i915_request.c 62.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26
#include <linux/dma-fence-chain.h>
27 28
#include <linux/irq_work.h>
#include <linux/prefetch.h>
29 30
#include <linux/sched.h>
#include <linux/sched/clock.h>
31
#include <linux/sched/signal.h>
32

33
#include "gem/i915_gem_context.h"
34
#include "gt/intel_breadcrumbs.h"
35
#include "gt/intel_context.h"
36 37
#include "gt/intel_engine.h"
#include "gt/intel_engine_heartbeat.h"
38
#include "gt/intel_gpu_commands.h"
39
#include "gt/intel_reset.h"
40
#include "gt/intel_ring.h"
41
#include "gt/intel_rps.h"
42

43
#include "i915_active.h"
44
#include "i915_drv.h"
45
#include "i915_globals.h"
46
#include "i915_trace.h"
47
#include "intel_pm.h"
48

49 50 51
struct execute_cb {
	struct irq_work work;
	struct i915_sw_fence *fence;
52 53
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
54 55
};

56
static struct i915_global_request {
57
	struct i915_global base;
58
	struct kmem_cache *slab_requests;
59
	struct kmem_cache *slab_execute_cbs;
60 61
} global;

62
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
63
{
64
	return dev_name(to_request(fence)->engine->i915->drm.dev);
65 66
}

67
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
68
{
69 70
	const struct i915_gem_context *ctx;

71 72
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
73 74 75 76 77 78 79 80 81 82
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

83
	ctx = i915_request_gem_context(to_request(fence));
84 85 86 87
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
88 89
}

90
static bool i915_fence_signaled(struct dma_fence *fence)
91
{
92
	return i915_request_completed(to_request(fence));
93 94
}

95
static bool i915_fence_enable_signaling(struct dma_fence *fence)
96
{
97
	return i915_request_enable_breadcrumb(to_request(fence));
98 99
}

100
static signed long i915_fence_wait(struct dma_fence *fence,
101
				   bool interruptible,
102
				   signed long timeout)
103
{
104 105 106
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
107 108
}

109 110 111 112 113
struct kmem_cache *i915_request_slab_cache(void)
{
	return global.slab_requests;
}

114
static void i915_fence_release(struct dma_fence *fence)
115
{
116
	struct i915_request *rq = to_request(fence);
117

118 119
	/*
	 * The request is put onto a RCU freelist (i.e. the address
120 121 122 123 124
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
125
	i915_sw_fence_fini(&rq->submit);
126
	i915_sw_fence_fini(&rq->semaphore);
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
	/*
	 * Keep one request on each engine for reserved use under mempressure
	 *
	 * We do not hold a reference to the engine here and so have to be
	 * very careful in what rq->engine we poke. The virtual engine is
	 * referenced via the rq->context and we released that ref during
	 * i915_request_retire(), ergo we must not dereference a virtual
	 * engine here. Not that we would want to, as the only consumer of
	 * the reserved engine->request_pool is the power management parking,
	 * which must-not-fail, and that is only run on the physical engines.
	 *
	 * Since the request must have been executed to be have completed,
	 * we know that it will have been processed by the HW and will
	 * not be unsubmitted again, so rq->engine and rq->execution_mask
	 * at this point is stable. rq->execution_mask will be a single
	 * bit if the last and _only_ engine it could execution on was a
	 * physical engine, if it's multiple bits then it started on and
	 * could still be on a virtual engine. Thus if the mask is not a
	 * power-of-two we assume that rq->engine may still be a virtual
	 * engine and so a dangling invalid pointer that we cannot dereference
	 *
	 * For example, consider the flow of a bonded request through a virtual
	 * engine. The request is created with a wide engine mask (all engines
	 * that we might execute on). On processing the bond, the request mask
	 * is reduced to one or more engines. If the request is subsequently
	 * bound to a single engine, it will then be constrained to only
	 * execute on that engine and never returned to the virtual engine
	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
	 * know that if the rq->execution_mask is a single bit, rq->engine
	 * can be a physical engine with the exact corresponding mask.
	 */
	if (is_power_of_2(rq->execution_mask) &&
	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
161 162
		return;

163
	kmem_cache_free(global.slab_requests, rq);
164 165
}

166
const struct dma_fence_ops i915_fence_ops = {
167 168 169 170 171 172 173 174
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

194 195
static __always_inline void
__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
196
{
197
	struct execute_cb *cb, *cn;
198

199
	if (llist_empty(&rq->execute_cb))
200 201
		return;

202 203
	llist_for_each_entry_safe(cb, cn,
				  llist_del_all(&rq->execute_cb),
P
Peter Zijlstra 已提交
204
				  work.node.llist)
205 206
		fn(&cb->work);
}
207

208 209 210 211 212 213 214 215 216 217 218 219 220 221
static void __notify_execute_cb_irq(struct i915_request *rq)
{
	__notify_execute_cb(rq, irq_work_queue);
}

static bool irq_work_imm(struct irq_work *wrk)
{
	wrk->func(wrk);
	return false;
}

static void __notify_execute_cb_imm(struct i915_request *rq)
{
	__notify_execute_cb(rq, irq_work_imm);
222 223
}

224
static void free_capture_list(struct i915_request *request)
225
{
226
	struct i915_capture_list *capture;
227

228
	capture = fetch_and_zero(&request->capture_list);
229
	while (capture) {
230
		struct i915_capture_list *next = capture->next;
231 232 233 234 235 236

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
/**
 * i915_request_active_engine
 * @rq: request to inspect
 * @active: pointer in which to return the active engine
 *
 * Fills the currently active engine to the @active pointer if the request
 * is active and still not completed.
 *
 * Returns true if request was active or false otherwise.
 */
bool
i915_request_active_engine(struct i915_request *rq,
			   struct intel_engine_cs **active)
{
	struct intel_engine_cs *engine, *locked;
	bool ret = false;

	/*
	 * Serialise with __i915_request_submit() so that it sees
	 * is-banned?, or we know the request is already inflight.
	 *
	 * Note that rq->engine is unstable, and so we double
	 * check that we have acquired the lock on the final engine.
	 */
	locked = READ_ONCE(rq->engine);
275
	spin_lock_irq(&locked->sched_engine->lock);
276
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
277
		spin_unlock(&locked->sched_engine->lock);
278
		locked = engine;
279
		spin_lock(&locked->sched_engine->lock);
280 281 282 283 284 285 286 287
	}

	if (i915_request_is_active(rq)) {
		if (!__i915_request_is_complete(rq))
			*active = locked;
		ret = true;
	}

288
	spin_unlock_irq(&locked->sched_engine->lock);
289 290 291 292 293

	return ret;
}


294 295 296 297 298 299 300 301 302 303 304
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
305
	spin_lock_irq(&locked->sched_engine->lock);
306
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
307 308
		spin_unlock(&locked->sched_engine->lock);
		spin_lock(&engine->sched_engine->lock);
309 310
		locked = engine;
	}
311
	list_del_init(&rq->sched.link);
312

313 314
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
315 316 317 318

	/* Prevent further __await_execution() registering a cb, then flush */
	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);

319
	spin_unlock_irq(&locked->sched_engine->lock);
320 321

	__notify_execute_cb_imm(rq);
322 323
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
static void __rq_init_watchdog(struct i915_request *rq)
{
	rq->watchdog.timer.function = NULL;
}

static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
{
	struct i915_request *rq =
		container_of(hrtimer, struct i915_request, watchdog.timer);
	struct intel_gt *gt = rq->engine->gt;

	if (!i915_request_completed(rq)) {
		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
			schedule_work(&gt->watchdog.work);
	} else {
		i915_request_put(rq);
	}

	return HRTIMER_NORESTART;
}

static void __rq_arm_watchdog(struct i915_request *rq)
{
	struct i915_request_watchdog *wdg = &rq->watchdog;
	struct intel_context *ce = rq->context;

	if (!ce->watchdog.timeout_us)
		return;

353 354
	i915_request_get(rq);

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	wdg->timer.function = __rq_watchdog_expired;
	hrtimer_start_range_ns(&wdg->timer,
			       ns_to_ktime(ce->watchdog.timeout_us *
					   NSEC_PER_USEC),
			       NSEC_PER_MSEC,
			       HRTIMER_MODE_REL);
}

static void __rq_cancel_watchdog(struct i915_request *rq)
{
	struct i915_request_watchdog *wdg = &rq->watchdog;

	if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
		i915_request_put(rq);
}

372
bool i915_request_retire(struct i915_request *rq)
373
{
374
	if (!__i915_request_is_complete(rq))
375
		return false;
376

377
	RQ_TRACE(rq, "\n");
378

379 380
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
381
	i915_request_mark_complete(rq);
C
Chris Wilson 已提交
382

383 384
	__rq_cancel_watchdog(rq);

385 386 387 388 389 390 391 392 393
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
394 395
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
396 397 398
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
399
	rq->ring->head = rq->postfix;
400

401 402
	if (!i915_request_signaled(rq)) {
		spin_lock_irq(&rq->lock);
403
		dma_fence_signal_locked(&rq->fence);
404 405
		spin_unlock_irq(&rq->lock);
	}
406

407
	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
408
		atomic_dec(&rq->engine->gt->rps.num_waiters);
409 410 411 412 413 414 415 416 417 418 419

	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 *
	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
	 * after removing the breadcrumb and signaling it, so that we do not
	 * inadvertently attach the breadcrumb to a completed request.
	 */
420 421
	if (!list_empty(&rq->sched.link))
		remove_from_engine(rq);
422
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
423

424
	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
425

426 427
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
428

429 430 431 432 433
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
434 435
}

436
void i915_request_retire_upto(struct i915_request *rq)
437
{
438
	struct intel_timeline * const tl = i915_request_timeline(rq);
439
	struct i915_request *tmp;
440

441
	RQ_TRACE(rq, "\n");
442
	GEM_BUG_ON(!__i915_request_is_complete(rq));
443

444
	do {
445
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
446
	} while (i915_request_retire(tmp) && tmp != rq);
447 448
}

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
static struct i915_request * const *
__engine_active(struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->execlists.active);
}

static bool __request_in_flight(const struct i915_request *signal)
{
	struct i915_request * const *port, *rq;
	bool inflight = false;

	if (!i915_request_is_ready(signal))
		return false;

	/*
	 * Even if we have unwound the request, it may still be on
	 * the GPU (preempt-to-busy). If that request is inside an
	 * unpreemptible critical section, it will not be removed. Some
	 * GPU functions may even be stuck waiting for the paired request
	 * (__await_execution) to be submitted and cannot be preempted
	 * until the bond is executing.
	 *
	 * As we know that there are always preemption points between
	 * requests, we know that only the currently executing request
	 * may be still active even though we have cleared the flag.
474
	 * However, we can't rely on our tracking of ELSP[0] to know
475 476 477 478
	 * which request is currently active and so maybe stuck, as
	 * the tracking maybe an event behind. Instead assume that
	 * if the context is still inflight, then it is still active
	 * even if the active flag has been cleared.
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	 *
	 * To further complicate matters, if there a pending promotion, the HW
	 * may either perform a context switch to the second inflight execlists,
	 * or it may switch to the pending set of execlists. In the case of the
	 * latter, it may send the ACK and we process the event copying the
	 * pending[] over top of inflight[], _overwriting_ our *active. Since
	 * this implies the HW is arbitrating and not struck in *active, we do
	 * not worry about complete accuracy, but we do require no read/write
	 * tearing of the pointer [the read of the pointer must be valid, even
	 * as the array is being overwritten, for which we require the writes
	 * to avoid tearing.]
	 *
	 * Note that the read of *execlists->active may race with the promotion
	 * of execlists->pending[] to execlists->inflight[], overwritting
	 * the value at *execlists->active. This is fine. The promotion implies
	 * that we received an ACK from the HW, and so the context is not
	 * stuck -- if we do not see ourselves in *active, the inflight status
	 * is valid. If instead we see ourselves being copied into *active,
	 * we are inflight and may signal the callback.
498 499 500 501 502
	 */
	if (!intel_context_inflight(signal->context))
		return false;

	rcu_read_lock();
503 504 505
	for (port = __engine_active(signal->engine);
	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
	     port++) {
506 507 508 509 510 511 512 513 514 515 516
		if (rq->context == signal->context) {
			inflight = i915_seqno_passed(rq->fence.seqno,
						     signal->fence.seqno);
			break;
		}
	}
	rcu_read_unlock();

	return inflight;
}

517
static int
518 519 520 521 522
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
523 524 525
{
	struct execute_cb *cb;

526 527 528
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
529
		return 0;
530
	}
531 532 533 534 535 536 537 538 539

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

540 541 542 543 544 545
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

546 547 548 549 550 551 552 553 554 555 556 557 558
	/*
	 * Register the callback first, then see if the signaler is already
	 * active. This ensures that if we race with the
	 * __notify_execute_cb from i915_request_submit() and we are not
	 * included in that list, we get a second bite of the cherry and
	 * execute it ourselves. After this point, a future
	 * i915_request_submit() will notify us.
	 *
	 * In i915_request_retire() we set the ACTIVE bit on a completed
	 * request (then flush the execute_cb). So by registering the
	 * callback first, then checking the ACTIVE bit, we serialise with
	 * the completed/retired request.
	 */
P
Peter Zijlstra 已提交
559
	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
560 561 562
		if (i915_request_is_active(signal) ||
		    __request_in_flight(signal))
			__notify_execute_cb_imm(signal);
563 564 565 566 567
	}

	return 0;
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
static bool fatal_error(int error)
{
	switch (error) {
	case 0: /* not an error! */
	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
		return false;
	default:
		return true;
	}
}

void __i915_request_skip(struct i915_request *rq)
{
	GEM_BUG_ON(!fatal_error(rq->fence.error));

	if (rq->infix == rq->postfix)
		return;

587 588
	RQ_TRACE(rq, "error: %d\n", rq->fence.error);

589 590 591 592 593 594 595 596 597
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	__i915_request_fill(rq, 0);
	rq->infix = rq->postfix;
}

598
bool i915_request_set_error_once(struct i915_request *rq, int error)
599 600 601 602 603 604
{
	int old;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));

	if (i915_request_signaled(rq))
605
		return false;
606 607 608 609

	old = READ_ONCE(rq->fence.error);
	do {
		if (fatal_error(old))
610
			return false;
611
	} while (!try_cmpxchg(&rq->fence.error, &old, error));
612 613

	return true;
614 615
}

616
struct i915_request *i915_request_mark_eio(struct i915_request *rq)
617 618
{
	if (__i915_request_is_complete(rq))
619
		return NULL;
620 621 622

	GEM_BUG_ON(i915_request_signaled(rq));

623 624 625
	/* As soon as the request is completed, it may be retired */
	rq = i915_request_get(rq);

626 627
	i915_request_set_error_once(rq, -EIO);
	i915_request_mark_complete(rq);
628 629

	return rq;
630 631
}

632
bool __i915_request_submit(struct i915_request *request)
633
{
634
	struct intel_engine_cs *engine = request->engine;
635
	bool result = false;
636

637
	RQ_TRACE(request, "\n");
638

639
	GEM_BUG_ON(!irqs_disabled());
640
	lockdep_assert_held(&engine->sched_engine->lock);
641

642 643 644 645 646 647 648 649 650 651
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
652
	 * priority queue, under the sched_engine->lock. This ensures that the
653 654 655 656 657
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
658 659 660 661
	if (__i915_request_is_complete(request)) {
		list_del_init(&request->sched.link);
		goto active;
	}
662

663 664
	if (unlikely(intel_context_is_banned(request->context)))
		i915_request_set_error_once(request, -EIO);
665

666 667
	if (unlikely(fatal_error(request->fence.error)))
		__i915_request_skip(request);
668

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
687
		engine->saturated |= request->sched.semaphores;
688

689 690
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
691

692 693 694
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
695

696
	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
697
	list_move_tail(&request->sched.link, &engine->sched_engine->requests);
698 699 700
active:
	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
701

702 703 704 705 706 707 708 709 710 711
	/*
	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
712 713 714
	__notify_execute_cb_irq(request);

	/* We may be recursing from the signal callback of another i915 fence */
715 716
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		i915_request_enable_breadcrumb(request);
717

718
	return result;
719 720
}

721
void i915_request_submit(struct i915_request *request)
722 723 724
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
725

726
	/* Will be called from irq-context when using foreign fences. */
727
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
728

729
	__i915_request_submit(request);
730

731
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
732 733
}

734
void __i915_request_unsubmit(struct i915_request *request)
735
{
736
	struct intel_engine_cs *engine = request->engine;
737

738 739 740 741
	/*
	 * Only unwind in reverse order, required so that the per-context list
	 * is kept in seqno/ring order.
	 */
742
	RQ_TRACE(request, "\n");
743

744
	GEM_BUG_ON(!irqs_disabled());
745
	lockdep_assert_held(&engine->sched_engine->lock);
746

747
	/*
748 749 750 751 752
	 * Before we remove this breadcrumb from the signal list, we have
	 * to ensure that a concurrent dma_fence_enable_signaling() does not
	 * attach itself. We first mark the request as no longer active and
	 * make sure that is visible to other cores, and then remove the
	 * breadcrumb if attached.
753
	 */
754 755
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
756
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
757
		i915_request_cancel_breadcrumb(request);
758

759
	/* We've already spun, don't charge on resubmitting. */
760
	if (request->sched.semaphores && __i915_request_has_started(request))
761 762
		request->sched.semaphores = 0;

763 764
	/*
	 * We don't need to wake_up any waiters on request->execute, they
765
	 * will get woken by any other event or us re-adding this request
766
	 * to the engine timeline (__i915_request_submit()). The waiters
767 768 769 770 771
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

772
void i915_request_unsubmit(struct i915_request *request)
773 774 775 776 777
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
778
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
779

780
	__i915_request_unsubmit(request);
781

782
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
783 784
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
static void __cancel_request(struct i915_request *rq)
{
	struct intel_engine_cs *engine = NULL;

	i915_request_active_engine(rq, &engine);

	if (engine && intel_engine_pulse(engine))
		intel_gt_handle_error(engine->gt, engine->mask, 0,
				      "request cancellation by %s",
				      current->comm);
}

void i915_request_cancel(struct i915_request *rq, int error)
{
	if (!i915_request_set_error_once(rq, error))
		return;

	set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);

	__cancel_request(rq);
}

807
static int __i915_sw_fence_call
808
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
809
{
810
	struct i915_request *request =
811 812 813 814
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
815
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
816 817

		if (unlikely(fence->error))
818
			i915_request_set_error_once(request, fence->error);
819 820
		else
			__rq_arm_watchdog(request);
C
Chris Wilson 已提交
821

822
		/*
823 824 825 826 827 828
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
829 830
		 */
		rcu_read_lock();
831
		request->engine->submit_request(request);
832
		rcu_read_unlock();
833 834 835
		break;

	case FENCE_FREE:
836
		i915_request_put(request);
837 838 839
		break;
	}

840 841 842
	return NOTIFY_DONE;
}

843 844 845
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
846
	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
847 848 849 850 851 852

	switch (state) {
	case FENCE_COMPLETE:
		break;

	case FENCE_FREE:
853
		i915_request_put(rq);
854 855 856 857 858 859
		break;
	}

	return NOTIFY_DONE;
}

860
static void retire_requests(struct intel_timeline *tl)
861 862 863
{
	struct i915_request *rq, *rn;

864
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
865
		if (!i915_request_retire(rq))
866 867 868 869
			break;
}

static noinline struct i915_request *
870 871 872
request_alloc_slow(struct intel_timeline *tl,
		   struct i915_request **rsvd,
		   gfp_t gfp)
873 874 875
{
	struct i915_request *rq;

876 877 878 879 880
	/* If we cannot wait, dip into our reserves */
	if (!gfpflags_allow_blocking(gfp)) {
		rq = xchg(rsvd, NULL);
		if (!rq) /* Use the normal failure path for one final WARN */
			goto out;
881

882 883 884 885
		return rq;
	}

	if (list_empty(&tl->requests))
886 887
		goto out;

888
	/* Move our oldest request to the slab-cache (if not in use!) */
889
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
890 891 892 893 894 895 896
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

897
	/* Ratelimit ourselves to prevent oom from malicious clients */
898
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
899 900 901
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
902
	retire_requests(tl);
903 904

out:
905
	return kmem_cache_alloc(global.slab_requests, gfp);
906 907
}

908 909 910 911 912 913 914 915 916
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

917 918
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

919 920
	rq->capture_list = NULL;

921
	init_llist_head(&rq->execute_cb);
922 923
}

924
struct i915_request *
925
__i915_request_create(struct intel_context *ce, gfp_t gfp)
926
{
927
	struct intel_timeline *tl = ce->timeline;
928 929
	struct i915_request *rq;
	u32 seqno;
930 931
	int ret;

B
Bernard Zhao 已提交
932
	might_alloc(gfp);
933

934 935
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
936

937 938
	/*
	 * Beware: Dragons be flying overhead.
939 940 941 942
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
943
	 * of being read by __i915_active_request_get_rcu(). As such,
944 945
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
946
	 * read the request->global_seqno and increment the reference count.
947 948 949 950
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
951 952
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
953 954 955 956 957 958 959 960 961 962 963 964 965
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
966
	rq = kmem_cache_alloc(global.slab_requests,
967
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
968
	if (unlikely(!rq)) {
969
		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
970
		if (!rq) {
971 972 973
			ret = -ENOMEM;
			goto err_unreserve;
		}
974
	}
975

976
	rq->context = ce;
977
	rq->engine = ce->engine;
978
	rq->ring = ce->ring;
979
	rq->execution_mask = ce->engine->mask;
980

981 982 983 984 985 986 987 988 989 990 991 992
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

993
	RCU_INIT_POINTER(rq->timeline, tl);
994
	rq->hwsp_seqno = tl->hwsp_seqno;
995
	GEM_BUG_ON(__i915_request_is_complete(rq));
996

997
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
998

999
	/* We bump the ref for the fence chain */
1000 1001
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
1002

1003
	i915_sched_node_reinit(&rq->sched);
1004

1005
	/* No zalloc, everything must be cleared after use */
1006
	rq->batch = NULL;
1007
	__rq_init_watchdog(rq);
1008
	GEM_BUG_ON(rq->capture_list);
1009
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
1010

1011 1012 1013
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
1014
	 * i915_request_add() call can't fail. Note that the reserve may need
1015 1016
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
1017 1018 1019 1020 1021
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
1022
	 */
1023 1024
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
1025

1026 1027
	/*
	 * Record the position of the start of the request so that
1028 1029 1030 1031
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
1032
	rq->head = rq->ring->emit;
1033

1034
	ret = rq->engine->request_alloc(rq);
1035 1036
	if (ret)
		goto err_unwind;
1037

1038 1039
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

1040
	intel_context_mark_active(ce);
1041 1042
	list_add_tail_rcu(&rq->link, &tl->requests);

1043
	return rq;
1044

1045
err_unwind:
1046
	ce->ring->emit = rq->head;
1047

1048
	/* Make sure we didn't add ourselves to external state before freeing */
1049 1050
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1051

1052
err_free:
1053
	kmem_cache_free(global.slab_requests, rq);
1054
err_unreserve:
1055
	intel_context_unpin(ce);
1056
	return ERR_PTR(ret);
1057 1058
}

1059 1060 1061 1062
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
1063
	struct intel_timeline *tl;
1064

1065 1066 1067
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
1068 1069

	/* Move our oldest request to the slab-cache (if not in use!) */
1070 1071
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
1072 1073 1074 1075 1076 1077 1078 1079 1080
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
1081
	rq->cookie = lockdep_pin_lock(&tl->mutex);
1082 1083 1084 1085

	return rq;

err_unlock:
1086
	intel_context_timeline_unlock(tl);
1087 1088 1089
	return rq;
}

1090 1091 1092
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
1093 1094
	struct dma_fence *fence;
	int err;
1095

1096 1097
	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
		return 0;
1098

1099 1100 1101
	if (i915_request_started(signal))
		return 0;

1102 1103 1104 1105 1106 1107 1108 1109
	/*
	 * The caller holds a reference on @signal, but we do not serialise
	 * against it being retired and removed from the lists.
	 *
	 * We do not hold a reference to the request before @signal, and
	 * so must be very careful to ensure that it is not _recycled_ as
	 * we follow the link backwards.
	 */
1110
	fence = NULL;
1111
	rcu_read_lock();
1112 1113 1114 1115 1116
	do {
		struct list_head *pos = READ_ONCE(signal->link.prev);
		struct i915_request *prev;

		/* Confirm signal has not been retired, the link is valid */
1117
		if (unlikely(__i915_request_has_started(signal)))
1118 1119 1120 1121 1122
			break;

		/* Is signal the earliest request on its timeline? */
		if (pos == &rcu_dereference(signal->timeline)->requests)
			break;
1123

1124 1125 1126 1127 1128 1129
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
1130 1131 1132 1133 1134 1135 1136 1137
		prev = list_entry(pos, typeof(*prev), link);
		if (!i915_request_get_rcu(prev))
			break;

		/* After the strong barrier, confirm prev is still attached */
		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
			i915_request_put(prev);
			break;
1138
		}
1139 1140 1141

		fence = &prev->fence;
	} while (0);
1142 1143 1144
	rcu_read_unlock();
	if (!fence)
		return 0;
1145 1146

	err = 0;
1147
	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1148 1149 1150 1151 1152 1153
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
1154 1155
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
1171
	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1172 1173
}

1174
static int
1175 1176 1177
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
1178
{
1179
	const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1180
	u32 hwsp_offset;
1181
	int len, err;
1182 1183
	u32 *cs;

1184
	GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1185
	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1186

1187
	/* We need to pin the signaler's HWSP until we are finished reading. */
1188 1189 1190
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
1191

1192 1193 1194 1195 1196
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
1208 1209 1210 1211 1212
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
1213
	*cs++ = seqno;
1214 1215
	*cs++ = hwsp_offset;
	*cs++ = 0;
1216 1217 1218 1219
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
1220 1221

	intel_ring_advance(to, cs);
1222 1223 1224 1225 1226 1227 1228 1229
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
1230
	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1231
	struct i915_sw_fence *wait = &to->submit;
1232

1233 1234 1235
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

1236 1237 1238
	if (i915_request_has_initial_breadcrumb(to))
		goto await_fence;

1239 1240 1241 1242 1243 1244 1245 1246 1247
	/*
	 * If this or its dependents are waiting on an external fence
	 * that may fail catastrophically, then we want to avoid using
	 * sempahores as they bypass the fence signaling metadata, and we
	 * lose the fence->error propagation.
	 */
	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
		goto await_fence;

1248
	/* Just emit the first semaphore we see as request space is limited. */
1249
	if (already_busywaiting(to) & mask)
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

1262
	to->sched.semaphores |= mask;
1263
	wait = &to->semaphore;
1264 1265

await_fence:
1266
	return i915_sw_fence_await_dma_fence(wait,
1267 1268
					     &from->fence, 0,
					     I915_FENCE_GFP);
1269 1270
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

1285
static int
1286 1287 1288 1289
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
1290
{
1291
	int err;
1292

1293
	GEM_BUG_ON(intel_context_is_barrier(from->context));
1294

1295 1296 1297 1298 1299 1300 1301 1302
	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
1303
		return 0;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

	/*
	 * Wait until the start of this request.
	 *
	 * The execution cb fires when we submit the request to HW. But in
	 * many cases this may be long before the request itself is ready to
	 * run (consider that we submit 2 requests for the same context, where
	 * the request of interest is behind an indefinite spinner). So we hook
	 * up to both to reduce our queues and keep the execution lag minimised
	 * in the worst case, though we hope that the await_start is elided.
	 */
	err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/*
	 * Ensure both start together [after all semaphores in signal]
	 *
	 * Now that we are queued to the HW at roughly the same time (thanks
	 * to the execute cb) and are ready to run at roughly the same time
	 * (thanks to the await start), our signaler may still be indefinitely
	 * delayed by waiting on a semaphore from a remote engine. If our
	 * signaler depends on a semaphore, so indirectly do we, and we do not
	 * want to start our payload until our signaler also starts theirs.
	 * So we wait.
	 *
	 * However, there is also a second condition for which we need to wait
	 * for the precise start of the signaler. Consider that the signaler
	 * was submitted in a chain of requests following another context
	 * (with just an ordinary intra-engine fence dependency between the
	 * two). In this case the signaler is queued to HW, but not for
	 * immediate execution, and so we must wait until it reaches the
	 * active slot.
	 */
	if (intel_engine_has_semaphores(to->engine) &&
	    !i915_request_has_initial_breadcrumb(to)) {
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
		if (err < 0)
			return err;
1343
	}
1344

1345
	/* Couple the dependency tree for PI on this exposed to->fence */
1346
	if (to->engine->sched_engine->schedule) {
1347
		err = i915_sched_node_add_dependency(&to->sched,
1348
						     &from->sched,
1349 1350 1351
						     I915_DEPENDENCY_WEAK);
		if (err < 0)
			return err;
1352 1353
	}

1354 1355
	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
1356 1357
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
static void mark_external(struct i915_request *rq)
{
	/*
	 * The downside of using semaphores is that we lose metadata passing
	 * along the signaling chain. This is particularly nasty when we
	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
	 * fatal errors we want to scrub the request before it is executed,
	 * which means that we cannot preload the request onto HW and have
	 * it wait upon a semaphore.
	 */
	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
}

1371
static int
1372
__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1373
{
1374
	mark_external(rq);
1375
	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1376
					     i915_fence_context_timeout(rq->engine->i915,
1377
									fence->context),
1378 1379 1380
					     I915_FENCE_GFP);
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
static int
i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
	struct dma_fence *iter;
	int err = 0;

	if (!to_dma_fence_chain(fence))
		return __i915_request_await_external(rq, fence);

	dma_fence_chain_for_each(iter, fence) {
		struct dma_fence_chain *chain = to_dma_fence_chain(iter);

		if (!dma_fence_is_i915(chain->fence)) {
			err = __i915_request_await_external(rq, iter);
			break;
		}

		err = i915_request_await_dma_fence(rq, chain->fence);
		if (err < 0)
			break;
	}

	dma_fence_put(iter);
	return err;
}

1407
int
1408 1409 1410 1411
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
1412
{
1413 1414
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
1415 1416
	int ret;

1417 1418 1419
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

1420 1421
		/* XXX Error for signal-on-any fence arrays */

1422 1423 1424 1425
		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
1426

1427 1428
	do {
		fence = *child++;
1429 1430
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1431
			continue;
1432
		}
1433

1434
		if (fence->context == rq->fence.context)
1435 1436
			continue;

1437 1438 1439 1440
		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */
1441

1442
		if (dma_fence_is_i915(fence))
1443 1444 1445
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook);
1446
		else
1447
			ret = i915_request_await_external(rq, fence);
1448 1449
		if (ret < 0)
			return ret;
1450
	} while (--nchild);
1451 1452 1453 1454

	return 0;
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
static int
await_request_submit(struct i915_request *to, struct i915_request *from)
{
	/*
	 * If we are waiting on a virtual engine, then it may be
	 * constrained to execute on a single engine *prior* to submission.
	 * When it is submitted, it will be first submitted to the virtual
	 * engine and then passed to the physical engine. We cannot allow
	 * the waiter to be submitted immediately to the physical engine
	 * as it may then bypass the virtual request.
	 */
	if (to->engine == READ_ONCE(from->engine))
		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
							&from->submit,
							I915_FENCE_GFP);
	else
		return __i915_request_await_execution(to, from, NULL);
}

1474
static int
1475
i915_request_await_request(struct i915_request *to, struct i915_request *from)
1476
{
1477
	int ret;
1478

1479 1480
	GEM_BUG_ON(to == from);
	GEM_BUG_ON(to->timeline == from->timeline);
1481

1482 1483
	if (i915_request_completed(from)) {
		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1484
		return 0;
1485 1486
	}

1487
	if (to->engine->sched_engine->schedule) {
1488
		ret = i915_sched_node_add_dependency(&to->sched,
1489
						     &from->sched,
1490 1491 1492
						     I915_DEPENDENCY_EXTERNAL);
		if (ret < 0)
			return ret;
1493 1494
	}

1495 1496
	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
		ret = await_request_submit(to, from);
1497 1498 1499 1500 1501 1502
	else
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
	if (ret < 0)
		return ret;

	return 0;
1503 1504
}

1505
int
1506
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1507 1508 1509 1510 1511
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

1512 1513 1514 1515 1516 1517 1518 1519
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1530 1531
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1532
			continue;
1533
		}
1534

1535 1536 1537 1538 1539
		/*
		 * Requests on the same timeline are explicitly ordered, along
		 * with their dependencies, by i915_request_add() which ensures
		 * that requests are submitted in-order through each ring.
		 */
1540 1541 1542
		if (fence->context == rq->fence.context)
			continue;

1543 1544 1545 1546 1547
		/* Squash repeated waits to the same timelines */
		if (fence->context &&
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
			continue;
1548 1549

		if (dma_fence_is_i915(fence))
1550
			ret = i915_request_await_request(rq, to_request(fence));
1551
		else
1552
			ret = i915_request_await_external(rq, fence);
1553 1554
		if (ret < 0)
			return ret;
1555 1556 1557 1558 1559

		/* Record the latest fence used against each timeline */
		if (fence->context)
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1560 1561 1562 1563 1564
	} while (--nchild);

	return 0;
}

1565
/**
1566
 * i915_request_await_object - set this request to (async) wait upon a bo
1567 1568
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1569
 * @write: whether the wait is on behalf of a writer
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1586 1587 1588
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1589
{
1590 1591
	struct dma_fence *excl;
	int ret = 0;
1592 1593

	if (write) {
1594 1595 1596
		struct dma_fence **shared;
		unsigned int count, i;

1597 1598
		ret = dma_resv_get_fences(obj->base.resv, &excl, &count,
					  &shared);
1599 1600 1601 1602
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1603
			ret = i915_request_await_dma_fence(to, shared[i]);
1604 1605 1606 1607 1608 1609 1610 1611 1612
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1613
	} else {
1614
		excl = dma_resv_get_excl_unlocked(obj->base.resv);
1615 1616
	}

1617 1618
	if (excl) {
		if (ret == 0)
1619
			ret = i915_request_await_dma_fence(to, excl);
1620

1621
		dma_fence_put(excl);
1622 1623
	}

1624
	return ret;
1625 1626
}

1627 1628 1629
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1630
	struct intel_timeline *timeline = i915_request_timeline(rq);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1653 1654
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1655
	if (prev && !__i915_request_is_complete(prev)) {
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
		/*
		 * The requests are supposed to be kept in order. However,
		 * we need to be wary in case the timeline->last_request
		 * is used as a barrier for external modification to this
		 * context.
		 */
		GEM_BUG_ON(prev->context == rq->context &&
			   i915_seqno_passed(prev->fence.seqno,
					     rq->fence.seqno));

1666
		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1667 1668 1669 1670 1671 1672 1673
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
1674
		if (rq->engine->sched_engine->schedule)
1675 1676 1677 1678 1679 1680
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

1681 1682 1683 1684 1685
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1686 1687 1688 1689 1690
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1691 1692 1693 1694 1695
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1696
struct i915_request *__i915_request_commit(struct i915_request *rq)
1697
{
1698 1699
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1700
	u32 *cs;
1701

1702
	RQ_TRACE(rq, "\n");
1703

1704 1705 1706 1707 1708
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1709 1710
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1711
	rq->emitted_jiffies = jiffies;
1712

1713 1714
	/*
	 * Record the position of the start of the breadcrumb so that
1715 1716
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1717
	 * position of the ring's HEAD.
1718
	 */
1719
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1720
	GEM_BUG_ON(IS_ERR(cs));
1721
	rq->postfix = intel_ring_offset(rq, cs);
1722

1723
	return __i915_request_add_to_timeline(rq);
1724 1725
}

1726 1727 1728 1729 1730 1731
void __i915_request_queue_bh(struct i915_request *rq)
{
	i915_sw_fence_commit(&rq->semaphore);
	i915_sw_fence_commit(&rq->submit);
}

1732 1733 1734
void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1735 1736
	/*
	 * Let the backend know a new request has arrived that may need
1737 1738 1739 1740 1741 1742 1743 1744 1745
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1746 1747
	if (attr && rq->engine->sched_engine->schedule)
		rq->engine->sched_engine->schedule(rq, attr);
1748 1749 1750 1751

	local_bh_disable();
	__i915_request_queue_bh(rq);
	local_bh_enable(); /* kick tasklets */
1752 1753 1754 1755
}

void i915_request_add(struct i915_request *rq)
{
1756
	struct intel_timeline * const tl = i915_request_timeline(rq);
1757
	struct i915_sched_attr attr = {};
1758
	struct i915_gem_context *ctx;
1759

1760 1761
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1762 1763

	trace_i915_request_add(rq);
1764
	__i915_request_commit(rq);
1765

1766 1767 1768 1769 1770 1771
	/* XXX placeholder for selftests */
	rcu_read_lock();
	ctx = rcu_dereference(rq->context->gem_context);
	if (ctx)
		attr = ctx->sched;
	rcu_read_unlock();
1772

1773 1774
	__i915_request_queue(rq, &attr);

1775
	mutex_unlock(&tl->mutex);
1776 1777
}

1778
static unsigned long local_clock_ns(unsigned int *cpu)
1779 1780 1781
{
	unsigned long t;

1782 1783
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
1795
	t = local_clock();
1796 1797 1798 1799 1800 1801 1802 1803 1804
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

1805
	if (time_after(local_clock_ns(&this_cpu), timeout))
1806 1807 1808 1809 1810
		return true;

	return this_cpu != cpu;
}

1811
static bool __i915_spin_request(struct i915_request * const rq, int state)
1812
{
1813
	unsigned long timeout_ns;
1814
	unsigned int cpu;
1815 1816 1817 1818 1819 1820 1821

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1822 1823 1824 1825
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1826
	 */
1827
	if (!i915_request_is_running(rq))
1828 1829
		return false;

1830 1831
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1832 1833 1834 1835 1836 1837 1838 1839 1840
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1841 1842
	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
	timeout_ns += local_clock_ns(&cpu);
1843
	do {
1844
		if (dma_fence_is_signaled(&rq->fence))
1845
			return true;
1846

1847 1848 1849
		if (signal_pending_state(state, current))
			break;

1850
		if (busywait_stop(timeout_ns, cpu))
1851 1852
			break;

1853
		cpu_relax();
1854 1855 1856 1857 1858
	} while (!need_resched());

	return false;
}

1859 1860 1861 1862 1863 1864 1865 1866 1867
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

1868
	wake_up_process(fetch_and_zero(&wait->tsk));
1869 1870
}

1871
/**
1872
 * i915_request_wait - wait until execution of request has finished
1873
 * @rq: the request to wait upon
1874
 * @flags: how to wait
1875 1876
 * @timeout: how long to wait in jiffies
 *
1877
 * i915_request_wait() waits for the request to be completed, for a
1878 1879
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1880
 *
1881 1882 1883 1884
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1885
 */
1886
long i915_request_wait(struct i915_request *rq,
1887 1888
		       unsigned int flags,
		       long timeout)
1889
{
1890 1891
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1892
	struct request_wait wait;
1893 1894

	might_sleep();
1895
	GEM_BUG_ON(timeout < 0);
1896

1897
	if (dma_fence_is_signaled(&rq->fence))
1898
		return timeout;
1899

1900 1901
	if (!timeout)
		return -ETIME;
1902

1903
	trace_i915_request_wait_begin(rq, flags);
1904 1905 1906 1907 1908 1909 1910

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1911
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1912

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1936
	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1937
	    __i915_spin_request(rq, state))
1938
		goto out;
1939

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
1952 1953
	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
		intel_rps_boost(rq);
1954

1955 1956 1957
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1958

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	/*
	 * Flush the submission tasklet, but only if it may help this request.
	 *
	 * We sometimes experience some latency between the HW interrupts and
	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
	 * be due to lazy CS events), so lets run the tasklet manually if there
	 * is a chance it may submit this request. If the request is not ready
	 * to run, as it is waiting for other fences to be signaled, flushing
	 * the tasklet is busy work without any advantage for this client.
	 *
	 * If the HW is being lazy, this is the last chance before we go to
	 * sleep to catch any pending events. We will check periodically in
	 * the heartbeat to flush the submission tasklets as a last resort
	 * for unhappy HW.
	 */
	if (i915_request_is_ready(rq))
1975
		__intel_engine_flush_submission(rq->engine, false);
1976

1977 1978
	for (;;) {
		set_current_state(state);
1979

1980
		if (dma_fence_is_signaled(&rq->fence))
1981
			break;
1982 1983

		if (signal_pending_state(state, current)) {
1984
			timeout = -ERESTARTSYS;
1985 1986 1987
			break;
		}

1988 1989
		if (!timeout) {
			timeout = -ETIME;
1990 1991 1992
			break;
		}

1993
		timeout = io_schedule_timeout(timeout);
1994
	}
1995
	__set_current_state(TASK_RUNNING);
1996

1997 1998 1999
	if (READ_ONCE(wait.tsk))
		dma_fence_remove_callback(&rq->fence, &wait.cb);
	GEM_BUG_ON(!list_empty(&wait.cb.node));
2000 2001

out:
2002
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2003
	trace_i915_request_wait_end(rq);
2004
	return timeout;
2005
}
2006

C
Chris Wilson 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
static int print_sched_attr(const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
{
	if (attr->priority == I915_PRIORITY_INVALID)
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);

	return x;
}

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
static char queue_status(const struct i915_request *rq)
{
	if (i915_request_is_active(rq))
		return 'E';

	if (i915_request_is_ready(rq))
		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';

	return 'U';
}

static const char *run_status(const struct i915_request *rq)
{
2032
	if (__i915_request_is_complete(rq))
2033 2034
		return "!";

2035
	if (__i915_request_has_started(rq))
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
		return "*";

	if (!i915_sw_fence_signaled(&rq->semaphore))
		return "&";

	return "";
}

static const char *fence_status(const struct i915_request *rq)
{
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
		return "+";

	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		return "-";

	return "";
}

C
Chris Wilson 已提交
2055 2056
void i915_request_show(struct drm_printer *m,
		       const struct i915_request *rq,
2057 2058
		       const char *prefix,
		       int indent)
C
Chris Wilson 已提交
2059 2060 2061 2062 2063
{
	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
	char buf[80] = "";
	int x = 0;

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	/*
	 * The prefix is used to show the queue status, for which we use
	 * the following flags:
	 *
	 *  U [Unready]
	 *    - initial status upon being submitted by the user
	 *
	 *    - the request is not ready for execution as it is waiting
	 *      for external fences
	 *
	 *  R [Ready]
	 *    - all fences the request was waiting on have been signaled,
	 *      and the request is now ready for execution and will be
	 *      in a backend queue
	 *
	 *    - a ready request may still need to wait on semaphores
	 *      [internal fences]
	 *
	 *  V [Ready/virtual]
	 *    - same as ready, but queued over multiple backends
	 *
	 *  E [Executing]
	 *    - the request has been transferred from the backend queue and
	 *      submitted for execution on HW
	 *
	 *    - a completed request may still be regarded as executing, its
	 *      status may not be updated until it is retired and removed
	 *      from the lists
	 */

C
Chris Wilson 已提交
2094 2095
	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));

2096 2097 2098
	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
		   prefix, indent, "                ",
		   queue_status(rq),
C
Chris Wilson 已提交
2099
		   rq->fence.context, rq->fence.seqno,
2100 2101
		   run_status(rq),
		   fence_status(rq),
C
Chris Wilson 已提交
2102 2103 2104 2105 2106
		   buf,
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
		   name);
}

2107 2108
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
2109
#include "selftests/i915_request.c"
2110
#endif
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

2129 2130
int __init i915_global_request_init(void)
{
2131 2132 2133 2134 2135 2136 2137 2138
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
2139 2140 2141
	if (!global.slab_requests)
		return -ENOMEM;

2142 2143 2144 2145 2146 2147 2148
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

2149
	i915_global_register(&global.base);
2150 2151 2152 2153 2154 2155
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}