i915_request.c 61.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26
#include <linux/dma-fence-chain.h>
27 28
#include <linux/irq_work.h>
#include <linux/prefetch.h>
29 30
#include <linux/sched.h>
#include <linux/sched/clock.h>
31
#include <linux/sched/signal.h>
32

33
#include "gem/i915_gem_context.h"
34
#include "gt/intel_breadcrumbs.h"
35
#include "gt/intel_context.h"
36 37
#include "gt/intel_engine.h"
#include "gt/intel_engine_heartbeat.h"
38
#include "gt/intel_gpu_commands.h"
39
#include "gt/intel_reset.h"
40
#include "gt/intel_ring.h"
41
#include "gt/intel_rps.h"
42

43
#include "i915_active.h"
44
#include "i915_drv.h"
45
#include "i915_globals.h"
46
#include "i915_trace.h"
47
#include "intel_pm.h"
48

49 50 51
struct execute_cb {
	struct irq_work work;
	struct i915_sw_fence *fence;
52
	struct i915_request *signal;
53 54
};

55
static struct i915_global_request {
56
	struct i915_global base;
57
	struct kmem_cache *slab_requests;
58
	struct kmem_cache *slab_execute_cbs;
59 60
} global;

61
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
62
{
63
	return dev_name(to_request(fence)->engine->i915->drm.dev);
64 65
}

66
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
67
{
68 69
	const struct i915_gem_context *ctx;

70 71
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
72 73 74 75 76 77 78 79 80 81
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

82
	ctx = i915_request_gem_context(to_request(fence));
83 84 85 86
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
87 88
}

89
static bool i915_fence_signaled(struct dma_fence *fence)
90
{
91
	return i915_request_completed(to_request(fence));
92 93
}

94
static bool i915_fence_enable_signaling(struct dma_fence *fence)
95
{
96
	return i915_request_enable_breadcrumb(to_request(fence));
97 98
}

99
static signed long i915_fence_wait(struct dma_fence *fence,
100
				   bool interruptible,
101
				   signed long timeout)
102
{
103 104 105
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
106 107
}

108 109 110 111 112
struct kmem_cache *i915_request_slab_cache(void)
{
	return global.slab_requests;
}

113
static void i915_fence_release(struct dma_fence *fence)
114
{
115
	struct i915_request *rq = to_request(fence);
116

117 118
	/*
	 * The request is put onto a RCU freelist (i.e. the address
119 120 121 122 123
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
124
	i915_sw_fence_fini(&rq->submit);
125
	i915_sw_fence_fini(&rq->semaphore);
126

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
	/*
	 * Keep one request on each engine for reserved use under mempressure
	 *
	 * We do not hold a reference to the engine here and so have to be
	 * very careful in what rq->engine we poke. The virtual engine is
	 * referenced via the rq->context and we released that ref during
	 * i915_request_retire(), ergo we must not dereference a virtual
	 * engine here. Not that we would want to, as the only consumer of
	 * the reserved engine->request_pool is the power management parking,
	 * which must-not-fail, and that is only run on the physical engines.
	 *
	 * Since the request must have been executed to be have completed,
	 * we know that it will have been processed by the HW and will
	 * not be unsubmitted again, so rq->engine and rq->execution_mask
	 * at this point is stable. rq->execution_mask will be a single
	 * bit if the last and _only_ engine it could execution on was a
	 * physical engine, if it's multiple bits then it started on and
	 * could still be on a virtual engine. Thus if the mask is not a
	 * power-of-two we assume that rq->engine may still be a virtual
	 * engine and so a dangling invalid pointer that we cannot dereference
	 *
	 * For example, consider the flow of a bonded request through a virtual
	 * engine. The request is created with a wide engine mask (all engines
	 * that we might execute on). On processing the bond, the request mask
	 * is reduced to one or more engines. If the request is subsequently
	 * bound to a single engine, it will then be constrained to only
	 * execute on that engine and never returned to the virtual engine
	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
	 * know that if the rq->execution_mask is a single bit, rq->engine
	 * can be a physical engine with the exact corresponding mask.
	 */
	if (is_power_of_2(rq->execution_mask) &&
	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
160 161
		return;

162
	kmem_cache_free(global.slab_requests, rq);
163 164
}

165
const struct dma_fence_ops i915_fence_ops = {
166 167 168 169 170 171 172 173
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

174 175 176 177 178 179 180 181
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

182 183
static __always_inline void
__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
184
{
185
	struct execute_cb *cb, *cn;
186

187
	if (llist_empty(&rq->execute_cb))
188 189
		return;

190 191
	llist_for_each_entry_safe(cb, cn,
				  llist_del_all(&rq->execute_cb),
P
Peter Zijlstra 已提交
192
				  work.node.llist)
193 194
		fn(&cb->work);
}
195

196 197 198 199 200 201 202 203 204 205 206 207 208 209
static void __notify_execute_cb_irq(struct i915_request *rq)
{
	__notify_execute_cb(rq, irq_work_queue);
}

static bool irq_work_imm(struct irq_work *wrk)
{
	wrk->func(wrk);
	return false;
}

static void __notify_execute_cb_imm(struct i915_request *rq)
{
	__notify_execute_cb(rq, irq_work_imm);
210 211
}

212
static void free_capture_list(struct i915_request *request)
213
{
214
	struct i915_capture_list *capture;
215

216
	capture = fetch_and_zero(&request->capture_list);
217
	while (capture) {
218
		struct i915_capture_list *next = capture->next;
219 220 221 222 223 224

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
/**
 * i915_request_active_engine
 * @rq: request to inspect
 * @active: pointer in which to return the active engine
 *
 * Fills the currently active engine to the @active pointer if the request
 * is active and still not completed.
 *
 * Returns true if request was active or false otherwise.
 */
bool
i915_request_active_engine(struct i915_request *rq,
			   struct intel_engine_cs **active)
{
	struct intel_engine_cs *engine, *locked;
	bool ret = false;

	/*
	 * Serialise with __i915_request_submit() so that it sees
	 * is-banned?, or we know the request is already inflight.
	 *
	 * Note that rq->engine is unstable, and so we double
	 * check that we have acquired the lock on the final engine.
	 */
	locked = READ_ONCE(rq->engine);
263
	spin_lock_irq(&locked->sched_engine->lock);
264
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
265
		spin_unlock(&locked->sched_engine->lock);
266
		locked = engine;
267
		spin_lock(&locked->sched_engine->lock);
268 269 270 271 272 273 274 275
	}

	if (i915_request_is_active(rq)) {
		if (!__i915_request_is_complete(rq))
			*active = locked;
		ret = true;
	}

276
	spin_unlock_irq(&locked->sched_engine->lock);
277 278 279 280 281

	return ret;
}


282 283 284 285 286 287 288 289 290 291 292
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
293
	spin_lock_irq(&locked->sched_engine->lock);
294
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
295 296
		spin_unlock(&locked->sched_engine->lock);
		spin_lock(&engine->sched_engine->lock);
297 298
		locked = engine;
	}
299
	list_del_init(&rq->sched.link);
300

301 302
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
303 304 305 306

	/* Prevent further __await_execution() registering a cb, then flush */
	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);

307
	spin_unlock_irq(&locked->sched_engine->lock);
308 309

	__notify_execute_cb_imm(rq);
310 311
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static void __rq_init_watchdog(struct i915_request *rq)
{
	rq->watchdog.timer.function = NULL;
}

static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
{
	struct i915_request *rq =
		container_of(hrtimer, struct i915_request, watchdog.timer);
	struct intel_gt *gt = rq->engine->gt;

	if (!i915_request_completed(rq)) {
		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
			schedule_work(&gt->watchdog.work);
	} else {
		i915_request_put(rq);
	}

	return HRTIMER_NORESTART;
}

static void __rq_arm_watchdog(struct i915_request *rq)
{
	struct i915_request_watchdog *wdg = &rq->watchdog;
	struct intel_context *ce = rq->context;

	if (!ce->watchdog.timeout_us)
		return;

341 342
	i915_request_get(rq);

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	wdg->timer.function = __rq_watchdog_expired;
	hrtimer_start_range_ns(&wdg->timer,
			       ns_to_ktime(ce->watchdog.timeout_us *
					   NSEC_PER_USEC),
			       NSEC_PER_MSEC,
			       HRTIMER_MODE_REL);
}

static void __rq_cancel_watchdog(struct i915_request *rq)
{
	struct i915_request_watchdog *wdg = &rq->watchdog;

	if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
		i915_request_put(rq);
}

360
bool i915_request_retire(struct i915_request *rq)
361
{
362
	if (!__i915_request_is_complete(rq))
363
		return false;
364

365
	RQ_TRACE(rq, "\n");
366

367 368
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
369
	i915_request_mark_complete(rq);
C
Chris Wilson 已提交
370

371 372
	__rq_cancel_watchdog(rq);

373 374 375 376 377 378 379 380 381
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
382 383
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
384 385 386
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
387
	rq->ring->head = rq->postfix;
388

389 390
	if (!i915_request_signaled(rq)) {
		spin_lock_irq(&rq->lock);
391
		dma_fence_signal_locked(&rq->fence);
392 393
		spin_unlock_irq(&rq->lock);
	}
394

395
	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
396
		atomic_dec(&rq->engine->gt->rps.num_waiters);
397 398 399 400 401 402 403 404 405 406 407

	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 *
	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
	 * after removing the breadcrumb and signaling it, so that we do not
	 * inadvertently attach the breadcrumb to a completed request.
	 */
408 409
	if (!list_empty(&rq->sched.link))
		remove_from_engine(rq);
410
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
411

412
	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
413

414 415
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
416

417 418 419 420 421
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
422 423
}

424
void i915_request_retire_upto(struct i915_request *rq)
425
{
426
	struct intel_timeline * const tl = i915_request_timeline(rq);
427
	struct i915_request *tmp;
428

429
	RQ_TRACE(rq, "\n");
430
	GEM_BUG_ON(!__i915_request_is_complete(rq));
431

432
	do {
433
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
434
	} while (i915_request_retire(tmp) && tmp != rq);
435 436
}

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
static struct i915_request * const *
__engine_active(struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->execlists.active);
}

static bool __request_in_flight(const struct i915_request *signal)
{
	struct i915_request * const *port, *rq;
	bool inflight = false;

	if (!i915_request_is_ready(signal))
		return false;

	/*
	 * Even if we have unwound the request, it may still be on
	 * the GPU (preempt-to-busy). If that request is inside an
	 * unpreemptible critical section, it will not be removed. Some
	 * GPU functions may even be stuck waiting for the paired request
	 * (__await_execution) to be submitted and cannot be preempted
	 * until the bond is executing.
	 *
	 * As we know that there are always preemption points between
	 * requests, we know that only the currently executing request
	 * may be still active even though we have cleared the flag.
462
	 * However, we can't rely on our tracking of ELSP[0] to know
463 464 465 466
	 * which request is currently active and so maybe stuck, as
	 * the tracking maybe an event behind. Instead assume that
	 * if the context is still inflight, then it is still active
	 * even if the active flag has been cleared.
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	 *
	 * To further complicate matters, if there a pending promotion, the HW
	 * may either perform a context switch to the second inflight execlists,
	 * or it may switch to the pending set of execlists. In the case of the
	 * latter, it may send the ACK and we process the event copying the
	 * pending[] over top of inflight[], _overwriting_ our *active. Since
	 * this implies the HW is arbitrating and not struck in *active, we do
	 * not worry about complete accuracy, but we do require no read/write
	 * tearing of the pointer [the read of the pointer must be valid, even
	 * as the array is being overwritten, for which we require the writes
	 * to avoid tearing.]
	 *
	 * Note that the read of *execlists->active may race with the promotion
	 * of execlists->pending[] to execlists->inflight[], overwritting
	 * the value at *execlists->active. This is fine. The promotion implies
	 * that we received an ACK from the HW, and so the context is not
	 * stuck -- if we do not see ourselves in *active, the inflight status
	 * is valid. If instead we see ourselves being copied into *active,
	 * we are inflight and may signal the callback.
486 487 488 489 490
	 */
	if (!intel_context_inflight(signal->context))
		return false;

	rcu_read_lock();
491 492 493
	for (port = __engine_active(signal->engine);
	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
	     port++) {
494 495 496 497 498 499 500 501 502 503 504
		if (rq->context == signal->context) {
			inflight = i915_seqno_passed(rq->fence.seqno,
						     signal->fence.seqno);
			break;
		}
	}
	rcu_read_unlock();

	return inflight;
}

505
static int
506 507 508
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  gfp_t gfp)
509 510 511
{
	struct execute_cb *cb;

512
	if (i915_request_is_active(signal))
513 514 515 516 517 518 519 520 521 522
		return 0;

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

523 524 525 526 527 528 529 530 531 532 533 534 535
	/*
	 * Register the callback first, then see if the signaler is already
	 * active. This ensures that if we race with the
	 * __notify_execute_cb from i915_request_submit() and we are not
	 * included in that list, we get a second bite of the cherry and
	 * execute it ourselves. After this point, a future
	 * i915_request_submit() will notify us.
	 *
	 * In i915_request_retire() we set the ACTIVE bit on a completed
	 * request (then flush the execute_cb). So by registering the
	 * callback first, then checking the ACTIVE bit, we serialise with
	 * the completed/retired request.
	 */
P
Peter Zijlstra 已提交
536
	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
537 538 539
		if (i915_request_is_active(signal) ||
		    __request_in_flight(signal))
			__notify_execute_cb_imm(signal);
540 541 542 543 544
	}

	return 0;
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
static bool fatal_error(int error)
{
	switch (error) {
	case 0: /* not an error! */
	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
		return false;
	default:
		return true;
	}
}

void __i915_request_skip(struct i915_request *rq)
{
	GEM_BUG_ON(!fatal_error(rq->fence.error));

	if (rq->infix == rq->postfix)
		return;

564 565
	RQ_TRACE(rq, "error: %d\n", rq->fence.error);

566 567 568 569 570 571 572 573 574
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	__i915_request_fill(rq, 0);
	rq->infix = rq->postfix;
}

575
bool i915_request_set_error_once(struct i915_request *rq, int error)
576 577 578 579 580 581
{
	int old;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));

	if (i915_request_signaled(rq))
582
		return false;
583 584 585 586

	old = READ_ONCE(rq->fence.error);
	do {
		if (fatal_error(old))
587
			return false;
588
	} while (!try_cmpxchg(&rq->fence.error, &old, error));
589 590

	return true;
591 592
}

593
struct i915_request *i915_request_mark_eio(struct i915_request *rq)
594 595
{
	if (__i915_request_is_complete(rq))
596
		return NULL;
597 598 599

	GEM_BUG_ON(i915_request_signaled(rq));

600 601 602
	/* As soon as the request is completed, it may be retired */
	rq = i915_request_get(rq);

603 604
	i915_request_set_error_once(rq, -EIO);
	i915_request_mark_complete(rq);
605 606

	return rq;
607 608
}

609
bool __i915_request_submit(struct i915_request *request)
610
{
611
	struct intel_engine_cs *engine = request->engine;
612
	bool result = false;
613

614
	RQ_TRACE(request, "\n");
615

616
	GEM_BUG_ON(!irqs_disabled());
617
	lockdep_assert_held(&engine->sched_engine->lock);
618

619 620 621 622 623 624 625 626 627 628
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
629
	 * priority queue, under the sched_engine->lock. This ensures that the
630 631 632 633 634
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
635 636 637 638
	if (__i915_request_is_complete(request)) {
		list_del_init(&request->sched.link);
		goto active;
	}
639

640 641
	if (unlikely(intel_context_is_banned(request->context)))
		i915_request_set_error_once(request, -EIO);
642

643 644
	if (unlikely(fatal_error(request->fence.error)))
		__i915_request_skip(request);
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
664
		engine->saturated |= request->sched.semaphores;
665

666 667
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
668

669 670 671
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
672

673
	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
674
	list_move_tail(&request->sched.link, &engine->sched_engine->requests);
675 676 677
active:
	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
678

679 680 681 682 683 684 685 686 687 688
	/*
	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
689 690 691
	__notify_execute_cb_irq(request);

	/* We may be recursing from the signal callback of another i915 fence */
692 693
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		i915_request_enable_breadcrumb(request);
694

695
	return result;
696 697
}

698
void i915_request_submit(struct i915_request *request)
699 700 701
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
702

703
	/* Will be called from irq-context when using foreign fences. */
704
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
705

706
	__i915_request_submit(request);
707

708
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
709 710
}

711
void __i915_request_unsubmit(struct i915_request *request)
712
{
713
	struct intel_engine_cs *engine = request->engine;
714

715 716 717 718
	/*
	 * Only unwind in reverse order, required so that the per-context list
	 * is kept in seqno/ring order.
	 */
719
	RQ_TRACE(request, "\n");
720

721
	GEM_BUG_ON(!irqs_disabled());
722
	lockdep_assert_held(&engine->sched_engine->lock);
723

724
	/*
725 726 727 728 729
	 * Before we remove this breadcrumb from the signal list, we have
	 * to ensure that a concurrent dma_fence_enable_signaling() does not
	 * attach itself. We first mark the request as no longer active and
	 * make sure that is visible to other cores, and then remove the
	 * breadcrumb if attached.
730
	 */
731 732
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
733
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
734
		i915_request_cancel_breadcrumb(request);
735

736
	/* We've already spun, don't charge on resubmitting. */
737
	if (request->sched.semaphores && __i915_request_has_started(request))
738 739
		request->sched.semaphores = 0;

740 741
	/*
	 * We don't need to wake_up any waiters on request->execute, they
742
	 * will get woken by any other event or us re-adding this request
743
	 * to the engine timeline (__i915_request_submit()). The waiters
744 745 746 747 748
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

749
void i915_request_unsubmit(struct i915_request *request)
750 751 752 753 754
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
755
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
756

757
	__i915_request_unsubmit(request);
758

759
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
760 761
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
static void __cancel_request(struct i915_request *rq)
{
	struct intel_engine_cs *engine = NULL;

	i915_request_active_engine(rq, &engine);

	if (engine && intel_engine_pulse(engine))
		intel_gt_handle_error(engine->gt, engine->mask, 0,
				      "request cancellation by %s",
				      current->comm);
}

void i915_request_cancel(struct i915_request *rq, int error)
{
	if (!i915_request_set_error_once(rq, error))
		return;

	set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);

	__cancel_request(rq);
}

784
static int __i915_sw_fence_call
785
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
786
{
787
	struct i915_request *request =
788 789 790 791
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
792
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
793 794

		if (unlikely(fence->error))
795
			i915_request_set_error_once(request, fence->error);
796 797
		else
			__rq_arm_watchdog(request);
C
Chris Wilson 已提交
798

799
		/*
800 801 802 803 804 805
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
806 807
		 */
		rcu_read_lock();
808
		request->engine->submit_request(request);
809
		rcu_read_unlock();
810 811 812
		break;

	case FENCE_FREE:
813
		i915_request_put(request);
814 815 816
		break;
	}

817 818 819
	return NOTIFY_DONE;
}

820 821 822
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
823
	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
824 825 826 827 828 829

	switch (state) {
	case FENCE_COMPLETE:
		break;

	case FENCE_FREE:
830
		i915_request_put(rq);
831 832 833 834 835 836
		break;
	}

	return NOTIFY_DONE;
}

837
static void retire_requests(struct intel_timeline *tl)
838 839 840
{
	struct i915_request *rq, *rn;

841
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
842
		if (!i915_request_retire(rq))
843 844 845 846
			break;
}

static noinline struct i915_request *
847 848 849
request_alloc_slow(struct intel_timeline *tl,
		   struct i915_request **rsvd,
		   gfp_t gfp)
850 851 852
{
	struct i915_request *rq;

853 854 855 856 857
	/* If we cannot wait, dip into our reserves */
	if (!gfpflags_allow_blocking(gfp)) {
		rq = xchg(rsvd, NULL);
		if (!rq) /* Use the normal failure path for one final WARN */
			goto out;
858

859 860 861 862
		return rq;
	}

	if (list_empty(&tl->requests))
863 864
		goto out;

865
	/* Move our oldest request to the slab-cache (if not in use!) */
866
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
867 868 869 870 871 872 873
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

874
	/* Ratelimit ourselves to prevent oom from malicious clients */
875
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
876 877 878
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
879
	retire_requests(tl);
880 881

out:
882
	return kmem_cache_alloc(global.slab_requests, gfp);
883 884
}

885 886 887 888 889 890 891 892 893
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

894 895
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

896 897
	rq->capture_list = NULL;

898
	init_llist_head(&rq->execute_cb);
899 900
}

901
struct i915_request *
902
__i915_request_create(struct intel_context *ce, gfp_t gfp)
903
{
904
	struct intel_timeline *tl = ce->timeline;
905 906
	struct i915_request *rq;
	u32 seqno;
907 908
	int ret;

B
Bernard Zhao 已提交
909
	might_alloc(gfp);
910

911 912
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
913

914 915
	/*
	 * Beware: Dragons be flying overhead.
916 917 918 919
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
920
	 * of being read by __i915_active_request_get_rcu(). As such,
921 922
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
923
	 * read the request->global_seqno and increment the reference count.
924 925 926 927
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
928 929
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
930 931 932 933 934 935 936 937 938 939 940 941 942
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
943
	rq = kmem_cache_alloc(global.slab_requests,
944
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
945
	if (unlikely(!rq)) {
946
		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
947
		if (!rq) {
948 949 950
			ret = -ENOMEM;
			goto err_unreserve;
		}
951
	}
952

953
	rq->context = ce;
954
	rq->engine = ce->engine;
955
	rq->ring = ce->ring;
956
	rq->execution_mask = ce->engine->mask;
957

958 959 960 961 962 963 964 965 966 967 968 969
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

970
	RCU_INIT_POINTER(rq->timeline, tl);
971
	rq->hwsp_seqno = tl->hwsp_seqno;
972
	GEM_BUG_ON(__i915_request_is_complete(rq));
973

974
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
975

976
	/* We bump the ref for the fence chain */
977 978
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
979

980
	i915_sched_node_reinit(&rq->sched);
981

982
	/* No zalloc, everything must be cleared after use */
983
	rq->batch = NULL;
984
	__rq_init_watchdog(rq);
985
	GEM_BUG_ON(rq->capture_list);
986
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
987

988 989 990
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
991
	 * i915_request_add() call can't fail. Note that the reserve may need
992 993
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
994 995 996 997 998
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
999
	 */
1000 1001
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
1002

1003 1004
	/*
	 * Record the position of the start of the request so that
1005 1006 1007 1008
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
1009
	rq->head = rq->ring->emit;
1010

1011
	ret = rq->engine->request_alloc(rq);
1012 1013
	if (ret)
		goto err_unwind;
1014

1015 1016
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

1017
	intel_context_mark_active(ce);
1018 1019
	list_add_tail_rcu(&rq->link, &tl->requests);

1020
	return rq;
1021

1022
err_unwind:
1023
	ce->ring->emit = rq->head;
1024

1025
	/* Make sure we didn't add ourselves to external state before freeing */
1026 1027
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1028

1029
err_free:
1030
	kmem_cache_free(global.slab_requests, rq);
1031
err_unreserve:
1032
	intel_context_unpin(ce);
1033
	return ERR_PTR(ret);
1034 1035
}

1036 1037 1038 1039
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
1040
	struct intel_timeline *tl;
1041

1042 1043 1044
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
1045 1046

	/* Move our oldest request to the slab-cache (if not in use!) */
1047 1048
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
1049 1050 1051 1052 1053 1054 1055 1056 1057
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
1058
	rq->cookie = lockdep_pin_lock(&tl->mutex);
1059 1060 1061 1062

	return rq;

err_unlock:
1063
	intel_context_timeline_unlock(tl);
1064 1065 1066
	return rq;
}

1067 1068 1069
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
1070 1071
	struct dma_fence *fence;
	int err;
1072

1073 1074
	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
		return 0;
1075

1076 1077 1078
	if (i915_request_started(signal))
		return 0;

1079 1080 1081 1082 1083 1084 1085 1086
	/*
	 * The caller holds a reference on @signal, but we do not serialise
	 * against it being retired and removed from the lists.
	 *
	 * We do not hold a reference to the request before @signal, and
	 * so must be very careful to ensure that it is not _recycled_ as
	 * we follow the link backwards.
	 */
1087
	fence = NULL;
1088
	rcu_read_lock();
1089 1090 1091 1092 1093
	do {
		struct list_head *pos = READ_ONCE(signal->link.prev);
		struct i915_request *prev;

		/* Confirm signal has not been retired, the link is valid */
1094
		if (unlikely(__i915_request_has_started(signal)))
1095 1096 1097 1098 1099
			break;

		/* Is signal the earliest request on its timeline? */
		if (pos == &rcu_dereference(signal->timeline)->requests)
			break;
1100

1101 1102 1103 1104 1105 1106
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
1107 1108 1109 1110 1111 1112 1113 1114
		prev = list_entry(pos, typeof(*prev), link);
		if (!i915_request_get_rcu(prev))
			break;

		/* After the strong barrier, confirm prev is still attached */
		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
			i915_request_put(prev);
			break;
1115
		}
1116 1117 1118

		fence = &prev->fence;
	} while (0);
1119 1120 1121
	rcu_read_unlock();
	if (!fence)
		return 0;
1122 1123

	err = 0;
1124
	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1125 1126 1127 1128 1129 1130
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
1131 1132
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
1148
	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1149 1150
}

1151
static int
1152 1153 1154
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
1155
{
1156
	const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1157
	u32 hwsp_offset;
1158
	int len, err;
1159 1160
	u32 *cs;

1161
	GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1162
	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1163

1164
	/* We need to pin the signaler's HWSP until we are finished reading. */
1165 1166 1167
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
1168

1169 1170 1171 1172 1173
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
1185 1186 1187 1188 1189
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
1190
	*cs++ = seqno;
1191 1192
	*cs++ = hwsp_offset;
	*cs++ = 0;
1193 1194 1195 1196
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
1197 1198

	intel_ring_advance(to, cs);
1199 1200 1201 1202 1203 1204 1205 1206
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
1207
	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1208
	struct i915_sw_fence *wait = &to->submit;
1209

1210 1211 1212
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

1213 1214 1215
	if (i915_request_has_initial_breadcrumb(to))
		goto await_fence;

1216 1217 1218 1219 1220 1221 1222 1223 1224
	/*
	 * If this or its dependents are waiting on an external fence
	 * that may fail catastrophically, then we want to avoid using
	 * sempahores as they bypass the fence signaling metadata, and we
	 * lose the fence->error propagation.
	 */
	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
		goto await_fence;

1225
	/* Just emit the first semaphore we see as request space is limited. */
1226
	if (already_busywaiting(to) & mask)
1227 1228 1229 1230 1231 1232
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
1233
	if (__await_execution(to, from, gfp))
1234 1235 1236 1237 1238
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

1239
	to->sched.semaphores |= mask;
1240
	wait = &to->semaphore;
1241 1242

await_fence:
1243
	return i915_sw_fence_await_dma_fence(wait,
1244 1245
					     &from->fence, 0,
					     I915_FENCE_GFP);
1246 1247
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

1262
static int
1263
__i915_request_await_execution(struct i915_request *to,
1264
			       struct i915_request *from)
1265
{
1266
	int err;
1267

1268
	GEM_BUG_ON(intel_context_is_barrier(from->context));
1269

1270
	/* Submit both requests at the same time */
1271
	err = __await_execution(to, from, I915_FENCE_GFP);
1272 1273 1274 1275 1276 1277
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
1278
		return 0;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

	/*
	 * Wait until the start of this request.
	 *
	 * The execution cb fires when we submit the request to HW. But in
	 * many cases this may be long before the request itself is ready to
	 * run (consider that we submit 2 requests for the same context, where
	 * the request of interest is behind an indefinite spinner). So we hook
	 * up to both to reduce our queues and keep the execution lag minimised
	 * in the worst case, though we hope that the await_start is elided.
	 */
	err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/*
	 * Ensure both start together [after all semaphores in signal]
	 *
	 * Now that we are queued to the HW at roughly the same time (thanks
	 * to the execute cb) and are ready to run at roughly the same time
	 * (thanks to the await start), our signaler may still be indefinitely
	 * delayed by waiting on a semaphore from a remote engine. If our
	 * signaler depends on a semaphore, so indirectly do we, and we do not
	 * want to start our payload until our signaler also starts theirs.
	 * So we wait.
	 *
	 * However, there is also a second condition for which we need to wait
	 * for the precise start of the signaler. Consider that the signaler
	 * was submitted in a chain of requests following another context
	 * (with just an ordinary intra-engine fence dependency between the
	 * two). In this case the signaler is queued to HW, but not for
	 * immediate execution, and so we must wait until it reaches the
	 * active slot.
	 */
	if (intel_engine_has_semaphores(to->engine) &&
	    !i915_request_has_initial_breadcrumb(to)) {
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
		if (err < 0)
			return err;
1318
	}
1319

1320
	/* Couple the dependency tree for PI on this exposed to->fence */
1321
	if (to->engine->sched_engine->schedule) {
1322
		err = i915_sched_node_add_dependency(&to->sched,
1323
						     &from->sched,
1324 1325 1326
						     I915_DEPENDENCY_WEAK);
		if (err < 0)
			return err;
1327 1328
	}

1329 1330
	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
1331 1332
}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static void mark_external(struct i915_request *rq)
{
	/*
	 * The downside of using semaphores is that we lose metadata passing
	 * along the signaling chain. This is particularly nasty when we
	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
	 * fatal errors we want to scrub the request before it is executed,
	 * which means that we cannot preload the request onto HW and have
	 * it wait upon a semaphore.
	 */
	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
}

1346
static int
1347
__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1348
{
1349
	mark_external(rq);
1350
	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1351
					     i915_fence_context_timeout(rq->engine->i915,
1352
									fence->context),
1353 1354 1355
					     I915_FENCE_GFP);
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
static int
i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
	struct dma_fence *iter;
	int err = 0;

	if (!to_dma_fence_chain(fence))
		return __i915_request_await_external(rq, fence);

	dma_fence_chain_for_each(iter, fence) {
		struct dma_fence_chain *chain = to_dma_fence_chain(iter);

		if (!dma_fence_is_i915(chain->fence)) {
			err = __i915_request_await_external(rq, iter);
			break;
		}

		err = i915_request_await_dma_fence(rq, chain->fence);
		if (err < 0)
			break;
	}

	dma_fence_put(iter);
	return err;
}

1382
int
1383
i915_request_await_execution(struct i915_request *rq,
1384
			     struct dma_fence *fence)
1385
{
1386 1387
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
1388 1389
	int ret;

1390 1391 1392
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

1393 1394
		/* XXX Error for signal-on-any fence arrays */

1395 1396 1397 1398
		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
1399

1400 1401
	do {
		fence = *child++;
1402 1403
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1404
			continue;
1405
		}
1406

1407
		if (fence->context == rq->fence.context)
1408 1409
			continue;

1410 1411 1412 1413
		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */
1414

1415
		if (dma_fence_is_i915(fence))
1416
			ret = __i915_request_await_execution(rq,
1417
							     to_request(fence));
1418
		else
1419
			ret = i915_request_await_external(rq, fence);
1420 1421
		if (ret < 0)
			return ret;
1422
	} while (--nchild);
1423 1424 1425 1426

	return 0;
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
static int
await_request_submit(struct i915_request *to, struct i915_request *from)
{
	/*
	 * If we are waiting on a virtual engine, then it may be
	 * constrained to execute on a single engine *prior* to submission.
	 * When it is submitted, it will be first submitted to the virtual
	 * engine and then passed to the physical engine. We cannot allow
	 * the waiter to be submitted immediately to the physical engine
	 * as it may then bypass the virtual request.
	 */
	if (to->engine == READ_ONCE(from->engine))
		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
							&from->submit,
							I915_FENCE_GFP);
	else
1443
		return __i915_request_await_execution(to, from);
1444 1445
}

1446
static int
1447
i915_request_await_request(struct i915_request *to, struct i915_request *from)
1448
{
1449
	int ret;
1450

1451 1452
	GEM_BUG_ON(to == from);
	GEM_BUG_ON(to->timeline == from->timeline);
1453

1454 1455
	if (i915_request_completed(from)) {
		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1456
		return 0;
1457 1458
	}

1459
	if (to->engine->sched_engine->schedule) {
1460
		ret = i915_sched_node_add_dependency(&to->sched,
1461
						     &from->sched,
1462 1463 1464
						     I915_DEPENDENCY_EXTERNAL);
		if (ret < 0)
			return ret;
1465 1466
	}

1467 1468
	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
		ret = await_request_submit(to, from);
1469 1470 1471 1472 1473 1474
	else
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
	if (ret < 0)
		return ret;

	return 0;
1475 1476
}

1477
int
1478
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1479 1480 1481 1482 1483
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

1484 1485 1486 1487 1488 1489 1490 1491
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1502 1503
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1504
			continue;
1505
		}
1506

1507 1508 1509 1510 1511
		/*
		 * Requests on the same timeline are explicitly ordered, along
		 * with their dependencies, by i915_request_add() which ensures
		 * that requests are submitted in-order through each ring.
		 */
1512 1513 1514
		if (fence->context == rq->fence.context)
			continue;

1515 1516 1517 1518 1519
		/* Squash repeated waits to the same timelines */
		if (fence->context &&
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
			continue;
1520 1521

		if (dma_fence_is_i915(fence))
1522
			ret = i915_request_await_request(rq, to_request(fence));
1523
		else
1524
			ret = i915_request_await_external(rq, fence);
1525 1526
		if (ret < 0)
			return ret;
1527 1528 1529 1530 1531

		/* Record the latest fence used against each timeline */
		if (fence->context)
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1532 1533 1534 1535 1536
	} while (--nchild);

	return 0;
}

1537
/**
1538
 * i915_request_await_object - set this request to (async) wait upon a bo
1539 1540
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1541
 * @write: whether the wait is on behalf of a writer
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1558 1559 1560
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1561
{
1562 1563
	struct dma_fence *excl;
	int ret = 0;
1564 1565

	if (write) {
1566 1567 1568
		struct dma_fence **shared;
		unsigned int count, i;

1569 1570
		ret = dma_resv_get_fences(obj->base.resv, &excl, &count,
					  &shared);
1571 1572 1573 1574
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1575
			ret = i915_request_await_dma_fence(to, shared[i]);
1576 1577 1578 1579 1580 1581 1582 1583 1584
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1585
	} else {
1586
		excl = dma_resv_get_excl_unlocked(obj->base.resv);
1587 1588
	}

1589 1590
	if (excl) {
		if (ret == 0)
1591
			ret = i915_request_await_dma_fence(to, excl);
1592

1593
		dma_fence_put(excl);
1594 1595
	}

1596
	return ret;
1597 1598
}

1599 1600 1601
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1602
	struct intel_timeline *timeline = i915_request_timeline(rq);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1625 1626
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1627
	if (prev && !__i915_request_is_complete(prev)) {
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
		/*
		 * The requests are supposed to be kept in order. However,
		 * we need to be wary in case the timeline->last_request
		 * is used as a barrier for external modification to this
		 * context.
		 */
		GEM_BUG_ON(prev->context == rq->context &&
			   i915_seqno_passed(prev->fence.seqno,
					     rq->fence.seqno));

1638
		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1639 1640 1641 1642 1643 1644 1645
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
1646
		if (rq->engine->sched_engine->schedule)
1647 1648 1649 1650 1651 1652
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

1653 1654 1655 1656 1657
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1658 1659 1660 1661 1662
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1663 1664 1665 1666 1667
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1668
struct i915_request *__i915_request_commit(struct i915_request *rq)
1669
{
1670 1671
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1672
	u32 *cs;
1673

1674
	RQ_TRACE(rq, "\n");
1675

1676 1677 1678 1679 1680
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1681 1682
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1683
	rq->emitted_jiffies = jiffies;
1684

1685 1686
	/*
	 * Record the position of the start of the breadcrumb so that
1687 1688
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1689
	 * position of the ring's HEAD.
1690
	 */
1691
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1692
	GEM_BUG_ON(IS_ERR(cs));
1693
	rq->postfix = intel_ring_offset(rq, cs);
1694

1695
	return __i915_request_add_to_timeline(rq);
1696 1697
}

1698 1699 1700 1701 1702 1703
void __i915_request_queue_bh(struct i915_request *rq)
{
	i915_sw_fence_commit(&rq->semaphore);
	i915_sw_fence_commit(&rq->submit);
}

1704 1705 1706
void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1707 1708
	/*
	 * Let the backend know a new request has arrived that may need
1709 1710 1711 1712 1713 1714 1715 1716 1717
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1718 1719
	if (attr && rq->engine->sched_engine->schedule)
		rq->engine->sched_engine->schedule(rq, attr);
1720 1721 1722 1723

	local_bh_disable();
	__i915_request_queue_bh(rq);
	local_bh_enable(); /* kick tasklets */
1724 1725 1726 1727
}

void i915_request_add(struct i915_request *rq)
{
1728
	struct intel_timeline * const tl = i915_request_timeline(rq);
1729
	struct i915_sched_attr attr = {};
1730
	struct i915_gem_context *ctx;
1731

1732 1733
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1734 1735

	trace_i915_request_add(rq);
1736
	__i915_request_commit(rq);
1737

1738 1739 1740 1741 1742 1743
	/* XXX placeholder for selftests */
	rcu_read_lock();
	ctx = rcu_dereference(rq->context->gem_context);
	if (ctx)
		attr = ctx->sched;
	rcu_read_unlock();
1744

1745 1746
	__i915_request_queue(rq, &attr);

1747
	mutex_unlock(&tl->mutex);
1748 1749
}

1750
static unsigned long local_clock_ns(unsigned int *cpu)
1751 1752 1753
{
	unsigned long t;

1754 1755
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
1767
	t = local_clock();
1768 1769 1770 1771 1772 1773 1774 1775 1776
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

1777
	if (time_after(local_clock_ns(&this_cpu), timeout))
1778 1779 1780 1781 1782
		return true;

	return this_cpu != cpu;
}

1783
static bool __i915_spin_request(struct i915_request * const rq, int state)
1784
{
1785
	unsigned long timeout_ns;
1786
	unsigned int cpu;
1787 1788 1789 1790 1791 1792 1793

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1794 1795 1796 1797
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1798
	 */
1799
	if (!i915_request_is_running(rq))
1800 1801
		return false;

1802 1803
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1804 1805 1806 1807 1808 1809 1810 1811 1812
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1813 1814
	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
	timeout_ns += local_clock_ns(&cpu);
1815
	do {
1816
		if (dma_fence_is_signaled(&rq->fence))
1817
			return true;
1818

1819 1820 1821
		if (signal_pending_state(state, current))
			break;

1822
		if (busywait_stop(timeout_ns, cpu))
1823 1824
			break;

1825
		cpu_relax();
1826 1827 1828 1829 1830
	} while (!need_resched());

	return false;
}

1831 1832 1833 1834 1835 1836 1837 1838 1839
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

1840
	wake_up_process(fetch_and_zero(&wait->tsk));
1841 1842
}

1843
/**
1844
 * i915_request_wait - wait until execution of request has finished
1845
 * @rq: the request to wait upon
1846
 * @flags: how to wait
1847 1848
 * @timeout: how long to wait in jiffies
 *
1849
 * i915_request_wait() waits for the request to be completed, for a
1850 1851
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1852
 *
1853 1854 1855 1856
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1857
 */
1858
long i915_request_wait(struct i915_request *rq,
1859 1860
		       unsigned int flags,
		       long timeout)
1861
{
1862 1863
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1864
	struct request_wait wait;
1865 1866

	might_sleep();
1867
	GEM_BUG_ON(timeout < 0);
1868

1869
	if (dma_fence_is_signaled(&rq->fence))
1870
		return timeout;
1871

1872 1873
	if (!timeout)
		return -ETIME;
1874

1875
	trace_i915_request_wait_begin(rq, flags);
1876 1877 1878 1879 1880 1881 1882

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1883
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1908
	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1909
	    __i915_spin_request(rq, state))
1910
		goto out;
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
1924 1925
	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
		intel_rps_boost(rq);
1926

1927 1928 1929
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1930

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	/*
	 * Flush the submission tasklet, but only if it may help this request.
	 *
	 * We sometimes experience some latency between the HW interrupts and
	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
	 * be due to lazy CS events), so lets run the tasklet manually if there
	 * is a chance it may submit this request. If the request is not ready
	 * to run, as it is waiting for other fences to be signaled, flushing
	 * the tasklet is busy work without any advantage for this client.
	 *
	 * If the HW is being lazy, this is the last chance before we go to
	 * sleep to catch any pending events. We will check periodically in
	 * the heartbeat to flush the submission tasklets as a last resort
	 * for unhappy HW.
	 */
	if (i915_request_is_ready(rq))
1947
		__intel_engine_flush_submission(rq->engine, false);
1948

1949 1950
	for (;;) {
		set_current_state(state);
1951

1952
		if (dma_fence_is_signaled(&rq->fence))
1953
			break;
1954 1955

		if (signal_pending_state(state, current)) {
1956
			timeout = -ERESTARTSYS;
1957 1958 1959
			break;
		}

1960 1961
		if (!timeout) {
			timeout = -ETIME;
1962 1963 1964
			break;
		}

1965
		timeout = io_schedule_timeout(timeout);
1966
	}
1967
	__set_current_state(TASK_RUNNING);
1968

1969 1970 1971
	if (READ_ONCE(wait.tsk))
		dma_fence_remove_callback(&rq->fence, &wait.cb);
	GEM_BUG_ON(!list_empty(&wait.cb.node));
1972 1973

out:
1974
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1975
	trace_i915_request_wait_end(rq);
1976
	return timeout;
1977
}
1978

C
Chris Wilson 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
static int print_sched_attr(const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
{
	if (attr->priority == I915_PRIORITY_INVALID)
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);

	return x;
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
static char queue_status(const struct i915_request *rq)
{
	if (i915_request_is_active(rq))
		return 'E';

	if (i915_request_is_ready(rq))
		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';

	return 'U';
}

static const char *run_status(const struct i915_request *rq)
{
2004
	if (__i915_request_is_complete(rq))
2005 2006
		return "!";

2007
	if (__i915_request_has_started(rq))
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
		return "*";

	if (!i915_sw_fence_signaled(&rq->semaphore))
		return "&";

	return "";
}

static const char *fence_status(const struct i915_request *rq)
{
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
		return "+";

	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		return "-";

	return "";
}

C
Chris Wilson 已提交
2027 2028
void i915_request_show(struct drm_printer *m,
		       const struct i915_request *rq,
2029 2030
		       const char *prefix,
		       int indent)
C
Chris Wilson 已提交
2031 2032 2033 2034 2035
{
	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
	char buf[80] = "";
	int x = 0;

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	/*
	 * The prefix is used to show the queue status, for which we use
	 * the following flags:
	 *
	 *  U [Unready]
	 *    - initial status upon being submitted by the user
	 *
	 *    - the request is not ready for execution as it is waiting
	 *      for external fences
	 *
	 *  R [Ready]
	 *    - all fences the request was waiting on have been signaled,
	 *      and the request is now ready for execution and will be
	 *      in a backend queue
	 *
	 *    - a ready request may still need to wait on semaphores
	 *      [internal fences]
	 *
	 *  V [Ready/virtual]
	 *    - same as ready, but queued over multiple backends
	 *
	 *  E [Executing]
	 *    - the request has been transferred from the backend queue and
	 *      submitted for execution on HW
	 *
	 *    - a completed request may still be regarded as executing, its
	 *      status may not be updated until it is retired and removed
	 *      from the lists
	 */

C
Chris Wilson 已提交
2066 2067
	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));

2068 2069 2070
	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
		   prefix, indent, "                ",
		   queue_status(rq),
C
Chris Wilson 已提交
2071
		   rq->fence.context, rq->fence.seqno,
2072 2073
		   run_status(rq),
		   fence_status(rq),
C
Chris Wilson 已提交
2074 2075 2076 2077 2078
		   buf,
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
		   name);
}

2079 2080
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
2081
#include "selftests/i915_request.c"
2082
#endif
2083

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

2101 2102
int __init i915_global_request_init(void)
{
2103 2104 2105 2106 2107 2108 2109 2110
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
2111 2112 2113
	if (!global.slab_requests)
		return -ENOMEM;

2114 2115 2116 2117 2118 2119 2120
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

2121
	i915_global_register(&global.base);
2122 2123 2124 2125 2126 2127
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}