i915_request.c 48.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
34
#include "gt/intel_ring.h"
35
#include "gt/intel_rps.h"
36

37
#include "i915_active.h"
38
#include "i915_drv.h"
39
#include "i915_globals.h"
40
#include "i915_trace.h"
41
#include "intel_pm.h"
42

43 44 45 46
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
47 48
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
49 50
};

51
static struct i915_global_request {
52
	struct i915_global base;
53
	struct kmem_cache *slab_requests;
54
	struct kmem_cache *slab_execute_cbs;
55 56
} global;

57
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58
{
59
	return dev_name(to_request(fence)->i915->drm.dev);
60 61
}

62
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63
{
64 65
	const struct i915_gem_context *ctx;

66 67
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
68 69 70 71 72 73 74 75 76 77
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

78
	ctx = i915_request_gem_context(to_request(fence));
79 80 81 82
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
83 84
}

85
static bool i915_fence_signaled(struct dma_fence *fence)
86
{
87
	return i915_request_completed(to_request(fence));
88 89
}

90
static bool i915_fence_enable_signaling(struct dma_fence *fence)
91
{
92
	return i915_request_enable_breadcrumb(to_request(fence));
93 94
}

95
static signed long i915_fence_wait(struct dma_fence *fence,
96
				   bool interruptible,
97
				   signed long timeout)
98
{
99 100 101
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
102 103
}

104
static void i915_fence_release(struct dma_fence *fence)
105
{
106
	struct i915_request *rq = to_request(fence);
107

108 109
	/*
	 * The request is put onto a RCU freelist (i.e. the address
110 111 112 113 114
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
115
	i915_sw_fence_fini(&rq->submit);
116
	i915_sw_fence_fini(&rq->semaphore);
117

118
	kmem_cache_free(global.slab_requests, rq);
119 120
}

121
const struct dma_fence_ops i915_fence_ops = {
122 123 124 125 126 127 128 129
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

174
static inline void
175
remove_from_client(struct i915_request *request)
176
{
177
	struct drm_i915_file_private *file_priv;
178

179
	if (!READ_ONCE(request->file_priv))
180 181
		return;

182 183 184 185
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
186
		list_del(&request->client_link);
187
		spin_unlock(&file_priv->mm.lock);
188
	}
189
	rcu_read_unlock();
190 191
}

192
static void free_capture_list(struct i915_request *request)
193
{
194
	struct i915_capture_list *capture;
195

196
	capture = fetch_and_zero(&request->capture_list);
197
	while (capture) {
198
		struct i915_capture_list *next = capture->next;
199 200 201 202 203 204

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

218 219 220 221 222 223 224 225 226 227 228
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
229
	spin_lock_irq(&locked->active.lock);
230 231 232 233 234
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
235
	list_del_init(&rq->sched.link);
236 237
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
238
	spin_unlock_irq(&locked->active.lock);
239 240
}

241
bool i915_request_retire(struct i915_request *rq)
242
{
243 244
	if (!i915_request_completed(rq))
		return false;
245

246
	RQ_TRACE(rq, "\n");
247

248 249
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
250

251 252 253 254 255 256 257 258 259
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
260 261
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
262 263 264
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
265
	rq->ring->head = rq->postfix;
266

267 268 269 270 271 272
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
273
	remove_from_engine(rq);
274

275
	spin_lock_irq(&rq->lock);
276 277 278 279 280
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
281
	if (i915_request_has_waitboost(rq)) {
282 283
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
284
	}
285 286 287 288 289
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
290
	spin_unlock_irq(&rq->lock);
291

292
	remove_from_client(rq);
293
	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
294

295 296
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
297

298 299 300 301 302
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
303 304
}

305
void i915_request_retire_upto(struct i915_request *rq)
306
{
307
	struct intel_timeline * const tl = i915_request_timeline(rq);
308
	struct i915_request *tmp;
309

310
	RQ_TRACE(rq, "\n");
311

312
	GEM_BUG_ON(!i915_request_completed(rq));
313

314
	do {
315
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
316
	} while (i915_request_retire(tmp) && tmp != rq);
317 318
}

319
static int
320 321 322 323 324
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
325 326 327
{
	struct execute_cb *cb;

328 329 330
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
331
		return 0;
332
	}
333 334 335 336 337 338 339 340 341

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

342 343 344 345 346 347
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

348 349
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
350 351 352 353
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
354 355 356 357 358 359 360
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

361 362
	/* Copy across semaphore status as we need the same behaviour */
	rq->sched.flags |= signal->sched.flags;
363 364 365
	return 0;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
static bool fatal_error(int error)
{
	switch (error) {
	case 0: /* not an error! */
	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
		return false;
	default:
		return true;
	}
}

void __i915_request_skip(struct i915_request *rq)
{
	GEM_BUG_ON(!fatal_error(rq->fence.error));

	if (rq->infix == rq->postfix)
		return;

	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	__i915_request_fill(rq, 0);
	rq->infix = rq->postfix;
}

void i915_request_set_error_once(struct i915_request *rq, int error)
{
	int old;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));

	if (i915_request_signaled(rq))
		return;

	old = READ_ONCE(rq->fence.error);
	do {
		if (fatal_error(old))
			return;
	} while (!try_cmpxchg(&rq->fence.error, &old, error));
}

410
bool __i915_request_submit(struct i915_request *request)
411
{
412
	struct intel_engine_cs *engine = request->engine;
413
	bool result = false;
414

415
	RQ_TRACE(request, "\n");
416

417
	GEM_BUG_ON(!irqs_disabled());
418
	lockdep_assert_held(&engine->active.lock);
419

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

439 440 441 442
	if (unlikely(intel_context_is_banned(request->context)))
		i915_request_set_error_once(request, -EIO);
	if (unlikely(fatal_error(request->fence.error)))
		__i915_request_skip(request);
443

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
462
		engine->saturated |= request->sched.semaphores;
463

464 465
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
466

467 468 469
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
470

471 472 473
xfer:	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);

474
	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
475
		list_move_tail(&request->sched.link, &engine->active.requests);
476 477
		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	}
478

479
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
480
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
481
	    !i915_request_enable_breadcrumb(request))
482
		intel_engine_signal_breadcrumbs(engine);
483

484 485
	__notify_execute_cb(request);

486 487
	spin_unlock(&request->lock);

488
	return result;
489 490
}

491
void i915_request_submit(struct i915_request *request)
492 493 494
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
495

496
	/* Will be called from irq-context when using foreign fences. */
497
	spin_lock_irqsave(&engine->active.lock, flags);
498

499
	__i915_request_submit(request);
500

501
	spin_unlock_irqrestore(&engine->active.lock, flags);
502 503
}

504
void __i915_request_unsubmit(struct i915_request *request)
505
{
506
	struct intel_engine_cs *engine = request->engine;
507

508
	RQ_TRACE(request, "\n");
509

510
	GEM_BUG_ON(!irqs_disabled());
511
	lockdep_assert_held(&engine->active.lock);
512

513 514
	/*
	 * Only unwind in reverse order, required so that the per-context list
515 516
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
517

518 519
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
520

521
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
522
		i915_request_cancel_breadcrumb(request);
523

524 525
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
526

527 528
	spin_unlock(&request->lock);

529 530 531 532 533 534
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

535 536
	/*
	 * We don't need to wake_up any waiters on request->execute, they
537
	 * will get woken by any other event or us re-adding this request
538
	 * to the engine timeline (__i915_request_submit()). The waiters
539 540 541 542 543
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

544
void i915_request_unsubmit(struct i915_request *request)
545 546 547 548 549
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
550
	spin_lock_irqsave(&engine->active.lock, flags);
551

552
	__i915_request_unsubmit(request);
553

554
	spin_unlock_irqrestore(&engine->active.lock, flags);
555 556
}

557
static int __i915_sw_fence_call
558
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
559
{
560
	struct i915_request *request =
561 562 563 564
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
565
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
566 567

		if (unlikely(fence->error))
568
			i915_request_set_error_once(request, fence->error);
C
Chris Wilson 已提交
569

570
		/*
571 572 573 574 575 576
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
577 578
		 */
		rcu_read_lock();
579
		request->engine->submit_request(request);
580
		rcu_read_unlock();
581 582 583
		break;

	case FENCE_FREE:
584
		i915_request_put(request);
585 586 587
		break;
	}

588 589 590
	return NOTIFY_DONE;
}

591 592 593 594 595 596 597 598 599
static void irq_semaphore_cb(struct irq_work *wrk)
{
	struct i915_request *rq =
		container_of(wrk, typeof(*rq), semaphore_work);

	i915_schedule_bump_priority(rq, I915_PRIORITY_NOSEMAPHORE);
	i915_request_put(rq);
}

600 601 602
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
603
	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
604 605 606

	switch (state) {
	case FENCE_COMPLETE:
607 608 609 610 611
		if (!(READ_ONCE(rq->sched.attr.priority) & I915_PRIORITY_NOSEMAPHORE)) {
			i915_request_get(rq);
			init_irq_work(&rq->semaphore_work, irq_semaphore_cb);
			irq_work_queue(&rq->semaphore_work);
		}
612 613 614
		break;

	case FENCE_FREE:
615
		i915_request_put(rq);
616 617 618 619 620 621
		break;
	}

	return NOTIFY_DONE;
}

622
static void retire_requests(struct intel_timeline *tl)
623 624 625
{
	struct i915_request *rq, *rn;

626
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
627
		if (!i915_request_retire(rq))
628 629 630 631
			break;
}

static noinline struct i915_request *
632
request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
633 634 635
{
	struct i915_request *rq;

636
	if (list_empty(&tl->requests))
637 638
		goto out;

639 640 641
	if (!gfpflags_allow_blocking(gfp))
		goto out;

642
	/* Move our oldest request to the slab-cache (if not in use!) */
643
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
644 645 646 647 648 649 650
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

651
	/* Ratelimit ourselves to prevent oom from malicious clients */
652
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
653 654 655
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
656
	retire_requests(tl);
657 658

out:
659
	return kmem_cache_alloc(global.slab_requests, gfp);
660 661
}

662 663 664 665 666 667 668 669 670
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

671 672
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

673 674 675 676 677 678
	rq->file_priv = NULL;
	rq->capture_list = NULL;

	INIT_LIST_HEAD(&rq->execute_cb);
}

679
struct i915_request *
680
__i915_request_create(struct intel_context *ce, gfp_t gfp)
681
{
682
	struct intel_timeline *tl = ce->timeline;
683 684
	struct i915_request *rq;
	u32 seqno;
685 686
	int ret;

687
	might_sleep_if(gfpflags_allow_blocking(gfp));
688

689 690
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
691

692 693
	/*
	 * Beware: Dragons be flying overhead.
694 695 696 697
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
698
	 * of being read by __i915_active_request_get_rcu(). As such,
699 700
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
701
	 * read the request->global_seqno and increment the reference count.
702 703 704 705
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
706 707
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
708 709 710 711 712 713 714 715 716 717 718 719 720
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
721
	rq = kmem_cache_alloc(global.slab_requests,
722
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
723
	if (unlikely(!rq)) {
724
		rq = request_alloc_slow(tl, gfp);
725
		if (!rq) {
726 727 728
			ret = -ENOMEM;
			goto err_unreserve;
		}
729
	}
730

731
	rq->i915 = ce->engine->i915;
732
	rq->context = ce;
733
	rq->engine = ce->engine;
734
	rq->ring = ce->ring;
735
	rq->execution_mask = ce->engine->mask;
736

737 738 739 740 741 742 743 744 745 746 747 748
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

749 750
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
751
	rq->hwsp_seqno = tl->hwsp_seqno;
752
	GEM_BUG_ON(i915_request_completed(rq));
753

754
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
755

756
	/* We bump the ref for the fence chain */
757 758
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
759

760
	i915_sched_node_reinit(&rq->sched);
761

762
	/* No zalloc, everything must be cleared after use */
763
	rq->batch = NULL;
764 765 766
	GEM_BUG_ON(rq->file_priv);
	GEM_BUG_ON(rq->capture_list);
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
767

768 769 770
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
771
	 * i915_request_add() call can't fail. Note that the reserve may need
772 773
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
774 775 776 777 778
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
779
	 */
780 781
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
782

783 784
	/*
	 * Record the position of the start of the request so that
785 786 787 788
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
789
	rq->head = rq->ring->emit;
790

791
	ret = rq->engine->request_alloc(rq);
792 793
	if (ret)
		goto err_unwind;
794

795 796
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

797
	intel_context_mark_active(ce);
798 799
	list_add_tail_rcu(&rq->link, &tl->requests);

800
	return rq;
801

802
err_unwind:
803
	ce->ring->emit = rq->head;
804

805
	/* Make sure we didn't add ourselves to external state before freeing */
806 807
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
808

809
err_free:
810
	kmem_cache_free(global.slab_requests, rq);
811
err_unreserve:
812
	intel_context_unpin(ce);
813
	return ERR_PTR(ret);
814 815
}

816 817 818 819
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
820
	struct intel_timeline *tl;
821

822 823 824
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
825 826

	/* Move our oldest request to the slab-cache (if not in use!) */
827 828
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
829 830 831 832 833 834 835 836 837
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
838
	rq->cookie = lockdep_pin_lock(&tl->mutex);
839 840 841 842

	return rq;

err_unlock:
843
	intel_context_timeline_unlock(tl);
844 845 846
	return rq;
}

847 848 849
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
850 851
	struct dma_fence *fence;
	int err;
852

853 854
	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
		return 0;
855

856 857 858
	if (i915_request_started(signal))
		return 0;

859
	fence = NULL;
860
	rcu_read_lock();
861
	spin_lock_irq(&signal->lock);
862 863 864 865 866 867 868 869 870 871 872
	do {
		struct list_head *pos = READ_ONCE(signal->link.prev);
		struct i915_request *prev;

		/* Confirm signal has not been retired, the link is valid */
		if (unlikely(i915_request_started(signal)))
			break;

		/* Is signal the earliest request on its timeline? */
		if (pos == &rcu_dereference(signal->timeline)->requests)
			break;
873

874 875 876 877 878 879
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
880 881 882 883 884 885 886 887
		prev = list_entry(pos, typeof(*prev), link);
		if (!i915_request_get_rcu(prev))
			break;

		/* After the strong barrier, confirm prev is still attached */
		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
			i915_request_put(prev);
			break;
888
		}
889 890 891

		fence = &prev->fence;
	} while (0);
892 893 894 895
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
896 897

	err = 0;
898
	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
899 900 901 902 903 904
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
905 906
}

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
922
	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
923 924
}

925
static int
926 927 928
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
929
{
930
	const int has_token = INTEL_GEN(to->i915) >= 12;
931
	u32 hwsp_offset;
932
	int len, err;
933 934 935 936
	u32 *cs;

	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

937
	/* We need to pin the signaler's HWSP until we are finished reading. */
938 939 940
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
941

942 943 944 945 946
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
947 948 949 950 951 952 953 954 955 956 957
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
958 959 960 961 962
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
963
	*cs++ = seqno;
964 965
	*cs++ = hwsp_offset;
	*cs++ = 0;
966 967 968 969
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
970 971

	intel_ring_advance(to, cs);
972 973 974 975 976 977 978 979
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
980 981 982 983 984 985
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

	if (!rcu_access_pointer(from->hwsp_cacheline))
		goto await_fence;

986 987 988 989 990 991 992 993 994 995 996 997 998 999
	/* Just emit the first semaphore we see as request space is limited. */
	if (already_busywaiting(to) & from->engine->mask)
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

1000 1001
	to->sched.semaphores |= from->engine->mask;
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
1002
	return 0;
1003 1004 1005 1006 1007

await_fence:
	return i915_sw_fence_await_dma_fence(&to->submit,
					     &from->fence, 0,
					     I915_FENCE_GFP);
1008 1009
}

1010
static int
1011
i915_request_await_request(struct i915_request *to, struct i915_request *from)
1012
{
1013
	int ret;
1014 1015

	GEM_BUG_ON(to == from);
1016
	GEM_BUG_ON(to->timeline == from->timeline);
1017

1018
	if (i915_request_completed(from))
1019 1020
		return 0;

1021
	if (to->engine->schedule) {
1022
		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
1023 1024 1025 1026
		if (ret < 0)
			return ret;
	}

1027
	if (to->engine == from->engine)
1028 1029
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
1030
						       I915_FENCE_GFP);
1031
	else
1032
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
1043

1044
	return 0;
1045 1046
}

1047
int
1048
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1049
{
1050 1051
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
1052 1053
	int ret;

1054 1055
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
1056 1057 1058 1059 1060 1061
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
1062 1063 1064 1065 1066 1067 1068
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
1069

1070 1071
	do {
		fence = *child++;
1072 1073
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1074
			continue;
1075
		}
1076

1077 1078
		/*
		 * Requests on the same timeline are explicitly ordered, along
1079
		 * with their dependencies, by i915_request_add() which ensures
1080 1081
		 * that requests are submitted in-order through each ring.
		 */
1082
		if (fence->context == rq->fence.context)
1083 1084
			continue;

1085
		/* Squash repeated waits to the same timelines */
1086
		if (fence->context &&
1087 1088
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
1089 1090
			continue;

1091
		if (dma_fence_is_i915(fence))
1092
			ret = i915_request_await_request(rq, to_request(fence));
1093
		else
1094
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1095
							    fence->context ? I915_FENCE_TIMEOUT : 0,
1096
							    I915_FENCE_GFP);
1097 1098
		if (ret < 0)
			return ret;
1099 1100

		/* Record the latest fence used against each timeline */
1101
		if (fence->context)
1102 1103
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1104
	} while (--nchild);
1105 1106 1107 1108

	return 0;
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

static int
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
{
	int err;

1131 1132
	GEM_BUG_ON(intel_context_is_barrier(from->context));

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
		return 0;

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	/*
	 * Wait until the start of this request.
	 *
	 * The execution cb fires when we submit the request to HW. But in
	 * many cases this may be long before the request itself is ready to
	 * run (consider that we submit 2 requests for the same context, where
	 * the request of interest is behind an indefinite spinner). So we hook
	 * up to both to reduce our queues and keep the execution lag minimised
	 * in the worst case, though we hope that the await_start is elided.
	 */
	err = i915_request_await_start(to, from);
1154 1155 1156
	if (err < 0)
		return err;

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	/*
	 * Ensure both start together [after all semaphores in signal]
	 *
	 * Now that we are queued to the HW at roughly the same time (thanks
	 * to the execute cb) and are ready to run at roughly the same time
	 * (thanks to the await start), our signaler may still be indefinitely
	 * delayed by waiting on a semaphore from a remote engine. If our
	 * signaler depends on a semaphore, so indirectly do we, and we do not
	 * want to start our payload until our signaler also starts theirs.
	 * So we wait.
	 *
	 * However, there is also a second condition for which we need to wait
	 * for the precise start of the signaler. Consider that the signaler
	 * was submitted in a chain of requests following another context
	 * (with just an ordinary intra-engine fence dependency between the
	 * two). In this case the signaler is queued to HW, but not for
	 * immediate execution, and so we must wait until it reaches the
	 * active slot.
	 */
	if (intel_engine_has_semaphores(to->engine)) {
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
		if (err < 0)
			return err;
	}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	/* Couple the dependency tree for PI on this exposed to->fence */
	if (to->engine->schedule) {
		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
		if (err < 0)
			return err;
	}

	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1215 1216
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1217
			continue;
1218
		}
1219 1220 1221 1222 1223 1224 1225 1226 1227

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
1228
							     hook);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

1240
/**
1241
 * i915_request_await_object - set this request to (async) wait upon a bo
1242 1243
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1244
 * @write: whether the wait is on behalf of a writer
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1261 1262 1263
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1264
{
1265 1266
	struct dma_fence *excl;
	int ret = 0;
1267 1268

	if (write) {
1269 1270 1271
		struct dma_fence **shared;
		unsigned int count, i;

1272
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1273 1274 1275 1276 1277
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1278
			ret = i915_request_await_dma_fence(to, shared[i]);
1279 1280 1281 1282 1283 1284 1285 1286 1287
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1288
	} else {
1289
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1290 1291
	}

1292 1293
	if (excl) {
		if (ret == 0)
1294
			ret = i915_request_await_dma_fence(to, excl);
1295

1296
		dma_fence_put(excl);
1297 1298
	}

1299
	return ret;
1300 1301
}

1302 1303 1304
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1305
	struct intel_timeline *timeline = i915_request_timeline(rq);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1328 1329
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1330
	if (prev && !i915_request_completed(prev)) {
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		/*
		 * The requests are supposed to be kept in order. However,
		 * we need to be wary in case the timeline->last_request
		 * is used as a barrier for external modification to this
		 * context.
		 */
		GEM_BUG_ON(prev->context == rq->context &&
			   i915_seqno_passed(prev->fence.seqno,
					     rq->fence.seqno));

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

1356 1357 1358 1359 1360
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1361 1362 1363 1364 1365
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1366 1367 1368 1369 1370
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1371
struct i915_request *__i915_request_commit(struct i915_request *rq)
1372
{
1373 1374
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1375
	u32 *cs;
1376

1377
	RQ_TRACE(rq, "\n");
1378

1379 1380 1381 1382 1383
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1384 1385
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1386
	rq->emitted_jiffies = jiffies;
1387

1388 1389
	/*
	 * Record the position of the start of the breadcrumb so that
1390 1391
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1392
	 * position of the ring's HEAD.
1393
	 */
1394
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1395
	GEM_BUG_ON(IS_ERR(cs));
1396
	rq->postfix = intel_ring_offset(rq, cs);
1397

1398
	return __i915_request_add_to_timeline(rq);
1399 1400 1401 1402 1403
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1404 1405
	/*
	 * Let the backend know a new request has arrived that may need
1406 1407 1408 1409 1410 1411 1412 1413 1414
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1415 1416
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1417
	i915_sw_fence_commit(&rq->semaphore);
1418 1419 1420 1421 1422
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1423
	struct intel_timeline * const tl = i915_request_timeline(rq);
1424
	struct i915_sched_attr attr = {};
1425
	struct i915_gem_context *ctx;
1426

1427 1428
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1429 1430

	trace_i915_request_add(rq);
1431
	__i915_request_commit(rq);
1432

1433 1434 1435 1436 1437 1438
	/* XXX placeholder for selftests */
	rcu_read_lock();
	ctx = rcu_dereference(rq->context->gem_context);
	if (ctx)
		attr = ctx->sched;
	rcu_read_unlock();
1439

1440 1441 1442 1443 1444
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
	if (list_empty(&rq->sched.signalers_list))
		attr.priority |= I915_PRIORITY_WAIT;

1445
	local_bh_disable();
1446
	__i915_request_queue(rq, &attr);
1447
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1448

1449
	mutex_unlock(&tl->mutex);
1450 1451
}

1452
static unsigned long local_clock_ns(unsigned int *cpu)
1453 1454 1455
{
	unsigned long t;

1456 1457
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
1469
	t = local_clock();
1470 1471 1472 1473 1474 1475 1476 1477 1478
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

1479
	if (time_after(local_clock_ns(&this_cpu), timeout))
1480 1481 1482 1483 1484
		return true;

	return this_cpu != cpu;
}

1485
static bool __i915_spin_request(const struct i915_request * const rq, int state)
1486
{
1487
	unsigned long timeout_ns;
1488
	unsigned int cpu;
1489 1490 1491 1492 1493 1494 1495

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1496 1497 1498 1499
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1500
	 */
1501
	if (!i915_request_is_running(rq))
1502 1503
		return false;

1504 1505
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1506 1507 1508 1509 1510 1511 1512 1513 1514
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1515 1516
	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
	timeout_ns += local_clock_ns(&cpu);
1517
	do {
1518 1519
		if (i915_request_completed(rq))
			return true;
1520

1521 1522 1523
		if (signal_pending_state(state, current))
			break;

1524
		if (busywait_stop(timeout_ns, cpu))
1525 1526
			break;

1527
		cpu_relax();
1528 1529 1530 1531 1532
	} while (!need_resched());

	return false;
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1545
/**
1546
 * i915_request_wait - wait until execution of request has finished
1547
 * @rq: the request to wait upon
1548
 * @flags: how to wait
1549 1550
 * @timeout: how long to wait in jiffies
 *
1551
 * i915_request_wait() waits for the request to be completed, for a
1552 1553
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1554
 *
1555 1556 1557 1558
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1559
 */
1560
long i915_request_wait(struct i915_request *rq,
1561 1562
		       unsigned int flags,
		       long timeout)
1563
{
1564 1565
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1566
	struct request_wait wait;
1567 1568

	might_sleep();
1569
	GEM_BUG_ON(timeout < 0);
1570

1571
	if (dma_fence_is_signaled(&rq->fence))
1572
		return timeout;
1573

1574 1575
	if (!timeout)
		return -ETIME;
1576

1577
	trace_i915_request_wait_begin(rq, flags);
1578 1579 1580 1581 1582 1583 1584

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1585
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1586

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1610 1611
	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
	    __i915_spin_request(rq, state)) {
1612
		dma_fence_signal(&rq->fence);
1613
		goto out;
1614
	}
1615

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1630
			intel_rps_boost(rq);
1631
		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1632
	}
1633

1634 1635 1636
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1637

1638 1639
	for (;;) {
		set_current_state(state);
1640

1641 1642
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1643
			break;
1644
		}
1645

1646 1647
		intel_engine_flush_submission(rq->engine);

1648
		if (signal_pending_state(state, current)) {
1649
			timeout = -ERESTARTSYS;
1650 1651 1652
			break;
		}

1653 1654
		if (!timeout) {
			timeout = -ETIME;
1655 1656 1657
			break;
		}

1658
		timeout = io_schedule_timeout(timeout);
1659
	}
1660
	__set_current_state(TASK_RUNNING);
1661

1662 1663 1664
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1665
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1666
	trace_i915_request_wait_end(rq);
1667
	return timeout;
1668
}
1669

1670 1671
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1672
#include "selftests/i915_request.c"
1673
#endif
1674

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1692 1693
int __init i915_global_request_init(void)
{
1694 1695 1696 1697 1698 1699 1700 1701
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1702 1703 1704
	if (!global.slab_requests)
		return -ENOMEM;

1705 1706 1707 1708 1709 1710 1711
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1712
	i915_global_register(&global.base);
1713 1714 1715 1716 1717 1718
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}