page_alloc.c 207.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kmemcheck.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39 40
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
41
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
42 43
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
44
#include <linux/vmstat.h>
45
#include <linux/mempolicy.h>
46
#include <linux/memremap.h>
47
#include <linux/stop_machine.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/page_ext.h>
54
#include <linux/debugobjects.h>
55
#include <linux/kmemleak.h>
56
#include <linux/compaction.h>
57
#include <trace/events/kmem.h>
58
#include <trace/events/oom.h>
59
#include <linux/prefetch.h>
60
#include <linux/mm_inline.h>
61
#include <linux/migrate.h>
62
#include <linux/hugetlb.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/mm.h>
65
#include <linux/page_owner.h>
66
#include <linux/kthread.h>
67
#include <linux/memcontrol.h>
L
Linus Torvalds 已提交
68

69
#include <asm/sections.h>
L
Linus Torvalds 已提交
70
#include <asm/tlbflush.h>
71
#include <asm/div64.h>
L
Linus Torvalds 已提交
72 73
#include "internal.h"

74 75
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
76
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
77

78 79 80 81 82
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

83 84 85 86 87 88 89 90 91
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
92
int _node_numa_mem_[MAX_NUMNODES];
93 94
#endif

95 96 97 98
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

99
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
100
volatile unsigned long latent_entropy __latent_entropy;
101 102 103
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
104
/*
105
 * Array of node states.
L
Linus Torvalds 已提交
106
 */
107 108 109 110 111 112 113
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
114 115 116
#endif
#ifdef CONFIG_MOVABLE_NODE
	[N_MEMORY] = { { [0] = 1UL } },
117 118 119 120 121 122
#endif
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

123 124 125
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

126
unsigned long totalram_pages __read_mostly;
127
unsigned long totalreserve_pages __read_mostly;
128
unsigned long totalcma_pages __read_mostly;
129

130
int percpu_pagelist_fraction;
131
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

151 152 153 154 155 156 157 158 159
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 * guaranteed not to run in parallel with that modification).
 */
160 161 162 163

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
164 165
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
166 167 168 169
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
170 171
}

172
void pm_restrict_gfp_mask(void)
173 174
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
175 176
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
177
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
178
}
179 180 181

bool pm_suspended_storage(void)
{
182
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 184 185
		return false;
	return true;
}
186 187
#endif /* CONFIG_PM_SLEEP */

188
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189
unsigned int pageblock_order __read_mostly;
190 191
#endif

192
static void __free_pages_ok(struct page *page, unsigned int order);
193

L
Linus Torvalds 已提交
194 195 196 197 198 199
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
200
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
201 202 203
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
204
 */
205
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206
#ifdef CONFIG_ZONE_DMA
207
	 256,
208
#endif
209
#ifdef CONFIG_ZONE_DMA32
210
	 256,
211
#endif
212
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
213
	 32,
214
#endif
M
Mel Gorman 已提交
215
	 32,
216
};
L
Linus Torvalds 已提交
217 218 219

EXPORT_SYMBOL(totalram_pages);

220
static char * const zone_names[MAX_NR_ZONES] = {
221
#ifdef CONFIG_ZONE_DMA
222
	 "DMA",
223
#endif
224
#ifdef CONFIG_ZONE_DMA32
225
	 "DMA32",
226
#endif
227
	 "Normal",
228
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
229
	 "HighMem",
230
#endif
M
Mel Gorman 已提交
231
	 "Movable",
232 233 234
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
235 236
};

237 238 239 240 241 242 243 244 245 246 247 248 249
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

250 251 252 253 254 255
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
256 257 258
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
259 260
};

L
Linus Torvalds 已提交
261
int min_free_kbytes = 1024;
262
int user_min_free_kbytes = -1;
263
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
264

265 266
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
267
static unsigned long __meminitdata dma_reserve;
L
Linus Torvalds 已提交
268

T
Tejun Heo 已提交
269 270 271 272 273 274
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275
static bool mirrored_kernelcore;
T
Tejun Heo 已提交
276 277 278 279 280

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
281

M
Miklos Szeredi 已提交
282 283
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
284
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
285
EXPORT_SYMBOL(nr_node_ids);
286
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
287 288
#endif

289 290
int page_group_by_mobility_disabled __read_mostly;

291 292 293 294 295 296 297
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}

/* Returns true if the struct page for the pfn is uninitialised */
298
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299
{
300 301 302
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 304 305 306 307 308 309 310 311 312 313 314 315
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
316 317
	unsigned long max_initialise;

318 319 320
	/* Always populate low zones for address-contrained allocations */
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
321 322 323 324 325 326
	/*
	 * Initialise at least 2G of a node but also take into account that
	 * two large system hashes that can take up 1GB for 0.25TB/node.
	 */
	max_initialise = max(2UL << (30 - PAGE_SHIFT),
		(pgdat->node_spanned_pages >> 8));
327 328

	(*nr_initialised)++;
329
	if ((*nr_initialised > max_initialise) &&
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
}

static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
455

456
void set_pageblock_migratetype(struct page *page, int migratetype)
457
{
458 459
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
460 461
		migratetype = MIGRATE_UNMOVABLE;

462 463 464 465
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
466
#ifdef CONFIG_DEBUG_VM
467
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
468
{
469 470 471
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
472
	unsigned long sp, start_pfn;
473

474 475
	do {
		seq = zone_span_seqbegin(zone);
476 477
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
478
		if (!zone_spans_pfn(zone, pfn))
479 480 481
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

482
	if (ret)
483 484 485
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
486

487
	return ret;
488 489 490 491
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
492
	if (!pfn_valid_within(page_to_pfn(page)))
493
		return 0;
L
Linus Torvalds 已提交
494
	if (zone != page_zone(page))
495 496 497 498 499 500 501 502 503 504
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
static int bad_range(struct zone *zone, struct page *page)
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
505
		return 1;
506 507 508
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
509 510
	return 0;
}
N
Nick Piggin 已提交
511 512 513 514 515 516 517
#else
static inline int bad_range(struct zone *zone, struct page *page)
{
	return 0;
}
#endif

518 519
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
520
{
521 522 523 524 525 526 527 528 529 530 531 532 533 534
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
535
			pr_alert(
536
			      "BUG: Bad page state: %lu messages suppressed\n",
537 538 539 540 541 542 543 544
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

545
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
546
		current->comm, page_to_pfn(page));
547 548 549 550 551
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
552
	dump_page_owner(page);
553

554
	print_modules();
L
Linus Torvalds 已提交
555
	dump_stack();
556
out:
557
	/* Leave bad fields for debug, except PageBuddy could make trouble */
558
	page_mapcount_reset(page); /* remove PageBuddy */
559
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
560 561 562 563 564
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
565
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
566
 *
567 568
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
569
 *
570 571
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
572
 *
573
 * The first tail page's ->compound_order holds the order of allocation.
574
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
575
 */
576

577
void free_compound_page(struct page *page)
578
{
579
	__free_pages_ok(page, compound_order(page));
580 581
}

582
void prep_compound_page(struct page *page, unsigned int order)
583 584 585 586
{
	int i;
	int nr_pages = 1 << order;

587
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 589 590 591
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
592
		set_page_count(p, 0);
593
		p->mapping = TAIL_MAPPING;
594
		set_compound_head(p, page);
595
	}
596
	atomic_set(compound_mapcount_ptr(page), -1);
597 598
}

599 600
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
601 602
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603
EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 605
bool _debug_guardpage_enabled __read_mostly;

606 607 608 609
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
610
	return kstrtobool(buf, &_debug_pagealloc_enabled);
611 612 613
}
early_param("debug_pagealloc", early_debug_pagealloc);

614 615
static bool need_debug_guardpage(void)
{
616 617 618 619
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

620 621 622
	if (!debug_guardpage_minorder())
		return false;

623 624 625 626 627
	return true;
}

static void init_debug_guardpage(void)
{
628 629 630
	if (!debug_pagealloc_enabled())
		return;

631 632 633
	if (!debug_guardpage_minorder())
		return;

634 635 636 637 638 639 640
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
641 642 643 644 645 646

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
647
		pr_err("Bad debug_guardpage_minorder value\n");
648 649 650
		return 0;
	}
	_debug_guardpage_minorder = res;
651
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
652 653
	return 0;
}
654
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
655

656
static inline bool set_page_guard(struct zone *zone, struct page *page,
657
				unsigned int order, int migratetype)
658
{
659 660 661
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
662 663 664 665
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
666 667

	page_ext = lookup_page_ext(page);
668
	if (unlikely(!page_ext))
669
		return false;
670

671 672
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

673 674 675 676
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
677 678

	return true;
679 680
}

681 682
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
683
{
684 685 686 687 688 689
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
690 691 692
	if (unlikely(!page_ext))
		return;

693 694
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

695 696 697
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
698 699
}
#else
700
struct page_ext_operations debug_guardpage_ops;
701 702
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
703 704
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
705 706
#endif

707
static inline void set_page_order(struct page *page, unsigned int order)
708
{
H
Hugh Dickins 已提交
709
	set_page_private(page, order);
710
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
711 712 713 714
}

static inline void rmv_page_order(struct page *page)
{
715
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
716
	set_page_private(page, 0);
L
Linus Torvalds 已提交
717 718 719 720 721
}

/*
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
722
 * (a) the buddy is not in a hole (check before calling!) &&
723
 * (b) the buddy is in the buddy system &&
724 725
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
726
 *
727 728 729 730
 * For recording whether a page is in the buddy system, we set ->_mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 * serialized by zone->lock.
L
Linus Torvalds 已提交
731
 *
732
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
733
 */
734
static inline int page_is_buddy(struct page *page, struct page *buddy,
735
							unsigned int order)
L
Linus Torvalds 已提交
736
{
737
	if (page_is_guard(buddy) && page_order(buddy) == order) {
738 739 740
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

741 742
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

743 744 745
		return 1;
	}

746
	if (PageBuddy(buddy) && page_order(buddy) == order) {
747 748 749 750 751 752 753 754
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

755 756
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

757
		return 1;
758
	}
759
	return 0;
L
Linus Torvalds 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
775 776 777
 * free pages of length of (1 << order) and marked with _mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 * field.
L
Linus Torvalds 已提交
778
 * So when we are allocating or freeing one, we can derive the state of the
779 780
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
781
 * If a block is freed, and its buddy is also free, then this
782
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
783
 *
784
 * -- nyc
L
Linus Torvalds 已提交
785 786
 */

N
Nick Piggin 已提交
787
static inline void __free_one_page(struct page *page,
788
		unsigned long pfn,
789 790
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
791
{
792 793
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
794
	struct page *buddy;
795 796 797
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
798

799
	VM_BUG_ON(!zone_is_initialized(zone));
800
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
801

802
	VM_BUG_ON(migratetype == -1);
803
	if (likely(!is_migrate_isolate(migratetype)))
804
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
805

806
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
807
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
808

809
continue_merging:
810
	while (order < max_order - 1) {
811 812
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
813 814 815

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
816
		if (!page_is_buddy(page, buddy, order))
817
			goto done_merging;
818 819 820 821 822
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
823
			clear_page_guard(zone, buddy, order, migratetype);
824 825 826 827 828
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
829 830 831
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
832 833
		order++;
	}
834 835 836 837 838 839 840 841 842 843 844 845
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

846 847
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
848 849 850 851 852 853 854 855 856 857 858 859
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
860
	set_page_order(page, order);
861 862 863 864 865 866 867 868 869

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
870
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
871
		struct page *higher_page, *higher_buddy;
872 873 874 875
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
876 877 878 879 880 881 882 883 884
		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
885 886 887
	zone->free_area[order].nr_free++;
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

910
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
911
{
912 913 914 915 916
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
917

918
	if (unlikely(atomic_read(&page->_mapcount) != -1))
919 920 921
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
922
	if (unlikely(page_ref_count(page) != 0))
923
		bad_reason = "nonzero _refcount";
924 925 926 927
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
928 929 930 931
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
932
	bad_page(page, bad_reason, bad_flags);
933 934 935 936
}

static inline int free_pages_check(struct page *page)
{
937
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
938 939 940 941
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
942
	return 1;
L
Linus Torvalds 已提交
943 944
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
		/* the first tail page: ->mapping is compound_mapcount() */
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
		 * page_deferred_list().next -- ignore value.
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

995 996
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
997
{
998
	int bad = 0;
999 1000 1001

	VM_BUG_ON_PAGE(PageTail(page), page);

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	trace_mm_page_free(page, order);
	kmemcheck_free_shadow(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1014

1015 1016
		if (compound)
			ClearPageDoubleMap(page);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1027
	if (PageMappingFlags(page))
1028
		page->mapping = NULL;
1029
	if (memcg_kmem_enabled() && PageKmemcg(page))
1030
		memcg_kmem_uncharge(page, order);
1031 1032 1033 1034
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1035

1036 1037 1038
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1039 1040 1041

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1042
					   PAGE_SIZE << order);
1043
		debug_check_no_obj_freed(page_address(page),
1044
					   PAGE_SIZE << order);
1045
	}
1046 1047 1048
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1049
	kasan_free_pages(page, order);
1050 1051 1052 1053

	return true;
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1070 1071 1072 1073 1074 1075
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

L
Linus Torvalds 已提交
1076
/*
1077
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1078
 * Assumes all pages on list are in same zone, and of same order.
1079
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1080 1081 1082 1083 1084 1085 1086
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1087 1088
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1089
{
1090
	int migratetype = 0;
1091
	int batch_free = 0;
1092
	unsigned long nr_scanned, flags;
1093
	bool isolated_pageblocks;
1094

1095
	spin_lock_irqsave(&zone->lock, flags);
1096
	isolated_pageblocks = has_isolate_pageblock(zone);
M
Mel Gorman 已提交
1097
	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1098
	if (nr_scanned)
M
Mel Gorman 已提交
1099
		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1100

1101
	while (count) {
N
Nick Piggin 已提交
1102
		struct page *page;
1103 1104 1105
		struct list_head *list;

		/*
1106 1107 1108 1109 1110
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1111 1112
		 */
		do {
1113
			batch_free++;
1114 1115 1116 1117
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1118

1119 1120
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1121
			batch_free = count;
1122

1123
		do {
1124 1125
			int mt;	/* migratetype of the to-be-freed page */

1126
			page = list_last_entry(list, struct page, lru);
1127 1128
			/* must delete as __free_one_page list manipulates */
			list_del(&page->lru);
1129

1130
			mt = get_pcppage_migratetype(page);
1131 1132 1133
			/* MIGRATE_ISOLATE page should not go to pcplists */
			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
			/* Pageblock could have been isolated meanwhile */
1134
			if (unlikely(isolated_pageblocks))
1135 1136
				mt = get_pageblock_migratetype(page);

1137 1138 1139
			if (bulkfree_pcp_prepare(page))
				continue;

1140
			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1141
			trace_mm_page_pcpu_drain(page, 0, mt);
1142
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1143
	}
1144
	spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
1145 1146
}

1147 1148
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1149
				unsigned int order,
1150
				int migratetype)
L
Linus Torvalds 已提交
1151
{
1152 1153 1154
	unsigned long nr_scanned, flags;
	spin_lock_irqsave(&zone->lock, flags);
	__count_vm_events(PGFREE, 1 << order);
M
Mel Gorman 已提交
1155
	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1156
	if (nr_scanned)
M
Mel Gorman 已提交
1157
		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1158

1159 1160 1161 1162
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1163
	__free_one_page(page, pfn, zone, order, migratetype);
1164
	spin_unlock_irqrestore(&zone->lock, flags);
N
Nick Piggin 已提交
1165 1166
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
				unsigned long zone, int nid)
{
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
					int nid)
{
	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static void init_reserved_page(unsigned long pfn)
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
	__init_single_pfn(pfn, zid, nid);
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1215 1216 1217 1218 1219 1220
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1221
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1222 1223 1224 1225
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1226 1227 1228 1229 1230
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1231 1232 1233 1234

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1235 1236 1237
			SetPageReserved(page);
		}
	}
1238 1239
}

1240 1241
static void __free_pages_ok(struct page *page, unsigned int order)
{
M
Minchan Kim 已提交
1242
	int migratetype;
1243
	unsigned long pfn = page_to_pfn(page);
1244

1245
	if (!free_pages_prepare(page, order, true))
1246 1247
		return;

1248
	migratetype = get_pfnblock_migratetype(page, pfn);
1249
	free_one_page(page_zone(page), page, pfn, order, migratetype);
L
Linus Torvalds 已提交
1250 1251
}

1252
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1253
{
1254
	unsigned int nr_pages = 1 << order;
1255
	struct page *p = page;
1256
	unsigned int loop;
1257

1258 1259 1260
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1261 1262
		__ClearPageReserved(p);
		set_page_count(p, 0);
1263
	}
1264 1265
	__ClearPageReserved(p);
	set_page_count(p, 0);
1266

1267
	page_zone(page)->managed_pages += nr_pages;
1268 1269
	set_page_refcounted(page);
	__free_pages(page, order);
1270 1271
}

1272 1273
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1274

1275 1276 1277 1278
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1279
	static DEFINE_SPINLOCK(early_pfn_lock);
1280 1281
	int nid;

1282
	spin_lock(&early_pfn_lock);
1283
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1284
	if (nid < 0)
1285
		nid = first_online_node;
1286 1287 1288
	spin_unlock(&early_pfn_lock);

	return nid;
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
					struct mminit_pfnnid_cache *state)
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
					struct mminit_pfnnid_cache *state)
{
	return true;
}
#endif


1324
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1325 1326 1327 1328
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1329
	return __free_pages_boot_core(page, order);
1330 1331
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1401
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1402
static void __init deferred_free_range(struct page *page,
1403 1404 1405 1406 1407 1408 1409 1410
					unsigned long pfn, int nr_pages)
{
	int i;

	if (!page)
		return;

	/* Free a large naturally-aligned chunk if possible */
1411 1412
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1413
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1414
		__free_pages_boot_core(page, pageblock_order);
1415 1416 1417
		return;
	}

1418 1419 1420
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1421
		__free_pages_boot_core(page, 0);
1422
	}
1423 1424
}

1425 1426 1427 1428 1429 1430 1431 1432 1433
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1434

1435
/* Initialise remaining memory on a node */
1436
static int __init deferred_init_memmap(void *data)
1437
{
1438 1439
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1440 1441 1442 1443 1444 1445 1446
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
	unsigned long walk_start, walk_end;
	int i, zid;
	struct zone *zone;
	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1447
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1448

1449
	if (first_init_pfn == ULONG_MAX) {
1450
		pgdat_init_report_one_done();
1451 1452 1453 1454 1455 1456
		return 0;
	}

	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}

	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
		unsigned long pfn, end_pfn;
1472
		struct page *page = NULL;
1473 1474 1475
		struct page *free_base_page = NULL;
		unsigned long free_base_pfn = 0;
		int nr_to_free = 0;
1476 1477 1478 1479 1480 1481 1482 1483 1484

		end_pfn = min(walk_end, zone_end_pfn(zone));
		pfn = first_init_pfn;
		if (pfn < walk_start)
			pfn = walk_start;
		if (pfn < zone->zone_start_pfn)
			pfn = zone->zone_start_pfn;

		for (; pfn < end_pfn; pfn++) {
1485
			if (!pfn_valid_within(pfn))
1486
				goto free_range;
1487

1488 1489
			/*
			 * Ensure pfn_valid is checked every
1490
			 * pageblock_nr_pages for memory holes
1491
			 */
1492
			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1493 1494
				if (!pfn_valid(pfn)) {
					page = NULL;
1495
					goto free_range;
1496 1497 1498 1499 1500
				}
			}

			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
				page = NULL;
1501
				goto free_range;
1502 1503 1504
			}

			/* Minimise pfn page lookups and scheduler checks */
1505
			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1506 1507
				page++;
			} else {
1508 1509 1510 1511 1512 1513
				nr_pages += nr_to_free;
				deferred_free_range(free_base_page,
						free_base_pfn, nr_to_free);
				free_base_page = NULL;
				free_base_pfn = nr_to_free = 0;

1514 1515 1516
				page = pfn_to_page(pfn);
				cond_resched();
			}
1517 1518 1519

			if (page->flags) {
				VM_BUG_ON(page_zone(page) != zone);
1520
				goto free_range;
1521 1522 1523
			}

			__init_single_page(page, pfn, zid, nid);
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
			if (!free_base_page) {
				free_base_page = page;
				free_base_pfn = pfn;
				nr_to_free = 0;
			}
			nr_to_free++;

			/* Where possible, batch up pages for a single free */
			continue;
free_range:
			/* Free the current block of pages to allocator */
			nr_pages += nr_to_free;
			deferred_free_range(free_base_page, free_base_pfn,
								nr_to_free);
			free_base_page = NULL;
			free_base_pfn = nr_to_free = 0;
1540
		}
1541 1542 1543
		/* Free the last block of pages to allocator */
		nr_pages += nr_to_free;
		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1544

1545 1546 1547 1548 1549 1550
		first_init_pfn = max(end_pfn, first_init_pfn);
	}

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1551
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1552
					jiffies_to_msecs(jiffies - start));
1553 1554

	pgdat_init_report_one_done();
1555 1556
	return 0;
}
1557
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1558 1559 1560

void __init page_alloc_init_late(void)
{
1561 1562 1563
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1564 1565
	int nid;

1566 1567
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1568 1569 1570 1571 1572
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1573
	wait_for_completion(&pgdat_init_all_done_comp);
1574 1575 1576

	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1577 1578 1579 1580
#endif

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1581 1582
}

1583
#ifdef CONFIG_CMA
1584
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
	} while (++p, --i);

	set_pageblock_migratetype(page, MIGRATE_CMA);
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1610
	adjust_managed_page_count(page, pageblock_nr_pages);
1611 1612
}
#endif
L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1626
 * -- nyc
L
Linus Torvalds 已提交
1627
 */
N
Nick Piggin 已提交
1628
static inline void expand(struct zone *zone, struct page *page,
1629 1630
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1631 1632 1633 1634 1635 1636 1637
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1638
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1639

1640 1641 1642 1643 1644 1645 1646
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1647
			continue;
1648

1649
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1650 1651 1652 1653 1654
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1655
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1656
{
1657 1658
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1659

1660
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1661 1662 1663
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1664
	if (unlikely(page_ref_count(page) != 0))
1665
		bad_reason = "nonzero _count";
1666 1667 1668
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1669 1670 1671
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1672
	}
1673 1674 1675 1676
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1677 1678 1679 1680
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1695 1696
}

1697 1698 1699 1700 1701 1702
static inline bool free_pages_prezeroed(bool poisoned)
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
		page_poisoning_enabled() && poisoned;
}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1750
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1751
							unsigned int alloc_flags)
1752 1753
{
	int i;
1754
	bool poisoned = true;
1755 1756 1757

	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;
1758 1759
		if (poisoned)
			poisoned &= page_is_poisoned(p);
1760
	}
1761

1762
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1763

1764
	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1765 1766
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1767 1768 1769 1770

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1771
	/*
1772
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1773 1774 1775 1776
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1777 1778 1779 1780
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1781 1782
}

1783 1784 1785 1786
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1787 1788
static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1789 1790 1791
						int migratetype)
{
	unsigned int current_order;
1792
	struct free_area *area;
1793 1794 1795 1796 1797
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1798
		page = list_first_entry_or_null(&area->free_list[migratetype],
1799
							struct page, lru);
1800 1801
		if (!page)
			continue;
1802 1803 1804 1805
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1806
		set_pcppage_migratetype(page, migratetype);
1807 1808 1809 1810 1811 1812 1813
		return page;
	}

	return NULL;
}


1814 1815 1816 1817
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1818
static int fallbacks[MIGRATE_TYPES][4] = {
1819 1820 1821
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1822
#ifdef CONFIG_CMA
1823
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1824
#endif
1825
#ifdef CONFIG_MEMORY_ISOLATION
1826
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1827
#endif
1828 1829
};

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
#ifdef CONFIG_CMA
static struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1841 1842
/*
 * Move the free pages in a range to the free lists of the requested type.
1843
 * Note that start_page and end_pages are not aligned on a pageblock
1844 1845
 * boundary. If alignment is required, use move_freepages_block()
 */
1846
int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
1847 1848
			  struct page *start_page, struct page *end_page,
			  int migratetype)
1849 1850
{
	struct page *page;
1851
	unsigned int order;
1852
	int pages_moved = 0;
1853 1854 1855 1856 1857 1858 1859

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
1860
	 * grouping pages by mobility
1861
	 */
1862
	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1863 1864 1865 1866 1867 1868 1869 1870
#endif

	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

1871 1872 1873
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

1874 1875 1876 1877 1878 1879
		if (!PageBuddy(page)) {
			page++;
			continue;
		}

		order = page_order(page);
1880 1881
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
1882
		page += 1 << order;
1883
		pages_moved += 1 << order;
1884 1885
	}

1886
	return pages_moved;
1887 1888
}

1889
int move_freepages_block(struct zone *zone, struct page *page,
1890
				int migratetype)
1891 1892 1893 1894 1895
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
1896
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1897
	start_page = pfn_to_page(start_pfn);
1898 1899
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
1900 1901

	/* Do not cross zone boundaries */
1902
	if (!zone_spans_pfn(zone, start_pfn))
1903
		start_page = page;
1904
	if (!zone_spans_pfn(zone, end_pfn))
1905 1906 1907 1908 1909
		return 0;

	return move_freepages(zone, start_page, end_page, migratetype);
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

1921
/*
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
1932
 */
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
 * pageblock and check whether half of pages are moved or not. If half of
 * pages are moved, we can change migratetype of pageblock and permanently
 * use it's pages as requested migratetype in the future.
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
							  int start_type)
1963
{
1964
	unsigned int current_order = page_order(page);
1965
	int pages;
1966 1967 1968 1969

	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
1970
		return;
1971 1972
	}

1973
	pages = move_freepages_block(zone, page, start_type);
1974

1975 1976 1977 1978 1979 1980
	/* Claim the whole block if over half of it is free */
	if (pages >= (1 << (pageblock_order-1)) ||
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
}

1981 1982 1983 1984 1985 1986 1987 1988
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
1999
		if (fallback_mt == MIGRATE_TYPES)
2000 2001 2002 2003
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2004

2005 2006 2007
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2008 2009 2010 2011 2012
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2013
	}
2014 2015

	return -1;
2016 2017
}

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
	if (mt != MIGRATE_HIGHATOMIC &&
			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2060 2061 2062
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2063
 */
2064 2065
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2066 2067 2068 2069 2070 2071 2072
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2073
	bool ret;
2074 2075 2076

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2077 2078 2079 2080 2081 2082
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2083 2084 2085 2086 2087 2088
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2089 2090 2091 2092
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2093 2094 2095
				continue;

			/*
2096 2097 2098 2099 2100
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2101
			 */
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
			if (get_pageblock_migratetype(page) ==
							MIGRATE_HIGHATOMIC) {
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2126
			ret = move_freepages_block(zone, page, ac->migratetype);
2127 2128 2129 2130
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2131 2132 2133
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2134 2135

	return false;
2136 2137
}

2138
/* Remove an element from the buddy allocator from the fallback list */
2139
static inline struct page *
2140
__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2141
{
2142
	struct free_area *area;
2143
	unsigned int current_order;
2144
	struct page *page;
2145 2146
	int fallback_mt;
	bool can_steal;
2147 2148

	/* Find the largest possible block of pages in the other list */
2149 2150 2151
	for (current_order = MAX_ORDER-1;
				current_order >= order && current_order <= MAX_ORDER-1;
				--current_order) {
2152 2153
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2154
				start_migratetype, false, &can_steal);
2155 2156
		if (fallback_mt == -1)
			continue;
2157

2158
		page = list_first_entry(&area->free_list[fallback_mt],
2159
						struct page, lru);
M
Minchan Kim 已提交
2160 2161
		if (can_steal &&
			get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2162
			steal_suitable_fallback(zone, page, start_migratetype);
2163

2164 2165 2166 2167
		/* Remove the page from the freelists */
		area->nr_free--;
		list_del(&page->lru);
		rmv_page_order(page);
2168

2169 2170 2171
		expand(zone, page, order, current_order, area,
					start_migratetype);
		/*
2172
		 * The pcppage_migratetype may differ from pageblock's
2173
		 * migratetype depending on the decisions in
2174 2175 2176
		 * find_suitable_fallback(). This is OK as long as it does not
		 * differ for MIGRATE_CMA pageblocks. Those can be used as
		 * fallback only via special __rmqueue_cma_fallback() function
2177
		 */
2178
		set_pcppage_migratetype(page, start_migratetype);
2179

2180 2181
		trace_mm_page_alloc_extfrag(page, order, current_order,
			start_migratetype, fallback_mt);
2182

2183
		return page;
2184 2185
	}

2186
	return NULL;
2187 2188
}

2189
/*
L
Linus Torvalds 已提交
2190 2191 2192
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2193
static struct page *__rmqueue(struct zone *zone, unsigned int order,
2194
				int migratetype)
L
Linus Torvalds 已提交
2195 2196 2197
{
	struct page *page;

2198
	page = __rmqueue_smallest(zone, order, migratetype);
2199
	if (unlikely(!page)) {
2200 2201 2202 2203 2204
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

		if (!page)
			page = __rmqueue_fallback(zone, order, migratetype);
2205 2206
	}

2207
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2208
	return page;
L
Linus Torvalds 已提交
2209 2210
}

2211
/*
L
Linus Torvalds 已提交
2212 2213 2214 2215
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2216
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2217
			unsigned long count, struct list_head *list,
2218
			int migratetype, bool cold)
L
Linus Torvalds 已提交
2219
{
2220
	int i, alloced = 0;
2221
	unsigned long flags;
2222

2223
	spin_lock_irqsave(&zone->lock, flags);
L
Linus Torvalds 已提交
2224
	for (i = 0; i < count; ++i) {
2225
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2226
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2227
			break;
2228

2229 2230 2231
		if (unlikely(check_pcp_refill(page)))
			continue;

2232 2233 2234 2235 2236 2237 2238 2239 2240
		/*
		 * Split buddy pages returned by expand() are received here
		 * in physical page order. The page is added to the callers and
		 * list and the list head then moves forward. From the callers
		 * perspective, the linked list is ordered by page number in
		 * some conditions. This is useful for IO devices that can
		 * merge IO requests if the physical pages are ordered
		 * properly.
		 */
2241
		if (likely(!cold))
2242 2243 2244
			list_add(&page->lru, list);
		else
			list_add_tail(&page->lru, list);
2245
		list = &page->lru;
2246
		alloced++;
2247
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2248 2249
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2250
	}
2251 2252 2253 2254 2255 2256 2257

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2258
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2259
	spin_unlock_irqrestore(&zone->lock, flags);
2260
	return alloced;
L
Linus Torvalds 已提交
2261 2262
}

2263
#ifdef CONFIG_NUMA
2264
/*
2265 2266 2267 2268
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2269 2270
 * Note that this function must be called with the thread pinned to
 * a single processor.
2271
 */
2272
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2273 2274
{
	unsigned long flags;
2275
	int to_drain, batch;
2276

2277
	local_irq_save(flags);
2278
	batch = READ_ONCE(pcp->batch);
2279
	to_drain = min(pcp->count, batch);
2280 2281 2282 2283
	if (to_drain > 0) {
		free_pcppages_bulk(zone, to_drain, pcp);
		pcp->count -= to_drain;
	}
2284
	local_irq_restore(flags);
2285 2286 2287
}
#endif

2288
/*
2289
 * Drain pcplists of the indicated processor and zone.
2290 2291 2292 2293 2294
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2295
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2296
{
N
Nick Piggin 已提交
2297
	unsigned long flags;
2298 2299
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2300

2301 2302
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2303

2304 2305 2306 2307 2308 2309 2310
	pcp = &pset->pcp;
	if (pcp->count) {
		free_pcppages_bulk(zone, pcp->count, pcp);
		pcp->count = 0;
	}
	local_irq_restore(flags);
}
2311

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2325 2326 2327
	}
}

2328 2329
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2330 2331 2332
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2333
 */
2334
void drain_local_pages(struct zone *zone)
2335
{
2336 2337 2338 2339 2340 2341
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2342 2343
}

2344 2345
static void drain_local_pages_wq(struct work_struct *work)
{
2346 2347 2348 2349 2350 2351 2352 2353
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2354
	drain_local_pages(NULL);
2355
	preempt_enable();
2356 2357
}

2358
/*
2359 2360
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2361 2362
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2363
 * Note that this can be extremely slow as the draining happens in a workqueue.
2364
 */
2365
void drain_all_pages(struct zone *zone)
2366
{
2367 2368 2369 2370 2371 2372 2373 2374
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2375 2376 2377 2378
	/* Workqueues cannot recurse */
	if (current->flags & PF_WQ_WORKER)
		return;

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2389

2390 2391 2392 2393 2394 2395 2396
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2397 2398
		struct per_cpu_pageset *pcp;
		struct zone *z;
2399
		bool has_pcps = false;
2400 2401

		if (zone) {
2402
			pcp = per_cpu_ptr(zone->pageset, cpu);
2403
			if (pcp->pcp.count)
2404
				has_pcps = true;
2405 2406 2407 2408 2409 2410 2411
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2412 2413
			}
		}
2414

2415 2416 2417 2418 2419
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2420

2421 2422 2423 2424
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
		schedule_work_on(cpu, work);
2425
	}
2426 2427 2428 2429
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2430 2431
}

2432
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2433 2434 2435

void mark_free_pages(struct zone *zone)
{
2436 2437
	unsigned long pfn, max_zone_pfn;
	unsigned long flags;
2438
	unsigned int order, t;
2439
	struct page *page;
L
Linus Torvalds 已提交
2440

2441
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2442 2443 2444
		return;

	spin_lock_irqsave(&zone->lock, flags);
2445

2446
	max_zone_pfn = zone_end_pfn(zone);
2447 2448
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2449
			page = pfn_to_page(pfn);
2450 2451 2452 2453

			if (page_zone(page) != zone)
				continue;

2454 2455
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2456
		}
L
Linus Torvalds 已提交
2457

2458
	for_each_migratetype_order(order, t) {
2459 2460
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2461
			unsigned long i;
L
Linus Torvalds 已提交
2462

2463
			pfn = page_to_pfn(page);
2464
			for (i = 0; i < (1UL << order); i++)
2465
				swsusp_set_page_free(pfn_to_page(pfn + i));
2466
		}
2467
	}
L
Linus Torvalds 已提交
2468 2469
	spin_unlock_irqrestore(&zone->lock, flags);
}
2470
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2471 2472 2473

/*
 * Free a 0-order page
2474
 * cold == true ? free a cold page : free a hot page
L
Linus Torvalds 已提交
2475
 */
2476
void free_hot_cold_page(struct page *page, bool cold)
L
Linus Torvalds 已提交
2477 2478 2479
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
2480
	unsigned long pfn = page_to_pfn(page);
2481
	int migratetype;
L
Linus Torvalds 已提交
2482

2483 2484 2485 2486 2487
	if (in_interrupt()) {
		__free_pages_ok(page, 0);
		return;
	}

2488
	if (!free_pcp_prepare(page))
2489 2490
		return;

2491
	migratetype = get_pfnblock_migratetype(page, pfn);
2492
	set_pcppage_migratetype(page, migratetype);
2493
	preempt_disable();
2494

2495 2496 2497 2498 2499 2500 2501 2502
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
	 * offlined but treat RESERVE as movable pages so we can get those
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2503
		if (unlikely(is_migrate_isolate(migratetype))) {
2504
			free_one_page(zone, page, pfn, 0, migratetype);
2505 2506 2507 2508 2509
			goto out;
		}
		migratetype = MIGRATE_MOVABLE;
	}

2510
	__count_vm_event(PGFREE);
2511
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2512
	if (!cold)
2513
		list_add(&page->lru, &pcp->lists[migratetype]);
2514 2515
	else
		list_add_tail(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2516
	pcp->count++;
N
Nick Piggin 已提交
2517
	if (pcp->count >= pcp->high) {
2518
		unsigned long batch = READ_ONCE(pcp->batch);
2519 2520
		free_pcppages_bulk(zone, batch, pcp);
		pcp->count -= batch;
N
Nick Piggin 已提交
2521
	}
2522 2523

out:
2524
	preempt_enable();
L
Linus Torvalds 已提交
2525 2526
}

2527 2528 2529
/*
 * Free a list of 0-order pages
 */
2530
void free_hot_cold_page_list(struct list_head *list, bool cold)
2531 2532 2533 2534
{
	struct page *page, *next;

	list_for_each_entry_safe(page, next, list, lru) {
2535
		trace_mm_page_free_batched(page, cold);
2536 2537 2538 2539
		free_hot_cold_page(page, cold);
	}
}

N
Nick Piggin 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2552 2553
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

#ifdef CONFIG_KMEMCHECK
	/*
	 * Split shadow pages too, because free(page[0]) would
	 * otherwise free the whole shadow.
	 */
	if (kmemcheck_page_is_tracked(page))
		split_page(virt_to_page(page[0].shadow), order);
#endif

2564
	for (i = 1; i < (1 << order); i++)
2565
		set_page_refcounted(page + i);
2566
	split_page_owner(page, order);
N
Nick Piggin 已提交
2567
}
K
K. Y. Srinivasan 已提交
2568
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2569

2570
int __isolate_free_page(struct page *page, unsigned int order)
2571 2572 2573
{
	unsigned long watermark;
	struct zone *zone;
2574
	int mt;
2575 2576 2577 2578

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2579
	mt = get_pageblock_migratetype(page);
2580

2581
	if (!is_migrate_isolate(mt)) {
2582 2583 2584 2585 2586 2587 2588
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2589
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2590 2591
			return 0;

2592
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2593
	}
2594 2595 2596 2597 2598

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2599

2600 2601 2602 2603
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2604 2605
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2606 2607
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2608 2609
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
				&& mt != MIGRATE_HIGHATOMIC)
2610 2611 2612
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2613 2614
	}

2615

2616
	return 1UL << order;
2617 2618
}

2619 2620 2621 2622 2623
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2624
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2625 2626 2627 2628
{
#ifdef CONFIG_NUMA
	enum zone_stat_item local_stat = NUMA_LOCAL;

2629
	if (z->node != numa_node_id())
2630 2631
		local_stat = NUMA_OTHER;

2632
	if (z->node == preferred_zone->node)
2633
		__inc_zone_state(z, NUMA_HIT);
2634
	else {
2635 2636 2637
		__inc_zone_state(z, NUMA_MISS);
		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
	}
2638
	__inc_zone_state(z, local_stat);
2639 2640 2641
#endif
}

2642 2643 2644 2645 2646 2647 2648
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
			bool cold, struct per_cpu_pages *pcp,
			struct list_head *list)
{
	struct page *page;

2649 2650
	VM_BUG_ON(in_interrupt());

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
					migratetype, cold);
			if (unlikely(list_empty(list)))
				return NULL;
		}

		if (cold)
			page = list_last_entry(list, struct page, lru);
		else
			page = list_first_entry(list, struct page, lru);

		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	bool cold = ((gfp_flags & __GFP_COLD) != 0);
	struct page *page;

2682
	preempt_disable();
2683 2684 2685 2686 2687 2688 2689
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2690
	preempt_enable();
2691 2692 2693
	return page;
}

L
Linus Torvalds 已提交
2694
/*
2695
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2696
 */
2697
static inline
2698
struct page *rmqueue(struct zone *preferred_zone,
2699
			struct zone *zone, unsigned int order,
2700 2701
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2702 2703
{
	unsigned long flags;
2704
	struct page *page;
L
Linus Torvalds 已提交
2705

2706
	if (likely(order == 0) && !in_interrupt()) {
2707 2708 2709 2710
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2711

2712 2713 2714 2715 2716 2717
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
2718

2719 2720 2721 2722 2723 2724 2725
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
2726
		if (!page)
2727 2728 2729 2730 2731 2732 2733
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
2734

2735
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
2736
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
2737
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2738

2739 2740
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
2741
	return page;
N
Nick Piggin 已提交
2742 2743 2744 2745

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
2746 2747
}

2748 2749
#ifdef CONFIG_FAIL_PAGE_ALLOC

2750
static struct {
2751 2752
	struct fault_attr attr;

2753
	bool ignore_gfp_highmem;
2754
	bool ignore_gfp_reclaim;
2755
	u32 min_order;
2756 2757
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
2758
	.ignore_gfp_reclaim = true,
2759
	.ignore_gfp_highmem = true,
2760
	.min_order = 1,
2761 2762 2763 2764 2765 2766 2767 2768
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

2769
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2770
{
2771
	if (order < fail_page_alloc.min_order)
2772
		return false;
2773
	if (gfp_mask & __GFP_NOFAIL)
2774
		return false;
2775
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2776
		return false;
2777 2778
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
2779
		return false;
2780 2781 2782 2783 2784 2785 2786 2787

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
A
Al Viro 已提交
2788
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2789 2790
	struct dentry *dir;

2791 2792 2793 2794
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
2795

2796
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2797
				&fail_page_alloc.ignore_gfp_reclaim))
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
2808
	debugfs_remove_recursive(dir);
2809

2810
	return -ENOMEM;
2811 2812 2813 2814 2815 2816 2817 2818
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

2819
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2820
{
2821
	return false;
2822 2823 2824 2825
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
2826
/*
2827 2828 2829 2830
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
2831
 */
2832 2833 2834
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
2835
{
2836
	long min = mark;
L
Linus Torvalds 已提交
2837
	int o;
2838
	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
L
Linus Torvalds 已提交
2839

2840
	/* free_pages may go negative - that's OK */
2841
	free_pages -= (1 << order) - 1;
2842

R
Rohit Seth 已提交
2843
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
2844
		min -= min / 2;
2845 2846 2847 2848 2849 2850

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
2851
	if (likely(!alloc_harder))
2852 2853
		free_pages -= z->nr_reserved_highatomic;
	else
L
Linus Torvalds 已提交
2854
		min -= min / 4;
2855

2856 2857 2858
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
2859
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2860
#endif
2861

2862 2863 2864 2865 2866 2867
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2868
		return false;
L
Linus Torvalds 已提交
2869

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		if (alloc_harder)
			return true;
L
Linus Torvalds 已提交
2884

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
			return true;
		}
#endif
L
Linus Torvalds 已提交
2896
	}
2897
	return false;
2898 2899
}

2900
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2901
		      int classzone_idx, unsigned int alloc_flags)
2902 2903 2904 2905 2906
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

2933
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2934
			unsigned long mark, int classzone_idx)
2935 2936 2937 2938 2939 2940
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

2941
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2942
								free_pages);
L
Linus Torvalds 已提交
2943 2944
}

2945
#ifdef CONFIG_NUMA
2946 2947
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
2948
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2949
				RECLAIM_DISTANCE;
2950
}
2951
#else	/* CONFIG_NUMA */
2952 2953 2954 2955
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
2956 2957
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
2958
/*
2959
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
2960 2961 2962
 * a page.
 */
static struct page *
2963 2964
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
2965
{
2966
	struct zoneref *z = ac->preferred_zoneref;
2967
	struct zone *zone;
2968 2969
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
2970
	/*
2971
	 * Scan zonelist, looking for a zone with enough free.
2972
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
2973
	 */
2974
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2975
								ac->nodemask) {
2976
		struct page *page;
2977 2978
		unsigned long mark;

2979 2980
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
2981
			!__cpuset_zone_allowed(zone, gfp_mask))
2982
				continue;
2983 2984
		/*
		 * When allocating a page cache page for writing, we
2985 2986
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
2987
		 * proportional share of globally allowed dirty pages.
2988
		 * The dirty limits take into account the node's
2989 2990 2991 2992 2993
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
2994
		 * exceed the per-node dirty limit in the slowpath
2995
		 * (spread_dirty_pages unset) before going into reclaim,
2996
		 * which is important when on a NUMA setup the allowed
2997
		 * nodes are together not big enough to reach the
2998
		 * global limit.  The proper fix for these situations
2999
		 * will require awareness of nodes in the
3000 3001
		 * dirty-throttling and the flusher threads.
		 */
3002 3003 3004 3005 3006 3007 3008 3009 3010
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3011

3012
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3013
		if (!zone_watermark_fast(zone, order, mark,
3014
				       ac_classzone_idx(ac), alloc_flags)) {
3015 3016
			int ret;

3017 3018 3019 3020 3021
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3022
			if (node_reclaim_mode == 0 ||
3023
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3024 3025
				continue;

3026
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3027
			switch (ret) {
3028
			case NODE_RECLAIM_NOSCAN:
3029
				/* did not scan */
3030
				continue;
3031
			case NODE_RECLAIM_FULL:
3032
				/* scanned but unreclaimable */
3033
				continue;
3034 3035
			default:
				/* did we reclaim enough */
3036
				if (zone_watermark_ok(zone, order, mark,
3037
						ac_classzone_idx(ac), alloc_flags))
3038 3039 3040
					goto try_this_zone;

				continue;
3041
			}
R
Rohit Seth 已提交
3042 3043
		}

3044
try_this_zone:
3045
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3046
				gfp_mask, alloc_flags, ac->migratetype);
3047
		if (page) {
3048
			prep_new_page(page, order, gfp_mask, alloc_flags);
3049 3050 3051 3052 3053 3054 3055 3056

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3057 3058
			return page;
		}
3059
	}
3060

3061
	return NULL;
M
Martin Hicks 已提交
3062 3063
}

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3078
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3079 3080
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3081
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3082

3083
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
		if (test_thread_flag(TIF_MEMDIE) ||
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3095
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3096 3097
		filter &= ~SHOW_MEM_FILTER_NODES;

3098
	show_mem(filter, nodemask);
3099 3100
}

3101
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
	    debug_guardpage_minorder() > 0)
		return;

3112
	pr_warn("%s: ", current->comm);
J
Joe Perches 已提交
3113

3114 3115 3116 3117 3118
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_cont("%pV", &vaf);
	va_end(args);
J
Joe Perches 已提交
3119

3120 3121 3122 3123 3124 3125
	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
	if (nodemask)
		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
	else
		pr_cont("(null)\n");

3126
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3127

3128
	dump_stack();
3129
	warn_alloc_show_mem(gfp_mask, nodemask);
3130 3131
}

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3152 3153
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3154
	const struct alloc_context *ac, unsigned long *did_some_progress)
3155
{
3156 3157 3158
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3159
		.memcg = NULL,
3160 3161 3162
		.gfp_mask = gfp_mask,
		.order = order,
	};
3163 3164
	struct page *page;

3165 3166 3167
	*did_some_progress = 0;

	/*
3168 3169
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3170
	 */
3171
	if (!mutex_trylock(&oom_lock)) {
3172
		*did_some_progress = 1;
3173
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3174 3175
		return NULL;
	}
3176

3177 3178 3179 3180 3181
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
	 * we're still under heavy pressure.
	 */
3182 3183
	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3184
	if (page)
3185 3186
		goto out;

3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3211

3212
	/* Exhausted what can be done so it's blamo time */
3213
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3214
		*did_some_progress = 1;
3215

3216 3217 3218 3219 3220 3221
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3222 3223
					ALLOC_NO_WATERMARKS, ac);
	}
3224
out:
3225
	mutex_unlock(&oom_lock);
3226 3227 3228
	return page;
}

3229 3230 3231 3232 3233 3234
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3235 3236 3237 3238
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3239
		unsigned int alloc_flags, const struct alloc_context *ac,
3240
		enum compact_priority prio, enum compact_result *compact_result)
3241
{
3242
	struct page *page;
3243 3244

	if (!order)
3245 3246
		return NULL;

3247
	current->flags |= PF_MEMALLOC;
3248
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3249
									prio);
3250
	current->flags &= ~PF_MEMALLOC;
3251

3252
	if (*compact_result <= COMPACT_INACTIVE)
3253
		return NULL;
3254

3255 3256 3257 3258 3259
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3260

3261
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3262

3263 3264
	if (page) {
		struct zone *zone = page_zone(page);
3265

3266 3267 3268 3269 3270
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3271

3272 3273 3274 3275 3276
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3277

3278
	cond_resched();
3279 3280 3281

	return NULL;
}
3282

3283 3284 3285 3286
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3287
		     int *compaction_retries)
3288 3289
{
	int max_retries = MAX_COMPACT_RETRIES;
3290
	int min_priority;
3291 3292 3293
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3294 3295 3296 3297

	if (!order)
		return false;

3298 3299 3300
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3301 3302 3303 3304 3305
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3306 3307
	if (compaction_failed(compact_result))
		goto check_priority;
3308 3309 3310 3311 3312 3313 3314

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3315 3316 3317 3318
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329

	/*
	 * !costly requests are much more important than __GFP_REPEAT
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3330 3331 3332 3333
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3334

3335 3336 3337 3338 3339
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3340 3341
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3342

3343
	if (*compact_priority > min_priority) {
3344 3345
		(*compact_priority)--;
		*compaction_retries = 0;
3346
		ret = true;
3347
	}
3348 3349 3350
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3351
}
3352 3353 3354
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3355
		unsigned int alloc_flags, const struct alloc_context *ac,
3356
		enum compact_priority prio, enum compact_result *compact_result)
3357
{
3358
	*compact_result = COMPACT_SKIPPED;
3359 3360
	return NULL;
}
3361 3362

static inline bool
3363 3364
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3365
		     enum compact_priority *compact_priority,
3366
		     int *compaction_retries)
3367
{
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3386 3387
	return false;
}
3388
#endif /* CONFIG_COMPACTION */
3389

3390 3391
/* Perform direct synchronous page reclaim */
static int
3392 3393
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3394 3395
{
	struct reclaim_state reclaim_state;
3396
	int progress;
3397 3398 3399 3400 3401

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3402
	current->flags |= PF_MEMALLOC;
3403 3404
	lockdep_set_current_reclaim_state(gfp_mask);
	reclaim_state.reclaimed_slab = 0;
3405
	current->reclaim_state = &reclaim_state;
3406

3407 3408
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3409

3410
	current->reclaim_state = NULL;
3411
	lockdep_clear_current_reclaim_state();
3412
	current->flags &= ~PF_MEMALLOC;
3413 3414 3415

	cond_resched();

3416 3417 3418 3419 3420 3421
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3422
		unsigned int alloc_flags, const struct alloc_context *ac,
3423
		unsigned long *did_some_progress)
3424 3425 3426 3427
{
	struct page *page = NULL;
	bool drained = false;

3428
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3429 3430
	if (unlikely(!(*did_some_progress)))
		return NULL;
3431

3432
retry:
3433
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3434 3435 3436

	/*
	 * If an allocation failed after direct reclaim, it could be because
3437 3438
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3439 3440
	 */
	if (!page && !drained) {
3441
		unreserve_highatomic_pageblock(ac, false);
3442
		drain_all_pages(NULL);
3443 3444 3445 3446
		drained = true;
		goto retry;
	}

3447 3448 3449
	return page;
}

3450
static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3451 3452 3453
{
	struct zoneref *z;
	struct zone *zone;
3454
	pg_data_t *last_pgdat = NULL;
3455

3456
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3457 3458
					ac->high_zoneidx, ac->nodemask) {
		if (last_pgdat != zone->zone_pgdat)
3459
			wakeup_kswapd(zone, order, ac->high_zoneidx);
3460 3461
		last_pgdat = zone->zone_pgdat;
	}
3462 3463
}

3464
static inline unsigned int
3465 3466
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3467
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3468

3469
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3470
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3471

3472 3473 3474 3475
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3476
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3477
	 */
3478
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3479

3480
	if (gfp_mask & __GFP_ATOMIC) {
3481
		/*
3482 3483
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3484
		 */
3485
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3486
			alloc_flags |= ALLOC_HARDER;
3487
		/*
3488
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3489
		 * comment for __cpuset_node_allowed().
3490
		 */
3491
		alloc_flags &= ~ALLOC_CPUSET;
3492
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3493 3494
		alloc_flags |= ALLOC_HARDER;

3495
#ifdef CONFIG_CMA
3496
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3497 3498
		alloc_flags |= ALLOC_CMA;
#endif
3499 3500 3501
	return alloc_flags;
}

3502 3503
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return false;

	if (gfp_mask & __GFP_MEMALLOC)
		return true;
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
		return true;
	if (!in_interrupt() &&
			((current->flags & PF_MEMALLOC) ||
			 unlikely(test_thread_flag(TIF_MEMDIE))))
		return true;

	return false;
3517 3518
}

M
Michal Hocko 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
/*
 * Maximum number of reclaim retries without any progress before OOM killer
 * is consider as the only way to move forward.
 */
#define MAX_RECLAIM_RETRIES 16

/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
 * The reclaim feedback represented by did_some_progress (any progress during
3529 3530 3531 3532
 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
 * any progress in a row) is considered as well as the reclaimable pages on the
 * applicable zone list (with a backoff mechanism which is a function of
 * no_progress_loops).
M
Michal Hocko 已提交
3533 3534 3535 3536 3537 3538
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3539
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3540 3541 3542 3543
{
	struct zone *zone;
	struct zoneref *z;

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3554 3555 3556 3557
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3558 3559
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3560
		return unreserve_highatomic_pageblock(ac, true);
3561
	}
M
Michal Hocko 已提交
3562

3563 3564 3565 3566 3567
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3568 3569 3570 3571
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3572
		unsigned long reclaimable;
3573 3574
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3575

3576
		available = reclaimable = zone_reclaimable_pages(zone);
3577
		available -= DIV_ROUND_UP((*no_progress_loops) * available,
M
Michal Hocko 已提交
3578
					  MAX_RECLAIM_RETRIES);
3579
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3580 3581 3582

		/*
		 * Would the allocation succeed if we reclaimed the whole
3583
		 * available?
M
Michal Hocko 已提交
3584
		 */
3585 3586 3587 3588 3589
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3590 3591 3592 3593 3594 3595 3596
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3597
				unsigned long write_pending;
3598

3599 3600
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3601

3602
				if (2 * write_pending > reclaimable) {
3603 3604 3605 3606
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3607

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
3622 3623 3624 3625 3626 3627 3628
			return true;
		}
	}

	return false;
}

3629 3630
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3631
						struct alloc_context *ac)
3632
{
3633
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3634
	struct page *page = NULL;
3635
	unsigned int alloc_flags;
3636
	unsigned long did_some_progress;
3637
	enum compact_priority compact_priority;
3638
	enum compact_result compact_result;
3639 3640
	int compaction_retries;
	int no_progress_loops;
3641 3642
	unsigned long alloc_start = jiffies;
	unsigned int stall_timeout = 10 * HZ;
3643
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
3644

3645 3646 3647 3648 3649 3650
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
3651 3652
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3653
		return NULL;
3654
	}
L
Linus Torvalds 已提交
3655

3656 3657 3658 3659 3660 3661 3662 3663
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

3664 3665 3666 3667 3668
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
3669 3670 3671 3672 3673 3674 3675 3676

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
	/*
	 * For costly allocations, try direct compaction first, as it's likely
	 * that we have enough base pages and don't need to reclaim. Don't try
	 * that for allocations that are allowed to ignore watermarks, as the
	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
	 */
	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
		!gfp_pfmemalloc_allowed(gfp_mask)) {
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
3709
						INIT_COMPACT_PRIORITY,
3710 3711 3712 3713
						&compact_result);
		if (page)
			goto got_pg;

3714 3715 3716 3717 3718
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
		if (gfp_mask & __GFP_NORETRY) {
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
3731 3732
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
3733
			 * using async compaction.
3734
			 */
3735
			compact_priority = INIT_COMPACT_PRIORITY;
3736 3737
		}
	}
3738

3739
retry:
3740
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3741 3742 3743
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

3744 3745 3746
	if (gfp_pfmemalloc_allowed(gfp_mask))
		alloc_flags = ALLOC_NO_WATERMARKS;

3747 3748 3749 3750 3751
	/*
	 * Reset the zonelist iterators if memory policies can be ignored.
	 * These allocations are high priority and system rather than user
	 * orientated.
	 */
3752
	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3753 3754 3755 3756 3757
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

3758
	/* Attempt with potentially adjusted zonelist and alloc_flags */
3759
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
3760 3761
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
3762

3763
	/* Caller is not willing to reclaim, we can't balance anything */
3764
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
3765 3766
		goto nopage;

3767 3768 3769 3770 3771 3772
	/* Make sure we know about allocations which stall for too long */
	if (time_after(jiffies, alloc_start + stall_timeout)) {
		warn_alloc(gfp_mask, ac->nodemask,
			"page allocation stalls for %ums, order:%u",
			jiffies_to_msecs(jiffies-alloc_start), order);
		stall_timeout += 10 * HZ;
3773
	}
3774

3775 3776
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
3777 3778
		goto nopage;

3779 3780 3781 3782 3783 3784 3785
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
3786
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3787
					compact_priority, &compact_result);
3788 3789
	if (page)
		goto got_pg;
3790

3791 3792
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
3793
		goto nopage;
3794

M
Michal Hocko 已提交
3795 3796 3797 3798 3799
	/*
	 * Do not retry costly high order allocations unless they are
	 * __GFP_REPEAT
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3800
		goto nopage;
M
Michal Hocko 已提交
3801 3802

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3803
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
3804 3805
		goto retry;

3806 3807 3808 3809 3810 3811 3812
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
3813
			should_compact_retry(ac, order, alloc_flags,
3814
				compact_result, &compact_priority,
3815
				&compaction_retries))
3816 3817
		goto retry;

3818 3819 3820 3821 3822 3823 3824
	/*
	 * It's possible we raced with cpuset update so the OOM would be
	 * premature (see below the nopage: label for full explanation).
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		goto retry_cpuset;

3825 3826 3827 3828 3829
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

3830 3831 3832 3833
	/* Avoid allocations with no watermarks from looping endlessly */
	if (test_thread_flag(TIF_MEMDIE))
		goto nopage;

3834
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
3835 3836
	if (did_some_progress) {
		no_progress_loops = 0;
3837
		goto retry;
M
Michal Hocko 已提交
3838
	}
3839

L
Linus Torvalds 已提交
3840
nopage:
3841
	/*
3842 3843 3844 3845 3846
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
3847 3848 3849 3850
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		goto retry_cpuset;

3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

3888 3889 3890 3891
		cond_resched();
		goto retry;
	}
fail:
3892
	warn_alloc(gfp_mask, ac->nodemask,
3893
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
3894
got_pg:
3895
	return page;
L
Linus Torvalds 已提交
3896
}
3897

3898 3899 3900 3901
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
		struct zonelist *zonelist, nodemask_t *nodemask,
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
3902
{
3903 3904 3905 3906
	ac->high_zoneidx = gfp_zone(gfp_mask);
	ac->zonelist = zonelist;
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3907

3908
	if (cpusets_enabled()) {
3909 3910 3911
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
3912 3913
		else
			*alloc_flags |= ALLOC_CPUSET;
3914 3915
	}

3916 3917
	lockdep_trace_alloc(gfp_mask);

3918
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3919 3920

	if (should_fail_alloc_page(gfp_mask, order))
3921
		return false;
3922

3923 3924 3925 3926 3927
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

	return true;
}
3928

3929 3930 3931 3932
/* Determine whether to spread dirty pages and what the first usable zone */
static inline void finalise_ac(gfp_t gfp_mask,
		unsigned int order, struct alloc_context *ac)
{
3933
	/* Dirty zone balancing only done in the fast path */
3934
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3935

3936 3937 3938 3939 3940
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
			struct zonelist *zonelist, nodemask_t *nodemask)
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
	if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
		return NULL;

	finalise_ac(gfp_mask, order, &ac);
3962

3963
	/* First allocation attempt */
3964
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3965 3966
	if (likely(page))
		goto out;
3967

3968 3969 3970 3971 3972 3973
	/*
	 * Runtime PM, block IO and its error handling path can deadlock
	 * because I/O on the device might not complete.
	 */
	alloc_mask = memalloc_noio_flags(gfp_mask);
	ac.spread_dirty_pages = false;
3974

3975 3976 3977 3978
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
3979
	if (unlikely(ac.nodemask != nodemask))
3980
		ac.nodemask = nodemask;
3981

3982
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3983

3984
out:
3985 3986 3987 3988
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
3989 3990
	}

3991 3992 3993 3994 3995
	if (kmemcheck_enabled && page)
		kmemcheck_pagealloc_alloc(page, order, gfp_mask);

	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

3996
	return page;
L
Linus Torvalds 已提交
3997
}
3998
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
3999 4000 4001 4002

/*
 * Common helper functions.
 */
H
Harvey Harrison 已提交
4003
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4004
{
4005 4006 4007 4008 4009 4010 4011 4012
	struct page *page;

	/*
	 * __get_free_pages() returns a 32-bit address, which cannot represent
	 * a highmem page
	 */
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

L
Linus Torvalds 已提交
4013 4014 4015 4016 4017 4018 4019
	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4020
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4021
{
4022
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4023 4024 4025
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4026
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4027
{
N
Nick Piggin 已提交
4028
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4029
		if (order == 0)
4030
			free_hot_cold_page(page, false);
L
Linus Torvalds 已提交
4031 4032 4033 4034 4035 4036 4037
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4038
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4039 4040
{
	if (addr != 0) {
N
Nick Piggin 已提交
4041
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4042 4043 4044 4045 4046 4047
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4059 4060
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4080
void __page_frag_cache_drain(struct page *page, unsigned int count)
4081 4082 4083 4084
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4085 4086
		unsigned int order = compound_order(page);

4087 4088 4089 4090 4091 4092
		if (order == 0)
			free_hot_cold_page(page, false);
		else
			__free_pages_ok(page, order);
	}
}
4093
EXPORT_SYMBOL(__page_frag_cache_drain);
4094

4095 4096
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4097 4098 4099 4100 4101 4102 4103
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4104
		page = __page_frag_cache_refill(nc, gfp_mask);
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4115
		page_ref_add(page, size - 1);
4116 4117

		/* reset page count bias and offset to start of new frag */
4118
		nc->pfmemalloc = page_is_pfmemalloc(page);
4119 4120 4121 4122 4123 4124 4125 4126
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4127
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4128 4129 4130 4131 4132 4133 4134
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4135
		set_page_count(page, size);
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4147
EXPORT_SYMBOL(page_frag_alloc);
4148 4149 4150 4151

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4152
void page_frag_free(void *addr)
4153 4154 4155 4156 4157 4158
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4159
EXPORT_SYMBOL(page_frag_free);
4160

4161 4162
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4196
	return make_alloc_exact(addr, order, size);
4197 4198 4199
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4200 4201 4202
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4203
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4204 4205 4206 4207 4208 4209
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4210
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4211
{
4212
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4213 4214 4215 4216 4217 4218
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4238 4239 4240 4241 4242 4243 4244
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4245
 *     managed_pages - high_pages
4246
 */
4247
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4248
{
4249
	struct zoneref *z;
4250 4251
	struct zone *zone;

4252
	/* Just pick one node, since fallback list is circular */
4253
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4254

4255
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4256

4257
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4258
		unsigned long size = zone->managed_pages;
4259
		unsigned long high = high_wmark_pages(zone);
4260 4261
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4262 4263 4264 4265 4266
	}

	return sum;
}

4267 4268 4269 4270 4271
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4272
 */
4273
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4274
{
A
Al Viro 已提交
4275
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4276
}
4277
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4278

4279 4280 4281 4282 4283
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4284
 */
4285
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4286
{
M
Mel Gorman 已提交
4287
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4288
}
4289 4290

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4291
{
4292
	if (IS_ENABLED(CONFIG_NUMA))
4293
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4294 4295
}

4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4306
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
	available += global_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);

	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4339 4340 4341
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4342
	val->sharedram = global_node_page_state(NR_SHMEM);
4343
	val->freeram = global_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4355 4356
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4357 4358
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4359 4360
	pg_data_t *pgdat = NODE_DATA(nid);

4361 4362 4363
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4364
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4365
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4366
#ifdef CONFIG_HIGHMEM
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4377
#else
4378 4379
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4380
#endif
L
Linus Torvalds 已提交
4381 4382 4383 4384
	val->mem_unit = PAGE_SIZE;
}
#endif

4385
/*
4386 4387
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4388
 */
4389
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4390 4391
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4392
		return false;
4393

4394 4395 4396 4397 4398 4399 4400 4401 4402
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4403 4404
}

L
Linus Torvalds 已提交
4405 4406
#define K(x) ((x) << (PAGE_SHIFT-10))

4407 4408 4409 4410 4411
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4412 4413
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4414 4415 4416
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4417
#ifdef CONFIG_MEMORY_ISOLATION
4418
		[MIGRATE_ISOLATE]	= 'I',
4419
#endif
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4431
	printk(KERN_CONT "(%s) ", tmp);
4432 4433
}

L
Linus Torvalds 已提交
4434 4435 4436 4437
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4438 4439 4440 4441
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4442
 */
4443
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4444
{
4445
	unsigned long free_pcp = 0;
4446
	int cpu;
L
Linus Torvalds 已提交
4447
	struct zone *zone;
M
Mel Gorman 已提交
4448
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4449

4450
	for_each_populated_zone(zone) {
4451
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4452
			continue;
4453

4454 4455
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4456 4457
	}

K
KOSAKI Motohiro 已提交
4458 4459
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4460 4461
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4462
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4463
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4464 4465 4466 4467 4468 4469 4470
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4471 4472 4473
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4474 4475
		global_page_state(NR_SLAB_RECLAIMABLE),
		global_page_state(NR_SLAB_UNRECLAIMABLE),
4476
		global_node_page_state(NR_FILE_MAPPED),
4477
		global_node_page_state(NR_SHMEM),
4478
		global_page_state(NR_PAGETABLE),
4479
		global_page_state(NR_BOUNCE),
4480 4481
		global_page_state(NR_FREE_PAGES),
		free_pcp,
4482
		global_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4483

M
Mel Gorman 已提交
4484
	for_each_online_pgdat(pgdat) {
4485
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4486 4487
			continue;

M
Mel Gorman 已提交
4488 4489 4490 4491 4492 4493 4494 4495
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4496
			" mapped:%lukB"
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
4507
			" pages_scanned:%lu"
M
Mel Gorman 已提交
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4518
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_SHMEM)),
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4530
			node_page_state(pgdat, NR_PAGES_SCANNED),
M
Mel Gorman 已提交
4531 4532 4533
			!pgdat_reclaimable(pgdat) ? "yes" : "no");
	}

4534
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4535 4536
		int i;

4537
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4538
			continue;
4539 4540 4541 4542 4543

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4544
		show_node(zone);
4545 4546
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4547 4548 4549 4550
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4551 4552 4553 4554 4555
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4556
			" writepending:%lukB"
L
Linus Torvalds 已提交
4557
			" present:%lukB"
4558
			" managed:%lukB"
4559 4560 4561
			" mlocked:%lukB"
			" slab_reclaimable:%lukB"
			" slab_unreclaimable:%lukB"
4562
			" kernel_stack:%lukB"
4563 4564
			" pagetables:%lukB"
			" bounce:%lukB"
4565 4566
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4567
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4568 4569
			"\n",
			zone->name,
4570
			K(zone_page_state(zone, NR_FREE_PAGES)),
4571 4572 4573
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4574 4575 4576 4577 4578
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4579
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4580
			K(zone->present_pages),
4581
			K(zone->managed_pages),
4582 4583 4584
			K(zone_page_state(zone, NR_MLOCK)),
			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4585
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4586 4587
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4588 4589
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4590
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4591 4592
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4593 4594
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4595 4596
	}

4597
	for_each_populated_zone(zone) {
4598 4599
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
4600
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
4601

4602
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4603
			continue;
L
Linus Torvalds 已提交
4604
		show_node(zone);
4605
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
4606 4607 4608

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
4609 4610 4611 4612
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
4613
			total += nr[order] << order;
4614 4615 4616 4617 4618 4619

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
4620 4621
		}
		spin_unlock_irqrestore(&zone->lock, flags);
4622
		for (order = 0; order < MAX_ORDER; order++) {
4623 4624
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
4625 4626 4627
			if (nr[order])
				show_migration_types(types[order]);
		}
4628
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
4629 4630
	}

4631 4632
	hugetlb_show_meminfo();

4633
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4634

L
Linus Torvalds 已提交
4635 4636 4637
	show_swap_cache_info();
}

4638 4639 4640 4641 4642 4643
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
4644 4645
/*
 * Builds allocation fallback zone lists.
4646 4647
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
4648
 */
4649
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4650
				int nr_zones)
L
Linus Torvalds 已提交
4651
{
4652
	struct zone *zone;
4653
	enum zone_type zone_type = MAX_NR_ZONES;
4654 4655

	do {
4656
		zone_type--;
4657
		zone = pgdat->node_zones + zone_type;
4658
		if (managed_zone(zone)) {
4659 4660
			zoneref_set_zone(zone,
				&zonelist->_zonerefs[nr_zones++]);
4661
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
4662
		}
4663
	} while (zone_type);
4664

4665
	return nr_zones;
L
Linus Torvalds 已提交
4666 4667
}

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688

/*
 *  zonelist_order:
 *  0 = automatic detection of better ordering.
 *  1 = order by ([node] distance, -zonetype)
 *  2 = order by (-zonetype, [node] distance)
 *
 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
 *  the same zonelist. So only NUMA can configure this param.
 */
#define ZONELIST_ORDER_DEFAULT  0
#define ZONELIST_ORDER_NODE     1
#define ZONELIST_ORDER_ZONE     2

/* zonelist order in the kernel.
 * set_zonelist_order() will set this to NODE or ZONE.
 */
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};


L
Linus Torvalds 已提交
4689
#ifdef CONFIG_NUMA
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
/* The value user specified ....changed by config */
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
/* string for sysctl */
#define NUMA_ZONELIST_ORDER_LEN	16
char numa_zonelist_order[16] = "default";

/*
 * interface for configure zonelist ordering.
 * command line option "numa_zonelist_order"
 *	= "[dD]efault	- default, automatic configuration.
 *	= "[nN]ode 	- order by node locality, then by zone within node
 *	= "[zZ]one      - order by zone, then by locality within zone
 */

static int __parse_numa_zonelist_order(char *s)
{
	if (*s == 'd' || *s == 'D') {
		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
	} else if (*s == 'n' || *s == 'N') {
		user_zonelist_order = ZONELIST_ORDER_NODE;
	} else if (*s == 'z' || *s == 'Z') {
		user_zonelist_order = ZONELIST_ORDER_ZONE;
	} else {
4713
		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4714 4715 4716 4717 4718 4719 4720
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
	int ret;

	if (!s)
		return 0;

	ret = __parse_numa_zonelist_order(s);
	if (ret == 0)
		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);

	return ret;
4731 4732 4733 4734 4735 4736
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

/*
 * sysctl handler for numa_zonelist_order
 */
4737
int numa_zonelist_order_handler(struct ctl_table *table, int write,
4738
		void __user *buffer, size_t *length,
4739 4740 4741 4742
		loff_t *ppos)
{
	char saved_string[NUMA_ZONELIST_ORDER_LEN];
	int ret;
4743
	static DEFINE_MUTEX(zl_order_mutex);
4744

4745
	mutex_lock(&zl_order_mutex);
4746 4747 4748 4749 4750 4751 4752
	if (write) {
		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
			ret = -EINVAL;
			goto out;
		}
		strcpy(saved_string, (char *)table->data);
	}
4753
	ret = proc_dostring(table, write, buffer, length, ppos);
4754
	if (ret)
4755
		goto out;
4756 4757
	if (write) {
		int oldval = user_zonelist_order;
4758 4759 4760

		ret = __parse_numa_zonelist_order((char *)table->data);
		if (ret) {
4761 4762 4763
			/*
			 * bogus value.  restore saved string
			 */
4764
			strncpy((char *)table->data, saved_string,
4765 4766
				NUMA_ZONELIST_ORDER_LEN);
			user_zonelist_order = oldval;
4767 4768
		} else if (oldval != user_zonelist_order) {
			mutex_lock(&zonelists_mutex);
4769
			build_all_zonelists(NULL, NULL);
4770 4771
			mutex_unlock(&zonelists_mutex);
		}
4772
	}
4773 4774 4775
out:
	mutex_unlock(&zl_order_mutex);
	return ret;
4776 4777 4778
}


4779
#define MAX_NODE_LOAD (nr_online_nodes)
4780 4781
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
4782
/**
4783
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
4796
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
4797
{
4798
	int n, val;
L
Linus Torvalds 已提交
4799
	int min_val = INT_MAX;
D
David Rientjes 已提交
4800
	int best_node = NUMA_NO_NODE;
4801
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
4802

4803 4804 4805 4806 4807
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
4808

4809
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
4810 4811 4812 4813 4814 4815 4816 4817

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

4818 4819 4820
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
4821
		/* Give preference to headless and unused nodes */
4822 4823
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

4842 4843 4844 4845 4846 4847 4848

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
L
Linus Torvalds 已提交
4849
{
4850
	int j;
L
Linus Torvalds 已提交
4851
	struct zonelist *zonelist;
4852

4853
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4854
	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4855
		;
4856
	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4857 4858
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
4859 4860
}

4861 4862 4863 4864 4865 4866 4867 4868
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
	int j;
	struct zonelist *zonelist;

4869
	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4870
	j = build_zonelists_node(pgdat, zonelist, 0);
4871 4872
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
4873 4874
}

4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */
static int node_order[MAX_NUMNODES];

static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
{
	int pos, j, node;
	int zone_type;		/* needs to be signed */
	struct zone *z;
	struct zonelist *zonelist;

4890
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4891 4892 4893 4894 4895
	pos = 0;
	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
		for (j = 0; j < nr_nodes; j++) {
			node = node_order[j];
			z = &NODE_DATA(node)->node_zones[zone_type];
4896
			if (managed_zone(z)) {
4897 4898
				zoneref_set_zone(z,
					&zonelist->_zonerefs[pos++]);
4899
				check_highest_zone(zone_type);
4900 4901 4902
			}
		}
	}
4903 4904
	zonelist->_zonerefs[pos].zone = NULL;
	zonelist->_zonerefs[pos].zone_idx = 0;
4905 4906
}

4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
#if defined(CONFIG_64BIT)
/*
 * Devices that require DMA32/DMA are relatively rare and do not justify a
 * penalty to every machine in case the specialised case applies. Default
 * to Node-ordering on 64-bit NUMA machines
 */
static int default_zonelist_order(void)
{
	return ZONELIST_ORDER_NODE;
}
#else
/*
 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
 * by the kernel. If processes running on node 0 deplete the low memory zone
 * then reclaim will occur more frequency increasing stalls and potentially
 * be easier to OOM if a large percentage of the zone is under writeback or
 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
 * Hence, default to zone ordering on 32-bit.
 */
4926 4927 4928 4929
static int default_zonelist_order(void)
{
	return ZONELIST_ORDER_ZONE;
}
4930
#endif /* CONFIG_64BIT */
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941

static void set_zonelist_order(void)
{
	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
		current_zonelist_order = default_zonelist_order();
	else
		current_zonelist_order = user_zonelist_order;
}

static void build_zonelists(pg_data_t *pgdat)
{
4942
	int i, node, load;
L
Linus Torvalds 已提交
4943
	nodemask_t used_mask;
4944 4945
	int local_node, prev_node;
	struct zonelist *zonelist;
4946
	unsigned int order = current_zonelist_order;
L
Linus Torvalds 已提交
4947 4948

	/* initialize zonelists */
4949
	for (i = 0; i < MAX_ZONELISTS; i++) {
L
Linus Torvalds 已提交
4950
		zonelist = pgdat->node_zonelists + i;
4951 4952
		zonelist->_zonerefs[0].zone = NULL;
		zonelist->_zonerefs[0].zone_idx = 0;
L
Linus Torvalds 已提交
4953 4954 4955 4956
	}

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
4957
	load = nr_online_nodes;
L
Linus Torvalds 已提交
4958 4959
	prev_node = local_node;
	nodes_clear(used_mask);
4960 4961

	memset(node_order, 0, sizeof(node_order));
4962
	i = 0;
4963

L
Linus Torvalds 已提交
4964 4965 4966 4967 4968 4969
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
4970 4971
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
4972 4973
			node_load[node] = load;

L
Linus Torvalds 已提交
4974 4975
		prev_node = node;
		load--;
4976 4977 4978
		if (order == ZONELIST_ORDER_NODE)
			build_zonelists_in_node_order(pgdat, node);
		else
4979
			node_order[i++] = node;	/* remember order */
4980
	}
L
Linus Torvalds 已提交
4981

4982 4983
	if (order == ZONELIST_ORDER_ZONE) {
		/* calculate node order -- i.e., DMA last! */
4984
		build_zonelists_in_zone_order(pgdat, i);
L
Linus Torvalds 已提交
4985
	}
4986 4987

	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
4988 4989
}

4990 4991 4992 4993 4994 4995 4996 4997 4998
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
4999
	struct zoneref *z;
5000

5001
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5002
				   gfp_zone(GFP_KERNEL),
5003 5004
				   NULL);
	return z->zone->node;
5005 5006
}
#endif
5007

5008 5009
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5010 5011
#else	/* CONFIG_NUMA */

5012 5013 5014 5015 5016 5017
static void set_zonelist_order(void)
{
	current_zonelist_order = ZONELIST_ORDER_ZONE;
}

static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5018
{
5019
	int node, local_node;
5020 5021
	enum zone_type j;
	struct zonelist *zonelist;
L
Linus Torvalds 已提交
5022 5023 5024

	local_node = pgdat->node_id;

5025
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5026
	j = build_zonelists_node(pgdat, zonelist, 0);
L
Linus Torvalds 已提交
5027

5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5039
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
L
Linus Torvalds 已提交
5040
	}
5041 5042 5043
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5044
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5045 5046
	}

5047 5048
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
L
Linus Torvalds 已提交
5049 5050 5051 5052
}

#endif	/* CONFIG_NUMA */

5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5070
static void setup_zone_pageset(struct zone *zone);
5071

5072 5073 5074 5075 5076 5077
/*
 * Global mutex to protect against size modification of zonelists
 * as well as to serialize pageset setup for the new populated zone.
 */
DEFINE_MUTEX(zonelists_mutex);

5078
/* return values int ....just for stop_machine() */
5079
static int __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5080
{
5081
	int nid;
5082
	int cpu;
5083
	pg_data_t *self = data;
5084

5085 5086 5087
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5088 5089 5090 5091 5092

	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
	}

5093
	for_each_online_node(nid) {
5094 5095 5096
		pg_data_t *pgdat = NODE_DATA(nid);

		build_zonelists(pgdat);
5097
	}
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
5112
	for_each_possible_cpu(cpu) {
5113 5114
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
		if (cpu_online(cpu))
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif
	}

5129 5130 5131
	return 0;
}

5132 5133 5134 5135 5136 5137 5138 5139
static noinline void __init
build_all_zonelists_init(void)
{
	__build_all_zonelists(NULL);
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5140 5141 5142
/*
 * Called with zonelists_mutex held always
 * unless system_state == SYSTEM_BOOTING.
5143 5144 5145 5146 5147
 *
 * __ref due to (1) call of __meminit annotated setup_zone_pageset
 * [we're only called with non-NULL zone through __meminit paths] and
 * (2) call of __init annotated helper build_all_zonelists_init
 * [protected by SYSTEM_BOOTING].
5148
 */
5149
void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5150
{
5151 5152
	set_zonelist_order();

5153
	if (system_state == SYSTEM_BOOTING) {
5154
		build_all_zonelists_init();
5155
	} else {
5156
#ifdef CONFIG_MEMORY_HOTPLUG
5157 5158
		if (zone)
			setup_zone_pageset(zone);
5159
#endif
5160 5161
		/* we have to stop all cpus to guarantee there is no user
		   of zonelist */
5162
		stop_machine(__build_all_zonelists, pgdat, NULL);
5163 5164
		/* cpuset refresh routine should be here */
	}
5165
	vm_total_pages = nr_free_pagecache_pages();
5166 5167 5168 5169 5170 5171 5172
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5173
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5174 5175 5176 5177
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

J
Joe Perches 已提交
5178 5179 5180 5181 5182
	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
		nr_online_nodes,
		zonelist_order_name[current_zonelist_order],
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5183
#ifdef CONFIG_NUMA
5184
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5185
#endif
L
Linus Torvalds 已提交
5186 5187 5188 5189 5190 5191 5192
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5193
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
D
Dave Hansen 已提交
5194
		unsigned long start_pfn, enum memmap_context context)
L
Linus Torvalds 已提交
5195
{
5196
	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
A
Andy Whitcroft 已提交
5197
	unsigned long end_pfn = start_pfn + size;
5198
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5199
	unsigned long pfn;
5200
	unsigned long nr_initialised = 0;
5201 5202 5203
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5204

5205 5206 5207
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5208 5209 5210 5211 5212 5213 5214
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5215
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5216
		/*
5217 5218
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5219
		 */
5220 5221 5222
		if (context != MEMMAP_EARLY)
			goto not_early;

5223 5224 5225 5226 5227 5228 5229 5230 5231
		if (!early_pfn_valid(pfn)) {
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
			/*
			 * Skip to the pfn preceding the next valid one (or
			 * end_pfn), such that we hit a valid pfn (or end_pfn)
			 * on our next iteration of the loop.
			 */
			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
#endif
5232
			continue;
5233
		}
5234 5235 5236 5237
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5238 5239

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5257
			}
D
Dave Hansen 已提交
5258
		}
5259
#endif
5260

5261
not_early:
5262 5263 5264 5265 5266
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5267
		 * kernel allocations are made.
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			struct page *page = pfn_to_page(pfn);

			__init_single_page(page, pfn, zone, nid);
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
		} else {
			__init_single_pfn(pfn, zone, nid);
		}
L
Linus Torvalds 已提交
5282 5283 5284
	}
}

5285
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5286
{
5287
	unsigned int order, t;
5288 5289
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5290 5291 5292 5293 5294 5295
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
D
Dave Hansen 已提交
5296
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
L
Linus Torvalds 已提交
5297 5298
#endif

5299
static int zone_batchsize(struct zone *zone)
5300
{
5301
#ifdef CONFIG_MMU
5302 5303 5304 5305
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5306
	 * size of the zone.  But no more than 1/2 of a meg.
5307 5308 5309
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
5310
	batch = zone->managed_pages / 1024;
5311 5312
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
5313 5314 5315 5316 5317
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5318 5319 5320
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5321
	 *
5322 5323 5324 5325
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5326
	 */
5327
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5328

5329
	return batch;
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5347 5348
}

5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5376
/* a companion to pageset_set_high() */
5377 5378
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5379
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5380 5381
}

5382
static void pageset_init(struct per_cpu_pageset *p)
5383 5384
{
	struct per_cpu_pages *pcp;
5385
	int migratetype;
5386

5387 5388
	memset(p, 0, sizeof(*p));

5389
	pcp = &p->pcp;
5390
	pcp->count = 0;
5391 5392
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5393 5394
}

5395 5396 5397 5398 5399 5400
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5401
/*
5402
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5403 5404
 * to the value high for the pageset p.
 */
5405
static void pageset_set_high(struct per_cpu_pageset *p,
5406 5407
				unsigned long high)
{
5408 5409 5410
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5411

5412
	pageset_update(&p->pcp, high, batch);
5413 5414
}

5415 5416
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5417 5418
{
	if (percpu_pagelist_fraction)
5419
		pageset_set_high(pcp,
5420 5421 5422 5423 5424 5425
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5426 5427 5428 5429 5430 5431 5432 5433
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5434
static void __meminit setup_zone_pageset(struct zone *zone)
5435 5436 5437
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5438 5439
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5440 5441
}

5442
/*
5443 5444
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5445
 */
5446
void __init setup_per_cpu_pageset(void)
5447
{
5448
	struct pglist_data *pgdat;
5449
	struct zone *zone;
5450

5451 5452
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5453 5454 5455 5456

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5457 5458
}

5459
static __meminit void zone_pcp_init(struct zone *zone)
5460
{
5461 5462 5463 5464 5465 5466
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5467

5468
	if (populated_zone(zone))
5469 5470 5471
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5472 5473
}

5474
int __meminit init_currently_empty_zone(struct zone *zone,
5475
					unsigned long zone_start_pfn,
5476
					unsigned long size)
5477 5478
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5479

5480 5481 5482 5483
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5484 5485 5486 5487 5488 5489
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5490
	zone_init_free_lists(zone);
5491
	zone->initialized = 1;
5492 5493

	return 0;
5494 5495
}

T
Tejun Heo 已提交
5496
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5497
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5498

5499 5500 5501
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5502 5503
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5504
{
5505
	unsigned long start_pfn, end_pfn;
5506
	int nid;
5507

5508 5509
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5510

5511 5512
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5513 5514 5515
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5516 5517 5518
	}

	return nid;
5519 5520 5521 5522
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5523
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5524
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5525
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5526
 *
5527 5528 5529
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5530
 */
5531
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5532
{
5533 5534
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5535

5536 5537 5538
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5539

5540
		if (start_pfn < end_pfn)
5541 5542 5543
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5544 5545 5546
	}
}

5547 5548
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5549
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5550
 *
5551 5552
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5553 5554 5555
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5556 5557
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5558

5559 5560
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5561 5562 5563 5564
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5565 5566 5567
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5568 5569
 *
 * It returns the start and end page frame of a node based on information
5570
 * provided by memblock_set_node(). If called for a node
5571
 * with no available memory, a warning is printed and the start and end
5572
 * PFNs will be 0.
5573
 */
5574
void __meminit get_pfn_range_for_nid(unsigned int nid,
5575 5576
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5577
	unsigned long this_start_pfn, this_end_pfn;
5578
	int i;
5579

5580 5581 5582
	*start_pfn = -1UL;
	*end_pfn = 0;

5583 5584 5585
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5586 5587
	}

5588
	if (*start_pfn == -1UL)
5589 5590 5591
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5592 5593 5594 5595 5596
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5597
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5615
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5616 5617 5618 5619 5620 5621 5622
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5623
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5638 5639 5640 5641 5642 5643
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5644 5645 5646 5647 5648 5649
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5650 5651 5652 5653
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5654
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5655
					unsigned long zone_type,
5656 5657
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5658 5659
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5660 5661
					unsigned long *ignored)
{
5662
	/* When hotadd a new node from cpu_up(), the node should be empty */
5663 5664 5665
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5666
	/* Get the start and end of the zone */
5667 5668
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5669 5670
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5671
				zone_start_pfn, zone_end_pfn);
5672 5673

	/* Check that this node has pages within the zone's required range */
5674
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5675 5676 5677
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5678 5679
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5680 5681

	/* Return the spanned pages */
5682
	return *zone_end_pfn - *zone_start_pfn;
5683 5684 5685 5686
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5687
 * then all holes in the requested range will be accounted for.
5688
 */
5689
unsigned long __meminit __absent_pages_in_range(int nid,
5690 5691 5692
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5693 5694 5695
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5696

5697 5698 5699 5700
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5701
	}
5702
	return nr_absent;
5703 5704 5705 5706 5707 5708 5709
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5710
 * It returns the number of pages frames in memory holes within a range.
5711 5712 5713 5714 5715 5716 5717 5718
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5719
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5720
					unsigned long zone_type,
5721 5722
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5723 5724
					unsigned long *ignored)
{
5725 5726
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5727
	unsigned long zone_start_pfn, zone_end_pfn;
5728
	unsigned long nr_absent;
5729

5730
	/* When hotadd a new node from cpu_up(), the node should be empty */
5731 5732 5733
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5734 5735
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5736

M
Mel Gorman 已提交
5737 5738 5739
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5740 5741 5742 5743 5744 5745 5746
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
5764 5765 5766 5767
		}
	}

	return nr_absent;
5768
}
5769

T
Tejun Heo 已提交
5770
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
5771
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5772
					unsigned long zone_type,
5773 5774
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5775 5776
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5777 5778
					unsigned long *zones_size)
{
5779 5780 5781 5782 5783 5784 5785 5786
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

5787 5788 5789
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
5790
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5791
						unsigned long zone_type,
5792 5793
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
5794 5795 5796 5797 5798 5799 5800
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
5801

T
Tejun Heo 已提交
5802
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5803

5804
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5805 5806 5807 5808
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
5809
{
5810
	unsigned long realtotalpages = 0, totalpages = 0;
5811 5812
	enum zone_type i;

5813 5814
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
5815
		unsigned long zone_start_pfn, zone_end_pfn;
5816
		unsigned long size, real_size;
5817

5818 5819 5820
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
5821 5822
						  &zone_start_pfn,
						  &zone_end_pfn,
5823 5824
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5825 5826
						  node_start_pfn, node_end_pfn,
						  zholes_size);
5827 5828 5829 5830
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
5831 5832 5833 5834 5835 5836 5837 5838
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
5839 5840 5841 5842 5843
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

5844 5845 5846
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
5847 5848
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5849 5850 5851
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
5852
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5853 5854 5855
{
	unsigned long usemapsize;

5856
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5857 5858
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
5859 5860 5861 5862 5863 5864 5865
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
5866 5867 5868
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
5869
{
5870
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5871
	zone->pageblock_flags = NULL;
5872
	if (usemapsize)
5873 5874 5875
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
5876 5877
}
#else
5878 5879
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
5880 5881
#endif /* CONFIG_SPARSEMEM */

5882
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5883

5884
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5885
void __paginginit set_pageblock_order(void)
5886
{
5887 5888
	unsigned int order;

5889 5890 5891 5892
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

5893 5894 5895 5896 5897
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

5898 5899
	/*
	 * Assume the largest contiguous order of interest is a huge page.
5900 5901
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
5902 5903 5904 5905 5906
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

5907 5908
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5909 5910 5911
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
5912
 */
5913
void __paginginit set_pageblock_order(void)
5914 5915
{
}
5916 5917 5918

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
5929
	 * populated regions may not be naturally aligned on page boundary.
5930 5931 5932 5933 5934 5935 5936 5937 5938
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

L
Linus Torvalds 已提交
5939 5940 5941 5942 5943
/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
5944 5945
 *
 * NOTE: pgdat should get zeroed by caller.
L
Linus Torvalds 已提交
5946
 */
5947
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
5948
{
5949
	enum zone_type j;
5950
	int nid = pgdat->node_id;
5951
	int ret;
L
Linus Torvalds 已提交
5952

5953
	pgdat_resize_init(pgdat);
5954 5955 5956 5957
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
5958 5959 5960 5961 5962
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
5963
#endif
L
Linus Torvalds 已提交
5964
	init_waitqueue_head(&pgdat->kswapd_wait);
5965
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5966 5967 5968
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
5969
	pgdat_page_ext_init(pgdat);
5970
	spin_lock_init(&pgdat->lru_lock);
5971
	lruvec_init(node_lruvec(pgdat));
5972

L
Linus Torvalds 已提交
5973 5974
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
5975
		unsigned long size, realsize, freesize, memmap_pages;
5976
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
5977

5978 5979
		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;
L
Linus Torvalds 已提交
5980

5981
		/*
5982
		 * Adjust freesize so that it accounts for how much memory
5983 5984 5985
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
5986
		memmap_pages = calc_memmap_size(size, realsize);
5987 5988 5989 5990 5991 5992 5993 5994
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
5995
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5996 5997
					zone_names[j], memmap_pages, freesize);
		}
5998

5999
		/* Account for reserved pages */
6000 6001
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6002
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6003
					zone_names[0], dma_reserve);
6004 6005
		}

6006
		if (!is_highmem_idx(j))
6007
			nr_kernel_pages += freesize;
6008 6009 6010
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6011
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6012

6013 6014 6015 6016 6017 6018
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6019
#ifdef CONFIG_NUMA
6020
		zone->node = nid;
6021
#endif
L
Linus Torvalds 已提交
6022
		zone->name = zone_names[j];
6023
		zone->zone_pgdat = pgdat;
L
Linus Torvalds 已提交
6024
		spin_lock_init(&zone->lock);
6025
		zone_seqlock_init(zone);
6026
		zone_pcp_init(zone);
6027

L
Linus Torvalds 已提交
6028 6029 6030
		if (!size)
			continue;

6031
		set_pageblock_order();
6032
		setup_usemap(pgdat, zone, zone_start_pfn, size);
6033
		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6034
		BUG_ON(ret);
6035
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6036 6037 6038
	}
}

6039
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6040
{
6041
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6042 6043
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6044 6045 6046 6047
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

A
Andy Whitcroft 已提交
6048
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6049 6050
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6051 6052
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6053
		unsigned long size, end;
A
Andy Whitcroft 已提交
6054 6055
		struct page *map;

6056 6057 6058 6059 6060
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6061
		end = pgdat_end_pfn(pgdat);
6062 6063
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6064 6065
		map = alloc_remap(pgdat->node_id, size);
		if (!map)
6066 6067
			map = memblock_virt_alloc_node_nopanic(size,
							       pgdat->node_id);
L
Laura Abbott 已提交
6068
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6069
	}
6070
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6071 6072 6073
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6074
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6075
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6076
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6077
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6078
			mem_map -= offset;
T
Tejun Heo 已提交
6079
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6080
	}
L
Linus Torvalds 已提交
6081
#endif
A
Andy Whitcroft 已提交
6082
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6083 6084
}

6085 6086
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
L
Linus Torvalds 已提交
6087
{
6088
	pg_data_t *pgdat = NODE_DATA(nid);
6089 6090
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6091

6092
	/* pg_data_t should be reset to zero when it's allocated */
6093
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6094

6095
	reset_deferred_meminit(pgdat);
L
Linus Torvalds 已提交
6096 6097
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6098
	pgdat->per_cpu_nodestats = NULL;
6099 6100
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6101
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6102 6103
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6104 6105
#else
	start_pfn = node_start_pfn;
6106 6107 6108
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6109 6110

	alloc_node_mem_map(pgdat);
6111 6112 6113 6114 6115
#ifdef CONFIG_FLAT_NODE_MEM_MAP
	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
		nid, (unsigned long)pgdat,
		(unsigned long)pgdat->node_mem_map);
#endif
L
Linus Torvalds 已提交
6116

6117
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6118 6119
}

T
Tejun Heo 已提交
6120
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6121 6122 6123 6124 6125

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6126
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6127
{
6128
	unsigned int highest;
M
Miklos Szeredi 已提交
6129

6130
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6131 6132 6133 6134
	nr_node_ids = highest + 1;
}
#endif

6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6157
	unsigned long start, end, mask;
6158
	int last_nid = -1;
6159
	int i, nid;
6160

6161
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6185
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6186
static unsigned long __init find_min_pfn_for_node(int nid)
6187
{
6188
	unsigned long min_pfn = ULONG_MAX;
6189 6190
	unsigned long start_pfn;
	int i;
6191

6192 6193
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6194

6195
	if (min_pfn == ULONG_MAX) {
6196
		pr_warn("Could not find start_pfn for node %d\n", nid);
6197 6198 6199 6200
		return 0;
	}

	return min_pfn;
6201 6202 6203 6204 6205 6206
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6207
 * memblock_set_node().
6208 6209 6210 6211 6212 6213
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6214 6215 6216
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6217
 * Populate N_MEMORY for calculating usable_nodes.
6218
 */
A
Adrian Bunk 已提交
6219
static unsigned long __init early_calculate_totalpages(void)
6220 6221
{
	unsigned long totalpages = 0;
6222 6223 6224 6225 6226
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6227

6228 6229
		totalpages += pages;
		if (pages)
6230
			node_set_state(nid, N_MEMORY);
6231
	}
6232
	return totalpages;
6233 6234
}

M
Mel Gorman 已提交
6235 6236 6237 6238 6239 6240
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6241
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6242 6243 6244 6245
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6246
	/* save the state before borrow the nodemask */
6247
	nodemask_t saved_node_state = node_states[N_MEMORY];
6248
	unsigned long totalpages = early_calculate_totalpages();
6249
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6250
	struct memblock_region *r;
6251 6252 6253 6254 6255 6256 6257 6258 6259

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6260 6261
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6262 6263
				continue;

E
Emil Medve 已提交
6264
			nid = r->nid;
6265

E
Emil Medve 已提交
6266
			usable_startpfn = PFN_DOWN(r->base);
6267 6268 6269 6270 6271 6272 6273
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6274

6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6305
	/*
6306
	 * If movablecore=nn[KMG] was specified, calculate what size of
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6322
		required_movablecore = min(totalpages, required_movablecore);
6323 6324 6325 6326 6327
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6328 6329 6330 6331 6332
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6333
		goto out;
M
Mel Gorman 已提交
6334 6335 6336 6337 6338 6339 6340

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6341
	for_each_node_state(nid, N_MEMORY) {
6342 6343
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6360
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6361 6362
			unsigned long size_pages;

6363
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6406
			 * satisfied
M
Mel Gorman 已提交
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6420
	 * satisfied
M
Mel Gorman 已提交
6421 6422 6423 6424 6425
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6426
out2:
M
Mel Gorman 已提交
6427 6428 6429 6430
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6431

6432
out:
6433
	/* restore the node_state */
6434
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6435 6436
}

6437 6438
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6439 6440 6441
{
	enum zone_type zone_type;

6442 6443 6444 6445
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6446
		struct zone *zone = &pgdat->node_zones[zone_type];
6447
		if (populated_zone(zone)) {
6448 6449 6450 6451
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6452 6453
			break;
		}
6454 6455 6456
	}
}

6457 6458
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6459
 * @max_zone_pfn: an array of max PFNs for each zone
6460 6461
 *
 * This will call free_area_init_node() for each active node in the system.
6462
 * Using the page ranges provided by memblock_set_node(), the size of each
6463 6464 6465 6466 6467 6468 6469 6470 6471
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6472 6473
	unsigned long start_pfn, end_pfn;
	int i, nid;
6474

6475 6476 6477 6478 6479
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6480 6481 6482 6483

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6484 6485
		if (i == ZONE_MOVABLE)
			continue;
6486 6487 6488 6489 6490 6491

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6492
	}
M
Mel Gorman 已提交
6493 6494 6495

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6496
	find_zone_movable_pfns_for_nodes();
6497 6498

	/* Print out the zone ranges */
6499
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6500 6501 6502
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6503
		pr_info("  %-8s ", zone_names[i]);
6504 6505
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6506
			pr_cont("empty\n");
6507
		else
6508 6509 6510 6511
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6512
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6513 6514 6515
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6516
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6517 6518
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6519 6520
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6521
	}
6522

6523
	/* Print out the early node map */
6524
	pr_info("Early memory node ranges\n");
6525
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6526 6527 6528
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6529 6530

	/* Initialise every node */
6531
	mminit_verify_pageflags_layout();
6532
	setup_nr_node_ids();
6533 6534
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6535
		free_area_init_node(nid, NULL,
6536
				find_min_pfn_for_node(nid), NULL);
6537 6538 6539

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6540 6541
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6542 6543
	}
}
M
Mel Gorman 已提交
6544

6545
static int __init cmdline_parse_core(char *p, unsigned long *core)
M
Mel Gorman 已提交
6546 6547 6548 6549 6550 6551
{
	unsigned long long coremem;
	if (!p)
		return -EINVAL;

	coremem = memparse(p, &p);
6552
	*core = coremem >> PAGE_SHIFT;
M
Mel Gorman 已提交
6553

6554
	/* Paranoid check that UL is enough for the coremem value */
M
Mel Gorman 已提交
6555 6556 6557 6558
	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);

	return 0;
}
M
Mel Gorman 已提交
6559

6560 6561 6562 6563 6564 6565
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6566 6567 6568 6569 6570 6571
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
	return cmdline_parse_core(p, &required_kernelcore);
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
	return cmdline_parse_core(p, &required_movablecore);
}

M
Mel Gorman 已提交
6584
early_param("kernelcore", cmdline_parse_kernelcore);
6585
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6586

T
Tejun Heo 已提交
6587
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6588

6589 6590 6591 6592 6593
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6594 6595 6596 6597
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6598 6599
	spin_unlock(&managed_page_count_lock);
}
6600
EXPORT_SYMBOL(adjust_managed_page_count);
6601

6602
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6603
{
6604 6605
	void *pos;
	unsigned long pages = 0;
6606

6607 6608 6609
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6610
		if ((unsigned int)poison <= 0xFF)
6611 6612
			memset(pos, poison, PAGE_SIZE);
		free_reserved_page(virt_to_page(pos));
6613 6614 6615
	}

	if (pages && s)
6616 6617
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
6618 6619 6620

	return pages;
}
6621
EXPORT_SYMBOL(free_reserved_area);
6622

6623 6624 6625 6626 6627
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
6628
	page_zone(page)->managed_pages++;
6629 6630 6631 6632
	totalhigh_pages++;
}
#endif

6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
6655 6656 6657 6658
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
6669
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6670
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6671
		", %luK highmem"
6672
#endif
J
Joe Perches 已提交
6673 6674 6675 6676 6677 6678 6679
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
6680
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6681
		totalhigh_pages << (PAGE_SHIFT - 10),
6682
#endif
J
Joe Perches 已提交
6683
		str ? ", " : "", str ? str : "");
6684 6685
}

6686
/**
6687 6688
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
6689
 *
6690
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6691 6692
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
6693 6694 6695
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
6696 6697 6698 6699 6700 6701
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
6702 6703
void __init free_area_init(unsigned long *zones_size)
{
6704
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
6705 6706 6707
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

6708
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
6709 6710
{

6711 6712
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
6713

6714 6715 6716 6717 6718 6719 6720
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
6721

6722 6723 6724 6725 6726 6727 6728 6729 6730
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
6731 6732 6733 6734
}

void __init page_alloc_init(void)
{
6735 6736 6737 6738 6739 6740
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
6741 6742
}

6743
/*
6744
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6745 6746 6747 6748 6749 6750
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
6751
	enum zone_type i, j;
6752 6753

	for_each_online_pgdat(pgdat) {
6754 6755 6756

		pgdat->totalreserve_pages = 0;

6757 6758
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
6759
			long max = 0;
6760 6761 6762 6763 6764 6765 6766

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

6767 6768
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
6769

6770 6771
			if (max > zone->managed_pages)
				max = zone->managed_pages;
6772

6773
			pgdat->totalreserve_pages += max;
6774

6775 6776 6777 6778 6779 6780
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
6781 6782
/*
 * setup_per_zone_lowmem_reserve - called whenever
6783
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
6784 6785 6786 6787 6788 6789
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
6790
	enum zone_type j, idx;
L
Linus Torvalds 已提交
6791

6792
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
6793 6794
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
6795
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
6796 6797 6798

			zone->lowmem_reserve[j] = 0;

6799 6800
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
6801 6802
				struct zone *lower_zone;

6803 6804
				idx--;

L
Linus Torvalds 已提交
6805 6806 6807 6808
				if (sysctl_lowmem_reserve_ratio[idx] < 1)
					sysctl_lowmem_reserve_ratio[idx] = 1;

				lower_zone = pgdat->node_zones + idx;
6809
				lower_zone->lowmem_reserve[j] = managed_pages /
L
Linus Torvalds 已提交
6810
					sysctl_lowmem_reserve_ratio[idx];
6811
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
6812 6813 6814
			}
		}
	}
6815 6816 6817

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
6818 6819
}

6820
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
6821 6822 6823 6824 6825 6826 6827 6828 6829
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
6830
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
6831 6832 6833
	}

	for_each_zone(zone) {
6834 6835
		u64 tmp;

6836
		spin_lock_irqsave(&zone->lock, flags);
6837
		tmp = (u64)pages_min * zone->managed_pages;
6838
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
6839 6840
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
6841 6842 6843 6844
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
6845
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
6846
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
6847
			 * not be capped for highmem.
L
Linus Torvalds 已提交
6848
			 */
6849
			unsigned long min_pages;
L
Linus Torvalds 已提交
6850

6851
			min_pages = zone->managed_pages / 1024;
6852
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6853
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
6854
		} else {
N
Nick Piggin 已提交
6855 6856
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
6857 6858
			 * proportionate to the zone's size.
			 */
6859
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
6860 6861
		}

6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6873

6874
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
6875
	}
6876 6877 6878

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
6879 6880
}

6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
	mutex_lock(&zonelists_mutex);
	__setup_per_zone_wmarks();
	mutex_unlock(&zonelists_mutex);
}

L
Linus Torvalds 已提交
6895 6896 6897 6898 6899 6900 6901
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
6902
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
6919
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
6920 6921
{
	unsigned long lowmem_kbytes;
6922
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
6923 6924

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
6937
	setup_per_zone_wmarks();
6938
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
6939
	setup_per_zone_lowmem_reserve();
6940 6941 6942 6943 6944 6945

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
6946 6947
	return 0;
}
6948
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
6949 6950

/*
6951
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
6952 6953 6954
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
6955
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6956
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
6957
{
6958 6959 6960 6961 6962 6963
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

6964 6965
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
6966
		setup_per_zone_wmarks();
6967
	}
L
Linus Torvalds 已提交
6968 6969 6970
	return 0;
}

6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

6986
#ifdef CONFIG_NUMA
6987
static void setup_min_unmapped_ratio(void)
6988
{
6989
	pg_data_t *pgdat;
6990 6991
	struct zone *zone;

6992
	for_each_online_pgdat(pgdat)
6993
		pgdat->min_unmapped_pages = 0;
6994

6995
	for_each_zone(zone)
6996
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6997 6998
				sysctl_min_unmapped_ratio) / 100;
}
6999

7000 7001

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7002
	void __user *buffer, size_t *length, loff_t *ppos)
7003 7004 7005
{
	int rc;

7006
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7007 7008 7009
	if (rc)
		return rc;

7010 7011 7012 7013 7014 7015 7016 7017 7018 7019
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7020 7021 7022
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7023
	for_each_zone(zone)
7024
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7025
				sysctl_min_slab_ratio) / 100;
7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7039 7040
	return 0;
}
7041 7042
#endif

L
Linus Torvalds 已提交
7043 7044 7045 7046 7047 7048
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7049
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7050 7051
 * if in function of the boot time zone sizes.
 */
7052
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7053
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7054
{
7055
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7056 7057 7058 7059
	setup_per_zone_lowmem_reserve();
	return 0;
}

7060 7061
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7062 7063
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7064
 */
7065
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7066
	void __user *buffer, size_t *length, loff_t *ppos)
7067 7068
{
	struct zone *zone;
7069
	int old_percpu_pagelist_fraction;
7070 7071
	int ret;

7072 7073 7074
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7075
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7090

7091
	for_each_populated_zone(zone) {
7092 7093
		unsigned int cpu;

7094
		for_each_possible_cpu(cpu)
7095 7096
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7097
	}
7098
out:
7099
	mutex_unlock(&pcp_batch_high_lock);
7100
	return ret;
7101 7102
}

7103
#ifdef CONFIG_NUMA
7104
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

L
Linus Torvalds 已提交
7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7140 7141
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7142
{
7143
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7144 7145 7146 7147 7148 7149
	unsigned long log2qty, size;
	void *table = NULL;

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7150
		numentries = nr_kernel_pages;
7151
		numentries -= arch_reserved_kernel_pages();
7152 7153 7154 7155

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7156 7157 7158 7159 7160 7161

		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7162 7163

		/* Make sure we've got at least a 0-order allocation.. */
7164 7165 7166 7167 7168 7169 7170 7171
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7172
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7173
	}
7174
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7175 7176 7177 7178 7179 7180

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7181
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7182

7183 7184
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7185 7186 7187
	if (numentries > max)
		numentries = max;

7188
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7189 7190 7191 7192

	do {
		size = bucketsize << log2qty;
		if (flags & HASH_EARLY)
7193
			table = memblock_virt_alloc_nopanic(size, 0);
L
Linus Torvalds 已提交
7194 7195 7196
		else if (hashdist)
			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
		else {
7197 7198
			/*
			 * If bucketsize is not a power-of-two, we may free
7199 7200
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7201
			 */
7202
			if (get_order(size) < MAX_ORDER) {
7203
				table = alloc_pages_exact(size, GFP_ATOMIC);
7204 7205
				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
			}
L
Linus Torvalds 已提交
7206 7207 7208 7209 7210 7211
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7212 7213
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7214 7215 7216 7217 7218 7219 7220 7221

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7222

K
KAMEZAWA Hiroyuki 已提交
7223
/*
7224 7225 7226
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7227
 * PageLRU check without isolation or lru_lock could race so that
7228 7229 7230
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7231
 */
7232 7233
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
			 bool skip_hwpoisoned_pages)
7234 7235
{
	unsigned long pfn, iter, found;
7236 7237
	int mt;

7238 7239
	/*
	 * For avoiding noise data, lru_add_drain_all() should be called
7240
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7241 7242
	 */
	if (zone_idx(zone) == ZONE_MOVABLE)
7243
		return false;
7244 7245
	mt = get_pageblock_migratetype(page);
	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7246
		return false;
7247 7248 7249 7250 7251

	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7252
		if (!pfn_valid_within(check))
7253
			continue;
7254

7255
		page = pfn_to_page(check);
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266

		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7267 7268 7269 7270
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7271
		 * because their page->_refcount is zero at all time.
7272
		 */
7273
		if (!page_ref_count(page)) {
7274 7275 7276 7277
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7278

7279 7280 7281 7282 7283 7284 7285
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7286 7287 7288
		if (__PageMovable(page))
			continue;

7289 7290 7291
		if (!PageLRU(page))
			found++;
		/*
7292 7293 7294
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7295 7296 7297 7298 7299 7300 7301 7302 7303 7304
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7305
			return true;
7306
	}
7307
	return false;
7308 7309 7310 7311
}

bool is_pageblock_removable_nolock(struct page *page)
{
7312 7313
	struct zone *zone;
	unsigned long pfn;
7314 7315 7316 7317 7318

	/*
	 * We have to be careful here because we are iterating over memory
	 * sections which are not zone aware so we might end up outside of
	 * the zone but still within the section.
7319 7320
	 * We have to take care about the node as well. If the node is offline
	 * its NODE_DATA will be NULL - see page_zone.
7321
	 */
7322 7323 7324 7325 7326
	if (!node_online(page_to_nid(page)))
		return false;

	zone = page_zone(page);
	pfn = page_to_pfn(page);
7327
	if (!zone_spans_pfn(zone, pfn))
7328 7329
		return false;

7330
	return !has_unmovable_pages(zone, page, 0, true);
K
KAMEZAWA Hiroyuki 已提交
7331
}
K
KAMEZAWA Hiroyuki 已提交
7332

7333
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7348 7349
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7350 7351
{
	/* This function is based on compact_zone() from compaction.c. */
7352
	unsigned long nr_reclaimed;
7353 7354 7355 7356
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7357
	migrate_prep();
7358

7359
	while (pfn < end || !list_empty(&cc->migratepages)) {
7360 7361 7362 7363 7364
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7365 7366
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7367
			pfn = isolate_migratepages_range(cc, pfn, end);
7368 7369 7370 7371 7372 7373 7374 7375 7376 7377
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7378 7379 7380
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7381

7382
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7383
				    NULL, 0, cc->mode, MR_CMA);
7384
	}
7385 7386 7387 7388 7389
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7390 7391 7392 7393 7394 7395
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7396 7397 7398 7399
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7400
 * @gfp_mask:	GFP mask to use during compaction
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 * aligned, however it's the caller's responsibility to guarantee that
 * we are the only thread that changes migrate type of pageblocks the
 * pages fall in.
 *
 * The PFN range must belong to a single zone.
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7413
int alloc_contig_range(unsigned long start, unsigned long end,
7414
		       unsigned migratetype, gfp_t gfp_mask)
7415 7416
{
	unsigned long outer_start, outer_end;
7417 7418
	unsigned int order;
	int ret = 0;
7419

7420 7421 7422 7423
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7424
		.mode = MIGRATE_SYNC,
7425
		.ignore_skip_hint = true,
7426
		.gfp_mask = memalloc_noio_flags(gfp_mask),
7427 7428 7429
	};
	INIT_LIST_HEAD(&cc.migratepages);

7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7455 7456
				       pfn_max_align_up(end), migratetype,
				       false);
7457
	if (ret)
7458
		return ret;
7459

7460 7461 7462 7463
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
	 * So, just fall through. We will check it in test_pages_isolated().
	 */
7464
	ret = __alloc_contig_migrate_range(&cc, start, end);
7465
	if (ret && ret != -EBUSY)
7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
		goto done;

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7486
	drain_all_pages(cc.zone);
7487 7488 7489 7490 7491

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7492 7493
			outer_start = start;
			break;
7494 7495 7496 7497
		}
		outer_start &= ~0UL << order;
	}

7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7511
	/* Make sure the range is really isolated. */
7512
	if (test_pages_isolated(outer_start, end, false)) {
7513 7514
		pr_info("%s: [%lx, %lx) PFNs busy\n",
			__func__, outer_start, end);
7515 7516 7517 7518
		ret = -EBUSY;
		goto done;
	}

7519
	/* Grab isolated pages from freelists. */
7520
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7534
				pfn_max_align_up(end), migratetype);
7535 7536 7537 7538 7539
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7540 7541 7542 7543 7544 7545 7546 7547 7548
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7549 7550 7551
}
#endif

7552
#ifdef CONFIG_MEMORY_HOTPLUG
7553 7554 7555 7556
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7557 7558
void __meminit zone_pcp_update(struct zone *zone)
{
7559
	unsigned cpu;
7560
	mutex_lock(&pcp_batch_high_lock);
7561
	for_each_possible_cpu(cpu)
7562 7563
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
7564
	mutex_unlock(&pcp_batch_high_lock);
7565 7566 7567
}
#endif

7568 7569 7570
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
7571 7572
	int cpu;
	struct per_cpu_pageset *pset;
7573 7574 7575 7576

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
7577 7578 7579 7580
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
7581 7582 7583 7584 7585 7586
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

7587
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
7588
/*
7589 7590
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
7591 7592 7593 7594 7595 7596
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
7597
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
7615 7616 7617 7618 7619 7620 7621 7622 7623 7624
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
7625 7626 7627 7628
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
7629 7630
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
7642 7643 7644 7645 7646 7647

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
7648
	unsigned int order;
7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}