i915_request.c 47.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
34
#include "gt/intel_ring.h"
35
#include "gt/intel_rps.h"
36

37
#include "i915_active.h"
38
#include "i915_drv.h"
39
#include "i915_globals.h"
40
#include "i915_trace.h"
41
#include "intel_pm.h"
42

43 44 45 46
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
47 48
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
49 50
};

51
static struct i915_global_request {
52
	struct i915_global base;
53 54
	struct kmem_cache *slab_requests;
	struct kmem_cache *slab_dependencies;
55
	struct kmem_cache *slab_execute_cbs;
56 57
} global;

58
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59
{
60
	return dev_name(to_request(fence)->i915->drm.dev);
61 62
}

63
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64
{
65 66
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
67 68 69 70 71 72 73 74 75 76
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

77
	return to_request(fence)->gem_context->name ?: "[" DRIVER_NAME "]";
78 79
}

80
static bool i915_fence_signaled(struct dma_fence *fence)
81
{
82
	return i915_request_completed(to_request(fence));
83 84
}

85
static bool i915_fence_enable_signaling(struct dma_fence *fence)
86
{
87
	return i915_request_enable_breadcrumb(to_request(fence));
88 89
}

90
static signed long i915_fence_wait(struct dma_fence *fence,
91
				   bool interruptible,
92
				   signed long timeout)
93
{
94 95 96
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
97 98
}

99
static void i915_fence_release(struct dma_fence *fence)
100
{
101
	struct i915_request *rq = to_request(fence);
102

103 104
	/*
	 * The request is put onto a RCU freelist (i.e. the address
105 106 107 108 109
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
110
	i915_sw_fence_fini(&rq->submit);
111
	i915_sw_fence_fini(&rq->semaphore);
112

113
	kmem_cache_free(global.slab_requests, rq);
114 115
}

116
const struct dma_fence_ops i915_fence_ops = {
117 118 119 120 121 122 123 124
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

169
static inline void
170
remove_from_client(struct i915_request *request)
171
{
172
	struct drm_i915_file_private *file_priv;
173

174
	if (!READ_ONCE(request->file_priv))
175 176
		return;

177 178 179 180
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
181
		list_del(&request->client_link);
182
		spin_unlock(&file_priv->mm.lock);
183
	}
184
	rcu_read_unlock();
185 186
}

187
static void free_capture_list(struct i915_request *request)
188
{
189
	struct i915_capture_list *capture;
190

191
	capture = fetch_and_zero(&request->capture_list);
192
	while (capture) {
193
		struct i915_capture_list *next = capture->next;
194 195 196 197 198 199

		kfree(capture);
		capture = next;
	}
}

200 201 202 203 204 205 206 207 208 209 210
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
211
	spin_lock_irq(&locked->active.lock);
212 213 214 215 216
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
217
	list_del_init(&rq->sched.link);
218
	spin_unlock_irq(&locked->active.lock);
219 220
}

221
bool i915_request_retire(struct i915_request *rq)
222
{
223 224
	if (!i915_request_completed(rq))
		return false;
225

226
	RQ_TRACE(rq, "\n");
227

228 229
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
230

231 232 233 234 235 236 237 238 239
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
240 241
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
242
	rq->ring->head = rq->postfix;
243

244 245 246 247 248 249
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
250
	remove_from_engine(rq);
251

252
	spin_lock_irq(&rq->lock);
253 254 255 256 257
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
258
	if (i915_request_has_waitboost(rq)) {
259 260
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
261
	}
262 263 264 265 266
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
267
	spin_unlock_irq(&rq->lock);
268

269
	remove_from_client(rq);
270
	list_del(&rq->link);
271

272 273 274
	intel_context_exit(rq->hw_context);
	intel_context_unpin(rq->hw_context);

275 276 277 278 279
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
280 281
}

282
void i915_request_retire_upto(struct i915_request *rq)
283
{
284
	struct intel_timeline * const tl = i915_request_timeline(rq);
285
	struct i915_request *tmp;
286

287
	RQ_TRACE(rq, "\n");
288

289
	GEM_BUG_ON(!i915_request_completed(rq));
290

291
	do {
292
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
293
	} while (i915_request_retire(tmp) && tmp != rq);
294 295
}

296
static int
297 298 299 300 301
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
302 303 304
{
	struct execute_cb *cb;

305 306 307
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
308
		return 0;
309
	}
310 311 312 313 314 315 316 317 318

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

319 320 321 322 323 324
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

325 326
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
327 328 329 330
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
331 332 333 334 335 336 337
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

338 339
	/* Copy across semaphore status as we need the same behaviour */
	rq->sched.flags |= signal->sched.flags;
340 341 342
	return 0;
}

343
bool __i915_request_submit(struct i915_request *request)
344
{
345
	struct intel_engine_cs *engine = request->engine;
346
	bool result = false;
347

348
	RQ_TRACE(request, "\n");
349

350
	GEM_BUG_ON(!irqs_disabled());
351
	lockdep_assert_held(&engine->active.lock);
352

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

372 373 374
	if (i915_gem_context_is_banned(request->gem_context))
		i915_request_skip(request, -EIO);

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
393
		engine->saturated |= request->sched.semaphores;
394

395 396
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
397

398 399 400
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
401

402 403 404 405 406
xfer:	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);

	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
		list_move_tail(&request->sched.link, &engine->active.requests);
407

408
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
409
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
410 411
	    !i915_request_enable_breadcrumb(request))
		intel_engine_queue_breadcrumbs(engine);
412

413 414
	__notify_execute_cb(request);

415 416
	spin_unlock(&request->lock);

417
	return result;
418 419
}

420
void i915_request_submit(struct i915_request *request)
421 422 423
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
424

425
	/* Will be called from irq-context when using foreign fences. */
426
	spin_lock_irqsave(&engine->active.lock, flags);
427

428
	__i915_request_submit(request);
429

430
	spin_unlock_irqrestore(&engine->active.lock, flags);
431 432
}

433
void __i915_request_unsubmit(struct i915_request *request)
434
{
435
	struct intel_engine_cs *engine = request->engine;
436

437
	RQ_TRACE(request, "\n");
438

439
	GEM_BUG_ON(!irqs_disabled());
440
	lockdep_assert_held(&engine->active.lock);
441

442 443
	/*
	 * Only unwind in reverse order, required so that the per-context list
444 445
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
446

447 448
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
449

450
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
451
		i915_request_cancel_breadcrumb(request);
452

453 454
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
455

456 457
	spin_unlock(&request->lock);

458 459 460 461 462 463
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

464 465
	/*
	 * We don't need to wake_up any waiters on request->execute, they
466
	 * will get woken by any other event or us re-adding this request
467
	 * to the engine timeline (__i915_request_submit()). The waiters
468 469 470 471 472
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

473
void i915_request_unsubmit(struct i915_request *request)
474 475 476 477 478
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
479
	spin_lock_irqsave(&engine->active.lock, flags);
480

481
	__i915_request_unsubmit(request);
482

483
	spin_unlock_irqrestore(&engine->active.lock, flags);
484 485
}

486
static int __i915_sw_fence_call
487
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
488
{
489
	struct i915_request *request =
490 491 492 493
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
494
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
495 496 497 498

		if (unlikely(fence->error))
			i915_request_skip(request, fence->error);

499
		/*
500 501 502 503 504 505
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
506 507
		 */
		rcu_read_lock();
508
		request->engine->submit_request(request);
509
		rcu_read_unlock();
510 511 512
		break;

	case FENCE_FREE:
513
		i915_request_put(request);
514 515 516
		break;
	}

517 518 519
	return NOTIFY_DONE;
}

520 521 522 523 524 525 526 527
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_request *request =
		container_of(fence, typeof(*request), semaphore);

	switch (state) {
	case FENCE_COMPLETE:
528
		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
529 530 531 532 533 534 535 536 537 538
		break;

	case FENCE_FREE:
		i915_request_put(request);
		break;
	}

	return NOTIFY_DONE;
}

539
static void retire_requests(struct intel_timeline *tl)
540 541 542
{
	struct i915_request *rq, *rn;

543
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
544
		if (!i915_request_retire(rq))
545 546 547 548
			break;
}

static noinline struct i915_request *
549
request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
550 551 552
{
	struct i915_request *rq;

553
	if (list_empty(&tl->requests))
554 555
		goto out;

556 557 558
	if (!gfpflags_allow_blocking(gfp))
		goto out;

559
	/* Move our oldest request to the slab-cache (if not in use!) */
560
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
561 562 563 564 565 566 567
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

568
	/* Ratelimit ourselves to prevent oom from malicious clients */
569
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
570 571 572
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
573
	retire_requests(tl);
574 575

out:
576
	return kmem_cache_alloc(global.slab_requests, gfp);
577 578
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

	rq->file_priv = NULL;
	rq->capture_list = NULL;

	INIT_LIST_HEAD(&rq->execute_cb);
}

594
struct i915_request *
595
__i915_request_create(struct intel_context *ce, gfp_t gfp)
596
{
597
	struct intel_timeline *tl = ce->timeline;
598 599
	struct i915_request *rq;
	u32 seqno;
600 601
	int ret;

602
	might_sleep_if(gfpflags_allow_blocking(gfp));
603

604 605
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
606

607 608
	/*
	 * Beware: Dragons be flying overhead.
609 610 611 612
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
613
	 * of being read by __i915_active_request_get_rcu(). As such,
614 615
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
616
	 * read the request->global_seqno and increment the reference count.
617 618 619 620
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
621 622
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
623 624 625 626 627 628 629 630 631 632 633 634 635
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
636
	rq = kmem_cache_alloc(global.slab_requests,
637
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
638
	if (unlikely(!rq)) {
639
		rq = request_alloc_slow(tl, gfp);
640
		if (!rq) {
641 642 643
			ret = -ENOMEM;
			goto err_unreserve;
		}
644
	}
645

646
	ret = intel_timeline_get_seqno(tl, rq, &seqno);
647 648 649
	if (ret)
		goto err_free;

650
	rq->i915 = ce->engine->i915;
651
	rq->hw_context = ce;
652 653
	rq->gem_context = ce->gem_context;
	rq->engine = ce->engine;
654
	rq->ring = ce->ring;
655
	rq->execution_mask = ce->engine->mask;
656
	rq->flags = 0;
657 658

	rcu_assign_pointer(rq->timeline, tl);
659 660
	rq->hwsp_seqno = tl->hwsp_seqno;
	rq->hwsp_cacheline = tl->hwsp_cacheline;
661

662
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
663

664 665
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
		       tl->fence_context, seqno);
666

667
	/* We bump the ref for the fence chain */
668 669
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
670

671
	i915_sched_node_reinit(&rq->sched);
672

673
	/* No zalloc, everything must be cleared after use */
674
	rq->batch = NULL;
675 676 677
	GEM_BUG_ON(rq->file_priv);
	GEM_BUG_ON(rq->capture_list);
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
678

679 680 681
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
682
	 * i915_request_add() call can't fail. Note that the reserve may need
683 684
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
685 686 687 688 689
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
690
	 */
691 692
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
693

694 695
	/*
	 * Record the position of the start of the request so that
696 697 698 699
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
700
	rq->head = rq->ring->emit;
701

702
	ret = rq->engine->request_alloc(rq);
703 704
	if (ret)
		goto err_unwind;
705

706 707
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

708
	intel_context_mark_active(ce);
709
	return rq;
710

711
err_unwind:
712
	ce->ring->emit = rq->head;
713

714
	/* Make sure we didn't add ourselves to external state before freeing */
715 716
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
717

718
err_free:
719
	kmem_cache_free(global.slab_requests, rq);
720
err_unreserve:
721
	intel_context_unpin(ce);
722
	return ERR_PTR(ret);
723 724
}

725 726 727 728
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
729
	struct intel_timeline *tl;
730

731 732 733
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
734 735

	/* Move our oldest request to the slab-cache (if not in use!) */
736 737
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
738 739 740 741 742 743 744 745 746
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
747
	rq->cookie = lockdep_pin_lock(&tl->mutex);
748 749 750 751

	return rq;

err_unlock:
752
	intel_context_timeline_unlock(tl);
753 754 755
	return rq;
}

756 757 758
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
759 760
	struct dma_fence *fence;
	int err;
761

762 763 764
	GEM_BUG_ON(i915_request_timeline(rq) ==
		   rcu_access_pointer(signal->timeline));

765
	fence = NULL;
766
	rcu_read_lock();
767 768 769 770 771
	spin_lock_irq(&signal->lock);
	if (!i915_request_started(signal) &&
	    !list_is_first(&signal->link,
			   &rcu_dereference(signal->timeline)->requests)) {
		struct i915_request *prev = list_prev_entry(signal, link);
772

773 774 775 776 777 778 779 780 781 782 783
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
		if (i915_request_get_rcu(prev)) {
			if (list_next_entry(prev, link) == signal)
				fence = &prev->fence;
			else
				i915_request_put(prev);
784 785
		}
	}
786 787 788 789
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
790 791 792 793 794 795 796 797 798

	err = 0;
	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
799 800
}

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
816
	return rq->sched.semaphores | rq->engine->saturated;
817 818
}

819
static int
820 821 822
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
823
{
824
	const int has_token = INTEL_GEN(to->i915) >= 12;
825
	u32 hwsp_offset;
826
	int len, err;
827 828 829 830
	u32 *cs;

	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

831
	/* We need to pin the signaler's HWSP until we are finished reading. */
832 833 834
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
835

836 837 838 839 840
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
841 842 843 844 845 846 847 848 849 850 851
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
852 853 854 855 856
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
857
	*cs++ = seqno;
858 859
	*cs++ = hwsp_offset;
	*cs++ = 0;
860 861 862 863
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
864 865

	intel_ring_advance(to, cs);
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
	/* Just emit the first semaphore we see as request space is limited. */
	if (already_busywaiting(to) & from->engine->mask)
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

888 889
	to->sched.semaphores |= from->engine->mask;
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
890
	return 0;
891 892 893 894 895

await_fence:
	return i915_sw_fence_await_dma_fence(&to->submit,
					     &from->fence, 0,
					     I915_FENCE_GFP);
896 897
}

898
static int
899
i915_request_await_request(struct i915_request *to, struct i915_request *from)
900
{
901
	int ret;
902 903

	GEM_BUG_ON(to == from);
904
	GEM_BUG_ON(to->timeline == from->timeline);
905

906
	if (i915_request_completed(from))
907 908
		return 0;

909
	if (to->engine->schedule) {
910
		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
911 912 913 914
		if (ret < 0)
			return ret;
	}

915 916 917
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
918
						       I915_FENCE_GFP);
919 920 921
	} else if (intel_engine_has_semaphores(to->engine) &&
		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
922 923 924 925
	} else {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    I915_FENCE_GFP);
926
	}
927 928 929 930 931 932 933 934 935 936
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
937

938
	return 0;
939 940
}

941
int
942
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
943
{
944 945
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
946 947
	int ret;

948 949
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
950 951 952 953 954 955
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
956 957 958 959 960 961 962
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
963

964 965
	do {
		fence = *child++;
966 967
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
968
			continue;
969
		}
970

971 972
		/*
		 * Requests on the same timeline are explicitly ordered, along
973
		 * with their dependencies, by i915_request_add() which ensures
974 975
		 * that requests are submitted in-order through each ring.
		 */
976
		if (fence->context == rq->fence.context)
977 978
			continue;

979
		/* Squash repeated waits to the same timelines */
980
		if (fence->context &&
981 982
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
983 984
			continue;

985
		if (dma_fence_is_i915(fence))
986
			ret = i915_request_await_request(rq, to_request(fence));
987
		else
988
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
989
							    fence->context ? I915_FENCE_TIMEOUT : 0,
990
							    I915_FENCE_GFP);
991 992
		if (ret < 0)
			return ret;
993 994

		/* Record the latest fence used against each timeline */
995
		if (fence->context)
996 997
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
998
	} while (--nchild);
999 1000 1001 1002

	return 0;
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

static int
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
{
	int err;

	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
		return 0;

	/* Ensure both start together [after all semaphores in signal] */
	if (intel_engine_has_semaphores(to->engine))
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
	else
		err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/* Couple the dependency tree for PI on this exposed to->fence */
	if (to->engine->schedule) {
		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
		if (err < 0)
			return err;
	}

	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1076 1077
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1078
			continue;
1079
		}
1080 1081 1082 1083 1084 1085 1086 1087 1088

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
1089
							     hook);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

1101
/**
1102
 * i915_request_await_object - set this request to (async) wait upon a bo
1103 1104
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1105
 * @write: whether the wait is on behalf of a writer
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1122 1123 1124
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1125
{
1126 1127
	struct dma_fence *excl;
	int ret = 0;
1128 1129

	if (write) {
1130 1131 1132
		struct dma_fence **shared;
		unsigned int count, i;

1133
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1134 1135 1136 1137 1138
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1139
			ret = i915_request_await_dma_fence(to, shared[i]);
1140 1141 1142 1143 1144 1145 1146 1147 1148
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1149
	} else {
1150
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1151 1152
	}

1153 1154
	if (excl) {
		if (ret == 0)
1155
			ret = i915_request_await_dma_fence(to, excl);
1156

1157
		dma_fence_put(excl);
1158 1159
	}

1160
	return ret;
1161 1162
}

1163 1164 1165 1166 1167 1168 1169 1170
void i915_request_skip(struct i915_request *rq, int error)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
	dma_fence_set_error(&rq->fence, error);

C
Chris Wilson 已提交
1171 1172 1173
	if (rq->infix == rq->postfix)
		return;

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, 0, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, rq->postfix - head);
C
Chris Wilson 已提交
1185
	rq->infix = rq->postfix;
1186 1187
}

1188 1189 1190
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1191
	struct intel_timeline *timeline = i915_request_timeline(rq);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1214 1215
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	if (prev && !i915_request_completed(prev)) {
		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

	list_add_tail(&rq->link, &timeline->requests);

1234 1235 1236 1237 1238
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1239 1240 1241 1242 1243
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1244 1245 1246 1247 1248
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1249
struct i915_request *__i915_request_commit(struct i915_request *rq)
1250
{
1251 1252
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1253
	u32 *cs;
1254

1255
	RQ_TRACE(rq, "\n");
1256

1257 1258 1259 1260 1261
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1262 1263
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1264
	rq->emitted_jiffies = jiffies;
1265

1266 1267
	/*
	 * Record the position of the start of the breadcrumb so that
1268 1269
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1270
	 * position of the ring's HEAD.
1271
	 */
1272
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1273
	GEM_BUG_ON(IS_ERR(cs));
1274
	rq->postfix = intel_ring_offset(rq, cs);
1275

1276
	return __i915_request_add_to_timeline(rq);
1277 1278 1279 1280 1281
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1282 1283
	/*
	 * Let the backend know a new request has arrived that may need
1284 1285 1286 1287 1288 1289 1290 1291 1292
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1293
	i915_sw_fence_commit(&rq->semaphore);
1294 1295
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1296 1297 1298 1299 1300
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1301
	struct i915_sched_attr attr = rq->gem_context->sched;
1302
	struct intel_timeline * const tl = i915_request_timeline(rq);
1303 1304
	struct i915_request *prev;

1305 1306
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1307 1308 1309 1310 1311

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * Boost actual workloads past semaphores!
	 *
	 * With semaphores we spin on one engine waiting for another,
	 * simply to reduce the latency of starting our work when
	 * the signaler completes. However, if there is any other
	 * work that we could be doing on this engine instead, that
	 * is better utilisation and will reduce the overall duration
	 * of the current work. To avoid PI boosting a semaphore
	 * far in the distance past over useful work, we keep a history
	 * of any semaphore use along our dependency chain.
	 */
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;

	/*
	 * Boost priorities to new clients (new request flows).
	 *
	 * Allow interactive/synchronous clients to jump ahead of
	 * the bulk clients. (FQ_CODEL)
	 */
	if (list_empty(&rq->sched.signalers_list))
		attr.priority |= I915_PRIORITY_WAIT;

1336
	local_bh_disable();
1337
	__i915_request_queue(rq, &attr);
1338
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1339

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	/*
	 * In typical scenarios, we do not expect the previous request on
	 * the timeline to be still tracked by timeline->last_request if it
	 * has been completed. If the completed request is still here, that
	 * implies that request retirement is a long way behind submission,
	 * suggesting that we haven't been retiring frequently enough from
	 * the combination of retire-before-alloc, waiters and the background
	 * retirement worker. So if the last request on this timeline was
	 * already completed, do a catch up pass, flushing the retirement queue
	 * up to this client. Since we have now moved the heaviest operations
	 * during retirement onto secondary workers, such as freeing objects
	 * or contexts, retiring a bunch of requests is mostly list management
	 * (and cache misses), and so we should not be overly penalizing this
	 * client by performing excess work, though we may still performing
	 * work on behalf of others -- but instead we should benefit from
	 * improved resource management. (Well, that's the theory at least.)
	 */
1357 1358 1359
	if (prev &&
	    i915_request_completed(prev) &&
	    rcu_access_pointer(prev->timeline) == tl)
1360
		i915_request_retire_upto(prev);
1361

1362
	mutex_unlock(&tl->mutex);
1363 1364 1365 1366 1367 1368
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

1369 1370
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1398 1399
static bool __i915_spin_request(const struct i915_request * const rq,
				int state, unsigned long timeout_us)
1400
{
1401
	unsigned int cpu;
1402 1403 1404 1405 1406 1407 1408

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1409 1410 1411 1412
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1413
	 */
1414
	if (!i915_request_is_running(rq))
1415 1416
		return false;

1417 1418
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
1430 1431
		if (i915_request_completed(rq))
			return true;
1432

1433 1434 1435 1436 1437 1438
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1439
		cpu_relax();
1440 1441 1442 1443 1444
	} while (!need_resched());

	return false;
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1457
/**
1458
 * i915_request_wait - wait until execution of request has finished
1459
 * @rq: the request to wait upon
1460
 * @flags: how to wait
1461 1462
 * @timeout: how long to wait in jiffies
 *
1463
 * i915_request_wait() waits for the request to be completed, for a
1464 1465
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1466
 *
1467 1468 1469 1470
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1471
 */
1472
long i915_request_wait(struct i915_request *rq,
1473 1474
		       unsigned int flags,
		       long timeout)
1475
{
1476 1477
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1478
	struct request_wait wait;
1479 1480

	might_sleep();
1481
	GEM_BUG_ON(timeout < 0);
1482

1483
	if (dma_fence_is_signaled(&rq->fence))
1484
		return timeout;
1485

1486 1487
	if (!timeout)
		return -ETIME;
1488

1489
	trace_i915_request_wait_begin(rq, flags);
1490 1491 1492 1493 1494 1495 1496

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1497
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1522
	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1523 1524
	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
		dma_fence_signal(&rq->fence);
1525
		goto out;
1526
	}
1527

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1542
			intel_rps_boost(rq);
1543
		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1544
	}
1545

1546 1547 1548
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1549

1550 1551
	for (;;) {
		set_current_state(state);
1552

1553 1554
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1555
			break;
1556
		}
1557 1558

		if (signal_pending_state(state, current)) {
1559
			timeout = -ERESTARTSYS;
1560 1561 1562
			break;
		}

1563 1564
		if (!timeout) {
			timeout = -ETIME;
1565 1566 1567
			break;
		}

1568
		intel_engine_flush_submission(rq->engine);
1569
		timeout = io_schedule_timeout(timeout);
1570
	}
1571
	__set_current_state(TASK_RUNNING);
1572

1573 1574 1575
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1576
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1577
	trace_i915_request_wait_end(rq);
1578
	return timeout;
1579
}
1580

1581 1582
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1583
#include "selftests/i915_request.c"
1584
#endif
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_dependencies);
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_dependencies);
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1605 1606
int __init i915_global_request_init(void)
{
1607 1608 1609 1610 1611 1612 1613 1614
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1615 1616 1617
	if (!global.slab_requests)
		return -ENOMEM;

1618 1619 1620 1621 1622 1623 1624
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1625 1626 1627 1628
	global.slab_dependencies = KMEM_CACHE(i915_dependency,
					      SLAB_HWCACHE_ALIGN |
					      SLAB_RECLAIM_ACCOUNT);
	if (!global.slab_dependencies)
1629
		goto err_execute_cbs;
1630

1631
	i915_global_register(&global.base);
1632 1633
	return 0;

1634 1635
err_execute_cbs:
	kmem_cache_destroy(global.slab_execute_cbs);
1636 1637 1638 1639
err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}