extent_io.c 174.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8 9 10 11 12 13
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
14
#include <linux/prefetch.h>
D
Dan Magenheimer 已提交
15
#include <linux/cleancache.h>
16
#include "extent_io.h"
17
#include "extent-io-tree.h"
18
#include "extent_map.h"
19 20
#include "ctree.h"
#include "btrfs_inode.h"
21
#include "volumes.h"
22
#include "check-integrity.h"
23
#include "locking.h"
24
#include "rcu-string.h"
25
#include "backref.h"
26
#include "disk-io.h"
27
#include "subpage.h"
28
#include "zoned.h"
29 30 31

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
32
static struct bio_set btrfs_bioset;
33

34 35 36 37 38
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

39
#ifdef CONFIG_BTRFS_DEBUG
40
static LIST_HEAD(states);
C
Chris Mason 已提交
41
static DEFINE_SPINLOCK(leak_lock);
42

43 44 45
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
46 47 48
{
	unsigned long flags;

49
	spin_lock_irqsave(lock, flags);
50
	list_add(new, head);
51
	spin_unlock_irqrestore(lock, flags);
52 53
}

54 55
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
56 57 58
{
	unsigned long flags;

59
	spin_lock_irqsave(lock, flags);
60
	list_del(entry);
61
	spin_unlock_irqrestore(lock, flags);
62 63
}

64
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
65 66
{
	struct extent_buffer *eb;
67
	unsigned long flags;
68

69 70 71 72 73 74 75
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

76 77 78 79
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
80 81 82 83
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
84 85 86
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
87
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
88 89 90 91 92 93
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

94 95
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
96
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
97 98
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
99
		       refcount_read(&state->refs));
100 101 102 103
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
104

105 106
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
107
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
108
		struct extent_io_tree *tree, u64 start, u64 end)
109
{
110 111 112 113 114 115 116 117 118 119 120 121
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
122
}
123
#else
124 125
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
126
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
127
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
128
#endif
129 130 131 132 133 134 135 136 137

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

struct extent_page_data {
	struct bio *bio;
138 139 140
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
141 142
	unsigned int extent_locked:1;

143
	/* tells the submit_bio code to use REQ_SYNC */
144
	unsigned int sync_io:1;
145 146
};

147
static int add_extent_changeset(struct extent_state *state, u32 bits,
148 149 150 151 152 153
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
154
		return 0;
155
	if (set && (state->state & bits) == bits)
156
		return 0;
157
	if (!set && (state->state & bits) == 0)
158
		return 0;
159
	changeset->bytes_changed += state->end - state->start + 1;
160
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
161
			GFP_ATOMIC);
162
	return ret;
163 164
}

165 166
int __must_check submit_one_bio(struct bio *bio, int mirror_num,
				unsigned long bio_flags)
167 168 169 170 171 172
{
	blk_status_t ret = 0;
	struct extent_io_tree *tree = bio->bi_private;

	bio->bi_private = NULL;

173 174 175 176
	if (is_data_inode(tree->private_data))
		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
					    bio_flags);
	else
177 178
		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
						mirror_num, bio_flags);
179 180 181 182

	return blk_status_to_errno(ret);
}

183 184 185 186 187 188 189 190 191 192
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
	if (epd->bio) {
		epd->bio->bi_status = errno_to_blk_status(ret);
		bio_endio(epd->bio);
		epd->bio = NULL;
	}
}

193 194 195 196 197 198 199
/*
 * Submit bio from extent page data via submit_one_bio
 *
 * Return 0 if everything is OK.
 * Return <0 for error.
 */
static int __must_check flush_write_bio(struct extent_page_data *epd)
200
{
201
	int ret = 0;
202

203
	if (epd->bio) {
204
		ret = submit_one_bio(epd->bio, 0, 0);
205 206 207 208 209 210 211
		/*
		 * Clean up of epd->bio is handled by its endio function.
		 * And endio is either triggered by successful bio execution
		 * or the error handler of submit bio hook.
		 * So at this point, no matter what happened, we don't need
		 * to clean up epd->bio.
		 */
212 213
		epd->bio = NULL;
	}
214
	return ret;
215
}
216

217
int __init extent_state_cache_init(void)
218
{
D
David Sterba 已提交
219
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
220
			sizeof(struct extent_state), 0,
221
			SLAB_MEM_SPREAD, NULL);
222 223
	if (!extent_state_cache)
		return -ENOMEM;
224 225
	return 0;
}
226

227 228
int __init extent_io_init(void)
{
D
David Sterba 已提交
229
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
230
			sizeof(struct extent_buffer), 0,
231
			SLAB_MEM_SPREAD, NULL);
232
	if (!extent_buffer_cache)
233
		return -ENOMEM;
234

235 236 237
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
			offsetof(struct btrfs_io_bio, bio),
			BIOSET_NEED_BVECS))
238
		goto free_buffer_cache;
239

240
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
241 242
		goto free_bioset;

243 244
	return 0;

245
free_bioset:
246
	bioset_exit(&btrfs_bioset);
247

248 249 250
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
251 252
	return -ENOMEM;
}
253

254 255 256
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
257 258 259
	kmem_cache_destroy(extent_state_cache);
}

260
void __cold extent_io_exit(void)
261
{
262 263 264 265 266
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
267
	kmem_cache_destroy(extent_buffer_cache);
268
	bioset_exit(&btrfs_bioset);
269 270
}

271 272 273 274 275 276 277 278 279
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

280
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
281 282
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
283
{
284
	tree->fs_info = fs_info;
285
	tree->state = RB_ROOT;
286
	tree->dirty_bytes = 0;
287
	spin_lock_init(&tree->lock);
288
	tree->private_data = private_data;
289
	tree->owner = owner;
290 291
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
292 293
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

323
static struct extent_state *alloc_extent_state(gfp_t mask)
324 325 326
{
	struct extent_state *state;

327 328 329 330 331
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
332
	state = kmem_cache_alloc(extent_state_cache, mask);
333
	if (!state)
334 335
		return state;
	state->state = 0;
336
	state->failrec = NULL;
337
	RB_CLEAR_NODE(&state->rb_node);
338
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
339
	refcount_set(&state->refs, 1);
340
	init_waitqueue_head(&state->wq);
341
	trace_alloc_extent_state(state, mask, _RET_IP_);
342 343 344
	return state;
}

345
void free_extent_state(struct extent_state *state)
346 347 348
{
	if (!state)
		return;
349
	if (refcount_dec_and_test(&state->refs)) {
350
		WARN_ON(extent_state_in_tree(state));
351
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
352
		trace_free_extent_state(state, _RET_IP_);
353 354 355 356
		kmem_cache_free(extent_state_cache, state);
	}
}

357 358 359
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
360 361 362
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
363
{
364
	struct rb_node **p;
C
Chris Mason 已提交
365
	struct rb_node *parent = NULL;
366 367
	struct tree_entry *entry;

368 369 370 371 372 373
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

374
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
375
	while (*p) {
376 377 378 379 380 381 382 383 384 385 386
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

387
do_insert:
388 389 390 391 392
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
393
/**
394 395
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
396
 *
397 398 399 400 401 402 403
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
404 405 406 407 408 409 410
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
411
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
412
				      struct rb_node **next_ret,
413
				      struct rb_node **prev_ret,
414 415
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
416
{
417
	struct rb_root *root = &tree->state;
418
	struct rb_node **n = &root->rb_node;
419 420 421 422 423
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

424 425 426
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
427 428 429
		prev_entry = entry;

		if (offset < entry->start)
430
			n = &(*n)->rb_left;
431
		else if (offset > entry->end)
432
			n = &(*n)->rb_right;
C
Chris Mason 已提交
433
		else
434
			return *n;
435 436
	}

437 438 439 440 441
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

442
	if (next_ret) {
443
		orig_prev = prev;
C
Chris Mason 已提交
444
		while (prev && offset > prev_entry->end) {
445 446 447
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
448
		*next_ret = prev;
449 450 451
		prev = orig_prev;
	}

452
	if (prev_ret) {
453
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
454
		while (prev && offset < prev_entry->start) {
455 456 457
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
458
		*prev_ret = prev;
459 460 461 462
	}
	return NULL;
}

463 464 465 466 467
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
468
{
469
	struct rb_node *next= NULL;
470
	struct rb_node *ret;
471

472
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
473
	if (!ret)
474
		return next;
475 476 477
	return ret;
}

478 479 480 481 482 483
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

484 485 486 487 488 489 490 491 492
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
493 494
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
495 496 497 498
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
499
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
500
		return;
501 502 503 504 505 506

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
507 508 509 510
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
511 512
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
513
			RB_CLEAR_NODE(&other->rb_node);
514 515 516 517 518 519 520 521
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
522 523 524 525
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
526 527
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
528
			RB_CLEAR_NODE(&other->rb_node);
529
			free_extent_state(other);
530 531 532 533
		}
	}
}

534
static void set_state_bits(struct extent_io_tree *tree,
535
			   struct extent_state *state, u32 *bits,
536
			   struct extent_changeset *changeset);
537

538 539 540 541 542 543 544 545 546 547 548 549
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
550 551
			struct rb_node ***p,
			struct rb_node **parent,
552
			u32 *bits, struct extent_changeset *changeset)
553 554 555
{
	struct rb_node *node;

556 557 558 559 560
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
561 562
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
563

564
	set_state_bits(tree, state, bits, changeset);
565

566
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
567 568 569
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
570 571
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
572
		       found->start, found->end, start, end);
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
597

598 599
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
600

601 602 603 604 605
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

606 607
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
608 609 610 611 612 613 614
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

615 616 617 618 619 620 621 622 623
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

624 625
/*
 * utility function to clear some bits in an extent state struct.
626
 * it will optionally wake up anyone waiting on this state (wake == 1).
627 628 629 630
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
631 632
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
633
					    u32 *bits, int wake,
634
					    struct extent_changeset *changeset)
635
{
636
	struct extent_state *next;
637
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
638
	int ret;
639

640
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
641 642 643 644
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
645 646 647 648

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

649 650
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
651
	state->state &= ~bits_to_clear;
652 653
	if (wake)
		wake_up(&state->wq);
654
	if (state->state == 0) {
655
		next = next_state(state);
656
		if (extent_state_in_tree(state)) {
657
			rb_erase(&state->rb_node, &tree->state);
658
			RB_CLEAR_NODE(&state->rb_node);
659 660 661 662 663 664
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
665
		next = next_state(state);
666
	}
667
	return next;
668 669
}

670 671 672 673 674 675 676 677 678
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

679
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
680
{
681
	btrfs_panic(tree->fs_info, err,
682
	"locking error: extent tree was modified by another thread while locked");
683 684
}

685 686 687 688 689 690 691 692 693 694
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
695
 * This takes the tree lock, and returns 0 on success and < 0 on error.
696
 */
697
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698 699 700
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
701 702
{
	struct extent_state *state;
703
	struct extent_state *cached;
704 705
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
706
	u64 last_end;
707
	int err;
708
	int clear = 0;
709

710
	btrfs_debug_check_extent_io_range(tree, start, end);
711
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712

713 714 715
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

716 717 718
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
719
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720
		clear = 1;
721
again:
722
	if (!prealloc && gfpflags_allow_blocking(mask)) {
723 724 725 726 727 728 729
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
730 731 732
		prealloc = alloc_extent_state(mask);
	}

733
	spin_lock(&tree->lock);
734 735
	if (cached_state) {
		cached = *cached_state;
736 737 738 739 740 741

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

742 743
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
744
			if (clear)
745
				refcount_dec(&cached->refs);
746
			state = cached;
747
			goto hit_next;
748
		}
749 750
		if (clear)
			free_extent_state(cached);
751
	}
752 753 754 755
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
756
	node = tree_search(tree, start);
757 758 759
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
760
hit_next:
761 762 763
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
764
	last_end = state->end;
765

766
	/* the state doesn't have the wanted bits, go ahead */
767 768
	if (!(state->state & bits)) {
		state = next_state(state);
769
		goto next;
770
	}
771

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
789 790
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
791
		err = split_state(tree, state, prealloc, start);
792 793 794
		if (err)
			extent_io_tree_panic(tree, err);

795 796 797 798
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
799 800
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
801
			goto next;
802 803 804 805 806 807 808 809 810 811
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
812 813
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
814
		err = split_state(tree, state, prealloc, end + 1);
815 816 817
		if (err)
			extent_io_tree_panic(tree, err);

818 819
		if (wake)
			wake_up(&state->wq);
820

821
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
822

823 824 825
		prealloc = NULL;
		goto out;
	}
826

827
	state = clear_state_bit(tree, state, &bits, wake, changeset);
828
next:
829 830 831
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
832
	if (start <= end && state && !need_resched())
833
		goto hit_next;
834 835 836 837

search_again:
	if (start > end)
		goto out;
838
	spin_unlock(&tree->lock);
839
	if (gfpflags_allow_blocking(mask))
840 841
		cond_resched();
	goto again;
842 843 844 845 846 847 848 849

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

850 851
}

852 853
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
854 855
		__releases(tree->lock)
		__acquires(tree->lock)
856 857 858
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859
	spin_unlock(&tree->lock);
860
	schedule();
861
	spin_lock(&tree->lock);
862 863 864 865 866 867 868 869
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
870
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871
			    u32 bits)
872 873 874 875
{
	struct extent_state *state;
	struct rb_node *node;

876
	btrfs_debug_check_extent_io_range(tree, start, end);
877

878
	spin_lock(&tree->lock);
879 880 881 882 883 884
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
885
		node = tree_search(tree, start);
886
process_node:
887 888 889 890 891 892 893 894 895 896
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
897
			refcount_inc(&state->refs);
898 899 900 901 902 903 904 905 906
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

907 908 909 910
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
911 912
	}
out:
913
	spin_unlock(&tree->lock);
914 915
}

916
static void set_state_bits(struct extent_io_tree *tree,
917
			   struct extent_state *state,
918
			   u32 *bits, struct extent_changeset *changeset)
919
{
920
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
921
	int ret;
J
Josef Bacik 已提交
922

923 924 925
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

926
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927 928 929
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
930 931
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
932
	state->state |= bits_to_set;
933 934
}

935 936
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
937
				 unsigned flags)
938 939
{
	if (cached_ptr && !(*cached_ptr)) {
940
		if (!flags || (state->state & flags)) {
941
			*cached_ptr = state;
942
			refcount_inc(&state->refs);
943 944 945 946
		}
	}
}

947 948 949 950
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
951
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
952 953
}

954
/*
955 956
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
957
 *
958 959 960
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
961
 *
962
 * [start, end] is inclusive This takes the tree lock.
963
 */
964 965
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
966 967
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
968 969 970 971
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
972 973
	struct rb_node **p;
	struct rb_node *parent;
974 975 976
	int err = 0;
	u64 last_start;
	u64 last_end;
977

978
	btrfs_debug_check_extent_io_range(tree, start, end);
979
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
980

981 982 983 984
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
985
again:
986
	if (!prealloc && gfpflags_allow_blocking(mask)) {
987 988 989 990 991 992 993
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
994 995 996
		prealloc = alloc_extent_state(mask);
	}

997
	spin_lock(&tree->lock);
998 999
	if (cached_state && *cached_state) {
		state = *cached_state;
1000
		if (state->start <= start && state->end > start &&
1001
		    extent_state_in_tree(state)) {
1002 1003 1004 1005
			node = &state->rb_node;
			goto hit_next;
		}
	}
1006 1007 1008 1009
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1010
	node = tree_search_for_insert(tree, start, &p, &parent);
1011
	if (!node) {
1012 1013
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1014
		err = insert_state(tree, prealloc, start, end,
1015
				   &p, &parent, &bits, changeset);
1016 1017 1018
		if (err)
			extent_io_tree_panic(tree, err);

1019
		cache_state(prealloc, cached_state);
1020 1021 1022 1023
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1024
hit_next:
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1035
		if (state->state & exclusive_bits) {
1036 1037 1038 1039
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1040

1041
		set_state_bits(tree, state, &bits, changeset);
1042
		cache_state(state, cached_state);
1043
		merge_state(tree, state);
1044 1045 1046
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1047 1048 1049 1050
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1071
		if (state->state & exclusive_bits) {
1072 1073 1074 1075
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1076

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1087 1088
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1089
		err = split_state(tree, state, prealloc, start);
1090 1091 1092
		if (err)
			extent_io_tree_panic(tree, err);

1093 1094 1095 1096
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1097
			set_state_bits(tree, state, &bits, changeset);
1098
			cache_state(state, cached_state);
1099
			merge_state(tree, state);
1100 1101 1102
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1103 1104 1105 1106
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1122
			this_end = last_start - 1;
1123 1124 1125

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1126 1127 1128 1129 1130

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1131
		err = insert_state(tree, prealloc, start, this_end,
1132
				   NULL, NULL, &bits, changeset);
1133 1134 1135
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1136 1137
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1148
		if (state->state & exclusive_bits) {
1149 1150 1151 1152
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1153 1154 1155

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1156
		err = split_state(tree, state, prealloc, end + 1);
1157 1158
		if (err)
			extent_io_tree_panic(tree, err);
1159

1160
		set_state_bits(tree, prealloc, &bits, changeset);
1161
		cache_state(prealloc, cached_state);
1162 1163 1164 1165 1166
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1167 1168 1169 1170 1171 1172 1173
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1174 1175

out:
1176
	spin_unlock(&tree->lock);
1177 1178 1179 1180 1181 1182 1183
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1184
/**
L
Liu Bo 已提交
1185 1186
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1187 1188 1189 1190 1191
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1192
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1193 1194 1195 1196 1197 1198
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1199 1200
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1201 1202
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1203
		       u32 bits, u32 clear_bits,
1204
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1205 1206 1207 1208
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1209 1210
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1211 1212 1213
	int err = 0;
	u64 last_start;
	u64 last_end;
1214
	bool first_iteration = true;
J
Josef Bacik 已提交
1215

1216
	btrfs_debug_check_extent_io_range(tree, start, end);
1217 1218
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1219

J
Josef Bacik 已提交
1220
again:
1221
	if (!prealloc) {
1222 1223 1224 1225 1226 1227 1228
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1229
		prealloc = alloc_extent_state(GFP_NOFS);
1230
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1231 1232 1233 1234
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1235 1236 1237
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1238
		    extent_state_in_tree(state)) {
1239 1240 1241 1242 1243
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1244 1245 1246 1247
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1248
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1249 1250
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1251 1252 1253 1254
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1255
		err = insert_state(tree, prealloc, start, end,
1256
				   &p, &parent, &bits, NULL);
1257 1258
		if (err)
			extent_io_tree_panic(tree, err);
1259 1260
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1275
		set_state_bits(tree, state, &bits, NULL);
1276
		cache_state(state, cached_state);
1277
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1278 1279 1280
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1281 1282 1283
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1305 1306 1307 1308
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1309
		err = split_state(tree, state, prealloc, start);
1310 1311
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1312 1313 1314 1315
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1316
			set_state_bits(tree, state, &bits, NULL);
1317
			cache_state(state, cached_state);
1318 1319
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1320 1321 1322
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1323 1324 1325
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1344 1345 1346 1347
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1348 1349 1350 1351 1352 1353

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1354
				   NULL, NULL, &bits, NULL);
1355 1356
		if (err)
			extent_io_tree_panic(tree, err);
1357
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1370 1371 1372 1373
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1374 1375

		err = split_state(tree, state, prealloc, end + 1);
1376 1377
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1378

1379
		set_state_bits(tree, prealloc, &bits, NULL);
1380
		cache_state(prealloc, cached_state);
1381
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1382 1383 1384 1385 1386 1387 1388 1389
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1390
	cond_resched();
1391
	first_iteration = false;
J
Josef Bacik 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1402
/* wrappers around set/clear extent bit */
1403
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1404
			   u32 bits, struct extent_changeset *changeset)
1405 1406 1407 1408 1409 1410 1411 1412 1413
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1414 1415
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1416 1417
}

1418
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1419
			   u32 bits)
1420
{
1421 1422
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1423 1424
}

1425
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1426
		     u32 bits, int wake, int delete,
1427
		     struct extent_state **cached)
1428 1429
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1430
				  cached, GFP_NOFS, NULL);
1431 1432 1433
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1434
		u32 bits, struct extent_changeset *changeset)
1435 1436 1437 1438 1439 1440 1441
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1442
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1443 1444 1445
				  changeset);
}

C
Chris Mason 已提交
1446 1447 1448 1449
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1450
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1451
		     struct extent_state **cached_state)
1452 1453 1454
{
	int err;
	u64 failed_start;
1455

1456
	while (1) {
1457 1458 1459
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1460
		if (err == -EEXIST) {
1461 1462
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1463
		} else
1464 1465 1466 1467 1468 1469
			break;
		WARN_ON(start > end);
	}
	return err;
}

1470
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1471 1472 1473 1474
{
	int err;
	u64 failed_start;

1475 1476
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1477 1478 1479
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1480
					 EXTENT_LOCKED, 1, 0, NULL);
1481
		return 0;
Y
Yan Zheng 已提交
1482
	}
1483 1484 1485
	return 1;
}

1486
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1487
{
1488 1489
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1490 1491 1492 1493 1494 1495
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1496
		put_page(page);
1497 1498 1499 1500
		index++;
	}
}

1501
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1502
{
1503 1504
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1505 1506 1507 1508 1509 1510
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		__set_page_dirty_nobuffers(page);
1511
		account_page_redirty(page);
1512
		put_page(page);
1513 1514 1515 1516
		index++;
	}
}

C
Chris Mason 已提交
1517 1518 1519 1520
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1521
static struct extent_state *
1522
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1532
	if (!node)
C
Chris Mason 已提交
1533 1534
		goto out;

C
Chris Mason 已提交
1535
	while (1) {
C
Chris Mason 已提交
1536
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1537
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1538
			return state;
C
Chris Mason 已提交
1539

C
Chris Mason 已提交
1540 1541 1542 1543 1544 1545 1546 1547
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1548
/*
1549
 * Find the first offset in the io tree with one or more @bits set.
1550
 *
1551 1552 1553 1554
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1555 1556
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1557
			  u64 *start_ret, u64 *end_ret, u32 bits,
1558
			  struct extent_state **cached_state)
1559 1560 1561 1562 1563
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1564 1565
	if (cached_state && *cached_state) {
		state = *cached_state;
1566
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1567
			while ((state = next_state(state)) != NULL) {
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1579
	state = find_first_extent_bit_state(tree, start, bits);
1580
got_it:
1581
	if (state) {
1582
		cache_state_if_flags(state, cached_state, 0);
1583 1584 1585 1586
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1587
out:
1588 1589 1590 1591
	spin_unlock(&tree->lock);
	return ret;
}

1592
/**
1593 1594 1595 1596 1597 1598 1599
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1600 1601 1602 1603 1604 1605 1606 1607 1608
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1609
			       u64 *start_ret, u64 *end_ret, u32 bits)
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1630
/**
1631 1632
 * Find the first range that has @bits not set. This range could start before
 * @start.
1633
 *
1634 1635 1636 1637 1638
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1639 1640 1641 1642 1643 1644 1645
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1646
				 u64 *start_ret, u64 *end_ret, u32 bits)
1647 1648 1649 1650 1651 1652 1653 1654 1655
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1674 1675
			node = next;
		}
1676 1677 1678 1679
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1680
		state = rb_entry(node, struct extent_state, rb_node);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1703
		} else {
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1747 1748 1749 1750
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1751
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1752
 */
J
Josef Bacik 已提交
1753 1754 1755
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1756 1757 1758 1759
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1760
	bool found = false;
1761 1762
	u64 total_bytes = 0;

1763
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1764

1765 1766 1767 1768
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1769
	node = tree_search(tree, cur_start);
1770
	if (!node) {
1771
		*end = (u64)-1;
1772 1773 1774
		goto out;
	}

C
Chris Mason 已提交
1775
	while (1) {
1776
		state = rb_entry(node, struct extent_state, rb_node);
1777 1778
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1779 1780 1781 1782 1783 1784 1785
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1786
		if (!found) {
1787
			*start = state->start;
1788
			*cached_state = state;
1789
			refcount_inc(&state->refs);
1790
		}
1791
		found = true;
1792 1793 1794 1795
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1796
		if (total_bytes >= max_bytes)
1797 1798
			break;
		if (!node)
1799 1800 1801
			break;
	}
out:
1802
	spin_unlock(&tree->lock);
1803 1804 1805
	return found;
}

1806 1807 1808 1809 1810
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
				  pgoff_t start_index, pgoff_t end_index,
				  unsigned long page_ops, pgoff_t *index_ret);

1811 1812 1813
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1814
{
1815 1816
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1817

1818
	ASSERT(locked_page);
C
Chris Mason 已提交
1819
	if (index == locked_page->index && end_index == index)
1820
		return;
C
Chris Mason 已提交
1821

1822 1823
	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1824 1825 1826 1827 1828 1829 1830
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1831
	unsigned long index = delalloc_start >> PAGE_SHIFT;
1832
	unsigned long index_ret = index;
1833
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
C
Chris Mason 已提交
1834 1835
	int ret;

1836
	ASSERT(locked_page);
C
Chris Mason 已提交
1837 1838 1839
	if (index == locked_page->index && index == end_index)
		return 0;

1840 1841 1842 1843 1844
	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
				     end_index, PAGE_LOCK, &index_ret);
	if (ret == -EAGAIN)
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
				      (u64)index_ret << PAGE_SHIFT);
C
Chris Mason 已提交
1845 1846 1847 1848
	return ret;
}

/*
1849 1850
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 * more than @max_bytes.  @Start and @end are used to return the range,
C
Chris Mason 已提交
1851
 *
1852 1853
 * Return: true if we find something
 *         false if nothing was in the tree
C
Chris Mason 已提交
1854
 */
1855
EXPORT_FOR_TESTS
1856
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1857
				    struct page *locked_page, u64 *start,
1858
				    u64 *end)
C
Chris Mason 已提交
1859
{
1860
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1861
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
1862 1863
	u64 delalloc_start;
	u64 delalloc_end;
1864
	bool found;
1865
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
1866 1867 1868 1869 1870 1871 1872
	int ret;
	int loops = 0;

again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
1873 1874
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
C
Chris Mason 已提交
1875
	if (!found || delalloc_end <= *start) {
C
Chris Mason 已提交
1876 1877
		*start = delalloc_start;
		*end = delalloc_end;
1878
		free_extent_state(cached_state);
1879
		return false;
C
Chris Mason 已提交
1880 1881
	}

C
Chris Mason 已提交
1882 1883 1884 1885 1886
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
1887
	if (delalloc_start < *start)
C
Chris Mason 已提交
1888 1889
		delalloc_start = *start;

C
Chris Mason 已提交
1890 1891 1892
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
1893 1894
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
1895

C
Chris Mason 已提交
1896 1897 1898
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
1899
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
1900 1901 1902 1903
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
1904
		free_extent_state(cached_state);
1905
		cached_state = NULL;
C
Chris Mason 已提交
1906
		if (!loops) {
1907
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
1908 1909 1910
			loops = 1;
			goto again;
		} else {
1911
			found = false;
C
Chris Mason 已提交
1912 1913 1914 1915 1916
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
1917
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
1918 1919 1920

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1921
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
1922
	if (!ret) {
1923
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1924
				     &cached_state);
C
Chris Mason 已提交
1925 1926 1927 1928 1929
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
1930
	free_extent_state(cached_state);
C
Chris Mason 已提交
1931 1932 1933 1934 1935 1936
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

1937 1938 1939 1940
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
				  pgoff_t start_index, pgoff_t end_index,
				  unsigned long page_ops, pgoff_t *index_ret)
C
Chris Mason 已提交
1941
{
1942
	unsigned long nr_pages = end_index - start_index + 1;
1943
	unsigned long pages_processed = 0;
1944
	pgoff_t index = start_index;
C
Chris Mason 已提交
1945
	struct page *pages[16];
1946
	unsigned ret;
1947
	int err = 0;
C
Chris Mason 已提交
1948
	int i;
1949

1950 1951 1952 1953 1954
	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(index_ret && *index_ret == start_index);
	}

1955
	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1956
		mapping_set_error(mapping, -EIO);
1957

C
Chris Mason 已提交
1958
	while (nr_pages > 0) {
1959
		ret = find_get_pages_contig(mapping, index,
1960 1961
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
1962 1963 1964 1965 1966 1967
		if (ret == 0) {
			/*
			 * Only if we're going to lock these pages,
			 * can we find nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
1968 1969
			err = -EAGAIN;
			goto out;
1970
		}
1971

1972
		for (i = 0; i < ret; i++) {
1973
			if (page_ops & PAGE_SET_PRIVATE2)
1974 1975
				SetPagePrivate2(pages[i]);

1976
			if (locked_page && pages[i] == locked_page) {
1977
				put_page(pages[i]);
1978
				pages_processed++;
C
Chris Mason 已提交
1979 1980
				continue;
			}
1981
			if (page_ops & PAGE_START_WRITEBACK) {
C
Chris Mason 已提交
1982 1983
				clear_page_dirty_for_io(pages[i]);
				set_page_writeback(pages[i]);
1984
			}
1985 1986
			if (page_ops & PAGE_SET_ERROR)
				SetPageError(pages[i]);
1987
			if (page_ops & PAGE_END_WRITEBACK)
C
Chris Mason 已提交
1988
				end_page_writeback(pages[i]);
1989
			if (page_ops & PAGE_UNLOCK)
1990
				unlock_page(pages[i]);
1991 1992 1993 1994 1995
			if (page_ops & PAGE_LOCK) {
				lock_page(pages[i]);
				if (!PageDirty(pages[i]) ||
				    pages[i]->mapping != mapping) {
					unlock_page(pages[i]);
1996 1997
					for (; i < ret; i++)
						put_page(pages[i]);
1998 1999 2000 2001
					err = -EAGAIN;
					goto out;
				}
			}
2002
			put_page(pages[i]);
2003
			pages_processed++;
C
Chris Mason 已提交
2004 2005 2006 2007 2008
		}
		nr_pages -= ret;
		index += ret;
		cond_resched();
	}
2009 2010
out:
	if (err && index_ret)
2011
		*index_ret = start_index + pages_processed - 1;
2012
	return err;
C
Chris Mason 已提交
2013 2014
}

2015
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2016
				  struct page *locked_page,
2017
				  u32 clear_bits, unsigned long page_ops)
2018
{
2019
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2020

2021
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2022
			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2023
			       page_ops, NULL);
2024 2025
}

C
Chris Mason 已提交
2026 2027 2028 2029 2030
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2031 2032
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2033
		     u32 bits, int contig)
2034 2035 2036 2037 2038
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2039
	u64 last = 0;
2040 2041
	int found = 0;

2042
	if (WARN_ON(search_end <= cur_start))
2043 2044
		return 0;

2045
	spin_lock(&tree->lock);
2046 2047 2048 2049 2050 2051 2052 2053
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2054
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2055
	if (!node)
2056 2057
		goto out;

C
Chris Mason 已提交
2058
	while (1) {
2059 2060 2061
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2062 2063 2064
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2065 2066 2067 2068 2069
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2070
				*start = max(cur_start, state->start);
2071 2072
				found = 1;
			}
2073 2074 2075
			last = state->end;
		} else if (contig && found) {
			break;
2076 2077 2078 2079 2080 2081
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2082
	spin_unlock(&tree->lock);
2083 2084
	return total_bytes;
}
2085

C
Chris Mason 已提交
2086 2087 2088 2089
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2090 2091
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2092 2093 2094 2095 2096
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2097
	spin_lock(&tree->lock);
2098 2099 2100 2101
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2102
	node = tree_search(tree, start);
2103
	if (!node) {
2104 2105 2106 2107 2108 2109 2110 2111
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2112
	state->failrec = failrec;
2113
out:
2114
	spin_unlock(&tree->lock);
2115 2116 2117
	return ret;
}

2118
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2119 2120 2121
{
	struct rb_node *node;
	struct extent_state *state;
2122
	struct io_failure_record *failrec;
2123

2124
	spin_lock(&tree->lock);
2125 2126 2127 2128
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2129
	node = tree_search(tree, start);
2130
	if (!node) {
2131
		failrec = ERR_PTR(-ENOENT);
2132 2133 2134 2135
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2136
		failrec = ERR_PTR(-ENOENT);
2137 2138
		goto out;
	}
2139 2140

	failrec = state->failrec;
2141
out:
2142
	spin_unlock(&tree->lock);
2143
	return failrec;
2144 2145 2146 2147
}

/*
 * searches a range in the state tree for a given mask.
2148
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2149 2150 2151 2152
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2153
		   u32 bits, int filled, struct extent_state *cached)
2154 2155 2156 2157 2158
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2159
	spin_lock(&tree->lock);
2160
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2161
	    cached->end > start)
2162 2163 2164
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2184 2185 2186 2187

		if (state->end == (u64)-1)
			break;

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2198
	spin_unlock(&tree->lock);
2199 2200 2201 2202 2203 2204 2205
	return bitset;
}

/*
 * helper function to set a given page up to date if all the
 * extents in the tree for that page are up to date
 */
2206
static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2207
{
M
Miao Xie 已提交
2208
	u64 start = page_offset(page);
2209
	u64 end = start + PAGE_SIZE - 1;
2210
	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2211 2212 2213
		SetPageUptodate(page);
}

2214 2215 2216
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2217 2218 2219 2220
{
	int ret;
	int err = 0;

2221
	set_state_failrec(failure_tree, rec->start, NULL);
2222 2223
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2224
				EXTENT_LOCKED | EXTENT_DIRTY);
2225 2226 2227
	if (ret)
		err = ret;

2228
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2229
				rec->start + rec->len - 1,
2230
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2231 2232
	if (ret && !err)
		err = ret;
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2243
 * to avoid any synchronization issues, wait for the data after writing, which
2244 2245 2246 2247
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
2248 2249 2250
int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
		      u64 length, u64 logical, struct page *page,
		      unsigned int pg_offset, int mirror_num)
2251 2252 2253 2254 2255 2256 2257 2258
{
	struct bio *bio;
	struct btrfs_device *dev;
	u64 map_length = 0;
	u64 sector;
	struct btrfs_bio *bbio = NULL;
	int ret;

2259
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2260 2261
	BUG_ON(!mirror_num);

2262
	bio = btrfs_io_bio_alloc(1);
2263
	bio->bi_iter.bi_size = 0;
2264 2265
	map_length = length;

2266 2267 2268 2269 2270 2271
	/*
	 * Avoid races with device replace and make sure our bbio has devices
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2272
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
				      &map_length, &bbio, 0);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		ASSERT(bbio->mirror_num == 1);
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
				      &map_length, &bbio, mirror_num);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		BUG_ON(mirror_num != bbio->mirror_num);
2296
	}
2297 2298

	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2299
	bio->bi_iter.bi_sector = sector;
2300
	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2301
	btrfs_put_bbio(bbio);
2302 2303
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2304
		btrfs_bio_counter_dec(fs_info);
2305 2306 2307
		bio_put(bio);
		return -EIO;
	}
2308
	bio_set_dev(bio, dev->bdev);
2309
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2310
	bio_add_page(bio, page, length, pg_offset);
2311

2312
	if (btrfsic_submit_bio_wait(bio)) {
2313
		/* try to remap that extent elsewhere? */
2314
		btrfs_bio_counter_dec(fs_info);
2315
		bio_put(bio);
2316
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2317 2318 2319
		return -EIO;
	}

2320 2321
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2322
				  ino, start,
2323
				  rcu_str_deref(dev->name), sector);
2324
	btrfs_bio_counter_dec(fs_info);
2325 2326 2327 2328
	bio_put(bio);
	return 0;
}

2329
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2330
{
2331
	struct btrfs_fs_info *fs_info = eb->fs_info;
2332
	u64 start = eb->start;
2333
	int i, num_pages = num_extent_pages(eb);
2334
	int ret = 0;
2335

2336
	if (sb_rdonly(fs_info->sb))
2337 2338
		return -EROFS;

2339
	for (i = 0; i < num_pages; i++) {
2340
		struct page *p = eb->pages[i];
2341

2342
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2343
					start - page_offset(p), mirror_num);
2344 2345
		if (ret)
			break;
2346
		start += PAGE_SIZE;
2347 2348 2349 2350 2351
	}

	return ret;
}

2352 2353 2354 2355
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2356 2357 2358 2359
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2360 2361 2362 2363 2364 2365 2366 2367
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2368 2369
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2370 2371 2372
	if (!ret)
		return 0;

2373 2374
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2375 2376 2377 2378 2379 2380
		return 0;

	BUG_ON(!failrec->this_mirror);

	if (failrec->in_validation) {
		/* there was no real error, just free the record */
2381 2382 2383
		btrfs_debug(fs_info,
			"clean_io_failure: freeing dummy error at %llu",
			failrec->start);
2384 2385
		goto out;
	}
2386
	if (sb_rdonly(fs_info->sb))
2387
		goto out;
2388

2389 2390
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2391 2392
					    failrec->start,
					    EXTENT_LOCKED);
2393
	spin_unlock(&io_tree->lock);
2394

2395 2396
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2397 2398
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2399
		if (num_copies > 1)  {
2400 2401 2402
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2403 2404 2405 2406
		}
	}

out:
2407
	free_io_failure(failure_tree, io_tree, failrec);
2408

2409
	return 0;
2410 2411
}

2412 2413 2414 2415 2416 2417
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2418
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2419
{
2420
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2437
		failrec = state->failrec;
2438 2439 2440 2441 2442 2443 2444 2445
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2446 2447
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
							     u64 start, u64 end)
2448
{
2449
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2450
	struct io_failure_record *failrec;
2451 2452 2453 2454 2455 2456 2457
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
	int ret;
	u64 logical;

2458
	failrec = get_state_failrec(failure_tree, start);
2459
	if (!IS_ERR(failrec)) {
2460 2461 2462 2463
		btrfs_debug(fs_info,
			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
			failrec->logical, failrec->start, failrec->len,
			failrec->in_validation);
2464 2465 2466 2467 2468
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2469 2470

		return failrec;
2471
	}
2472

2473 2474 2475
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2476

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	failrec->start = start;
	failrec->len = end - start + 1;
	failrec->this_mirror = 0;
	failrec->bio_flags = 0;
	failrec->in_validation = 0;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
	ret = set_extent_bits(failure_tree, start, end,
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
		ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2529 2530
}

2531 2532 2533
static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
				   struct io_failure_record *failrec,
				   int failed_mirror)
2534
{
2535
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2536 2537
	int num_copies;

2538
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2539 2540 2541 2542 2543 2544
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2545 2546 2547
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2548
		return false;
2549 2550 2551 2552 2553 2554 2555
	}

	/*
	 * there are two premises:
	 *	a) deliver good data to the caller
	 *	b) correct the bad sectors on disk
	 */
2556
	if (needs_validation) {
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		/*
		 * to fulfill b), we need to know the exact failing sectors, as
		 * we don't want to rewrite any more than the failed ones. thus,
		 * we need separate read requests for the failed bio
		 *
		 * if the following BUG_ON triggers, our validation request got
		 * merged. we need separate requests for our algorithm to work.
		 */
		BUG_ON(failrec->in_validation);
		failrec->in_validation = 1;
		failrec->this_mirror = failed_mirror;
	} else {
		/*
		 * we're ready to fulfill a) and b) alongside. get a good copy
		 * of the failed sector and if we succeed, we have setup
		 * everything for repair_io_failure to do the rest for us.
		 */
		if (failrec->in_validation) {
			BUG_ON(failrec->this_mirror != failed_mirror);
			failrec->in_validation = 0;
			failrec->this_mirror = 0;
		}
		failrec->failed_mirror = failed_mirror;
		failrec->this_mirror++;
		if (failrec->this_mirror == failed_mirror)
			failrec->this_mirror++;
	}

2585
	if (failrec->this_mirror > num_copies) {
2586 2587 2588
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2589
		return false;
2590 2591
	}

2592
	return true;
2593 2594
}

2595
static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2596
{
2597
	u64 len = 0;
2598
	const u32 blocksize = inode->i_sb->s_blocksize;
2599

2600 2601 2602 2603 2604 2605 2606
	/*
	 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
	 * I/O error. In this case, we already know exactly which sector was
	 * bad, so we don't need to validate.
	 */
	if (bio->bi_status == BLK_STS_OK)
		return false;
2607

2608 2609 2610
	/*
	 * We need to validate each sector individually if the failed I/O was
	 * for multiple sectors.
2611 2612 2613 2614 2615 2616 2617 2618 2619
	 *
	 * There are a few possible bios that can end up here:
	 * 1. A buffered read bio, which is not cloned.
	 * 2. A direct I/O read bio, which is cloned.
	 * 3. A (buffered or direct) repair bio, which is not cloned.
	 *
	 * For cloned bios (case 2), we can get the size from
	 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
	 * it from the bvecs.
2620
	 */
2621 2622
	if (bio_flagged(bio, BIO_CLONED)) {
		if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2623
			return true;
2624 2625 2626
	} else {
		struct bio_vec *bvec;
		int i;
2627

2628 2629 2630 2631 2632
		bio_for_each_bvec_all(bvec, bio, i) {
			len += bvec->bv_len;
			if (len > blocksize)
				return true;
		}
2633
	}
2634
	return false;
2635 2636
}

2637
blk_status_t btrfs_submit_read_repair(struct inode *inode,
2638
				      struct bio *failed_bio, u32 bio_offset,
2639 2640 2641
				      struct page *page, unsigned int pgoff,
				      u64 start, u64 end, int failed_mirror,
				      submit_bio_hook_t *submit_bio_hook)
2642 2643
{
	struct io_failure_record *failrec;
2644
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2645
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2646
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2647
	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2648
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2649
	bool need_validation;
2650 2651
	struct bio *repair_bio;
	struct btrfs_io_bio *repair_io_bio;
2652
	blk_status_t status;
2653

2654 2655
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2656

2657
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2658

2659 2660 2661
	failrec = btrfs_get_io_failure_record(inode, start, end);
	if (IS_ERR(failrec))
		return errno_to_blk_status(PTR_ERR(failrec));
2662

2663
	need_validation = btrfs_io_needs_validation(inode, failed_bio);
2664

2665
	if (!btrfs_check_repairable(inode, need_validation, failrec,
2666
				    failed_mirror)) {
2667
		free_io_failure(failure_tree, tree, failrec);
2668
		return BLK_STS_IOERR;
2669 2670
	}

2671 2672 2673
	repair_bio = btrfs_io_bio_alloc(1);
	repair_io_bio = btrfs_io_bio(repair_bio);
	repair_bio->bi_opf = REQ_OP_READ;
2674
	if (need_validation)
2675 2676 2677 2678
		repair_bio->bi_opf |= REQ_FAILFAST_DEV;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2679

2680
	if (failed_io_bio->csum) {
2681
		const u32 csum_size = fs_info->csum_size;
2682 2683 2684 2685 2686

		repair_io_bio->csum = repair_io_bio->csum_inline;
		memcpy(repair_io_bio->csum,
		       failed_io_bio->csum + csum_size * icsum, csum_size);
	}
2687

2688 2689 2690
	bio_add_page(repair_bio, page, failrec->len, pgoff);
	repair_io_bio->logical = failrec->start;
	repair_io_bio->iter = repair_bio->bi_iter;
2691

2692
	btrfs_debug(btrfs_sb(inode->i_sb),
2693 2694
"repair read error: submitting new read to mirror %d, in_validation=%d",
		    failrec->this_mirror, failrec->in_validation);
2695

2696 2697
	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
				 failrec->bio_flags);
2698
	if (status) {
2699
		free_io_failure(failure_tree, tree, failrec);
2700
		bio_put(repair_bio);
2701
	}
2702
	return status;
2703 2704
}

2705 2706
/* lots and lots of room for performance fixes in the end_bio funcs */

2707
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2708 2709
{
	int uptodate = (err == 0);
2710
	int ret = 0;
2711

2712
	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2713 2714 2715 2716

	if (!uptodate) {
		ClearPageUptodate(page);
		SetPageError(page);
2717
		ret = err < 0 ? err : -EIO;
2718
		mapping_set_error(page->mapping, ret);
2719 2720 2721
	}
}

2722 2723 2724 2725 2726 2727 2728 2729 2730
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2731
static void end_bio_extent_writepage(struct bio *bio)
2732
{
2733
	int error = blk_status_to_errno(bio->bi_status);
2734
	struct bio_vec *bvec;
2735 2736
	u64 start;
	u64 end;
2737
	struct bvec_iter_all iter_all;
2738

2739
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2740
	bio_for_each_segment_all(bvec, bio, iter_all) {
2741
		struct page *page = bvec->bv_page;
2742 2743
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2744

2745 2746 2747 2748 2749
		/* We always issue full-page reads, but if some block
		 * in a page fails to read, blk_update_request() will
		 * advance bv_offset and adjust bv_len to compensate.
		 * Print a warning for nonzero offsets, and an error
		 * if they don't add up to a full page.  */
2750 2751
		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2752
				btrfs_err(fs_info,
2753 2754 2755
				   "partial page write in btrfs with offset %u and length %u",
					bvec->bv_offset, bvec->bv_len);
			else
2756
				btrfs_info(fs_info,
J
Jeff Mahoney 已提交
2757
				   "incomplete page write in btrfs with offset %u and length %u",
2758 2759
					bvec->bv_offset, bvec->bv_len);
		}
2760

2761 2762
		start = page_offset(page);
		end = start + bvec->bv_offset + bvec->bv_len - 1;
2763

2764
		end_extent_writepage(page, error, start, end);
2765
		end_page_writeback(page);
2766
	}
2767

2768 2769 2770
	bio_put(bio);
}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2781
	/* End of the range in @inode */
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2800 2801
{
	struct extent_state *cached = NULL;
2802 2803 2804 2805 2806
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2807

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2842 2843
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
	if (fs_info->sectorsize == PAGE_SIZE)
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2855
{
2856 2857 2858 2859 2860
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
		start + len <= page_offset(page) + PAGE_SIZE);

2861
	if (uptodate) {
2862
		btrfs_page_set_uptodate(fs_info, page, start, len);
2863
	} else {
2864 2865
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2866
	}
2867 2868 2869

	if (fs_info->sectorsize == PAGE_SIZE)
		unlock_page(page);
2870 2871 2872 2873 2874 2875
	else if (is_data_inode(page->mapping->host))
		/*
		 * For subpage data, unlock the page if we're the last reader.
		 * For subpage metadata, page lock is not utilized for read.
		 */
		btrfs_subpage_end_reader(fs_info, page, start, len);
2876 2877
}

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2889
static void end_bio_extent_readpage(struct bio *bio)
2890
{
2891
	struct bio_vec *bvec;
2892
	int uptodate = !bio->bi_status;
2893
	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2894
	struct extent_io_tree *tree, *failure_tree;
2895
	struct processed_extent processed = { 0 };
2896 2897 2898 2899 2900
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
2901
	int mirror;
2902
	int ret;
2903
	struct bvec_iter_all iter_all;
2904

2905
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2906
	bio_for_each_segment_all(bvec, bio, iter_all) {
2907
		struct page *page = bvec->bv_page;
2908
		struct inode *inode = page->mapping->host;
2909
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2910 2911 2912 2913
		const u32 sectorsize = fs_info->sectorsize;
		u64 start;
		u64 end;
		u32 len;
2914

2915 2916
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
2917
			bio->bi_iter.bi_sector, bio->bi_status,
2918
			io_bio->mirror_num);
2919
		tree = &BTRFS_I(inode)->io_tree;
2920
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2921

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2941
		len = bvec->bv_len;
2942

2943
		mirror = io_bio->mirror_num;
2944
		if (likely(uptodate)) {
2945
			if (is_data_inode(inode))
2946 2947 2948
				ret = btrfs_verify_data_csum(io_bio,
						bio_offset, page, start, end,
						mirror);
2949 2950
			else
				ret = btrfs_validate_metadata_buffer(io_bio,
2951
					page, start, end, mirror);
2952
			if (ret)
2953
				uptodate = 0;
2954
			else
2955 2956 2957 2958
				clean_io_failure(BTRFS_I(inode)->root->fs_info,
						 failure_tree, tree, start,
						 page,
						 btrfs_ino(BTRFS_I(inode)), 0);
2959
		}
2960

2961 2962 2963
		if (likely(uptodate))
			goto readpage_ok;

2964
		if (is_data_inode(inode)) {
L
Liu Bo 已提交
2965

2966
			/*
2967 2968 2969 2970 2971 2972 2973 2974
			 * The generic bio_readpage_error handles errors the
			 * following way: If possible, new read requests are
			 * created and submitted and will end up in
			 * end_bio_extent_readpage as well (if we're lucky,
			 * not in the !uptodate case). In that case it returns
			 * 0 and we just go on with the next page in our bio.
			 * If it can't handle the error it will return -EIO and
			 * we remain responsible for that page.
2975
			 */
2976 2977
			if (!btrfs_submit_read_repair(inode, bio, bio_offset,
						page,
2978 2979
						start - page_offset(page),
						start, end, mirror,
2980
						btrfs_submit_data_bio)) {
2981
				uptodate = !bio->bi_status;
2982 2983
				ASSERT(bio_offset + len > bio_offset);
				bio_offset += len;
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
				continue;
			}
		} else {
			struct extent_buffer *eb;

			eb = (struct extent_buffer *)page->private;
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
					       &eb->bflags))
				btree_readahead_hook(eb, -EIO);
2996
		}
2997
readpage_ok:
2998
		if (likely(uptodate)) {
2999
			loff_t i_size = i_size_read(inode);
3000
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3001
			unsigned off;
3002 3003

			/* Zero out the end if this page straddles i_size */
3004
			off = offset_in_page(i_size);
3005
			if (page->index == end_index && off)
3006
				zero_user_segment(page, off, PAGE_SIZE);
3007
		}
3008 3009
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3010

3011
		/* Update page status and unlock */
3012
		end_page_read(page, uptodate, start, len);
3013 3014
		endio_readpage_release_extent(&processed, BTRFS_I(inode),
					      start, end, uptodate);
3015
	}
3016 3017
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3018
	btrfs_io_bio_free_csum(io_bio);
3019 3020 3021
	bio_put(bio);
}

3022
/*
3023 3024 3025
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3026
 */
3027
static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3028
{
3029 3030
	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
}
3031

3032
/*
3033 3034 3035
 * The following helpers allocate a bio. As it's backed by a bioset, it'll
 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
 * for the appropriate container_of magic
3036
 */
3037
struct bio *btrfs_bio_alloc(u64 first_byte)
3038 3039 3040
{
	struct bio *bio;

3041
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
3042
	bio->bi_iter.bi_sector = first_byte >> 9;
3043
	btrfs_io_bio_init(btrfs_io_bio(bio));
3044 3045 3046
	return bio;
}

3047
struct bio *btrfs_bio_clone(struct bio *bio)
3048
{
3049 3050
	struct btrfs_io_bio *btrfs_bio;
	struct bio *new;
3051

3052
	/* Bio allocation backed by a bioset does not fail */
3053
	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3054
	btrfs_bio = btrfs_io_bio(new);
3055
	btrfs_io_bio_init(btrfs_bio);
3056
	btrfs_bio->iter = bio->bi_iter;
3057 3058
	return new;
}
3059

3060
struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3061
{
3062 3063
	struct bio *bio;

3064
	/* Bio allocation backed by a bioset does not fail */
3065
	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3066
	btrfs_io_bio_init(btrfs_io_bio(bio));
3067
	return bio;
3068 3069
}

3070
struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3071 3072 3073 3074 3075
{
	struct bio *bio;
	struct btrfs_io_bio *btrfs_bio;

	/* this will never fail when it's backed by a bioset */
3076
	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3077 3078 3079
	ASSERT(bio);

	btrfs_bio = btrfs_io_bio(bio);
3080
	btrfs_io_bio_init(btrfs_bio);
3081 3082

	bio_trim(bio, offset >> 9, size >> 9);
3083
	btrfs_bio->iter = bio->bi_iter;
3084 3085
	return bio;
}
3086

3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
/**
 * Attempt to add a page to bio
 *
 * @bio:	destination bio
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @pg_offset:	starting offset in the page
 * @size:	portion of page that we want to write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
 * @return:	true if page was added, false otherwise
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
 * Return true if successfully page added. Otherwise, return false.
 */
static bool btrfs_bio_add_page(struct bio *bio, struct page *page,
			       u64 disk_bytenr, unsigned int size,
			       unsigned int pg_offset,
			       unsigned long prev_bio_flags,
			       unsigned long bio_flags)
{
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3112
	int ret;
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126

	if (prev_bio_flags != bio_flags)
		return false;

	if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
		return false;

	if (btrfs_bio_fits_in_stripe(page, size, bio, bio_flags))
		return false;

3127 3128 3129 3130 3131
	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
		struct page *first_page = bio_first_bvec_all(bio)->bv_page;

		if (!btrfs_bio_fits_in_ordered_extent(first_page, bio, size))
			return false;
3132
		ret = bio_add_zone_append_page(bio, page, size, pg_offset);
3133
	} else {
3134
		ret = bio_add_page(bio, page, size, pg_offset);
3135
	}
3136 3137

	return ret == size;
3138 3139
}

3140 3141
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3142 3143
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3144 3145
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3146 3147
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3148
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3149 3150 3151 3152
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
3153
 */
3154
static int submit_extent_page(unsigned int opf,
3155
			      struct writeback_control *wbc,
3156
			      struct page *page, u64 disk_bytenr,
3157
			      size_t size, unsigned long pg_offset,
3158
			      struct bio **bio_ret,
3159
			      bio_end_io_t end_io_func,
C
Chris Mason 已提交
3160 3161
			      int mirror_num,
			      unsigned long prev_bio_flags,
3162 3163
			      unsigned long bio_flags,
			      bool force_bio_submit)
3164 3165 3166
{
	int ret = 0;
	struct bio *bio;
3167
	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3168 3169 3170
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &inode->io_tree;
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3171

3172 3173 3174
	ASSERT(bio_ret);

	if (*bio_ret) {
3175
		bio = *bio_ret;
3176 3177 3178
		if (force_bio_submit ||
		    !btrfs_bio_add_page(bio, page, disk_bytenr, io_size,
					pg_offset, prev_bio_flags, bio_flags)) {
3179
			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3180 3181
			if (ret < 0) {
				*bio_ret = NULL;
3182
				return ret;
3183
			}
3184 3185
			bio = NULL;
		} else {
3186
			if (wbc)
3187
				wbc_account_cgroup_owner(wbc, page, io_size);
3188 3189 3190
			return 0;
		}
	}
C
Chris Mason 已提交
3191

3192
	bio = btrfs_bio_alloc(disk_bytenr);
3193
	bio_add_page(bio, page, io_size, pg_offset);
3194 3195
	bio->bi_end_io = end_io_func;
	bio->bi_private = tree;
3196
	bio->bi_write_hint = page->mapping->host->i_write_hint;
3197
	bio->bi_opf = opf;
3198
	if (wbc) {
3199 3200
		struct block_device *bdev;

3201
		bdev = fs_info->fs_devices->latest_bdev;
3202
		bio_set_dev(bio, bdev);
3203
		wbc_init_bio(wbc, bio);
3204
		wbc_account_cgroup_owner(wbc, page, io_size);
3205
	}
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
		struct extent_map *em;
		struct map_lookup *map;

		em = btrfs_get_chunk_map(fs_info, disk_bytenr, io_size);
		if (IS_ERR(em))
			return PTR_ERR(em);

		map = em->map_lookup;
		/* We only support single profile for now */
		ASSERT(map->num_stripes == 1);
		btrfs_io_bio(bio)->device = map->stripes[0].dev;

		free_extent_map(em);
	}
3221

3222
	*bio_ret = bio;
3223 3224 3225 3226

	return ret;
}

3227 3228 3229
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3230
{
3231 3232 3233
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3234 3235 3236 3237 3238 3239 3240 3241 3242
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
	if (fs_info->sectorsize == PAGE_SIZE) {
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3260
	else
3261 3262 3263 3264
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3265 3266
}

3267
int set_page_extent_mapped(struct page *page)
3268
{
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3291
	if (!PagePrivate(page))
3292 3293 3294 3295 3296 3297 3298
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3299 3300
}

3301 3302
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3303
		 u64 start, u64 len, struct extent_map **em_cached)
3304 3305 3306 3307 3308
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3309
		if (extent_map_in_tree(em) && start >= em->start &&
3310
		    start < extent_map_end(em)) {
3311
			refcount_inc(&em->refs);
3312 3313 3314 3315 3316 3317 3318
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3319
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3320 3321
	if (em_cached && !IS_ERR_OR_NULL(em)) {
		BUG_ON(*em_cached);
3322
		refcount_inc(&em->refs);
3323 3324 3325 3326
		*em_cached = em;
	}
	return em;
}
3327 3328 3329 3330
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3331
 * XXX JDM: This needs looking at to ensure proper page locking
3332
 * return 0 on success, otherwise return error
3333
 */
3334 3335 3336
int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
		      struct bio **bio, unsigned long *bio_flags,
		      unsigned int read_flags, u64 *prev_em_start)
3337 3338
{
	struct inode *inode = page->mapping->host;
3339
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3340
	u64 start = page_offset(page);
3341
	const u64 end = start + PAGE_SIZE - 1;
3342 3343 3344 3345 3346 3347
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3348
	int ret = 0;
3349
	int nr = 0;
3350
	size_t pg_offset = 0;
3351 3352
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3353
	unsigned long this_bio_flag = 0;
3354
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3355

3356 3357 3358
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3359 3360
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3361 3362
		goto out;
	}
3363

D
Dan Magenheimer 已提交
3364 3365 3366
	if (!PageUptodate(page)) {
		if (cleancache_get_page(page) == 0) {
			BUG_ON(blocksize != PAGE_SIZE);
3367
			unlock_extent(tree, start, end);
3368
			unlock_page(page);
D
Dan Magenheimer 已提交
3369 3370 3371 3372
			goto out;
		}
	}

3373
	if (page->index == last_byte >> PAGE_SHIFT) {
C
Chris Mason 已提交
3374
		char *userpage;
3375
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3376 3377

		if (zero_offset) {
3378
			iosize = PAGE_SIZE - zero_offset;
3379
			userpage = kmap_atomic(page);
C
Chris Mason 已提交
3380 3381
			memset(userpage + zero_offset, 0, iosize);
			flush_dcache_page(page);
3382
			kunmap_atomic(userpage);
C
Chris Mason 已提交
3383 3384
		}
	}
3385
	begin_page_read(fs_info, page);
3386
	while (cur <= end) {
3387
		bool force_bio_submit = false;
3388
		u64 disk_bytenr;
3389

3390 3391
		if (cur >= last_byte) {
			char *userpage;
3392 3393
			struct extent_state *cached = NULL;

3394
			iosize = PAGE_SIZE - pg_offset;
3395
			userpage = kmap_atomic(page);
3396
			memset(userpage + pg_offset, 0, iosize);
3397
			flush_dcache_page(page);
3398
			kunmap_atomic(userpage);
3399
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3400
					    &cached, GFP_NOFS);
3401
			unlock_extent_cached(tree, cur,
3402
					     cur + iosize - 1, &cached);
3403
			end_page_read(page, true, cur, iosize);
3404 3405
			break;
		}
3406
		em = __get_extent_map(inode, page, pg_offset, cur,
3407
				      end - cur + 1, em_cached);
3408
		if (IS_ERR_OR_NULL(em)) {
3409
			unlock_extent(tree, cur, end);
3410
			end_page_read(page, false, cur, end + 1 - cur);
3411 3412 3413 3414 3415 3416
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3417
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3418
			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3419 3420 3421
			extent_set_compress_type(&this_bio_flag,
						 em->compress_type);
		}
C
Chris Mason 已提交
3422

3423 3424
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3425
		iosize = ALIGN(iosize, blocksize);
3426
		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3427
			disk_bytenr = em->block_start;
3428
		else
3429
			disk_bytenr = em->block_start + extent_offset;
3430
		block_start = em->block_start;
Y
Yan Zheng 已提交
3431 3432
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3433 3434 3435

		/*
		 * If we have a file range that points to a compressed extent
3436
		 * and it's followed by a consecutive file range that points
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3470
		    *prev_em_start != em->start)
3471 3472 3473
			force_bio_submit = true;

		if (prev_em_start)
3474
			*prev_em_start = em->start;
3475

3476 3477 3478 3479 3480 3481
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
			char *userpage;
3482 3483
			struct extent_state *cached = NULL;

3484
			userpage = kmap_atomic(page);
3485
			memset(userpage + pg_offset, 0, iosize);
3486
			flush_dcache_page(page);
3487
			kunmap_atomic(userpage);
3488 3489

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3490
					    &cached, GFP_NOFS);
3491
			unlock_extent_cached(tree, cur,
3492
					     cur + iosize - 1, &cached);
3493
			end_page_read(page, true, cur, iosize);
3494
			cur = cur + iosize;
3495
			pg_offset += iosize;
3496 3497 3498
			continue;
		}
		/* the get_extent function already copied into the page */
3499 3500
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3501
			check_page_uptodate(tree, page);
3502
			unlock_extent(tree, cur, cur + iosize - 1);
3503
			end_page_read(page, true, cur, iosize);
3504
			cur = cur + iosize;
3505
			pg_offset += iosize;
3506 3507
			continue;
		}
3508 3509 3510 3511
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3512
			unlock_extent(tree, cur, cur + iosize - 1);
3513
			end_page_read(page, false, cur, iosize);
3514
			cur = cur + iosize;
3515
			pg_offset += iosize;
3516 3517
			continue;
		}
3518

3519
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3520
					 page, disk_bytenr, iosize,
3521
					 pg_offset, bio,
3522
					 end_bio_extent_readpage, 0,
C
Chris Mason 已提交
3523
					 *bio_flags,
3524 3525
					 this_bio_flag,
					 force_bio_submit);
3526 3527 3528 3529
		if (!ret) {
			nr++;
			*bio_flags = this_bio_flag;
		} else {
3530
			unlock_extent(tree, cur, cur + iosize - 1);
3531
			end_page_read(page, false, cur, iosize);
3532
			goto out;
3533
		}
3534
		cur = cur + iosize;
3535
		pg_offset += iosize;
3536
	}
D
Dan Magenheimer 已提交
3537
out:
3538
	return ret;
3539 3540
}

3541
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3542
					     u64 start, u64 end,
3543
					     struct extent_map **em_cached,
3544
					     struct bio **bio,
3545
					     unsigned long *bio_flags,
3546
					     u64 *prev_em_start)
3547
{
3548
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3549 3550
	int index;

3551
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3552 3553

	for (index = 0; index < nr_pages; index++) {
3554 3555
		btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
				  REQ_RAHEAD, prev_em_start);
3556
		put_page(pages[index]);
3557 3558 3559
	}
}

3560
static void update_nr_written(struct writeback_control *wbc,
3561
			      unsigned long nr_written)
3562 3563 3564 3565
{
	wbc->nr_to_write -= nr_written;
}

3566
/*
3567 3568
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3569
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3570 3571 3572 3573 3574
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3575
 */
3576
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3577 3578
		struct page *page, struct writeback_control *wbc,
		u64 delalloc_start, unsigned long *nr_written)
3579
{
3580
	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3581
	bool found;
3582 3583 3584 3585 3586 3587 3588
	u64 delalloc_to_write = 0;
	u64 delalloc_end = 0;
	int ret;
	int page_started = 0;


	while (delalloc_end < page_end) {
3589
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3590
					       &delalloc_start,
3591
					       &delalloc_end);
3592
		if (!found) {
3593 3594 3595
			delalloc_start = delalloc_end + 1;
			continue;
		}
3596
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3597
				delalloc_end, &page_started, nr_written, wbc);
3598 3599
		if (ret) {
			SetPageError(page);
3600 3601 3602 3603 3604
			/*
			 * btrfs_run_delalloc_range should return < 0 for error
			 * but just in case, we use > 0 here meaning the IO is
			 * started, so we don't want to return > 0 unless
			 * things are going well.
3605
			 */
3606
			return ret < 0 ? ret : -EIO;
3607 3608
		}
		/*
3609 3610
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3611 3612
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3613
				      PAGE_SIZE) >> PAGE_SHIFT;
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

	/* did the fill delalloc function already unlock and start
	 * the IO?
	 */
	if (page_started) {
		/*
		 * we've unlocked the page, so we can't update
		 * the mapping's writeback index, just update
		 * nr_to_write.
		 */
		wbc->nr_to_write -= *nr_written;
		return 1;
	}

3638
	return 0;
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
}

/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3649
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3650 3651 3652 3653 3654
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
				 unsigned long nr_written,
3655
				 int *nr_ret)
3656
{
3657
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3658
	struct extent_io_tree *tree = &inode->io_tree;
M
Miao Xie 已提交
3659
	u64 start = page_offset(page);
3660
	u64 end = start + PAGE_SIZE - 1;
3661 3662 3663 3664
	u64 cur = start;
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3665 3666
	int ret = 0;
	int nr = 0;
3667
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3668
	bool compressed;
C
Chris Mason 已提交
3669

3670
	ret = btrfs_writepage_cow_fixup(page, start, end);
3671 3672
	if (ret) {
		/* Fixup worker will requeue */
3673
		redirty_page_for_writepage(wbc, page);
3674 3675 3676
		update_nr_written(wbc, nr_written);
		unlock_page(page);
		return 1;
3677 3678
	}

3679 3680 3681 3682
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3683
	update_nr_written(wbc, nr_written + 1);
3684

3685
	while (cur <= end) {
3686
		u64 disk_bytenr;
3687
		u64 em_end;
3688
		u32 iosize;
3689

3690
		if (cur >= i_size) {
3691
			btrfs_writepage_endio_finish_ordered(page, cur, end, 1);
3692 3693
			break;
		}
3694
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3695
		if (IS_ERR_OR_NULL(em)) {
3696
			SetPageError(page);
3697
			ret = PTR_ERR_OR_ZERO(em);
3698 3699 3700 3701
			break;
		}

		extent_offset = cur - em->start;
3702
		em_end = extent_map_end(em);
3703 3704 3705 3706
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3707
		block_start = em->block_start;
C
Chris Mason 已提交
3708
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3709 3710 3711 3712
		disk_bytenr = em->block_start + extent_offset;

		/* Note that em_end from extent_map_end() is exclusive */
		iosize = min(em_end, end + 1) - cur;
3713 3714 3715
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
3716 3717 3718 3719 3720
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
3721
		    block_start == EXTENT_MAP_INLINE) {
3722
			if (compressed)
C
Chris Mason 已提交
3723
				nr++;
3724 3725 3726
			else
				btrfs_writepage_endio_finish_ordered(page, cur,
							cur + iosize - 1, 1);
C
Chris Mason 已提交
3727
			cur += iosize;
3728 3729
			continue;
		}
C
Chris Mason 已提交
3730

3731
		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3732
		if (!PageWriteback(page)) {
3733
			btrfs_err(inode->root->fs_info,
3734 3735
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
3736
		}
3737

3738
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3739 3740
					 page, disk_bytenr, iosize,
					 cur - page_offset(page), &epd->bio,
3741 3742
					 end_bio_extent_writepage,
					 0, 0, 0, false);
3743
		if (ret) {
3744
			SetPageError(page);
3745 3746 3747
			if (PageWriteback(page))
				end_page_writeback(page);
		}
3748

3749
		cur += iosize;
3750 3751
		nr++;
	}
3752 3753 3754 3755 3756 3757 3758 3759 3760
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
3761 3762 3763
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
3764 3765
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3766
			      struct extent_page_data *epd)
3767 3768 3769
{
	struct inode *inode = page->mapping->host;
	u64 start = page_offset(page);
3770
	u64 page_end = start + PAGE_SIZE - 1;
3771 3772
	int ret;
	int nr = 0;
3773
	size_t pg_offset;
3774
	loff_t i_size = i_size_read(inode);
3775
	unsigned long end_index = i_size >> PAGE_SHIFT;
3776 3777 3778 3779 3780 3781 3782 3783
	unsigned long nr_written = 0;

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

	ClearPageError(page);

3784
	pg_offset = offset_in_page(i_size);
3785 3786
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
3787
		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3788 3789 3790 3791 3792 3793 3794 3795 3796
		unlock_page(page);
		return 0;
	}

	if (page->index == end_index) {
		char *userpage;

		userpage = kmap_atomic(page);
		memset(userpage + pg_offset, 0,
3797
		       PAGE_SIZE - pg_offset);
3798 3799 3800 3801
		kunmap_atomic(userpage);
		flush_dcache_page(page);
	}

3802 3803 3804 3805 3806
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
3807

3808
	if (!epd->extent_locked) {
3809 3810
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
					 &nr_written);
3811
		if (ret == 1)
3812
			return 0;
3813 3814 3815
		if (ret)
			goto done;
	}
3816

3817 3818
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
				    nr_written, &nr);
3819
	if (ret == 1)
3820
		return 0;
3821

3822 3823 3824 3825 3826 3827
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
3828 3829 3830 3831
	if (PageError(page)) {
		ret = ret < 0 ? ret : -EIO;
		end_extent_writepage(page, ret, start, page_end);
	}
3832
	unlock_page(page);
3833
	ASSERT(ret <= 0);
3834
	return ret;
3835 3836
}

3837
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3838
{
3839 3840
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
3841 3842
}

3843 3844 3845 3846 3847 3848 3849
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

3850
/*
3851
 * Lock extent buffer status and pages for writeback.
3852
 *
3853 3854 3855 3856 3857 3858
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
3859
 */
3860
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3861
			  struct extent_page_data *epd)
3862
{
3863
	struct btrfs_fs_info *fs_info = eb->fs_info;
3864
	int i, num_pages, failed_page_nr;
3865 3866 3867 3868
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
3869
		ret = flush_write_bio(epd);
3870 3871 3872
		if (ret < 0)
			return ret;
		flush = 1;
3873 3874 3875 3876 3877 3878 3879 3880
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
3881
			ret = flush_write_bio(epd);
3882 3883
			if (ret < 0)
				return ret;
3884 3885
			flush = 1;
		}
C
Chris Mason 已提交
3886 3887 3888 3889 3890
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
3891 3892 3893 3894
			btrfs_tree_unlock(eb);
		}
	}

3895 3896 3897 3898 3899 3900
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
3901 3902
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3903
		spin_unlock(&eb->refs_lock);
3904
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3905 3906 3907
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
3908
		ret = 1;
3909 3910
	} else {
		spin_unlock(&eb->refs_lock);
3911 3912 3913 3914 3915 3916 3917
	}

	btrfs_tree_unlock(eb);

	if (!ret)
		return ret;

3918
	num_pages = num_extent_pages(eb);
3919
	for (i = 0; i < num_pages; i++) {
3920
		struct page *p = eb->pages[i];
3921 3922 3923

		if (!trylock_page(p)) {
			if (!flush) {
3924 3925 3926 3927 3928
				int err;

				err = flush_write_bio(epd);
				if (err < 0) {
					ret = err;
3929 3930 3931
					failed_page_nr = i;
					goto err_unlock;
				}
3932 3933 3934 3935 3936 3937 3938
				flush = 1;
			}
			lock_page(p);
		}
	}

	return ret;
3939 3940 3941 3942
err_unlock:
	/* Unlock already locked pages */
	for (i = 0; i < failed_page_nr; i++)
		unlock_page(eb->pages[i]);
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
	/*
	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
	 * be made and undo everything done before.
	 */
	btrfs_tree_lock(eb);
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
	end_extent_buffer_writeback(eb);
	spin_unlock(&eb->refs_lock);
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
				 fs_info->dirty_metadata_batch);
	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
	btrfs_tree_unlock(eb);
3957
	return ret;
3958 3959
}

3960 3961 3962
static void set_btree_ioerr(struct page *page)
{
	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3963
	struct btrfs_fs_info *fs_info;
3964 3965 3966 3967 3968

	SetPageError(page);
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

3969 3970 3971 3972 3973 3974 3975 3976
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	fs_info = eb->fs_info;
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4017
		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
4018 4019
		break;
	case 0:
4020
		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
4021 4022
		break;
	case 1:
4023
		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
4024 4025 4026 4027 4028 4029
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4030
static void end_bio_extent_buffer_writepage(struct bio *bio)
4031
{
4032
	struct bio_vec *bvec;
4033
	struct extent_buffer *eb;
4034
	int done;
4035
	struct bvec_iter_all iter_all;
4036

4037
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4038
	bio_for_each_segment_all(bvec, bio, iter_all) {
4039 4040 4041 4042 4043 4044
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4045
		if (bio->bi_status ||
4046
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4047
			ClearPageUptodate(page);
4048
			set_btree_ioerr(page);
4049 4050 4051 4052 4053 4054 4055 4056
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4057
	}
4058 4059 4060 4061

	bio_put(bio);
}

4062
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4063 4064 4065
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4066
	u64 disk_bytenr = eb->start;
4067
	u32 nritems;
4068
	int i, num_pages;
4069
	unsigned long start, end;
4070
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4071
	int ret = 0;
4072

4073
	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4074
	num_pages = num_extent_pages(eb);
4075
	atomic_set(&eb->io_pages, num_pages);
4076

4077 4078
	/* set btree blocks beyond nritems with 0 to avoid stale content. */
	nritems = btrfs_header_nritems(eb);
4079 4080 4081
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);

4082
		memzero_extent_buffer(eb, end, eb->len - end);
4083 4084 4085 4086 4087 4088
	} else {
		/*
		 * leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
4089
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4090
		memzero_extent_buffer(eb, start, end - start);
4091 4092
	}

4093
	for (i = 0; i < num_pages; i++) {
4094
		struct page *p = eb->pages[i];
4095 4096 4097

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4098
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4099
					 p, disk_bytenr, PAGE_SIZE, 0,
4100
					 &epd->bio,
4101
					 end_bio_extent_buffer_writepage,
4102
					 0, 0, 0, false);
4103
		if (ret) {
4104
			set_btree_ioerr(p);
4105 4106
			if (PageWriteback(p))
				end_page_writeback(p);
4107 4108 4109 4110 4111
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4112
		disk_bytenr += PAGE_SIZE;
4113
		update_nr_written(wbc, 1);
4114 4115 4116 4117 4118
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4119
			struct page *p = eb->pages[i];
4120
			clear_page_dirty_for_io(p);
4121 4122 4123 4124 4125 4126 4127
			unlock_page(p);
		}
	}

	return ret;
}

4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
		free_extent_buffer(eb);
		return ret;
	}
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4199 4200 4201
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4202
	struct extent_buffer *eb_context = NULL;
4203 4204 4205 4206 4207
	struct extent_page_data epd = {
		.bio = NULL,
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4208
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4209 4210 4211 4212 4213 4214 4215 4216
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4217
	xa_mark_t tag;
4218

4219
	pagevec_init(&pvec);
4220 4221 4222
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4223 4224 4225 4226 4227
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4228
	} else {
4229 4230
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4241
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4242
			tag))) {
4243 4244 4245 4246 4247
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4248 4249
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4250
				continue;
4251
			if (ret < 0) {
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4275 4276 4277 4278
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
	 */
	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
		ret = flush_write_bio(&epd);
	} else {
4309
		ret = -EROFS;
4310 4311
		end_write_bio(&epd, ret);
	}
4312 4313 4314
	return ret;
}

4315
/**
4316 4317
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4318
 * @mapping: address space structure to write
4319 4320
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4321 4322 4323 4324 4325 4326 4327 4328 4329
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4330
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4331
			     struct writeback_control *wbc,
4332
			     struct extent_page_data *epd)
4333
{
4334
	struct inode *inode = mapping->host;
4335 4336
	int ret = 0;
	int done = 0;
4337
	int nr_to_write_done = 0;
4338 4339 4340 4341
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4342 4343
	pgoff_t done_index;
	int range_whole = 0;
4344
	int scanned = 0;
M
Matthew Wilcox 已提交
4345
	xa_mark_t tag;
4346

4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4359
	pagevec_init(&pvec);
4360 4361 4362
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4363 4364 4365 4366 4367
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4368
	} else {
4369 4370
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4371 4372
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4373 4374
		scanned = 1;
	}
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4389 4390 4391
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4392
retry:
4393
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4394
		tag_pages_for_writeback(mapping, index, end);
4395
	done_index = index;
4396
	while (!done && !nr_to_write_done && (index <= end) &&
4397 4398
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
4399 4400 4401 4402 4403
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4404
			done_index = page->index + 1;
4405
			/*
M
Matthew Wilcox 已提交
4406 4407 4408 4409 4410
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
4411
			 */
4412
			if (!trylock_page(page)) {
4413 4414
				ret = flush_write_bio(epd);
				BUG_ON(ret < 0);
4415
				lock_page(page);
4416
			}
4417 4418 4419 4420 4421 4422

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
4423
			if (wbc->sync_mode != WB_SYNC_NONE) {
4424 4425 4426 4427
				if (PageWriteback(page)) {
					ret = flush_write_bio(epd);
					BUG_ON(ret < 0);
				}
4428
				wait_on_page_writeback(page);
C
Chris Mason 已提交
4429
			}
4430 4431 4432 4433 4434 4435 4436

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

4437
			ret = __extent_writepage(page, wbc, epd);
4438 4439 4440 4441
			if (ret < 0) {
				done = 1;
				break;
			}
4442 4443 4444 4445 4446 4447 4448

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
4449 4450 4451 4452
		}
		pagevec_release(&pvec);
		cond_resched();
	}
4453
	if (!scanned && !done) {
4454 4455 4456 4457 4458 4459
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
		ret = flush_write_bio(epd);
		if (!ret)
			goto retry;
4470
	}
4471 4472 4473 4474

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

4475
	btrfs_add_delayed_iput(inode);
4476
	return ret;
4477 4478
}

4479
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4480 4481 4482 4483
{
	int ret;
	struct extent_page_data epd = {
		.bio = NULL,
4484
		.extent_locked = 0,
4485
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4486 4487 4488
	};

	ret = __extent_writepage(page, wbc, &epd);
4489 4490 4491 4492 4493
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
4494

4495 4496
	ret = flush_write_bio(&epd);
	ASSERT(ret <= 0);
4497 4498 4499
	return ret;
}

4500
int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4501 4502 4503 4504 4505
			      int mode)
{
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
4506 4507
	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
		PAGE_SHIFT;
4508 4509 4510 4511

	struct extent_page_data epd = {
		.bio = NULL,
		.extent_locked = 1,
4512
		.sync_io = mode == WB_SYNC_ALL,
4513 4514 4515 4516 4517 4518
	};
	struct writeback_control wbc_writepages = {
		.sync_mode	= mode,
		.nr_to_write	= nr_pages * 2,
		.range_start	= start,
		.range_end	= end + 1,
4519 4520 4521
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
4522 4523
	};

4524
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
C
Chris Mason 已提交
4525
	while (start <= end) {
4526
		page = find_get_page(mapping, start >> PAGE_SHIFT);
4527 4528 4529
		if (clear_page_dirty_for_io(page))
			ret = __extent_writepage(page, &wbc_writepages, &epd);
		else {
4530
			btrfs_writepage_endio_finish_ordered(page, start,
4531
						    start + PAGE_SIZE - 1, 1);
4532 4533
			unlock_page(page);
		}
4534 4535
		put_page(page);
		start += PAGE_SIZE;
4536 4537
	}

4538
	ASSERT(ret <= 0);
4539 4540 4541
	if (ret == 0)
		ret = flush_write_bio(&epd);
	else
4542
		end_write_bio(&epd, ret);
4543 4544

	wbc_detach_inode(&wbc_writepages);
4545 4546
	return ret;
}
4547

4548
int extent_writepages(struct address_space *mapping,
4549 4550 4551 4552 4553
		      struct writeback_control *wbc)
{
	int ret = 0;
	struct extent_page_data epd = {
		.bio = NULL,
4554
		.extent_locked = 0,
4555
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4556 4557
	};

4558
	ret = extent_write_cache_pages(mapping, wbc, &epd);
4559 4560 4561 4562 4563 4564
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
	ret = flush_write_bio(&epd);
4565 4566 4567
	return ret;
}

4568
void extent_readahead(struct readahead_control *rac)
4569 4570
{
	struct bio *bio = NULL;
C
Chris Mason 已提交
4571
	unsigned long bio_flags = 0;
L
Liu Bo 已提交
4572
	struct page *pagepool[16];
4573
	struct extent_map *em_cached = NULL;
4574
	u64 prev_em_start = (u64)-1;
4575
	int nr;
4576

4577 4578 4579
	while ((nr = readahead_page_batch(rac, pagepool))) {
		u64 contig_start = page_offset(pagepool[0]);
		u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4580

4581
		ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4582

4583 4584
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
				&em_cached, &bio, &bio_flags, &prev_em_start);
4585
	}
L
Liu Bo 已提交
4586

4587 4588 4589
	if (em_cached)
		free_extent_map(em_cached);

4590 4591 4592 4593
	if (bio) {
		if (submit_one_bio(bio, 0, bio_flags))
			return;
	}
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
}

/*
 * basic invalidatepage code, this waits on any locked or writeback
 * ranges corresponding to the page, and then deletes any extent state
 * records from the tree
 */
int extent_invalidatepage(struct extent_io_tree *tree,
			  struct page *page, unsigned long offset)
{
4604
	struct extent_state *cached_state = NULL;
M
Miao Xie 已提交
4605
	u64 start = page_offset(page);
4606
	u64 end = start + PAGE_SIZE - 1;
4607 4608
	size_t blocksize = page->mapping->host->i_sb->s_blocksize;

4609 4610 4611
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

4612
	start += ALIGN(offset, blocksize);
4613 4614 4615
	if (start > end)
		return 0;

4616
	lock_extent_bits(tree, start, end, &cached_state);
4617
	wait_on_page_writeback(page);
4618 4619 4620 4621 4622 4623 4624

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
4625 4626 4627
	return 0;
}

4628 4629 4630 4631 4632
/*
 * a helper for releasepage, this tests for areas of the page that
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
4633
static int try_release_extent_state(struct extent_io_tree *tree,
4634
				    struct page *page, gfp_t mask)
4635
{
M
Miao Xie 已提交
4636
	u64 start = page_offset(page);
4637
	u64 end = start + PAGE_SIZE - 1;
4638 4639
	int ret = 1;

N
Nikolay Borisov 已提交
4640
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4641
		ret = 0;
N
Nikolay Borisov 已提交
4642
	} else {
4643
		/*
4644 4645 4646 4647
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
4648
		 */
4649
		ret = __clear_extent_bit(tree, start, end,
4650 4651
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
4652 4653 4654 4655 4656 4657 4658 4659

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
4660 4661 4662 4663
	}
	return ret;
}

4664 4665 4666 4667 4668
/*
 * a helper for releasepage.  As long as there are no locked extents
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
4669
int try_release_extent_mapping(struct page *page, gfp_t mask)
4670 4671
{
	struct extent_map *em;
M
Miao Xie 已提交
4672
	u64 start = page_offset(page);
4673
	u64 end = start + PAGE_SIZE - 1;
4674 4675 4676
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4677

4678
	if (gfpflags_allow_blocking(mask) &&
4679
	    page->mapping->host->i_size > SZ_16M) {
4680
		u64 len;
4681
		while (start <= end) {
4682 4683 4684
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

4685
			len = end - start + 1;
4686
			write_lock(&map->lock);
4687
			em = lookup_extent_mapping(map, start, len);
4688
			if (!em) {
4689
				write_unlock(&map->lock);
4690 4691
				break;
			}
4692 4693
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
4694
				write_unlock(&map->lock);
4695 4696 4697
				free_extent_map(em);
				break;
			}
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
4725 4726 4727 4728 4729 4730 4731 4732
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
4733 4734 4735
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
4736
next:
4737
			start = extent_map_end(em);
4738
			write_unlock(&map->lock);
4739 4740

			/* once for us */
4741
			free_extent_map(em);
4742 4743

			cond_resched(); /* Allow large-extent preemption. */
4744 4745
		}
	}
4746
	return try_release_extent_state(tree, page, mask);
4747 4748
}

4749 4750 4751 4752
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
4753
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4754
						u64 offset, u64 last)
4755
{
4756
	u64 sectorsize = btrfs_inode_sectorsize(inode);
4757 4758 4759 4760 4761 4762
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

4763
	while (1) {
4764 4765 4766
		len = last - offset;
		if (len == 0)
			break;
4767
		len = ALIGN(len, sectorsize);
4768
		em = btrfs_get_extent_fiemap(inode, offset, len);
4769
		if (IS_ERR_OR_NULL(em))
4770 4771 4772
			return em;

		/* if this isn't a hole return it */
4773
		if (em->block_start != EXTENT_MAP_HOLE)
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
4819
	 * fiemap extent won't overlap with cached one.
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
4871
 * Emit last fiemap cache
4872
 *
4873 4874 4875 4876 4877 4878 4879
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
4880
 */
4881
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4882
				  struct fiemap_cache *cache)
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

4897
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4898
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
4899
{
J
Josef Bacik 已提交
4900
	int ret = 0;
Y
Yehuda Sadeh 已提交
4901 4902 4903
	u64 off = start;
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
4904 4905
	u32 found_type;
	u64 last;
4906
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
4907
	u64 disko = 0;
4908
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
4909
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
4910
	struct extent_map *em = NULL;
4911
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
4912
	struct btrfs_path *path;
4913
	struct btrfs_root *root = inode->root;
4914
	struct fiemap_cache cache = { 0 };
4915 4916
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
4917
	int end = 0;
4918 4919 4920
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
4921 4922 4923 4924

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
4925 4926 4927 4928
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

4929 4930 4931 4932 4933 4934 4935
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

4936 4937
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4938

4939 4940 4941 4942
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
4943 4944
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
4945
	if (ret < 0) {
4946
		goto out_free_ulist;
4947 4948 4949 4950
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
4951
	}
4952

J
Josef Bacik 已提交
4953 4954
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4955
	found_type = found_key.type;
J
Josef Bacik 已提交
4956

4957
	/* No extents, but there might be delalloc bits */
4958
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
4959
	    found_type != BTRFS_EXTENT_DATA_KEY) {
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
4971
	}
4972
	btrfs_release_path(path);
J
Josef Bacik 已提交
4973

4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

4984
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
4985
			 &cached_state);
4986

4987
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
4988 4989 4990 4991 4992 4993
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
4994

Y
Yehuda Sadeh 已提交
4995
	while (!end) {
4996
		u64 offset_in_extent = 0;
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5009

5010 5011
		/*
		 * record the offset from the start of the extent
5012 5013 5014
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5015
		 */
5016 5017
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5018
		em_end = extent_map_end(em);
5019
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5020
		flags = 0;
5021 5022 5023 5024
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5025

5026 5027 5028 5029 5030 5031 5032
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5033
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
5034 5035
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5036
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5037 5038
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5039
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5040 5041
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5042 5043 5044
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5045 5046 5047 5048

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5049 5050 5051
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5052
			 */
5053
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5054
						 bytenr, roots, tmp_ulist);
5055
			if (ret < 0)
5056
				goto out_free;
5057
			if (ret)
5058
				flags |= FIEMAP_EXTENT_SHARED;
5059
			ret = 0;
Y
Yehuda Sadeh 已提交
5060 5061 5062
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5063 5064
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5065 5066 5067

		free_extent_map(em);
		em = NULL;
5068 5069
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5070 5071 5072 5073
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5074
		/* now scan forward to see if this is really the last extent. */
5075
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5076 5077 5078 5079 5080
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5081 5082 5083
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5084 5085
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5086 5087 5088
		if (ret) {
			if (ret == 1)
				ret = 0;
5089
			goto out_free;
5090
		}
Y
Yehuda Sadeh 已提交
5091 5092
	}
out_free:
5093
	if (!ret)
5094
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5095 5096
	free_extent_map(em);
out:
5097
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5098
			     &cached_state);
5099 5100

out_free_ulist:
5101
	btrfs_free_path(path);
5102 5103
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5104 5105 5106
	return ret;
}

5107 5108 5109 5110 5111
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5112
int extent_buffer_under_io(const struct extent_buffer *eb)
5113 5114 5115 5116 5117 5118
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5119
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5120
{
5121
	struct btrfs_subpage *subpage;
5122

5123
	lockdep_assert_held(&page->mapping->private_lock);
5124

5125 5126 5127 5128 5129 5130 5131
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
	}
	return false;
}
5132

5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5146
		if (mapped)
5147 5148 5149 5150 5151
			spin_unlock(&page->mapping->private_lock);
		return;
	}

	if (fs_info->sectorsize == PAGE_SIZE) {
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5164
			/*
5165 5166
			 * We need to make sure we haven't be attached
			 * to a new eb.
5167
			 */
5168
			detach_page_private(page);
5169
		}
5170 5171
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
	 * page range.
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5213

5214
		/* One for when we allocated the page */
5215
		put_page(page);
5216
	}
5217 5218 5219 5220 5221 5222 5223
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5224
	btrfs_release_extent_buffer_pages(eb);
5225
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5226 5227 5228
	__free_extent_buffer(eb);
}

5229 5230
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5231
		      unsigned long len)
5232 5233 5234
{
	struct extent_buffer *eb = NULL;

5235
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5236 5237
	eb->start = start;
	eb->len = len;
5238
	eb->fs_info = fs_info;
5239
	eb->bflags = 0;
5240
	init_rwsem(&eb->lock);
5241

5242 5243
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5244
	INIT_LIST_HEAD(&eb->release_list);
5245

5246
	spin_lock_init(&eb->refs_lock);
5247
	atomic_set(&eb->refs, 1);
5248
	atomic_set(&eb->io_pages, 0);
5249

5250
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5251 5252 5253 5254

	return eb;
}

5255
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5256
{
5257
	int i;
5258 5259
	struct page *p;
	struct extent_buffer *new;
5260
	int num_pages = num_extent_pages(src);
5261

5262
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5263 5264 5265
	if (new == NULL)
		return NULL;

5266 5267 5268 5269 5270 5271 5272
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5273
	for (i = 0; i < num_pages; i++) {
5274 5275
		int ret;

5276
		p = alloc_page(GFP_NOFS);
5277 5278 5279 5280
		if (!p) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5281 5282 5283 5284 5285 5286
		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			put_page(p);
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5287 5288
		WARN_ON(PageDirty(p));
		new->pages[i] = p;
5289
		copy_page(page_address(p), page_address(src->pages[i]));
5290
	}
5291
	set_extent_buffer_uptodate(new);
5292 5293 5294 5295

	return new;
}

5296 5297
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5298 5299
{
	struct extent_buffer *eb;
5300 5301
	int num_pages;
	int i;
5302

5303
	eb = __alloc_extent_buffer(fs_info, start, len);
5304 5305 5306
	if (!eb)
		return NULL;

5307
	num_pages = num_extent_pages(eb);
5308
	for (i = 0; i < num_pages; i++) {
5309 5310
		int ret;

5311
		eb->pages[i] = alloc_page(GFP_NOFS);
5312 5313
		if (!eb->pages[i])
			goto err;
5314 5315 5316
		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
		if (ret < 0)
			goto err;
5317 5318 5319
	}
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5320
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5321 5322 5323

	return eb;
err:
5324 5325
	for (; i > 0; i--) {
		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5326
		__free_page(eb->pages[i - 1]);
5327
	}
5328 5329 5330 5331
	__free_extent_buffer(eb);
	return NULL;
}

5332
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5333
						u64 start)
5334
{
5335
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5336 5337
}

5338 5339
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5340
	int refs;
5341 5342 5343 5344
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5345
	 *
5346 5347 5348
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
	 * calling releasepage when the tree reference is the only reference.
5349
	 *
5350 5351 5352 5353 5354
	 * In both cases, care is taken to ensure that the extent_buffer's
	 * pages are not under io. However, releasepage can be concurrently
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5355
	 *
5356 5357 5358 5359 5360 5361 5362
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
5363
	 */
5364 5365 5366 5367
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

5368 5369
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5370
		atomic_inc(&eb->refs);
5371
	spin_unlock(&eb->refs_lock);
5372 5373
}

5374 5375
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
5376
{
5377
	int num_pages, i;
5378

5379 5380
	check_buffer_tree_ref(eb);

5381
	num_pages = num_extent_pages(eb);
5382
	for (i = 0; i < num_pages; i++) {
5383 5384
		struct page *p = eb->pages[i];

5385 5386
		if (p != accessed)
			mark_page_accessed(p);
5387 5388 5389
	}
}

5390 5391
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
5392 5393 5394 5395
{
	struct extent_buffer *eb;

	rcu_read_lock();
5396
	eb = radix_tree_lookup(&fs_info->buffer_radix,
5397
			       start >> fs_info->sectorsize_bits);
5398 5399
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
		/*
		 * Lock our eb's refs_lock to avoid races with
		 * free_extent_buffer. When we get our eb it might be flagged
		 * with EXTENT_BUFFER_STALE and another task running
		 * free_extent_buffer might have seen that flag set,
		 * eb->refs == 2, that the buffer isn't under IO (dirty and
		 * writeback flags not set) and it's still in the tree (flag
		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
		 * of decrementing the extent buffer's reference count twice.
		 * So here we could race and increment the eb's reference count,
		 * clear its stale flag, mark it as dirty and drop our reference
		 * before the other task finishes executing free_extent_buffer,
		 * which would later result in an attempt to free an extent
		 * buffer that is dirty.
		 */
		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
			spin_lock(&eb->refs_lock);
			spin_unlock(&eb->refs_lock);
		}
5419
		mark_extent_buffer_accessed(eb, NULL);
5420 5421 5422 5423 5424 5425 5426
		return eb;
	}
	rcu_read_unlock();

	return NULL;
}

5427 5428
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5429
					u64 start)
5430 5431 5432 5433 5434 5435 5436
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
5437
	eb = alloc_dummy_extent_buffer(fs_info, start);
5438
	if (!eb)
5439
		return ERR_PTR(-ENOMEM);
5440 5441
	eb->fs_info = fs_info;
again:
5442
	ret = radix_tree_preload(GFP_NOFS);
5443 5444
	if (ret) {
		exists = ERR_PTR(ret);
5445
		goto free_eb;
5446
	}
5447 5448
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
5449
				start >> fs_info->sectorsize_bits, eb);
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
			goto free_eb;
		else
			goto again;
	}
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

5469 5470
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
5471 5472 5473
{
	struct extent_buffer *exists;

5474 5475 5476 5477 5478 5479 5480 5481
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
	if (fs_info->sectorsize < PAGE_SIZE)
		return NULL;

5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

5501
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5502
					  u64 start, u64 owner_root, int level)
5503
{
5504
	unsigned long len = fs_info->nodesize;
5505 5506
	int num_pages;
	int i;
5507
	unsigned long index = start >> PAGE_SHIFT;
5508
	struct extent_buffer *eb;
5509
	struct extent_buffer *exists = NULL;
5510
	struct page *p;
5511
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5512
	int uptodate = 1;
5513
	int ret;
5514

5515
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5516 5517 5518 5519
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return ERR_PTR(-EINVAL);
	}

5520 5521 5522 5523 5524 5525 5526 5527
	if (fs_info->sectorsize < PAGE_SIZE &&
	    offset_in_page(start) + len > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %lu",
			  start, len);
		return ERR_PTR(-EINVAL);
	}

5528
	eb = find_extent_buffer(fs_info, start);
5529
	if (eb)
5530 5531
		return eb;

5532
	eb = __alloc_extent_buffer(fs_info, start, len);
5533
	if (!eb)
5534
		return ERR_PTR(-ENOMEM);
5535
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
5536

5537
	num_pages = num_extent_pages(eb);
5538
	for (i = 0; i < num_pages; i++, index++) {
5539 5540
		struct btrfs_subpage *prealloc = NULL;

5541
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5542 5543
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
5544
			goto free_eb;
5545
		}
J
Josef Bacik 已提交
5546

5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
		ret = btrfs_alloc_subpage(fs_info, &prealloc,
					  BTRFS_SUBPAGE_METADATA);
		if (ret < 0) {
			unlock_page(p);
			put_page(p);
			exists = ERR_PTR(ret);
			goto free_eb;
		}

J
Josef Bacik 已提交
5566
		spin_lock(&mapping->private_lock);
5567
		exists = grab_extent_buffer(fs_info, p);
5568 5569 5570 5571 5572
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
5573
			btrfs_free_subpage(prealloc);
5574
			goto free_eb;
5575
		}
5576 5577 5578
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
5589
		spin_unlock(&mapping->private_lock);
5590

5591
		WARN_ON(PageDirty(p));
5592
		eb->pages[i] = p;
5593 5594
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
5595 5596

		/*
5597 5598 5599 5600 5601
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
		 * opens a race with btree_releasepage which can free a page
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
5602
		 */
5603 5604
	}
	if (uptodate)
5605
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5606
again:
5607
	ret = radix_tree_preload(GFP_NOFS);
5608 5609
	if (ret) {
		exists = ERR_PTR(ret);
5610
		goto free_eb;
5611
	}
5612

5613 5614
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
5615
				start >> fs_info->sectorsize_bits, eb);
5616
	spin_unlock(&fs_info->buffer_lock);
5617
	radix_tree_preload_end();
5618
	if (ret == -EEXIST) {
5619
		exists = find_extent_buffer(fs_info, start);
5620 5621 5622
		if (exists)
			goto free_eb;
		else
5623
			goto again;
5624 5625
	}
	/* add one reference for the tree */
5626
	check_buffer_tree_ref(eb);
5627
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
5628 5629

	/*
5630 5631 5632
	 * Now it's safe to unlock the pages because any calls to
	 * btree_releasepage will correctly detect that a page belongs to a
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
5633
	 */
5634 5635
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
5636 5637
	return eb;

5638
free_eb:
5639
	WARN_ON(!atomic_dec_and_test(&eb->refs));
5640 5641 5642 5643
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
5644

5645
	btrfs_release_extent_buffer(eb);
5646
	return exists;
5647 5648
}

5649 5650 5651 5652 5653 5654 5655 5656
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

5657
static int release_extent_buffer(struct extent_buffer *eb)
5658
	__releases(&eb->refs_lock)
5659
{
5660 5661
	lockdep_assert_held(&eb->refs_lock);

5662 5663
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
5664
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5665
			struct btrfs_fs_info *fs_info = eb->fs_info;
5666

5667
			spin_unlock(&eb->refs_lock);
5668

5669 5670
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
5671
					  eb->start >> fs_info->sectorsize_bits);
5672
			spin_unlock(&fs_info->buffer_lock);
5673 5674
		} else {
			spin_unlock(&eb->refs_lock);
5675
		}
5676

5677
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5678
		/* Should be safe to release our pages at this point */
5679
		btrfs_release_extent_buffer_pages(eb);
5680
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5681
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5682 5683 5684 5685
			__free_extent_buffer(eb);
			return 1;
		}
#endif
5686
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5687
		return 1;
5688 5689
	}
	spin_unlock(&eb->refs_lock);
5690 5691

	return 0;
5692 5693
}

5694 5695
void free_extent_buffer(struct extent_buffer *eb)
{
5696 5697
	int refs;
	int old;
5698 5699 5700
	if (!eb)
		return;

5701 5702
	while (1) {
		refs = atomic_read(&eb->refs);
5703 5704 5705
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
5706 5707 5708 5709 5710 5711
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

5712 5713 5714
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5715
	    !extent_buffer_under_io(eb) &&
5716 5717 5718 5719 5720 5721 5722
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
5723
	release_extent_buffer(eb);
5724 5725 5726 5727 5728
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
5729 5730
		return;

5731 5732 5733
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

5734
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5735 5736
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
5737
	release_extent_buffer(eb);
5738 5739
}

5740
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5741
{
5742 5743
	int i;
	int num_pages;
5744 5745
	struct page *page;

5746
	num_pages = num_extent_pages(eb);
5747 5748

	for (i = 0; i < num_pages; i++) {
5749
		page = eb->pages[i];
5750
		if (!PageDirty(page))
C
Chris Mason 已提交
5751 5752
			continue;

5753
		lock_page(page);
C
Chris Mason 已提交
5754 5755
		WARN_ON(!PagePrivate(page));

5756
		clear_page_dirty_for_io(page);
M
Matthew Wilcox 已提交
5757
		xa_lock_irq(&page->mapping->i_pages);
5758 5759 5760
		if (!PageDirty(page))
			__xa_clear_mark(&page->mapping->i_pages,
					page_index(page), PAGECACHE_TAG_DIRTY);
M
Matthew Wilcox 已提交
5761
		xa_unlock_irq(&page->mapping->i_pages);
5762
		ClearPageError(page);
5763
		unlock_page(page);
5764
	}
5765
	WARN_ON(atomic_read(&eb->refs) == 0);
5766 5767
}

5768
bool set_extent_buffer_dirty(struct extent_buffer *eb)
5769
{
5770 5771
	int i;
	int num_pages;
5772
	bool was_dirty;
5773

5774 5775
	check_buffer_tree_ref(eb);

5776
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5777

5778
	num_pages = num_extent_pages(eb);
5779
	WARN_ON(atomic_read(&eb->refs) == 0);
5780 5781
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

5782 5783 5784
	if (!was_dirty)
		for (i = 0; i < num_pages; i++)
			set_page_dirty(eb->pages[i]);
5785 5786 5787 5788 5789 5790

#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

5791
	return was_dirty;
5792 5793
}

5794
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5795
{
5796
	struct btrfs_fs_info *fs_info = eb->fs_info;
5797
	struct page *page;
5798
	int num_pages;
5799
	int i;
5800

5801
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5802
	num_pages = num_extent_pages(eb);
5803
	for (i = 0; i < num_pages; i++) {
5804
		page = eb->pages[i];
C
Chris Mason 已提交
5805
		if (page)
5806 5807
			btrfs_page_clear_uptodate(fs_info, page,
						  eb->start, eb->len);
5808 5809 5810
	}
}

5811
void set_extent_buffer_uptodate(struct extent_buffer *eb)
5812
{
5813
	struct btrfs_fs_info *fs_info = eb->fs_info;
5814
	struct page *page;
5815
	int num_pages;
5816
	int i;
5817

5818
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5819
	num_pages = num_extent_pages(eb);
5820
	for (i = 0; i < num_pages; i++) {
5821
		page = eb->pages[i];
5822
		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
5823 5824 5825
	}
}

5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
	struct bio *bio = NULL;
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
		ret = try_lock_extent(io_tree, eb->start,
				      eb->start + eb->len - 1);
		if (ret <= 0)
			return ret;
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, page, eb->start,
				 eb->len, eb->start - page_offset(page), &bio,
				 end_bio_extent_readpage, mirror_num, 0, 0,
				 true);
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
	if (bio) {
		int tmp;

		tmp = submit_one_bio(bio, mirror_num, 0);
		if (tmp < 0)
			return tmp;
	}
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

5893
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5894
{
5895
	int i;
5896 5897 5898
	struct page *page;
	int err;
	int ret = 0;
5899 5900
	int locked_pages = 0;
	int all_uptodate = 1;
5901
	int num_pages;
5902
	unsigned long num_reads = 0;
5903
	struct bio *bio = NULL;
C
Chris Mason 已提交
5904
	unsigned long bio_flags = 0;
5905

5906
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5907 5908
		return 0;

5909 5910 5911
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return read_extent_buffer_subpage(eb, wait, mirror_num);

5912
	num_pages = num_extent_pages(eb);
5913
	for (i = 0; i < num_pages; i++) {
5914
		page = eb->pages[i];
5915
		if (wait == WAIT_NONE) {
5916 5917 5918 5919 5920 5921 5922
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
5923
			if (!trylock_page(page))
5924
				goto unlock_exit;
5925 5926 5927
		} else {
			lock_page(page);
		}
5928
		locked_pages++;
5929 5930 5931 5932 5933 5934
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
5935
	for (i = 0; i < num_pages; i++) {
5936
		page = eb->pages[i];
5937 5938
		if (!PageUptodate(page)) {
			num_reads++;
5939
			all_uptodate = 0;
5940
		}
5941
	}
5942

5943
	if (all_uptodate) {
5944
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5945 5946 5947
		goto unlock_exit;
	}

5948
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5949
	eb->read_mirror = 0;
5950
	atomic_set(&eb->io_pages, num_reads);
5951 5952 5953 5954 5955
	/*
	 * It is possible for releasepage to clear the TREE_REF bit before we
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
5956
	for (i = 0; i < num_pages; i++) {
5957
		page = eb->pages[i];
5958

5959
		if (!PageUptodate(page)) {
5960 5961 5962 5963 5964 5965
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

5966
			ClearPageError(page);
5967 5968 5969 5970
			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
					 page, page_offset(page), PAGE_SIZE, 0,
					 &bio, end_bio_extent_readpage,
					 mirror_num, 0, 0, false);
5971 5972
			if (err) {
				/*
5973 5974 5975
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
5976
				 */
5977 5978 5979
				ret = err;
				SetPageError(page);
				unlock_page(page);
5980 5981
				atomic_dec(&eb->io_pages);
			}
5982 5983 5984 5985 5986
		} else {
			unlock_page(page);
		}
	}

5987
	if (bio) {
5988
		err = submit_one_bio(bio, mirror_num, bio_flags);
5989 5990
		if (err)
			return err;
5991
	}
5992

5993
	if (ret || wait != WAIT_COMPLETE)
5994
		return ret;
C
Chris Mason 已提交
5995

5996
	for (i = 0; i < num_pages; i++) {
5997
		page = eb->pages[i];
5998
		wait_on_page_locked(page);
C
Chris Mason 已提交
5999
		if (!PageUptodate(page))
6000 6001
			ret = -EIO;
	}
C
Chris Mason 已提交
6002

6003
	return ret;
6004 6005

unlock_exit:
C
Chris Mason 已提交
6006
	while (locked_pages > 0) {
6007
		locked_pages--;
6008 6009
		page = eb->pages[locked_pages];
		unlock_page(page);
6010 6011
	}
	return ret;
6012 6013
}

6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6044 6045
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6046 6047 6048 6049 6050 6051
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6052
	unsigned long i = get_eb_page_index(start);
6053

6054
	if (check_eb_range(eb, start, len))
6055
		return;
6056

6057
	offset = get_eb_offset_in_page(eb, start);
6058

C
Chris Mason 已提交
6059
	while (len > 0) {
6060
		page = eb->pages[i];
6061

6062
		cur = min(len, (PAGE_SIZE - offset));
6063
		kaddr = page_address(page);
6064 6065 6066 6067 6068 6069 6070 6071 6072
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6073 6074 6075
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6076 6077 6078 6079 6080 6081
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6082
	unsigned long i = get_eb_page_index(start);
6083 6084 6085 6086 6087
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6088
	offset = get_eb_offset_in_page(eb, start);
6089 6090

	while (len > 0) {
6091
		page = eb->pages[i];
6092

6093
		cur = min(len, (PAGE_SIZE - offset));
6094
		kaddr = page_address(page);
6095
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6109 6110
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6111 6112 6113 6114 6115 6116
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6117
	unsigned long i = get_eb_page_index(start);
6118 6119
	int ret = 0;

6120 6121
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6122

6123
	offset = get_eb_offset_in_page(eb, start);
6124

C
Chris Mason 已提交
6125
	while (len > 0) {
6126
		page = eb->pages[i];
6127

6128
		cur = min(len, (PAGE_SIZE - offset));
6129

6130
		kaddr = page_address(page);
6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6143
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6144 6145 6146 6147 6148
		const void *srcv)
{
	char *kaddr;

	WARN_ON(!PageUptodate(eb->pages[0]));
6149
	kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0);
6150 6151 6152 6153
	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
			BTRFS_FSID_SIZE);
}

6154
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6155 6156 6157 6158
{
	char *kaddr;

	WARN_ON(!PageUptodate(eb->pages[0]));
6159
	kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0);
6160 6161 6162 6163
	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
			BTRFS_FSID_SIZE);
}

6164
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6165 6166 6167 6168 6169 6170 6171
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6172
	unsigned long i = get_eb_page_index(start);
6173

6174 6175
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6176 6177
	if (check_eb_range(eb, start, len))
		return;
6178

6179
	offset = get_eb_offset_in_page(eb, start);
6180

C
Chris Mason 已提交
6181
	while (len > 0) {
6182
		page = eb->pages[i];
6183 6184
		WARN_ON(!PageUptodate(page));

6185
		cur = min(len, PAGE_SIZE - offset);
6186
		kaddr = page_address(page);
6187 6188 6189 6190 6191 6192 6193 6194 6195
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6196
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6197
		unsigned long len)
6198 6199 6200 6201 6202
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6203
	unsigned long i = get_eb_page_index(start);
6204

6205 6206
	if (check_eb_range(eb, start, len))
		return;
6207

6208
	offset = get_eb_offset_in_page(eb, start);
6209

C
Chris Mason 已提交
6210
	while (len > 0) {
6211
		page = eb->pages[i];
6212 6213
		WARN_ON(!PageUptodate(page));

6214
		cur = min(len, PAGE_SIZE - offset);
6215
		kaddr = page_address(page);
6216
		memset(kaddr + offset, 0, cur);
6217 6218 6219 6220 6221 6222 6223

		len -= cur;
		offset = 0;
		i++;
	}
}

6224 6225
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6226 6227
{
	int i;
6228
	int num_pages;
6229 6230 6231

	ASSERT(dst->len == src->len);

6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
	if (dst->fs_info->sectorsize == PAGE_SIZE) {
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
6246 6247
}

6248 6249
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
6250 6251 6252 6253 6254 6255 6256 6257
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6258
	unsigned long i = get_eb_page_index(dst_offset);
6259

6260 6261 6262 6263
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

6264 6265
	WARN_ON(src->len != dst_len);

6266
	offset = get_eb_offset_in_page(dst, dst_offset);
6267

C
Chris Mason 已提交
6268
	while (len > 0) {
6269
		page = dst->pages[i];
6270 6271
		WARN_ON(!PageUptodate(page));

6272
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6273

6274
		kaddr = page_address(page);
6275 6276 6277 6278 6279 6280 6281 6282 6283
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
6297
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
6310
	offset = start + offset_in_page(eb->start) + byte_offset;
6311

6312
	*page_index = offset >> PAGE_SHIFT;
6313
	*page_offset = offset_in_page(offset);
6314 6315 6316 6317 6318 6319 6320 6321
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
6322
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6323 6324
			   unsigned long nr)
{
6325
	u8 *kaddr;
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
	WARN_ON(!PageUptodate(page));
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
6344
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6345 6346
			      unsigned long pos, unsigned long len)
{
6347
	u8 *kaddr;
6348 6349 6350 6351 6352
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6353
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6354 6355 6356 6357 6358 6359 6360 6361 6362 6363

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
	WARN_ON(!PageUptodate(page));
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6364
		mask_to_set = ~0;
6365
		if (++offset >= PAGE_SIZE && len > 0) {
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385
			offset = 0;
			page = eb->pages[++i];
			WARN_ON(!PageUptodate(page));
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
6386 6387 6388
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
6389
{
6390
	u8 *kaddr;
6391 6392 6393 6394 6395
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6396
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
	WARN_ON(!PageUptodate(page));
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6407
		mask_to_clear = ~0;
6408
		if (++offset >= PAGE_SIZE && len > 0) {
6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
			offset = 0;
			page = eb->pages[++i];
			WARN_ON(!PageUptodate(page));
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

6421 6422 6423 6424 6425 6426
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

6427 6428 6429 6430
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
6431
	char *dst_kaddr = page_address(dst_page);
6432
	char *src_kaddr;
6433
	int must_memmove = 0;
6434

6435
	if (dst_page != src_page) {
6436
		src_kaddr = page_address(src_page);
6437
	} else {
6438
		src_kaddr = dst_kaddr;
6439 6440
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
6441
	}
6442

6443 6444 6445 6446
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6447 6448
}

6449 6450 6451
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
6452 6453 6454 6455 6456 6457 6458
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

6459 6460 6461
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6462

C
Chris Mason 已提交
6463
	while (len > 0) {
6464 6465
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6466

6467 6468
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
6469

6470
		cur = min(len, (unsigned long)(PAGE_SIZE -
6471 6472
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
6473
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6474

6475
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6476 6477 6478 6479 6480 6481 6482 6483
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

6484 6485 6486
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
6487 6488 6489 6490 6491 6492 6493 6494 6495
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

6496 6497 6498
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6499
	if (dst_offset < src_offset) {
6500 6501 6502
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
6503
	while (len > 0) {
6504 6505
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
6506

6507 6508
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
6509 6510 6511

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
6512
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6513 6514 6515 6516 6517 6518 6519 6520
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
6521

6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
	struct extent_buffer *found = NULL;
	u64 page_start = page_offset(page);
	int ret;
	int i;

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
	lockdep_assert_held(&fs_info->buffer_lock);

	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
			bytenr >> fs_info->sectorsize_bits,
			PAGE_SIZE / fs_info->nodesize);
	for (i = 0; i < ret; i++) {
		/* Already beyond page end */
		if (gang[i]->start >= page_start + PAGE_SIZE)
			break;
		/* Found one */
		if (gang[i]->start >= bytenr) {
			found = gang[i];
			break;
		}
	}
	return found;
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

6621
int try_release_extent_buffer(struct page *page)
6622
{
6623 6624
	struct extent_buffer *eb;

6625 6626 6627
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return try_release_subpage_extent_buffer(page);

6628
	/*
6629 6630
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
6631 6632 6633 6634
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
6635
		return 1;
6636
	}
6637

6638 6639
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
6640 6641

	/*
6642 6643 6644
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
6645
	 */
6646
	spin_lock(&eb->refs_lock);
6647
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6648 6649 6650
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
6651
	}
6652
	spin_unlock(&page->mapping->private_lock);
6653

6654
	/*
6655 6656
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
6657
	 */
6658 6659 6660
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
6661
	}
6662

6663
	return release_extent_buffer(eb);
6664
}
6665 6666 6667 6668 6669

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
6670
 * @owner_root: objectid of the root that owns this eb
6671
 * @gen:	generation for the uptodate check, can be 0
6672
 * @level:	level for the eb
6673 6674 6675 6676 6677 6678
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
6679
				u64 bytenr, u64 owner_root, u64 gen, int level)
6680 6681 6682 6683
{
	struct extent_buffer *eb;
	int ret;

6684
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
6712 6713 6714
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
6715
}