page size case, since one page only
	 * contains one sector, we return the page offset directly.
	 */
	if (fs_info->sectorsize == PAGE_SIZE) {
		*start = page_offset(page);
		*end = page_offset(page) + PAGE_SIZE;
		return;
	}

3882 3883 3884
	range_start_bit = spi->dirty_offset +
			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);

3885 3886
	/* We should have the page locked, but just in case */
	spin_lock_irqsave(&subpage->lock, flags);
3887 3888
	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
			       spi->dirty_offset + spi->bitmap_nr_bits);
3889 3890
	spin_unlock_irqrestore(&subpage->lock, flags);

3891 3892 3893
	range_start_bit -= spi->dirty_offset;
	range_end_bit -= spi->dirty_offset;

3894 3895 3896 3897
	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
}

3898 3899 3900 3901 3902 3903 3904 3905
/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3906
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3907 3908 3909 3910
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
3911
				 int *nr_ret)
3912
{
3913
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3914 3915
	u64 cur = page_offset(page);
	u64 end = cur + PAGE_SIZE - 1;
3916 3917 3918
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3919 3920
	int ret = 0;
	int nr = 0;
3921
	u32 opf = REQ_OP_WRITE;
3922
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3923
	bool compressed;
C
Chris Mason 已提交
3924

3925
	ret = btrfs_writepage_cow_fixup(page);
3926 3927
	if (ret) {
		/* Fixup worker will requeue */
3928
		redirty_page_for_writepage(wbc, page);
3929 3930
		unlock_page(page);
		return 1;
3931 3932
	}

3933 3934 3935 3936
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3937
	update_nr_written(wbc, 1);
3938

3939
	while (cur <= end) {
3940
		u64 disk_bytenr;
3941
		u64 em_end;
3942 3943
		u64 dirty_range_start = cur;
		u64 dirty_range_end;
3944
		u32 iosize;
3945

3946
		if (cur >= i_size) {
3947
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3948
							     end, true);
3949 3950 3951 3952 3953 3954 3955 3956 3957
			/*
			 * This range is beyond i_size, thus we don't need to
			 * bother writing back.
			 * But we still need to clear the dirty subpage bit, or
			 * the next time the page gets dirtied, we will try to
			 * writeback the sectors with subpage dirty bits,
			 * causing writeback without ordered extent.
			 */
			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
3958 3959
			break;
		}
3960 3961 3962 3963 3964 3965 3966 3967

		find_next_dirty_byte(fs_info, page, &dirty_range_start,
				     &dirty_range_end);
		if (cur < dirty_range_start) {
			cur = dirty_range_start;
			continue;
		}

3968
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3969
		if (IS_ERR_OR_NULL(em)) {
3970
			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3971
			ret = PTR_ERR_OR_ZERO(em);
3972 3973 3974 3975
			break;
		}

		extent_offset = cur - em->start;
3976
		em_end = extent_map_end(em);
3977 3978 3979 3980
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3981
		block_start = em->block_start;
C
Chris Mason 已提交
3982
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3983 3984
		disk_bytenr = em->block_start + extent_offset;

3985 3986 3987 3988 3989
		/*
		 * Note that em_end from extent_map_end() and dirty_range_end from
		 * find_next_dirty_byte() are all exclusive
		 */
		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3990

3991
		if (btrfs_use_zone_append(inode, em->block_start))
3992 3993
			opf = REQ_OP_ZONE_APPEND;

3994 3995 3996
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
3997 3998 3999 4000 4001
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
4002
		    block_start == EXTENT_MAP_INLINE) {
4003
			if (compressed)
C
Chris Mason 已提交
4004
				nr++;
4005
			else
4006
				btrfs_writepage_endio_finish_ordered(inode,
4007
						page, cur, cur + iosize - 1, true);
4008
			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
C
Chris Mason 已提交
4009
			cur += iosize;
4010 4011
			continue;
		}
C
Chris Mason 已提交
4012

4013
		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4014
		if (!PageWriteback(page)) {
4015
			btrfs_err(inode->root->fs_info,
4016 4017
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
4018
		}
4019

4020 4021 4022 4023 4024 4025 4026 4027
		/*
		 * Although the PageDirty bit is cleared before entering this
		 * function, subpage dirty bit is not cleared.
		 * So clear subpage dirty bit here so next time we won't submit
		 * page for range already written to disk.
		 */
		btrfs_page_clear_dirty(fs_info, page, cur, iosize);

4028 4029
		ret = submit_extent_page(opf | write_flags, wbc,
					 &epd->bio_ctrl, page,
4030
					 disk_bytenr, iosize,
4031
					 cur - page_offset(page),
4032
					 end_bio_extent_writepage,
4033
					 0, 0, false);
4034
		if (ret) {
4035
			btrfs_page_set_error(fs_info, page, cur, iosize);
4036
			if (PageWriteback(page))
4037 4038
				btrfs_page_clear_writeback(fs_info, page, cur,
							   iosize);
4039
		}
4040

4041
		cur += iosize;
4042 4043
		nr++;
	}
4044 4045 4046 4047 4048 4049
	/*
	 * If we finish without problem, we should not only clear page dirty,
	 * but also empty subpage dirty bits
	 */
	if (!ret)
		btrfs_page_assert_not_dirty(fs_info, page);
4050 4051 4052 4053 4054 4055 4056 4057 4058
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
4059 4060 4061
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
4062 4063
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4064
			      struct extent_page_data *epd)
4065 4066
{
	struct inode *inode = page->mapping->host;
4067
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4068 4069
	const u64 page_start = page_offset(page);
	const u64 page_end = page_start + PAGE_SIZE - 1;
4070 4071
	int ret;
	int nr = 0;
4072
	size_t pg_offset;
4073
	loff_t i_size = i_size_read(inode);
4074
	unsigned long end_index = i_size >> PAGE_SHIFT;
4075 4076 4077 4078 4079

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

4080 4081
	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
			       page_offset(page), PAGE_SIZE);
4082

4083
	pg_offset = offset_in_page(i_size);
4084 4085
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
4086
		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
4087 4088 4089 4090 4091
		unlock_page(page);
		return 0;
	}

	if (page->index == end_index) {
4092
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4093 4094 4095
		flush_dcache_page(page);
	}

4096 4097 4098 4099 4100
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
4101

4102
	if (!epd->extent_locked) {
4103
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
4104
		if (ret == 1)
4105
			return 0;
4106 4107 4108
		if (ret)
			goto done;
	}
4109

4110
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4111
				    &nr);
4112
	if (ret == 1)
4113
		return 0;
4114

4115 4116 4117 4118 4119 4120
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
	/*
	 * Here we used to have a check for PageError() and then set @ret and
	 * call end_extent_writepage().
	 *
	 * But in fact setting @ret here will cause different error paths
	 * between subpage and regular sectorsize.
	 *
	 * For regular page size, we never submit current page, but only add
	 * current page to current bio.
	 * The bio submission can only happen in next page.
	 * Thus if we hit the PageError() branch, @ret is already set to
	 * non-zero value and will not get updated for regular sectorsize.
	 *
	 * But for subpage case, it's possible we submit part of current page,
	 * thus can get PageError() set by submitted bio of the same page,
	 * while our @ret is still 0.
	 *
	 * So here we unify the behavior and don't set @ret.
	 * Error can still be properly passed to higher layer as page will
	 * be set error, here we just don't handle the IO failure.
	 *
	 * NOTE: This is just a hotfix for subpage.
	 * The root fix will be properly ending ordered extent when we hit
	 * an error during writeback.
	 *
	 * But that needs a bigger refactoring, as we not only need to grab the
	 * submitted OE, but also need to know exactly at which bytenr we hit
	 * the error.
	 * Currently the full page based __extent_writepage_io() is not
	 * capable of that.
	 */
	if (PageError(page))
4153
		end_extent_writepage(page, ret, page_start, page_end);
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
	if (epd->extent_locked) {
		/*
		 * If epd->extent_locked, it's from extent_write_locked_range(),
		 * the page can either be locked by lock_page() or
		 * process_one_page().
		 * Let btrfs_page_unlock_writer() handle both cases.
		 */
		ASSERT(wbc);
		btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
					 wbc->range_end + 1 - wbc->range_start);
	} else {
		unlock_page(page);
	}
4167
	ASSERT(ret <= 0);
4168
	return ret;
4169 4170
}

4171
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4172
{
4173 4174
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
4175 4176
}

4177 4178
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
4179 4180 4181
	if (test_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags))
		btrfs_zone_finish_endio(eb->fs_info, eb->start, eb->len);

4182 4183 4184 4185 4186
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

4187
/*
4188
 * Lock extent buffer status and pages for writeback.
4189
 *
4190 4191 4192 4193 4194 4195
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
4196
 */
4197
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4198
			  struct extent_page_data *epd)
4199
{
4200
	struct btrfs_fs_info *fs_info = eb->fs_info;
4201
	int i, num_pages, failed_page_nr;
4202 4203 4204 4205
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
4206
		ret = flush_write_bio(epd);
4207 4208 4209
		if (ret < 0)
			return ret;
		flush = 1;
4210 4211 4212 4213 4214 4215 4216 4217
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
4218
			ret = flush_write_bio(epd);
4219 4220
			if (ret < 0)
				return ret;
4221 4222
			flush = 1;
		}
C
Chris Mason 已提交
4223 4224 4225 4226 4227
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
4228 4229 4230 4231
			btrfs_tree_unlock(eb);
		}
	}

4232 4233 4234 4235 4236 4237
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4238 4239
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4240
		spin_unlock(&eb->refs_lock);
4241
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4242 4243 4244
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4245
		ret = 1;
4246 4247
	} else {
		spin_unlock(&eb->refs_lock);
4248 4249 4250 4251
	}

	btrfs_tree_unlock(eb);

4252 4253 4254 4255 4256 4257 4258
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
	if (!ret || fs_info->sectorsize < PAGE_SIZE)
4259 4260
		return ret;

4261
	num_pages = num_extent_pages(eb);
4262
	for (i = 0; i < num_pages; i++) {
4263
		struct page *p = eb->pages[i];
4264 4265 4266

		if (!trylock_page(p)) {
			if (!flush) {
4267 4268 4269 4270 4271
				int err;

				err = flush_write_bio(epd);
				if (err < 0) {
					ret = err;
4272 4273 4274
					failed_page_nr = i;
					goto err_unlock;
				}
4275 4276 4277 4278 4279 4280 4281
				flush = 1;
			}
			lock_page(p);
		}
	}

	return ret;
4282 4283 4284 4285
err_unlock:
	/* Unlock already locked pages */
	for (i = 0; i < failed_page_nr; i++)
		unlock_page(eb->pages[i]);
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
	/*
	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
	 * be made and undo everything done before.
	 */
	btrfs_tree_lock(eb);
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
	end_extent_buffer_writeback(eb);
	spin_unlock(&eb->refs_lock);
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
				 fs_info->dirty_metadata_batch);
	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
	btrfs_tree_unlock(eb);
4300
	return ret;
4301 4302
}

4303
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4304
{
4305
	struct btrfs_fs_info *fs_info = eb->fs_info;
4306

4307
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4308 4309 4310
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4311 4312 4313 4314 4315 4316
	/*
	 * A read may stumble upon this buffer later, make sure that it gets an
	 * error and knows there was an error.
	 */
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);

4317 4318 4319 4320 4321 4322 4323 4324
	/*
	 * We need to set the mapping with the io error as well because a write
	 * error will flip the file system readonly, and then syncfs() will
	 * return a 0 because we are readonly if we don't modify the err seq for
	 * the superblock.
	 */
	mapping_set_error(page->mapping, -EIO);

4325 4326 4327 4328 4329 4330 4331
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4372
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4373 4374
		break;
	case 0:
4375
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4376 4377
		break;
	case 1:
4378
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4379 4380 4381 4382 4383 4384
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       start >> fs_info->sectorsize_bits);
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4411
static void end_bio_subpage_eb_writepage(struct bio *bio)
4412
{
4413
	struct btrfs_fs_info *fs_info;
4414 4415 4416
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4417 4418 4419
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
	ASSERT(fs_info->sectorsize < PAGE_SIZE);

4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4468
static void end_bio_extent_buffer_writepage(struct bio *bio)
4469
{
4470
	struct bio_vec *bvec;
4471
	struct extent_buffer *eb;
4472
	int done;
4473
	struct bvec_iter_all iter_all;
4474

4475
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4476
	bio_for_each_segment_all(bvec, bio, iter_all) {
4477 4478 4479 4480 4481 4482
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4483
		if (bio->bi_status ||
4484
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4485
			ClearPageUptodate(page);
4486
			set_btree_ioerr(page, eb);
4487 4488 4489 4490 4491 4492 4493 4494
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4495
	}
4496 4497 4498 4499

	bio_put(bio);
}

4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
	bool no_dirty_ebs = false;
	int ret;

4539 4540
	prepare_eb_write(eb);

4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4551 4552 4553
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4554
			end_bio_subpage_eb_writepage, 0, 0, false);
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
		update_nr_written(wbc, 1);
	return ret;
}

4574
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4575 4576 4577
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4578
	u64 disk_bytenr = eb->start;
4579
	int i, num_pages;
4580
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4581
	int ret = 0;
4582

4583
	prepare_eb_write(eb);
4584

4585
	num_pages = num_extent_pages(eb);
4586
	for (i = 0; i < num_pages; i++) {
4587
		struct page *p = eb->pages[i];
4588 4589 4590

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4591
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4592 4593
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4594
					 end_bio_extent_buffer_writepage,
4595
					 0, 0, false);
4596
		if (ret) {
4597
			set_btree_ioerr(p, eb);
4598 4599
			if (PageWriteback(p))
				end_page_writeback(p);
4600 4601 4602 4603 4604
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4605
		disk_bytenr += PAGE_SIZE;
4606
		update_nr_written(wbc, 1);
4607 4608 4609 4610 4611
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4612
			struct page *p = eb->pages[i];
4613
			clear_page_dirty_for_io(p);
4614 4615 4616 4617 4618 4619 4620
			unlock_page(p);
		}
	}

	return ret;
}

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
4647
	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
4663 4664
		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
			      subpage->bitmaps)) {
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4699
		ret = write_one_subpage_eb(eb, wbc, epd);
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
	end_write_bio(epd, ret);
	return ret;
}

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4738
	struct btrfs_block_group *cache = NULL;
4739 4740 4741 4742 4743 4744
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4745 4746 4747
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return submit_eb_subpage(page, wbc, epd);

4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4787 4788 4789 4790
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4791 4792 4793
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4794 4795 4796
		free_extent_buffer(eb);
		return ret;
	}
4797 4798
	if (cache) {
		/* Impiles write in zoned mode */
4799
		btrfs_put_block_group(cache);
4800 4801 4802 4803
		/* Mark the last eb in a block group */
		if (cache->seq_zone && eb->start + eb->len == cache->zone_capacity)
			set_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags);
	}
4804 4805 4806 4807 4808 4809 4810
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4811 4812 4813
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4814
	struct extent_buffer *eb_context = NULL;
4815
	struct extent_page_data epd = {
4816
		.bio_ctrl = { 0 },
4817 4818 4819
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4820
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4821 4822 4823 4824 4825 4826 4827 4828
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4829
	xa_mark_t tag;
4830

4831
	pagevec_init(&pvec);
4832 4833 4834
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4835 4836 4837 4838 4839
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4840
	} else {
4841 4842
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4843 4844 4845 4846 4847 4848
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4849
	btrfs_zoned_meta_io_lock(fs_info);
4850 4851 4852 4853
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4854
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4855
			tag))) {
4856 4857 4858 4859 4860
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4861 4862
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4863
				continue;
4864
			if (ret < 0) {
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4888 4889
	if (ret < 0) {
		end_write_bio(&epd, ret);
4890
		goto out;
4891
	}
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
	 */
J
Josef Bacik 已提交
4919
	if (!BTRFS_FS_ERROR(fs_info)) {
4920 4921
		ret = flush_write_bio(&epd);
	} else {
4922
		ret = -EROFS;
4923 4924
		end_write_bio(&epd, ret);
	}
4925 4926
out:
	btrfs_zoned_meta_io_unlock(fs_info);
4927 4928 4929
	return ret;
}

4930
/**
4931 4932
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4933
 * @mapping: address space structure to write
4934 4935
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4936 4937 4938 4939 4940 4941 4942 4943 4944
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4945
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4946
			     struct writeback_control *wbc,
4947
			     struct extent_page_data *epd)
4948
{
4949
	struct inode *inode = mapping->host;
4950 4951
	int ret = 0;
	int done = 0;
4952
	int nr_to_write_done = 0;
4953 4954 4955 4956
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4957 4958
	pgoff_t done_index;
	int range_whole = 0;
4959
	int scanned = 0;
M
Matthew Wilcox 已提交
4960
	xa_mark_t tag;
4961

4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4974
	pagevec_init(&pvec);
4975 4976 4977
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4978 4979 4980 4981 4982
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4983
	} else {
4984 4985
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4986 4987
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4988 4989
		scanned = 1;
	}
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5004 5005 5006
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
5007
retry:
5008
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5009
		tag_pages_for_writeback(mapping, index, end);
5010
	done_index = index;
5011
	while (!done && !nr_to_write_done && (index <= end) &&
5012 5013
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
5014 5015 5016 5017 5018
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

5019
			done_index = page->index + 1;
5020
			/*
M
Matthew Wilcox 已提交
5021 5022 5023 5024 5025
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
5026
			 */
5027
			if (!trylock_page(page)) {
5028 5029
				ret = flush_write_bio(epd);
				BUG_ON(ret < 0);
5030
				lock_page(page);
5031
			}
5032 5033 5034 5035 5036 5037

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
5038
			if (wbc->sync_mode != WB_SYNC_NONE) {
5039 5040 5041 5042
				if (PageWriteback(page)) {
					ret = flush_write_bio(epd);
					BUG_ON(ret < 0);
				}
5043
				wait_on_page_writeback(page);
C
Chris Mason 已提交
5044
			}
5045 5046 5047 5048 5049 5050 5051

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

5052
			ret = __extent_writepage(page, wbc, epd);
5053 5054 5055 5056
			if (ret < 0) {
				done = 1;
				break;
			}
5057 5058 5059 5060 5061 5062 5063

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
5064 5065 5066 5067
		}
		pagevec_release(&pvec);
		cond_resched();
	}
5068
	if (!scanned && !done) {
5069 5070 5071 5072 5073 5074
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
		ret = flush_write_bio(epd);
		if (!ret)
			goto retry;
5085
	}
5086 5087 5088 5089

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

5090
	btrfs_add_delayed_iput(inode);
5091
	return ret;
5092 5093
}

5094
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
5095 5096 5097
{
	int ret;
	struct extent_page_data epd = {
5098
		.bio_ctrl = { 0 },
5099
		.extent_locked = 0,
5100
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5101 5102 5103
	};

	ret = __extent_writepage(page, wbc, &epd);
5104 5105 5106 5107 5108
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
5109

5110 5111
	ret = flush_write_bio(&epd);
	ASSERT(ret <= 0);
5112 5113 5114
	return ret;
}

5115 5116 5117 5118 5119 5120
/*
 * Submit the pages in the range to bio for call sites which delalloc range has
 * already been ran (aka, ordered extent inserted) and all pages are still
 * locked.
 */
int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
5121
{
5122 5123
	bool found_error = false;
	int first_error = 0;
5124 5125 5126
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
5127
	u64 cur = start;
5128 5129
	unsigned long nr_pages;
	const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
5130
	struct extent_page_data epd = {
5131
		.bio_ctrl = { 0 },
5132
		.extent_locked = 1,
5133
		.sync_io = 1,
5134 5135
	};
	struct writeback_control wbc_writepages = {
5136
		.sync_mode	= WB_SYNC_ALL,
5137 5138
		.range_start	= start,
		.range_end	= end + 1,
5139 5140 5141
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
5142 5143
	};

5144 5145 5146 5147 5148
	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
	nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
		   PAGE_SHIFT;
	wbc_writepages.nr_to_write = nr_pages * 2;

5149
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5150
	while (cur <= end) {
5151 5152
		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);

5153 5154 5155 5156 5157 5158
		page = find_get_page(mapping, cur >> PAGE_SHIFT);
		/*
		 * All pages in the range are locked since
		 * btrfs_run_delalloc_range(), thus there is no way to clear
		 * the page dirty flag.
		 */
5159
		ASSERT(PageLocked(page));
5160 5161 5162 5163 5164 5165 5166
		ASSERT(PageDirty(page));
		clear_page_dirty_for_io(page);
		ret = __extent_writepage(page, &wbc_writepages, &epd);
		ASSERT(ret <= 0);
		if (ret < 0) {
			found_error = true;
			first_error = ret;
5167
		}
5168
		put_page(page);
5169
		cur = cur_end + 1;
5170 5171
	}

5172
	if (!found_error)
5173 5174
		ret = flush_write_bio(&epd);
	else
5175
		end_write_bio(&epd, ret);
5176 5177

	wbc_detach_inode(&wbc_writepages);
5178 5179
	if (found_error)
		return first_error;
5180 5181
	return ret;
}
5182

5183
int extent_writepages(struct address_space *mapping,
5184 5185
		      struct writeback_control *wbc)
{
5186
	struct inode *inode = mapping->host;
5187 5188
	int ret = 0;
	struct extent_page_data epd = {
5189
		.bio_ctrl = { 0 },
5190
		.extent_locked = 0,
5191
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5192 5193
	};

5194 5195 5196 5197
	/*
	 * Allow only a single thread to do the reloc work in zoned mode to
	 * protect the write pointer updates.
	 */
5198
	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
5199
	ret = extent_write_cache_pages(mapping, wbc, &epd);
5200
	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
5201 5202 5203 5204 5205 5206
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
	ret = flush_write_bio(&epd);
5207 5208 5209
	return ret;
}

5210
void extent_readahead(struct readahead_control *rac)
5211
{
5212
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
L
Liu Bo 已提交
5213
	struct page *pagepool[16];
5214
	struct extent_map *em_cached = NULL;
5215
	u64 prev_em_start = (u64)-1;
5216
	int nr;
5217

5218
	while ((nr = readahead_page_batch(rac, pagepool))) {
5219 5220
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5221

5222
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5223
				&em_cached, &bio_ctrl, &prev_em_start);
5224
	}
L
Liu Bo 已提交
5225

5226 5227 5228
	if (em_cached)
		free_extent_map(em_cached);

5229 5230
	if (bio_ctrl.bio) {
		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5231 5232
			return;
	}
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
}

/*
 * basic invalidatepage code, this waits on any locked or writeback
 * ranges corresponding to the page, and then deletes any extent state
 * records from the tree
 */
int extent_invalidatepage(struct extent_io_tree *tree,
			  struct page *page, unsigned long offset)
{
5243
	struct extent_state *cached_state = NULL;
M
Miao Xie 已提交
5244
	u64 start = page_offset(page);
5245
	u64 end = start + PAGE_SIZE - 1;
5246 5247
	size_t blocksize = page->mapping->host->i_sb->s_blocksize;

5248 5249 5250
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

5251
	start += ALIGN(offset, blocksize);
5252 5253 5254
	if (start > end)
		return 0;

5255
	lock_extent_bits(tree, start, end, &cached_state);
5256
	wait_on_page_writeback(page);
5257 5258 5259 5260 5261 5262 5263

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
5264 5265 5266
	return 0;
}

5267 5268 5269 5270 5271
/*
 * a helper for releasepage, this tests for areas of the page that
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
5272
static int try_release_extent_state(struct extent_io_tree *tree,
5273
				    struct page *page, gfp_t mask)
5274
{
M
Miao Xie 已提交
5275
	u64 start = page_offset(page);
5276
	u64 end = start + PAGE_SIZE - 1;
5277 5278
	int ret = 1;

N
Nikolay Borisov 已提交
5279
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5280
		ret = 0;
N
Nikolay Borisov 已提交
5281
	} else {
5282
		/*
5283 5284 5285 5286
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
5287
		 */
5288
		ret = __clear_extent_bit(tree, start, end,
5289 5290
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
5291 5292 5293 5294 5295 5296 5297 5298

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5299 5300 5301 5302
	}
	return ret;
}

5303 5304 5305 5306 5307
/*
 * a helper for releasepage.  As long as there are no locked extents
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5308
int try_release_extent_mapping(struct page *page, gfp_t mask)
5309 5310
{
	struct extent_map *em;
M
Miao Xie 已提交
5311
	u64 start = page_offset(page);
5312
	u64 end = start + PAGE_SIZE - 1;
5313 5314 5315
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5316

5317
	if (gfpflags_allow_blocking(mask) &&
5318
	    page->mapping->host->i_size > SZ_16M) {
5319
		u64 len;
5320
		while (start <= end) {
5321 5322 5323
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5324
			len = end - start + 1;
5325
			write_lock(&map->lock);
5326
			em = lookup_extent_mapping(map, start, len);
5327
			if (!em) {
5328
				write_unlock(&map->lock);
5329 5330
				break;
			}
5331 5332
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5333
				write_unlock(&map->lock);
5334 5335 5336
				free_extent_map(em);
				break;
			}
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5364 5365 5366 5367 5368 5369 5370 5371
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5372 5373 5374
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5375
next:
5376
			start = extent_map_end(em);
5377
			write_unlock(&map->lock);
5378 5379

			/* once for us */
5380
			free_extent_map(em);
5381 5382

			cond_resched(); /* Allow large-extent preemption. */
5383 5384
		}
	}
5385
	return try_release_extent_state(tree, page, mask);
5386 5387
}

5388 5389 5390 5391
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
5392
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5393
						u64 offset, u64 last)
5394
{
5395
	u64 sectorsize = btrfs_inode_sectorsize(inode);
5396 5397 5398 5399 5400 5401
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

5402
	while (1) {
5403 5404 5405
		len = last - offset;
		if (len == 0)
			break;
5406
		len = ALIGN(len, sectorsize);
5407
		em = btrfs_get_extent_fiemap(inode, offset, len);
5408
		if (IS_ERR_OR_NULL(em))
5409 5410 5411
			return em;

		/* if this isn't a hole return it */
5412
		if (em->block_start != EXTENT_MAP_HOLE)
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5458
	 * fiemap extent won't overlap with cached one.
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
5510
 * Emit last fiemap cache
5511
 *
5512 5513 5514 5515 5516 5517 5518
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5519
 */
5520
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5521
				  struct fiemap_cache *cache)
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5536
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5537
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
5538
{
J
Josef Bacik 已提交
5539
	int ret = 0;
5540
	u64 off;
Y
Yehuda Sadeh 已提交
5541 5542
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
5543 5544
	u32 found_type;
	u64 last;
5545
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
5546
	u64 disko = 0;
5547
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
5548
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
5549
	struct extent_map *em = NULL;
5550
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
5551
	struct btrfs_path *path;
5552
	struct btrfs_root *root = inode->root;
5553
	struct fiemap_cache cache = { 0 };
5554 5555
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
5556
	int end = 0;
5557 5558 5559
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
5560 5561 5562 5563

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
5564 5565 5566 5567
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

5568 5569 5570 5571 5572 5573 5574
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

5575 5576 5577 5578 5579
	/*
	 * We can't initialize that to 'start' as this could miss extents due
	 * to extent item merging
	 */
	off = 0;
5580 5581
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5582

5583 5584 5585 5586
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
5587 5588
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
5589
	if (ret < 0) {
5590
		goto out_free_ulist;
5591 5592 5593 5594
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
5595
	}
5596

J
Josef Bacik 已提交
5597 5598
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5599
	found_type = found_key.type;
J
Josef Bacik 已提交
5600

5601
	/* No extents, but there might be delalloc bits */
5602
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
5603
	    found_type != BTRFS_EXTENT_DATA_KEY) {
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
5615
	}
5616
	btrfs_release_path(path);
J
Josef Bacik 已提交
5617

5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5628
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5629
			 &cached_state);
5630

5631
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
5632 5633 5634 5635 5636 5637
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
5638

Y
Yehuda Sadeh 已提交
5639
	while (!end) {
5640
		u64 offset_in_extent = 0;
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5653

5654 5655
		/*
		 * record the offset from the start of the extent
5656 5657 5658
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5659
		 */
5660 5661
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5662
		em_end = extent_map_end(em);
5663
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5664
		flags = 0;
5665 5666 5667 5668
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5669

5670 5671 5672 5673 5674 5675 5676
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5677
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
5678 5679
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5680
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5681 5682
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5683
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5684 5685
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5686 5687 5688
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5689 5690 5691 5692

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5693 5694 5695
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5696
			 */
5697
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5698
						 bytenr, roots, tmp_ulist);
5699
			if (ret < 0)
5700
				goto out_free;
5701
			if (ret)
5702
				flags |= FIEMAP_EXTENT_SHARED;
5703
			ret = 0;
Y
Yehuda Sadeh 已提交
5704 5705 5706
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5707 5708
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5709 5710 5711

		free_extent_map(em);
		em = NULL;
5712 5713
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5714 5715 5716 5717
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5718
		/* now scan forward to see if this is really the last extent. */
5719
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5720 5721 5722 5723 5724
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5725 5726 5727
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5728 5729
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5730 5731 5732
		if (ret) {
			if (ret == 1)
				ret = 0;
5733
			goto out_free;
5734
		}
Y
Yehuda Sadeh 已提交
5735 5736
	}
out_free:
5737
	if (!ret)
5738
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5739 5740
	free_extent_map(em);
out:
5741
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5742
			     &cached_state);
5743 5744

out_free_ulist:
5745
	btrfs_free_path(path);
5746 5747
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5748 5749 5750
	return ret;
}

5751 5752 5753 5754 5755
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5756
int extent_buffer_under_io(const struct extent_buffer *eb)
5757 5758 5759 5760 5761 5762
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5763
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5764
{
5765
	struct btrfs_subpage *subpage;
5766

5767
	lockdep_assert_held(&page->mapping->private_lock);
5768

5769 5770 5771 5772
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
5773 5774 5775 5776 5777 5778
		/*
		 * Even there is no eb refs here, we may still have
		 * end_page_read() call relying on page::private.
		 */
		if (atomic_read(&subpage->readers))
			return true;
5779 5780 5781
	}
	return false;
}
5782

5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5796
		if (mapped)
5797 5798 5799 5800 5801
			spin_unlock(&page->mapping->private_lock);
		return;
	}

	if (fs_info->sectorsize == PAGE_SIZE) {
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5814
			/*
5815 5816
			 * We need to make sure we haven't be attached
			 * to a new eb.
5817
			 */
5818
			detach_page_private(page);
5819
		}
5820 5821
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
5839
	 * page range and no unfinished IO.
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5863

5864
		/* One for when we allocated the page */
5865
		put_page(page);
5866
	}
5867 5868 5869 5870 5871 5872 5873
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5874
	btrfs_release_extent_buffer_pages(eb);
5875
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5876 5877 5878
	__free_extent_buffer(eb);
}

5879 5880
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5881
		      unsigned long len)
5882 5883 5884
{
	struct extent_buffer *eb = NULL;

5885
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5886 5887
	eb->start = start;
	eb->len = len;
5888
	eb->fs_info = fs_info;
5889
	eb->bflags = 0;
5890
	init_rwsem(&eb->lock);
5891

5892 5893
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5894
	INIT_LIST_HEAD(&eb->release_list);
5895

5896
	spin_lock_init(&eb->refs_lock);
5897
	atomic_set(&eb->refs, 1);
5898
	atomic_set(&eb->io_pages, 0);
5899

5900
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5901 5902 5903 5904

	return eb;
}

5905
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5906
{
5907
	int i;
5908 5909
	struct page *p;
	struct extent_buffer *new;
5910
	int num_pages = num_extent_pages(src);
5911

5912
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5913 5914 5915
	if (new == NULL)
		return NULL;

5916 5917 5918 5919 5920 5921 5922
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5923
	for (i = 0; i < num_pages; i++) {
5924 5925
		int ret;

5926
		p = alloc_page(GFP_NOFS);
5927 5928 5929 5930
		if (!p) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5931 5932 5933 5934 5935 5936
		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			put_page(p);
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5937 5938
		WARN_ON(PageDirty(p));
		new->pages[i] = p;
5939
		copy_page(page_address(p), page_address(src->pages[i]));
5940
	}
5941
	set_extent_buffer_uptodate(new);
5942 5943 5944 5945

	return new;
}

5946 5947
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5948 5949
{
	struct extent_buffer *eb;
5950 5951
	int num_pages;
	int i;
5952

5953
	eb = __alloc_extent_buffer(fs_info, start, len);
5954 5955 5956
	if (!eb)
		return NULL;

5957
	num_pages = num_extent_pages(eb);
5958
	for (i = 0; i < num_pages; i++) {
5959 5960
		int ret;

5961
		eb->pages[i] = alloc_page(GFP_NOFS);
5962 5963
		if (!eb->pages[i])
			goto err;
5964 5965 5966
		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
		if (ret < 0)
			goto err;
5967 5968 5969
	}
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5970
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5971 5972 5973

	return eb;
err:
5974 5975
	for (; i > 0; i--) {
		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5976
		__free_page(eb->pages[i - 1]);
5977
	}
5978 5979 5980 5981
	__free_extent_buffer(eb);
	return NULL;
}

5982
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5983
						u64 start)
5984
{
5985
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5986 5987
}

5988 5989
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5990
	int refs;
5991 5992 5993 5994
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5995
	 *
5996 5997 5998
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
	 * calling releasepage when the tree reference is the only reference.
5999
	 *
6000 6001 6002 6003 6004
	 * In both cases, care is taken to ensure that the extent_buffer's
	 * pages are not under io. However, releasepage can be concurrently
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
6005
	 *
6006 6007 6008 6009 6010 6011 6012
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
6013
	 */
6014 6015 6016 6017
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

6018 6019
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6020
		atomic_inc(&eb->refs);
6021
	spin_unlock(&eb->refs_lock);
6022 6023
}

6024 6025
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
6026
{
6027
	int num_pages, i;
6028

6029 6030
	check_buffer_tree_ref(eb);

6031
	num_pages = num_extent_pages(eb);
6032
	for (i = 0; i < num_pages; i++) {
6033 6034
		struct page *p = eb->pages[i];

6035 6036
		if (p != accessed)
			mark_page_accessed(p);
6037 6038 6039
	}
}

6040 6041
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
6042 6043 6044
{
	struct extent_buffer *eb;

6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
6064
	}
6065 6066
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
6067 6068
}

6069 6070
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6071
					u64 start)
6072 6073 6074 6075 6076 6077 6078
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
6079
	eb = alloc_dummy_extent_buffer(fs_info, start);
6080
	if (!eb)
6081
		return ERR_PTR(-ENOMEM);
6082 6083
	eb->fs_info = fs_info;
again:
6084
	ret = radix_tree_preload(GFP_NOFS);
6085 6086
	if (ret) {
		exists = ERR_PTR(ret);
6087
		goto free_eb;
6088
	}
6089 6090
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
6091
				start >> fs_info->sectorsize_bits, eb);
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
			goto free_eb;
		else
			goto again;
	}
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

6111 6112
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
6113 6114 6115
{
	struct extent_buffer *exists;

6116 6117 6118 6119 6120 6121 6122 6123
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
	if (fs_info->sectorsize < PAGE_SIZE)
		return NULL;

6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

6143
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6144
					  u64 start, u64 owner_root, int level)
6145
{
6146
	unsigned long len = fs_info->nodesize;
6147 6148
	int num_pages;
	int i;
6149
	unsigned long index = start >> PAGE_SHIFT;
6150
	struct extent_buffer *eb;
6151
	struct extent_buffer *exists = NULL;
6152
	struct page *p;
6153
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
6154
	int uptodate = 1;
6155
	int ret;
6156

6157
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
6158 6159 6160 6161
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return ERR_PTR(-EINVAL);
	}

6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

6173 6174 6175 6176 6177 6178 6179 6180
	if (fs_info->sectorsize < PAGE_SIZE &&
	    offset_in_page(start) + len > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %lu",
			  start, len);
		return ERR_PTR(-EINVAL);
	}

6181
	eb = find_extent_buffer(fs_info, start);
6182
	if (eb)
6183 6184
		return eb;

6185
	eb = __alloc_extent_buffer(fs_info, start, len);
6186
	if (!eb)
6187
		return ERR_PTR(-ENOMEM);
6188
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6189

6190
	num_pages = num_extent_pages(eb);
6191
	for (i = 0; i < num_pages; i++, index++) {
6192 6193
		struct btrfs_subpage *prealloc = NULL;

6194
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6195 6196
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
6197
			goto free_eb;
6198
		}
J
Josef Bacik 已提交
6199

6200 6201 6202 6203 6204 6205 6206 6207 6208 6209
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
6210
		if (fs_info->sectorsize < PAGE_SIZE) {
6211 6212 6213
			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
			if (IS_ERR(prealloc)) {
				ret = PTR_ERR(prealloc);
6214 6215 6216 6217 6218
				unlock_page(p);
				put_page(p);
				exists = ERR_PTR(ret);
				goto free_eb;
			}
6219 6220
		}

J
Josef Bacik 已提交
6221
		spin_lock(&mapping->private_lock);
6222
		exists = grab_extent_buffer(fs_info, p);
6223 6224 6225 6226 6227
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
6228
			btrfs_free_subpage(prealloc);
6229
			goto free_eb;
6230
		}
6231 6232 6233
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
6244
		spin_unlock(&mapping->private_lock);
6245

6246
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6247
		eb->pages[i] = p;
6248 6249
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
6250 6251

		/*
6252 6253 6254 6255 6256
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
		 * opens a race with btree_releasepage which can free a page
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
6257
		 */
6258 6259
	}
	if (uptodate)
6260
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6261
again:
6262
	ret = radix_tree_preload(GFP_NOFS);
6263 6264
	if (ret) {
		exists = ERR_PTR(ret);
6265
		goto free_eb;
6266
	}
6267

6268 6269
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
6270
				start >> fs_info->sectorsize_bits, eb);
6271
	spin_unlock(&fs_info->buffer_lock);
6272
	radix_tree_preload_end();
6273
	if (ret == -EEXIST) {
6274
		exists = find_extent_buffer(fs_info, start);
6275 6276 6277
		if (exists)
			goto free_eb;
		else
6278
			goto again;
6279 6280
	}
	/* add one reference for the tree */
6281
	check_buffer_tree_ref(eb);
6282
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
6283 6284

	/*
6285 6286 6287
	 * Now it's safe to unlock the pages because any calls to
	 * btree_releasepage will correctly detect that a page belongs to a
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
6288
	 */
6289 6290
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6291 6292
	return eb;

6293
free_eb:
6294
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6295 6296 6297 6298
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
6299

6300
	btrfs_release_extent_buffer(eb);
6301
	return exists;
6302 6303
}

6304 6305 6306 6307 6308 6309 6310 6311
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6312
static int release_extent_buffer(struct extent_buffer *eb)
6313
	__releases(&eb->refs_lock)
6314
{
6315 6316
	lockdep_assert_held(&eb->refs_lock);

6317 6318
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6319
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6320
			struct btrfs_fs_info *fs_info = eb->fs_info;
6321

6322
			spin_unlock(&eb->refs_lock);
6323

6324 6325
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
6326
					  eb->start >> fs_info->sectorsize_bits);
6327
			spin_unlock(&fs_info->buffer_lock);
6328 6329
		} else {
			spin_unlock(&eb->refs_lock);
6330
		}
6331

6332
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6333
		/* Should be safe to release our pages at this point */
6334
		btrfs_release_extent_buffer_pages(eb);
6335
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6336
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6337 6338 6339 6340
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6341
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6342
		return 1;
6343 6344
	}
	spin_unlock(&eb->refs_lock);
6345 6346

	return 0;
6347 6348
}

6349 6350
void free_extent_buffer(struct extent_buffer *eb)
{
6351 6352
	int refs;
	int old;
6353 6354 6355
	if (!eb)
		return;

6356 6357
	while (1) {
		refs = atomic_read(&eb->refs);
6358 6359 6360
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6361 6362 6363 6364 6365 6366
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

6367 6368 6369
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6370
	    !extent_buffer_under_io(eb) &&
6371 6372 6373 6374 6375 6376 6377
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6378
	release_extent_buffer(eb);
6379 6380 6381 6382 6383
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6384 6385
		return;

6386 6387 6388
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6389
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6390 6391
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6392
	release_extent_buffer(eb);
6393 6394
}

6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6423
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6424
{
6425 6426
	int i;
	int num_pages;
6427 6428
	struct page *page;

6429 6430 6431
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return clear_subpage_extent_buffer_dirty(eb);

6432
	num_pages = num_extent_pages(eb);
6433 6434

	for (i = 0; i < num_pages; i++) {
6435
		page = eb->pages[i];
6436
		if (!PageDirty(page))
C
Chris Mason 已提交
6437
			continue;
6438
		lock_page(page);
6439
		btree_clear_page_dirty(page);
6440
		ClearPageError(page);
6441
		unlock_page(page);
6442
	}
6443
	WARN_ON(atomic_read(&eb->refs) == 0);
6444 6445
}

6446
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6447
{
6448 6449
	int i;
	int num_pages;
6450
	bool was_dirty;
6451

6452 6453
	check_buffer_tree_ref(eb);

6454
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6455

6456
	num_pages = num_extent_pages(eb);
6457
	WARN_ON(atomic_read(&eb->refs) == 0);
6458 6459
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6460 6461
	if (!was_dirty) {
		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6462

6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6482 6483 6484 6485 6486
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6487
	return was_dirty;
6488 6489
}

6490
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6491
{
6492
	struct btrfs_fs_info *fs_info = eb->fs_info;
6493
	struct page *page;
6494
	int num_pages;
6495
	int i;
6496

6497
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6498
	num_pages = num_extent_pages(eb);
6499
	for (i = 0; i < num_pages; i++) {
6500
		page = eb->pages[i];
C
Chris Mason 已提交
6501
		if (page)
6502 6503
			btrfs_page_clear_uptodate(fs_info, page,
						  eb->start, eb->len);
6504 6505 6506
	}
}

6507
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6508
{
6509
	struct btrfs_fs_info *fs_info = eb->fs_info;
6510
	struct page *page;
6511
	int num_pages;
6512
	int i;
6513

6514
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6515
	num_pages = num_extent_pages(eb);
6516
	for (i = 0; i < num_pages; i++) {
6517
		page = eb->pages[i];
6518
		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6519 6520 6521
	}
}

6522 6523 6524 6525 6526 6527
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6528
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6529 6530 6531 6532 6533 6534 6535
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6536 6537
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6559
	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6560 6561 6562 6563
	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
				 end_bio_extent_readpage, mirror_num, 0,
6564 6565 6566 6567 6568 6569 6570 6571 6572
				 true);
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6573
	if (bio_ctrl.bio) {
6574 6575
		int tmp;

6576 6577
		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
		bio_ctrl.bio = NULL;
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
		if (tmp < 0)
			return tmp;
	}
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6590
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6591
{
6592
	int i;
6593 6594 6595
	struct page *page;
	int err;
	int ret = 0;
6596 6597
	int locked_pages = 0;
	int all_uptodate = 1;
6598
	int num_pages;
6599
	unsigned long num_reads = 0;
6600
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6601

6602
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6603 6604
		return 0;

6605 6606 6607 6608 6609 6610 6611 6612
	/*
	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
	 * operation, which could potentially still be in flight.  In this case
	 * we simply want to return an error.
	 */
	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
		return -EIO;

6613 6614 6615
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6616
	num_pages = num_extent_pages(eb);
6617
	for (i = 0; i < num_pages; i++) {
6618
		page = eb->pages[i];
6619
		if (wait == WAIT_NONE) {
6620 6621 6622 6623 6624 6625 6626
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6627
			if (!trylock_page(page))
6628
				goto unlock_exit;
6629 6630 6631
		} else {
			lock_page(page);
		}
6632
		locked_pages++;
6633 6634 6635 6636 6637 6638
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6639
	for (i = 0; i < num_pages; i++) {
6640
		page = eb->pages[i];
6641 6642
		if (!PageUptodate(page)) {
			num_reads++;
6643
			all_uptodate = 0;
6644
		}
6645
	}
6646

6647
	if (all_uptodate) {
6648
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6649 6650 6651
		goto unlock_exit;
	}

6652
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6653
	eb->read_mirror = 0;
6654
	atomic_set(&eb->io_pages, num_reads);
6655 6656 6657 6658 6659
	/*
	 * It is possible for releasepage to clear the TREE_REF bit before we
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6660
	for (i = 0; i < num_pages; i++) {
6661
		page = eb->pages[i];
6662

6663
		if (!PageUptodate(page)) {
6664 6665 6666 6667 6668 6669
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6670
			ClearPageError(page);
6671
			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6672 6673 6674
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
					 mirror_num, 0, false);
6675 6676
			if (err) {
				/*
6677 6678 6679
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6680
				 */
6681 6682 6683
				ret = err;
				SetPageError(page);
				unlock_page(page);
6684 6685
				atomic_dec(&eb->io_pages);
			}
6686 6687 6688 6689 6690
		} else {
			unlock_page(page);
		}
	}

6691 6692 6693
	if (bio_ctrl.bio) {
		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
		bio_ctrl.bio = NULL;
6694 6695
		if (err)
			return err;
6696
	}
6697

6698
	if (ret || wait != WAIT_COMPLETE)
6699
		return ret;
C
Chris Mason 已提交
6700

6701
	for (i = 0; i < num_pages; i++) {
6702
		page = eb->pages[i];
6703
		wait_on_page_locked(page);
C
Chris Mason 已提交
6704
		if (!PageUptodate(page))
6705 6706
			ret = -EIO;
	}
C
Chris Mason 已提交
6707

6708
	return ret;
6709 6710

unlock_exit:
C
Chris Mason 已提交
6711
	while (locked_pages > 0) {
6712
		locked_pages--;
6713 6714
		page = eb->pages[locked_pages];
		unlock_page(page);
6715 6716
	}
	return ret;
6717 6718
}

6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6749 6750
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6751 6752 6753 6754 6755 6756
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6757
	unsigned long i = get_eb_page_index(start);
6758

6759
	if (check_eb_range(eb, start, len))
6760
		return;
6761

6762
	offset = get_eb_offset_in_page(eb, start);
6763

C
Chris Mason 已提交
6764
	while (len > 0) {
6765
		page = eb->pages[i];
6766

6767
		cur = min(len, (PAGE_SIZE - offset));
6768
		kaddr = page_address(page);
6769 6770 6771 6772 6773 6774 6775 6776 6777
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6778 6779 6780
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6781 6782 6783 6784 6785 6786
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6787
	unsigned long i = get_eb_page_index(start);
6788 6789 6790 6791 6792
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6793
	offset = get_eb_offset_in_page(eb, start);
6794 6795

	while (len > 0) {
6796
		page = eb->pages[i];
6797

6798
		cur = min(len, (PAGE_SIZE - offset));
6799
		kaddr = page_address(page);
6800
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6814 6815
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6816 6817 6818 6819 6820 6821
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6822
	unsigned long i = get_eb_page_index(start);
6823 6824
	int ret = 0;

6825 6826
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6827

6828
	offset = get_eb_offset_in_page(eb, start);
6829

C
Chris Mason 已提交
6830
	while (len > 0) {
6831
		page = eb->pages[i];
6832

6833
		cur = min(len, (PAGE_SIZE - offset));
6834

6835
		kaddr = page_address(page);
6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

	if (fs_info->sectorsize < PAGE_SIZE) {
		bool uptodate;

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
		WARN_ON(!uptodate);
	} else {
		WARN_ON(!PageUptodate(page));
	}
}

6870
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6871 6872 6873 6874
		const void *srcv)
{
	char *kaddr;

6875
	assert_eb_page_uptodate(eb, eb->pages[0]);
6876 6877 6878 6879
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6880 6881
}

6882
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6883 6884 6885
{
	char *kaddr;

6886
	assert_eb_page_uptodate(eb, eb->pages[0]);
6887 6888 6889
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6890 6891
}

6892
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6893 6894 6895 6896 6897 6898 6899
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6900
	unsigned long i = get_eb_page_index(start);
6901

6902 6903
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6904 6905
	if (check_eb_range(eb, start, len))
		return;
6906

6907
	offset = get_eb_offset_in_page(eb, start);
6908

C
Chris Mason 已提交
6909
	while (len > 0) {
6910
		page = eb->pages[i];
6911
		assert_eb_page_uptodate(eb, page);
6912

6913
		cur = min(len, PAGE_SIZE - offset);
6914
		kaddr = page_address(page);
6915 6916 6917 6918 6919 6920 6921 6922 6923
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6924
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6925
		unsigned long len)
6926 6927 6928 6929 6930
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6931
	unsigned long i = get_eb_page_index(start);
6932

6933 6934
	if (check_eb_range(eb, start, len))
		return;
6935

6936
	offset = get_eb_offset_in_page(eb, start);
6937

C
Chris Mason 已提交
6938
	while (len > 0) {
6939
		page = eb->pages[i];
6940
		assert_eb_page_uptodate(eb, page);
6941

6942
		cur = min(len, PAGE_SIZE - offset);
6943
		kaddr = page_address(page);
6944
		memset(kaddr + offset, 0, cur);
6945 6946 6947 6948 6949 6950 6951

		len -= cur;
		offset = 0;
		i++;
	}
}

6952 6953
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6954 6955
{
	int i;
6956
	int num_pages;
6957 6958 6959

	ASSERT(dst->len == src->len);

6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973
	if (dst->fs_info->sectorsize == PAGE_SIZE) {
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
6974 6975
}

6976 6977
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
6978 6979 6980 6981 6982 6983 6984 6985
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6986
	unsigned long i = get_eb_page_index(dst_offset);
6987

6988 6989 6990 6991
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

6992 6993
	WARN_ON(src->len != dst_len);

6994
	offset = get_eb_offset_in_page(dst, dst_offset);
6995

C
Chris Mason 已提交
6996
	while (len > 0) {
6997
		page = dst->pages[i];
6998
		assert_eb_page_uptodate(dst, page);
6999

7000
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
7001

7002
		kaddr = page_address(page);
7003 7004 7005 7006 7007 7008 7009 7010 7011
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
7025
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
7038
	offset = start + offset_in_page(eb->start) + byte_offset;
7039

7040
	*page_index = offset >> PAGE_SHIFT;
7041
	*page_offset = offset_in_page(offset);
7042 7043 7044 7045 7046 7047 7048 7049
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
7050
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
7051 7052
			   unsigned long nr)
{
7053
	u8 *kaddr;
7054 7055 7056 7057 7058 7059
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
7060
	assert_eb_page_uptodate(eb, page);
7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
7072
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7073 7074
			      unsigned long pos, unsigned long len)
{
7075
	u8 *kaddr;
7076 7077 7078 7079 7080
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7081
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7082 7083 7084

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7085
	assert_eb_page_uptodate(eb, page);
7086 7087 7088 7089 7090 7091
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7092
		mask_to_set = ~0;
7093
		if (++offset >= PAGE_SIZE && len > 0) {
7094 7095
			offset = 0;
			page = eb->pages[++i];
7096
			assert_eb_page_uptodate(eb, page);
7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
7114 7115 7116
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
7117
{
7118
	u8 *kaddr;
7119 7120 7121 7122 7123
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7124
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7125 7126 7127

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7128
	assert_eb_page_uptodate(eb, page);
7129 7130 7131 7132 7133 7134
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7135
		mask_to_clear = ~0;
7136
		if (++offset >= PAGE_SIZE && len > 0) {
7137 7138
			offset = 0;
			page = eb->pages[++i];
7139
			assert_eb_page_uptodate(eb, page);
7140 7141 7142 7143 7144 7145 7146 7147 7148
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

7149 7150 7151 7152 7153 7154
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

7155 7156 7157 7158
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
7159
	char *dst_kaddr = page_address(dst_page);
7160
	char *src_kaddr;
7161
	int must_memmove = 0;
7162

7163
	if (dst_page != src_page) {
7164
		src_kaddr = page_address(src_page);
7165
	} else {
7166
		src_kaddr = dst_kaddr;
7167 7168
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
7169
	}
7170

7171 7172 7173 7174
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7175 7176
}

7177 7178 7179
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
7180 7181 7182 7183 7184 7185 7186
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

7187 7188 7189
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7190

C
Chris Mason 已提交
7191
	while (len > 0) {
7192 7193
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7194

7195 7196
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
7197

7198
		cur = min(len, (unsigned long)(PAGE_SIZE -
7199 7200
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
7201
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7202

7203
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7204 7205 7206 7207 7208 7209 7210 7211
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

7212 7213 7214
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
7215 7216 7217 7218 7219 7220 7221 7222 7223
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

7224 7225 7226
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7227
	if (dst_offset < src_offset) {
7228 7229 7230
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
7231
	while (len > 0) {
7232 7233
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
7234

7235 7236
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7237 7238 7239

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
7240
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7241 7242 7243 7244 7245 7246 7247 7248
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
7249

7250
#define GANG_LOOKUP_SIZE	16
7251 7252 7253
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
7254
	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
7255 7256
	struct extent_buffer *found = NULL;
	u64 page_start = page_offset(page);
7257
	u64 cur = page_start;
7258 7259 7260 7261

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	lockdep_assert_held(&fs_info->buffer_lock);

7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280
	while (cur < page_start + PAGE_SIZE) {
		int ret;
		int i;

		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
				(void **)gang, cur >> fs_info->sectorsize_bits,
				min_t(unsigned int, GANG_LOOKUP_SIZE,
				      PAGE_SIZE / fs_info->nodesize));
		if (ret == 0)
			goto out;
		for (i = 0; i < ret; i++) {
			/* Already beyond page end */
			if (gang[i]->start >= page_start + PAGE_SIZE)
				goto out;
			/* Found one */
			if (gang[i]->start >= bytenr) {
				found = gang[i];
				goto out;
			}
7281
		}
7282
		cur = gang[ret - 1]->start + gang[ret - 1]->len;
7283
	}
7284
out:
7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357
	return found;
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7358
int try_release_extent_buffer(struct page *page)
7359
{
7360 7361
	struct extent_buffer *eb;

7362 7363 7364
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return try_release_subpage_extent_buffer(page);

7365
	/*
7366 7367
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7368 7369 7370 7371
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
7372
		return 1;
7373
	}
7374

7375 7376
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7377 7378

	/*
7379 7380 7381
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7382
	 */
7383
	spin_lock(&eb->refs_lock);
7384
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7385 7386 7387
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7388
	}
7389
	spin_unlock(&page->mapping->private_lock);
7390

7391
	/*
7392 7393
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7394
	 */
7395 7396 7397
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7398
	}
7399

7400
	return release_extent_buffer(eb);
7401
}
7402 7403 7404 7405 7406

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7407
 * @owner_root: objectid of the root that owns this eb
7408
 * @gen:	generation for the uptodate check, can be 0
7409
 * @level:	level for the eb
7410 7411 7412 7413 7414 7415
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7416
				u64 bytenr, u64 owner_root, u64 gen, int level)
7417 7418 7419 7420
{
	struct extent_buffer *eb;
	int ret;

7421
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7449 7450 7451
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7452
}