i915_request.c 59.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26
#include <linux/dma-fence-chain.h>
27 28
#include <linux/irq_work.h>
#include <linux/prefetch.h>
29 30
#include <linux/sched.h>
#include <linux/sched/clock.h>
31
#include <linux/sched/signal.h>
32

33
#include "gem/i915_gem_context.h"
34
#include "gt/intel_breadcrumbs.h"
35
#include "gt/intel_context.h"
36
#include "gt/intel_gpu_commands.h"
37
#include "gt/intel_ring.h"
38
#include "gt/intel_rps.h"
39

40
#include "i915_active.h"
41
#include "i915_drv.h"
42
#include "i915_globals.h"
43
#include "i915_trace.h"
44
#include "intel_pm.h"
45

46 47 48
struct execute_cb {
	struct irq_work work;
	struct i915_sw_fence *fence;
49 50
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
51 52
};

53
static struct i915_global_request {
54
	struct i915_global base;
55
	struct kmem_cache *slab_requests;
56
	struct kmem_cache *slab_execute_cbs;
57 58
} global;

59
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
60
{
61
	return dev_name(to_request(fence)->engine->i915->drm.dev);
62 63
}

64
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
65
{
66 67
	const struct i915_gem_context *ctx;

68 69
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
70 71 72 73 74 75 76 77 78 79
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

80
	ctx = i915_request_gem_context(to_request(fence));
81 82 83 84
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
85 86
}

87
static bool i915_fence_signaled(struct dma_fence *fence)
88
{
89
	return i915_request_completed(to_request(fence));
90 91
}

92
static bool i915_fence_enable_signaling(struct dma_fence *fence)
93
{
94
	return i915_request_enable_breadcrumb(to_request(fence));
95 96
}

97
static signed long i915_fence_wait(struct dma_fence *fence,
98
				   bool interruptible,
99
				   signed long timeout)
100
{
101 102 103
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
104 105
}

106 107 108 109 110
struct kmem_cache *i915_request_slab_cache(void)
{
	return global.slab_requests;
}

111
static void i915_fence_release(struct dma_fence *fence)
112
{
113
	struct i915_request *rq = to_request(fence);
114

115 116
	/*
	 * The request is put onto a RCU freelist (i.e. the address
117 118 119 120 121
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
122
	i915_sw_fence_fini(&rq->submit);
123
	i915_sw_fence_fini(&rq->semaphore);
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
	/*
	 * Keep one request on each engine for reserved use under mempressure
	 *
	 * We do not hold a reference to the engine here and so have to be
	 * very careful in what rq->engine we poke. The virtual engine is
	 * referenced via the rq->context and we released that ref during
	 * i915_request_retire(), ergo we must not dereference a virtual
	 * engine here. Not that we would want to, as the only consumer of
	 * the reserved engine->request_pool is the power management parking,
	 * which must-not-fail, and that is only run on the physical engines.
	 *
	 * Since the request must have been executed to be have completed,
	 * we know that it will have been processed by the HW and will
	 * not be unsubmitted again, so rq->engine and rq->execution_mask
	 * at this point is stable. rq->execution_mask will be a single
	 * bit if the last and _only_ engine it could execution on was a
	 * physical engine, if it's multiple bits then it started on and
	 * could still be on a virtual engine. Thus if the mask is not a
	 * power-of-two we assume that rq->engine may still be a virtual
	 * engine and so a dangling invalid pointer that we cannot dereference
	 *
	 * For example, consider the flow of a bonded request through a virtual
	 * engine. The request is created with a wide engine mask (all engines
	 * that we might execute on). On processing the bond, the request mask
	 * is reduced to one or more engines. If the request is subsequently
	 * bound to a single engine, it will then be constrained to only
	 * execute on that engine and never returned to the virtual engine
	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
	 * know that if the rq->execution_mask is a single bit, rq->engine
	 * can be a physical engine with the exact corresponding mask.
	 */
	if (is_power_of_2(rq->execution_mask) &&
	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
158 159
		return;

160
	kmem_cache_free(global.slab_requests, rq);
161 162
}

163
const struct dma_fence_ops i915_fence_ops = {
164 165 166 167 168 169 170 171
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

191 192
static __always_inline void
__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
193
{
194
	struct execute_cb *cb, *cn;
195

196
	if (llist_empty(&rq->execute_cb))
197 198
		return;

199 200
	llist_for_each_entry_safe(cb, cn,
				  llist_del_all(&rq->execute_cb),
P
Peter Zijlstra 已提交
201
				  work.node.llist)
202 203
		fn(&cb->work);
}
204

205 206 207 208 209 210 211 212 213 214 215 216 217 218
static void __notify_execute_cb_irq(struct i915_request *rq)
{
	__notify_execute_cb(rq, irq_work_queue);
}

static bool irq_work_imm(struct irq_work *wrk)
{
	wrk->func(wrk);
	return false;
}

static void __notify_execute_cb_imm(struct i915_request *rq)
{
	__notify_execute_cb(rq, irq_work_imm);
219 220
}

221
static void free_capture_list(struct i915_request *request)
222
{
223
	struct i915_capture_list *capture;
224

225
	capture = fetch_and_zero(&request->capture_list);
226
	while (capture) {
227
		struct i915_capture_list *next = capture->next;
228 229 230 231 232 233

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

247 248 249 250 251 252 253 254 255 256 257
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
258
	spin_lock_irq(&locked->active.lock);
259 260 261 262 263
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
264
	list_del_init(&rq->sched.link);
265

266 267
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
268 269 270 271

	/* Prevent further __await_execution() registering a cb, then flush */
	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);

272
	spin_unlock_irq(&locked->active.lock);
273 274

	__notify_execute_cb_imm(rq);
275 276
}

277
bool i915_request_retire(struct i915_request *rq)
278
{
279
	if (!__i915_request_is_complete(rq))
280
		return false;
281

282
	RQ_TRACE(rq, "\n");
283

284 285
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
286
	i915_request_mark_complete(rq);
C
Chris Wilson 已提交
287

288 289 290 291 292 293 294 295 296
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
297 298
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
299 300 301
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
302
	rq->ring->head = rq->postfix;
303

304 305
	if (!i915_request_signaled(rq)) {
		spin_lock_irq(&rq->lock);
306
		dma_fence_signal_locked(&rq->fence);
307 308
		spin_unlock_irq(&rq->lock);
	}
309

310
	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
311
		atomic_dec(&rq->engine->gt->rps.num_waiters);
312 313 314 315 316 317 318 319 320 321 322

	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 *
	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
	 * after removing the breadcrumb and signaling it, so that we do not
	 * inadvertently attach the breadcrumb to a completed request.
	 */
323 324
	if (!list_empty(&rq->sched.link))
		remove_from_engine(rq);
325
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
326

327
	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
328

329 330
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
331

332 333 334 335 336
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
337 338
}

339
void i915_request_retire_upto(struct i915_request *rq)
340
{
341
	struct intel_timeline * const tl = i915_request_timeline(rq);
342
	struct i915_request *tmp;
343

344
	RQ_TRACE(rq, "\n");
345
	GEM_BUG_ON(!__i915_request_is_complete(rq));
346

347
	do {
348
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
349
	} while (i915_request_retire(tmp) && tmp != rq);
350 351
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static struct i915_request * const *
__engine_active(struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->execlists.active);
}

static bool __request_in_flight(const struct i915_request *signal)
{
	struct i915_request * const *port, *rq;
	bool inflight = false;

	if (!i915_request_is_ready(signal))
		return false;

	/*
	 * Even if we have unwound the request, it may still be on
	 * the GPU (preempt-to-busy). If that request is inside an
	 * unpreemptible critical section, it will not be removed. Some
	 * GPU functions may even be stuck waiting for the paired request
	 * (__await_execution) to be submitted and cannot be preempted
	 * until the bond is executing.
	 *
	 * As we know that there are always preemption points between
	 * requests, we know that only the currently executing request
	 * may be still active even though we have cleared the flag.
377
	 * However, we can't rely on our tracking of ELSP[0] to know
378 379 380 381
	 * which request is currently active and so maybe stuck, as
	 * the tracking maybe an event behind. Instead assume that
	 * if the context is still inflight, then it is still active
	 * even if the active flag has been cleared.
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	 *
	 * To further complicate matters, if there a pending promotion, the HW
	 * may either perform a context switch to the second inflight execlists,
	 * or it may switch to the pending set of execlists. In the case of the
	 * latter, it may send the ACK and we process the event copying the
	 * pending[] over top of inflight[], _overwriting_ our *active. Since
	 * this implies the HW is arbitrating and not struck in *active, we do
	 * not worry about complete accuracy, but we do require no read/write
	 * tearing of the pointer [the read of the pointer must be valid, even
	 * as the array is being overwritten, for which we require the writes
	 * to avoid tearing.]
	 *
	 * Note that the read of *execlists->active may race with the promotion
	 * of execlists->pending[] to execlists->inflight[], overwritting
	 * the value at *execlists->active. This is fine. The promotion implies
	 * that we received an ACK from the HW, and so the context is not
	 * stuck -- if we do not see ourselves in *active, the inflight status
	 * is valid. If instead we see ourselves being copied into *active,
	 * we are inflight and may signal the callback.
401 402 403 404 405
	 */
	if (!intel_context_inflight(signal->context))
		return false;

	rcu_read_lock();
406 407 408
	for (port = __engine_active(signal->engine);
	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
	     port++) {
409 410 411 412 413 414 415 416 417 418 419
		if (rq->context == signal->context) {
			inflight = i915_seqno_passed(rq->fence.seqno,
						     signal->fence.seqno);
			break;
		}
	}
	rcu_read_unlock();

	return inflight;
}

420
static int
421 422 423 424 425
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
426 427 428
{
	struct execute_cb *cb;

429 430 431
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
432
		return 0;
433
	}
434 435 436 437 438 439 440 441 442

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

443 444 445 446 447 448
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

449 450 451 452 453 454 455 456 457 458 459 460 461
	/*
	 * Register the callback first, then see if the signaler is already
	 * active. This ensures that if we race with the
	 * __notify_execute_cb from i915_request_submit() and we are not
	 * included in that list, we get a second bite of the cherry and
	 * execute it ourselves. After this point, a future
	 * i915_request_submit() will notify us.
	 *
	 * In i915_request_retire() we set the ACTIVE bit on a completed
	 * request (then flush the execute_cb). So by registering the
	 * callback first, then checking the ACTIVE bit, we serialise with
	 * the completed/retired request.
	 */
P
Peter Zijlstra 已提交
462
	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
463 464 465
		if (i915_request_is_active(signal) ||
		    __request_in_flight(signal))
			__notify_execute_cb_imm(signal);
466 467 468 469 470
	}

	return 0;
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static bool fatal_error(int error)
{
	switch (error) {
	case 0: /* not an error! */
	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
		return false;
	default:
		return true;
	}
}

void __i915_request_skip(struct i915_request *rq)
{
	GEM_BUG_ON(!fatal_error(rq->fence.error));

	if (rq->infix == rq->postfix)
		return;

490 491
	RQ_TRACE(rq, "error: %d\n", rq->fence.error);

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	__i915_request_fill(rq, 0);
	rq->infix = rq->postfix;
}

void i915_request_set_error_once(struct i915_request *rq, int error)
{
	int old;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));

	if (i915_request_signaled(rq))
		return;

	old = READ_ONCE(rq->fence.error);
	do {
		if (fatal_error(old))
			return;
	} while (!try_cmpxchg(&rq->fence.error, &old, error));
}

517 518 519 520 521 522 523 524 525 526 527
void i915_request_mark_eio(struct i915_request *rq)
{
	if (__i915_request_is_complete(rq))
		return;

	GEM_BUG_ON(i915_request_signaled(rq));

	i915_request_set_error_once(rq, -EIO);
	i915_request_mark_complete(rq);
}

528
bool __i915_request_submit(struct i915_request *request)
529
{
530
	struct intel_engine_cs *engine = request->engine;
531
	bool result = false;
532

533
	RQ_TRACE(request, "\n");
534

535
	GEM_BUG_ON(!irqs_disabled());
536
	lockdep_assert_held(&engine->active.lock);
537

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
554 555 556 557
	if (__i915_request_is_complete(request)) {
		list_del_init(&request->sched.link);
		goto active;
	}
558

559 560
	if (unlikely(intel_context_is_banned(request->context)))
		i915_request_set_error_once(request, -EIO);
561

562 563
	if (unlikely(fatal_error(request->fence.error)))
		__i915_request_skip(request);
564

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
583
		engine->saturated |= request->sched.semaphores;
584

585 586
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
587

588 589 590
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
591

592 593 594 595 596
	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	list_move_tail(&request->sched.link, &engine->active.requests);
active:
	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
597

598 599 600 601 602 603 604 605 606 607
	/*
	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
608 609 610
	__notify_execute_cb_irq(request);

	/* We may be recursing from the signal callback of another i915 fence */
611 612
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		i915_request_enable_breadcrumb(request);
613

614
	return result;
615 616
}

617
void i915_request_submit(struct i915_request *request)
618 619 620
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
621

622
	/* Will be called from irq-context when using foreign fences. */
623
	spin_lock_irqsave(&engine->active.lock, flags);
624

625
	__i915_request_submit(request);
626

627
	spin_unlock_irqrestore(&engine->active.lock, flags);
628 629
}

630
void __i915_request_unsubmit(struct i915_request *request)
631
{
632
	struct intel_engine_cs *engine = request->engine;
633

634 635 636 637
	/*
	 * Only unwind in reverse order, required so that the per-context list
	 * is kept in seqno/ring order.
	 */
638
	RQ_TRACE(request, "\n");
639

640
	GEM_BUG_ON(!irqs_disabled());
641
	lockdep_assert_held(&engine->active.lock);
642

643
	/*
644 645 646 647 648
	 * Before we remove this breadcrumb from the signal list, we have
	 * to ensure that a concurrent dma_fence_enable_signaling() does not
	 * attach itself. We first mark the request as no longer active and
	 * make sure that is visible to other cores, and then remove the
	 * breadcrumb if attached.
649
	 */
650 651
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
652
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
653
		i915_request_cancel_breadcrumb(request);
654

655
	/* We've already spun, don't charge on resubmitting. */
656
	if (request->sched.semaphores && __i915_request_has_started(request))
657 658
		request->sched.semaphores = 0;

659 660
	/*
	 * We don't need to wake_up any waiters on request->execute, they
661
	 * will get woken by any other event or us re-adding this request
662
	 * to the engine timeline (__i915_request_submit()). The waiters
663 664 665 666 667
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

668
void i915_request_unsubmit(struct i915_request *request)
669 670 671 672 673
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
674
	spin_lock_irqsave(&engine->active.lock, flags);
675

676
	__i915_request_unsubmit(request);
677

678
	spin_unlock_irqrestore(&engine->active.lock, flags);
679 680
}

681
static int __i915_sw_fence_call
682
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
683
{
684
	struct i915_request *request =
685 686 687 688
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
689
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
690 691

		if (unlikely(fence->error))
692
			i915_request_set_error_once(request, fence->error);
C
Chris Wilson 已提交
693

694
		/*
695 696 697 698 699 700
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
701 702
		 */
		rcu_read_lock();
703
		request->engine->submit_request(request);
704
		rcu_read_unlock();
705 706 707
		break;

	case FENCE_FREE:
708
		i915_request_put(request);
709 710 711
		break;
	}

712 713 714
	return NOTIFY_DONE;
}

715 716 717
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
718
	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
719 720 721 722 723 724

	switch (state) {
	case FENCE_COMPLETE:
		break;

	case FENCE_FREE:
725
		i915_request_put(rq);
726 727 728 729 730 731
		break;
	}

	return NOTIFY_DONE;
}

732
static void retire_requests(struct intel_timeline *tl)
733 734 735
{
	struct i915_request *rq, *rn;

736
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
737
		if (!i915_request_retire(rq))
738 739 740 741
			break;
}

static noinline struct i915_request *
742 743 744
request_alloc_slow(struct intel_timeline *tl,
		   struct i915_request **rsvd,
		   gfp_t gfp)
745 746 747
{
	struct i915_request *rq;

748 749 750 751 752
	/* If we cannot wait, dip into our reserves */
	if (!gfpflags_allow_blocking(gfp)) {
		rq = xchg(rsvd, NULL);
		if (!rq) /* Use the normal failure path for one final WARN */
			goto out;
753

754 755 756 757
		return rq;
	}

	if (list_empty(&tl->requests))
758 759
		goto out;

760
	/* Move our oldest request to the slab-cache (if not in use!) */
761
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
762 763 764 765 766 767 768
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

769
	/* Ratelimit ourselves to prevent oom from malicious clients */
770
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
771 772 773
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
774
	retire_requests(tl);
775 776

out:
777
	return kmem_cache_alloc(global.slab_requests, gfp);
778 779
}

780 781 782 783 784 785 786 787 788
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

789 790
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

791 792
	rq->capture_list = NULL;

793
	init_llist_head(&rq->execute_cb);
794 795
}

796
struct i915_request *
797
__i915_request_create(struct intel_context *ce, gfp_t gfp)
798
{
799
	struct intel_timeline *tl = ce->timeline;
800 801
	struct i915_request *rq;
	u32 seqno;
802 803
	int ret;

804
	might_sleep_if(gfpflags_allow_blocking(gfp));
805

806 807
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
808

809 810
	/*
	 * Beware: Dragons be flying overhead.
811 812 813 814
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
815
	 * of being read by __i915_active_request_get_rcu(). As such,
816 817
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
818
	 * read the request->global_seqno and increment the reference count.
819 820 821 822
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
823 824
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
825 826 827 828 829 830 831 832 833 834 835 836 837
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
838
	rq = kmem_cache_alloc(global.slab_requests,
839
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
840
	if (unlikely(!rq)) {
841
		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
842
		if (!rq) {
843 844 845
			ret = -ENOMEM;
			goto err_unreserve;
		}
846
	}
847

848
	rq->context = ce;
849
	rq->engine = ce->engine;
850
	rq->ring = ce->ring;
851
	rq->execution_mask = ce->engine->mask;
852

853 854 855 856 857 858 859 860 861 862 863 864
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

865 866
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
867
	rq->hwsp_seqno = tl->hwsp_seqno;
868
	GEM_BUG_ON(__i915_request_is_complete(rq));
869

870
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
871

872
	/* We bump the ref for the fence chain */
873 874
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
875

876
	i915_sched_node_reinit(&rq->sched);
877

878
	/* No zalloc, everything must be cleared after use */
879
	rq->batch = NULL;
880
	GEM_BUG_ON(rq->capture_list);
881
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
882

883 884 885
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
886
	 * i915_request_add() call can't fail. Note that the reserve may need
887 888
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
889 890 891 892 893
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
894
	 */
895 896
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
897

898 899
	/*
	 * Record the position of the start of the request so that
900 901 902 903
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
904
	rq->head = rq->ring->emit;
905

906
	ret = rq->engine->request_alloc(rq);
907 908
	if (ret)
		goto err_unwind;
909

910 911
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

912
	intel_context_mark_active(ce);
913 914
	list_add_tail_rcu(&rq->link, &tl->requests);

915
	return rq;
916

917
err_unwind:
918
	ce->ring->emit = rq->head;
919

920
	/* Make sure we didn't add ourselves to external state before freeing */
921 922
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
923

924
err_free:
925
	kmem_cache_free(global.slab_requests, rq);
926
err_unreserve:
927
	intel_context_unpin(ce);
928
	return ERR_PTR(ret);
929 930
}

931 932 933 934
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
935
	struct intel_timeline *tl;
936

937 938 939
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
940 941

	/* Move our oldest request to the slab-cache (if not in use!) */
942 943
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
944 945 946 947 948 949 950 951 952
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
953
	rq->cookie = lockdep_pin_lock(&tl->mutex);
954 955 956 957

	return rq;

err_unlock:
958
	intel_context_timeline_unlock(tl);
959 960 961
	return rq;
}

962 963 964
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
965 966
	struct dma_fence *fence;
	int err;
967

968 969
	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
		return 0;
970

971 972 973
	if (i915_request_started(signal))
		return 0;

974 975 976 977 978 979 980 981
	/*
	 * The caller holds a reference on @signal, but we do not serialise
	 * against it being retired and removed from the lists.
	 *
	 * We do not hold a reference to the request before @signal, and
	 * so must be very careful to ensure that it is not _recycled_ as
	 * we follow the link backwards.
	 */
982
	fence = NULL;
983
	rcu_read_lock();
984 985 986 987 988
	do {
		struct list_head *pos = READ_ONCE(signal->link.prev);
		struct i915_request *prev;

		/* Confirm signal has not been retired, the link is valid */
989
		if (unlikely(__i915_request_has_started(signal)))
990 991 992 993 994
			break;

		/* Is signal the earliest request on its timeline? */
		if (pos == &rcu_dereference(signal->timeline)->requests)
			break;
995

996 997 998 999 1000 1001
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
1002 1003 1004 1005 1006 1007 1008 1009
		prev = list_entry(pos, typeof(*prev), link);
		if (!i915_request_get_rcu(prev))
			break;

		/* After the strong barrier, confirm prev is still attached */
		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
			i915_request_put(prev);
			break;
1010
		}
1011 1012 1013

		fence = &prev->fence;
	} while (0);
1014 1015 1016
	rcu_read_unlock();
	if (!fence)
		return 0;
1017 1018

	err = 0;
1019
	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1020 1021 1022 1023 1024 1025
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
1026 1027
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
1043
	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1044 1045
}

1046
static int
1047 1048 1049
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
1050
{
1051
	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1052
	u32 hwsp_offset;
1053
	int len, err;
1054 1055
	u32 *cs;

1056
	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1057
	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1058

1059
	/* We need to pin the signaler's HWSP until we are finished reading. */
1060 1061 1062
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
1063

1064 1065 1066 1067 1068
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
1080 1081 1082 1083 1084
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
1085
	*cs++ = seqno;
1086 1087
	*cs++ = hwsp_offset;
	*cs++ = 0;
1088 1089 1090 1091
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
1092 1093

	intel_ring_advance(to, cs);
1094 1095 1096 1097 1098 1099 1100 1101
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
1102
	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1103
	struct i915_sw_fence *wait = &to->submit;
1104

1105 1106 1107
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

1108 1109 1110
	if (i915_request_has_initial_breadcrumb(to))
		goto await_fence;

1111 1112 1113
	if (!rcu_access_pointer(from->hwsp_cacheline))
		goto await_fence;

1114 1115 1116 1117 1118 1119 1120 1121 1122
	/*
	 * If this or its dependents are waiting on an external fence
	 * that may fail catastrophically, then we want to avoid using
	 * sempahores as they bypass the fence signaling metadata, and we
	 * lose the fence->error propagation.
	 */
	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
		goto await_fence;

1123
	/* Just emit the first semaphore we see as request space is limited. */
1124
	if (already_busywaiting(to) & mask)
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

1137
	to->sched.semaphores |= mask;
1138
	wait = &to->semaphore;
1139 1140

await_fence:
1141
	return i915_sw_fence_await_dma_fence(wait,
1142 1143
					     &from->fence, 0,
					     I915_FENCE_GFP);
1144 1145
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

1160
static int
1161 1162 1163 1164
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
1165
{
1166
	int err;
1167

1168
	GEM_BUG_ON(intel_context_is_barrier(from->context));
1169

1170 1171 1172 1173 1174 1175 1176 1177
	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
1178
		return 0;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

	/*
	 * Wait until the start of this request.
	 *
	 * The execution cb fires when we submit the request to HW. But in
	 * many cases this may be long before the request itself is ready to
	 * run (consider that we submit 2 requests for the same context, where
	 * the request of interest is behind an indefinite spinner). So we hook
	 * up to both to reduce our queues and keep the execution lag minimised
	 * in the worst case, though we hope that the await_start is elided.
	 */
	err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/*
	 * Ensure both start together [after all semaphores in signal]
	 *
	 * Now that we are queued to the HW at roughly the same time (thanks
	 * to the execute cb) and are ready to run at roughly the same time
	 * (thanks to the await start), our signaler may still be indefinitely
	 * delayed by waiting on a semaphore from a remote engine. If our
	 * signaler depends on a semaphore, so indirectly do we, and we do not
	 * want to start our payload until our signaler also starts theirs.
	 * So we wait.
	 *
	 * However, there is also a second condition for which we need to wait
	 * for the precise start of the signaler. Consider that the signaler
	 * was submitted in a chain of requests following another context
	 * (with just an ordinary intra-engine fence dependency between the
	 * two). In this case the signaler is queued to HW, but not for
	 * immediate execution, and so we must wait until it reaches the
	 * active slot.
	 */
	if (intel_engine_has_semaphores(to->engine) &&
	    !i915_request_has_initial_breadcrumb(to)) {
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
		if (err < 0)
			return err;
1218
	}
1219

1220
	/* Couple the dependency tree for PI on this exposed to->fence */
1221
	if (to->engine->schedule) {
1222
		err = i915_sched_node_add_dependency(&to->sched,
1223
						     &from->sched,
1224 1225 1226
						     I915_DEPENDENCY_WEAK);
		if (err < 0)
			return err;
1227 1228
	}

1229 1230
	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
1231 1232
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
static void mark_external(struct i915_request *rq)
{
	/*
	 * The downside of using semaphores is that we lose metadata passing
	 * along the signaling chain. This is particularly nasty when we
	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
	 * fatal errors we want to scrub the request before it is executed,
	 * which means that we cannot preload the request onto HW and have
	 * it wait upon a semaphore.
	 */
	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
}

1246
static int
1247
__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1248
{
1249
	mark_external(rq);
1250
	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1251
					     i915_fence_context_timeout(rq->engine->i915,
1252
									fence->context),
1253 1254 1255
					     I915_FENCE_GFP);
}

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
static int
i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
	struct dma_fence *iter;
	int err = 0;

	if (!to_dma_fence_chain(fence))
		return __i915_request_await_external(rq, fence);

	dma_fence_chain_for_each(iter, fence) {
		struct dma_fence_chain *chain = to_dma_fence_chain(iter);

		if (!dma_fence_is_i915(chain->fence)) {
			err = __i915_request_await_external(rq, iter);
			break;
		}

		err = i915_request_await_dma_fence(rq, chain->fence);
		if (err < 0)
			break;
	}

	dma_fence_put(iter);
	return err;
}

1282
int
1283 1284 1285 1286
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
1287
{
1288 1289
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
1290 1291
	int ret;

1292 1293 1294
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

1295 1296
		/* XXX Error for signal-on-any fence arrays */

1297 1298 1299 1300
		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
1301

1302 1303
	do {
		fence = *child++;
1304 1305
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1306
			continue;
1307
		}
1308

1309
		if (fence->context == rq->fence.context)
1310 1311
			continue;

1312 1313 1314 1315
		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */
1316

1317
		if (dma_fence_is_i915(fence))
1318 1319 1320
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook);
1321
		else
1322
			ret = i915_request_await_external(rq, fence);
1323 1324
		if (ret < 0)
			return ret;
1325
	} while (--nchild);
1326 1327 1328 1329

	return 0;
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
static int
await_request_submit(struct i915_request *to, struct i915_request *from)
{
	/*
	 * If we are waiting on a virtual engine, then it may be
	 * constrained to execute on a single engine *prior* to submission.
	 * When it is submitted, it will be first submitted to the virtual
	 * engine and then passed to the physical engine. We cannot allow
	 * the waiter to be submitted immediately to the physical engine
	 * as it may then bypass the virtual request.
	 */
	if (to->engine == READ_ONCE(from->engine))
		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
							&from->submit,
							I915_FENCE_GFP);
	else
		return __i915_request_await_execution(to, from, NULL);
}

1349
static int
1350
i915_request_await_request(struct i915_request *to, struct i915_request *from)
1351
{
1352
	int ret;
1353

1354 1355
	GEM_BUG_ON(to == from);
	GEM_BUG_ON(to->timeline == from->timeline);
1356

1357 1358
	if (i915_request_completed(from)) {
		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1359
		return 0;
1360 1361
	}

1362
	if (to->engine->schedule) {
1363
		ret = i915_sched_node_add_dependency(&to->sched,
1364
						     &from->sched,
1365 1366 1367
						     I915_DEPENDENCY_EXTERNAL);
		if (ret < 0)
			return ret;
1368 1369
	}

1370 1371
	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
		ret = await_request_submit(to, from);
1372 1373 1374 1375 1376 1377
	else
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
	if (ret < 0)
		return ret;

	return 0;
1378 1379
}

1380
int
1381
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1382 1383 1384 1385 1386
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

1387 1388 1389 1390 1391 1392 1393 1394
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1405 1406
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1407
			continue;
1408
		}
1409

1410 1411 1412 1413 1414
		/*
		 * Requests on the same timeline are explicitly ordered, along
		 * with their dependencies, by i915_request_add() which ensures
		 * that requests are submitted in-order through each ring.
		 */
1415 1416 1417
		if (fence->context == rq->fence.context)
			continue;

1418 1419 1420 1421 1422
		/* Squash repeated waits to the same timelines */
		if (fence->context &&
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
			continue;
1423 1424

		if (dma_fence_is_i915(fence))
1425
			ret = i915_request_await_request(rq, to_request(fence));
1426
		else
1427
			ret = i915_request_await_external(rq, fence);
1428 1429
		if (ret < 0)
			return ret;
1430 1431 1432 1433 1434

		/* Record the latest fence used against each timeline */
		if (fence->context)
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1435 1436 1437 1438 1439
	} while (--nchild);

	return 0;
}

1440
/**
1441
 * i915_request_await_object - set this request to (async) wait upon a bo
1442 1443
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1444
 * @write: whether the wait is on behalf of a writer
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1461 1462 1463
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1464
{
1465 1466
	struct dma_fence *excl;
	int ret = 0;
1467 1468

	if (write) {
1469 1470 1471
		struct dma_fence **shared;
		unsigned int count, i;

1472
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1473 1474 1475 1476 1477
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1478
			ret = i915_request_await_dma_fence(to, shared[i]);
1479 1480 1481 1482 1483 1484 1485 1486 1487
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1488
	} else {
1489
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1490 1491
	}

1492 1493
	if (excl) {
		if (ret == 0)
1494
			ret = i915_request_await_dma_fence(to, excl);
1495

1496
		dma_fence_put(excl);
1497 1498
	}

1499
	return ret;
1500 1501
}

1502 1503 1504
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1505
	struct intel_timeline *timeline = i915_request_timeline(rq);
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1528 1529
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1530
	if (prev && !__i915_request_is_complete(prev)) {
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
		/*
		 * The requests are supposed to be kept in order. However,
		 * we need to be wary in case the timeline->last_request
		 * is used as a barrier for external modification to this
		 * context.
		 */
		GEM_BUG_ON(prev->context == rq->context &&
			   i915_seqno_passed(prev->fence.seqno,
					     rq->fence.seqno));

1541
		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

1556 1557 1558 1559 1560
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1561 1562 1563 1564 1565
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1566 1567 1568 1569 1570
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1571
struct i915_request *__i915_request_commit(struct i915_request *rq)
1572
{
1573 1574
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1575
	u32 *cs;
1576

1577
	RQ_TRACE(rq, "\n");
1578

1579 1580 1581 1582 1583
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1584 1585
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1586
	rq->emitted_jiffies = jiffies;
1587

1588 1589
	/*
	 * Record the position of the start of the breadcrumb so that
1590 1591
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1592
	 * position of the ring's HEAD.
1593
	 */
1594
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1595
	GEM_BUG_ON(IS_ERR(cs));
1596
	rq->postfix = intel_ring_offset(rq, cs);
1597

1598
	return __i915_request_add_to_timeline(rq);
1599 1600
}

1601 1602 1603 1604 1605 1606
void __i915_request_queue_bh(struct i915_request *rq)
{
	i915_sw_fence_commit(&rq->semaphore);
	i915_sw_fence_commit(&rq->submit);
}

1607 1608 1609
void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1610 1611
	/*
	 * Let the backend know a new request has arrived that may need
1612 1613 1614 1615 1616 1617 1618 1619 1620
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1621 1622
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1623 1624 1625 1626

	local_bh_disable();
	__i915_request_queue_bh(rq);
	local_bh_enable(); /* kick tasklets */
1627 1628 1629 1630
}

void i915_request_add(struct i915_request *rq)
{
1631
	struct intel_timeline * const tl = i915_request_timeline(rq);
1632
	struct i915_sched_attr attr = {};
1633
	struct i915_gem_context *ctx;
1634

1635 1636
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1637 1638

	trace_i915_request_add(rq);
1639
	__i915_request_commit(rq);
1640

1641 1642 1643 1644 1645 1646
	/* XXX placeholder for selftests */
	rcu_read_lock();
	ctx = rcu_dereference(rq->context->gem_context);
	if (ctx)
		attr = ctx->sched;
	rcu_read_unlock();
1647

1648 1649
	__i915_request_queue(rq, &attr);

1650
	mutex_unlock(&tl->mutex);
1651 1652
}

1653
static unsigned long local_clock_ns(unsigned int *cpu)
1654 1655 1656
{
	unsigned long t;

1657 1658
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
1670
	t = local_clock();
1671 1672 1673 1674 1675 1676 1677 1678 1679
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

1680
	if (time_after(local_clock_ns(&this_cpu), timeout))
1681 1682 1683 1684 1685
		return true;

	return this_cpu != cpu;
}

1686
static bool __i915_spin_request(struct i915_request * const rq, int state)
1687
{
1688
	unsigned long timeout_ns;
1689
	unsigned int cpu;
1690 1691 1692 1693 1694 1695 1696

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1697 1698 1699 1700
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1701
	 */
1702
	if (!i915_request_is_running(rq))
1703 1704
		return false;

1705 1706
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1707 1708 1709 1710 1711 1712 1713 1714 1715
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1716 1717
	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
	timeout_ns += local_clock_ns(&cpu);
1718
	do {
1719
		if (dma_fence_is_signaled(&rq->fence))
1720
			return true;
1721

1722 1723 1724
		if (signal_pending_state(state, current))
			break;

1725
		if (busywait_stop(timeout_ns, cpu))
1726 1727
			break;

1728
		cpu_relax();
1729 1730 1731 1732 1733
	} while (!need_resched());

	return false;
}

1734 1735 1736 1737 1738 1739 1740 1741 1742
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

1743
	wake_up_process(fetch_and_zero(&wait->tsk));
1744 1745
}

1746
/**
1747
 * i915_request_wait - wait until execution of request has finished
1748
 * @rq: the request to wait upon
1749
 * @flags: how to wait
1750 1751
 * @timeout: how long to wait in jiffies
 *
1752
 * i915_request_wait() waits for the request to be completed, for a
1753 1754
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1755
 *
1756 1757 1758 1759
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1760
 */
1761
long i915_request_wait(struct i915_request *rq,
1762 1763
		       unsigned int flags,
		       long timeout)
1764
{
1765 1766
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1767
	struct request_wait wait;
1768 1769

	might_sleep();
1770
	GEM_BUG_ON(timeout < 0);
1771

1772
	if (dma_fence_is_signaled(&rq->fence))
1773
		return timeout;
1774

1775 1776
	if (!timeout)
		return -ETIME;
1777

1778
	trace_i915_request_wait_begin(rq, flags);
1779 1780 1781 1782 1783 1784 1785

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1786
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1787

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1811
	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1812
	    __i915_spin_request(rq, state))
1813
		goto out;
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
1827 1828
	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
		intel_rps_boost(rq);
1829

1830 1831 1832
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	/*
	 * Flush the submission tasklet, but only if it may help this request.
	 *
	 * We sometimes experience some latency between the HW interrupts and
	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
	 * be due to lazy CS events), so lets run the tasklet manually if there
	 * is a chance it may submit this request. If the request is not ready
	 * to run, as it is waiting for other fences to be signaled, flushing
	 * the tasklet is busy work without any advantage for this client.
	 *
	 * If the HW is being lazy, this is the last chance before we go to
	 * sleep to catch any pending events. We will check periodically in
	 * the heartbeat to flush the submission tasklets as a last resort
	 * for unhappy HW.
	 */
	if (i915_request_is_ready(rq))
1850
		__intel_engine_flush_submission(rq->engine, false);
1851

1852 1853
	for (;;) {
		set_current_state(state);
1854

1855
		if (dma_fence_is_signaled(&rq->fence))
1856
			break;
1857 1858

		if (signal_pending_state(state, current)) {
1859
			timeout = -ERESTARTSYS;
1860 1861 1862
			break;
		}

1863 1864
		if (!timeout) {
			timeout = -ETIME;
1865 1866 1867
			break;
		}

1868
		timeout = io_schedule_timeout(timeout);
1869
	}
1870
	__set_current_state(TASK_RUNNING);
1871

1872 1873 1874
	if (READ_ONCE(wait.tsk))
		dma_fence_remove_callback(&rq->fence, &wait.cb);
	GEM_BUG_ON(!list_empty(&wait.cb.node));
1875 1876

out:
1877
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1878
	trace_i915_request_wait_end(rq);
1879
	return timeout;
1880
}
1881

C
Chris Wilson 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
static int print_sched_attr(const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
{
	if (attr->priority == I915_PRIORITY_INVALID)
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);

	return x;
}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
static char queue_status(const struct i915_request *rq)
{
	if (i915_request_is_active(rq))
		return 'E';

	if (i915_request_is_ready(rq))
		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';

	return 'U';
}

static const char *run_status(const struct i915_request *rq)
{
1907
	if (__i915_request_is_complete(rq))
1908 1909
		return "!";

1910
	if (__i915_request_has_started(rq))
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
		return "*";

	if (!i915_sw_fence_signaled(&rq->semaphore))
		return "&";

	return "";
}

static const char *fence_status(const struct i915_request *rq)
{
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
		return "+";

	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		return "-";

	return "";
}

C
Chris Wilson 已提交
1930 1931
void i915_request_show(struct drm_printer *m,
		       const struct i915_request *rq,
1932 1933
		       const char *prefix,
		       int indent)
C
Chris Wilson 已提交
1934 1935 1936 1937 1938
{
	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
	char buf[80] = "";
	int x = 0;

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	/*
	 * The prefix is used to show the queue status, for which we use
	 * the following flags:
	 *
	 *  U [Unready]
	 *    - initial status upon being submitted by the user
	 *
	 *    - the request is not ready for execution as it is waiting
	 *      for external fences
	 *
	 *  R [Ready]
	 *    - all fences the request was waiting on have been signaled,
	 *      and the request is now ready for execution and will be
	 *      in a backend queue
	 *
	 *    - a ready request may still need to wait on semaphores
	 *      [internal fences]
	 *
	 *  V [Ready/virtual]
	 *    - same as ready, but queued over multiple backends
	 *
	 *  E [Executing]
	 *    - the request has been transferred from the backend queue and
	 *      submitted for execution on HW
	 *
	 *    - a completed request may still be regarded as executing, its
	 *      status may not be updated until it is retired and removed
	 *      from the lists
	 */

C
Chris Wilson 已提交
1969 1970
	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));

1971 1972 1973
	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
		   prefix, indent, "                ",
		   queue_status(rq),
C
Chris Wilson 已提交
1974
		   rq->fence.context, rq->fence.seqno,
1975 1976
		   run_status(rq),
		   fence_status(rq),
C
Chris Wilson 已提交
1977 1978 1979 1980 1981
		   buf,
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
		   name);
}

1982 1983
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1984
#include "selftests/i915_request.c"
1985
#endif
1986

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

2004 2005
int __init i915_global_request_init(void)
{
2006 2007 2008 2009 2010 2011 2012 2013
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
2014 2015 2016
	if (!global.slab_requests)
		return -ENOMEM;

2017 2018 2019 2020 2021 2022 2023
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

2024
	i915_global_register(&global.base);
2025 2026 2027 2028 2029 2030
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}