i915_request.c 47.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
34
#include "gt/intel_ring.h"
35
#include "gt/intel_rps.h"
36

37
#include "i915_active.h"
38
#include "i915_drv.h"
39
#include "i915_globals.h"
40
#include "i915_trace.h"
41
#include "intel_pm.h"
42

43 44 45 46
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
47 48
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
49 50
};

51
static struct i915_global_request {
52
	struct i915_global base;
53
	struct kmem_cache *slab_requests;
54
	struct kmem_cache *slab_execute_cbs;
55 56
} global;

57
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58
{
59
	return dev_name(to_request(fence)->i915->drm.dev);
60 61
}

62
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63
{
64 65
	const struct i915_gem_context *ctx;

66 67
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
68 69 70 71 72 73 74 75 76 77
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

78
	ctx = i915_request_gem_context(to_request(fence));
79 80 81 82
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
83 84
}

85
static bool i915_fence_signaled(struct dma_fence *fence)
86
{
87
	return i915_request_completed(to_request(fence));
88 89
}

90
static bool i915_fence_enable_signaling(struct dma_fence *fence)
91
{
92
	return i915_request_enable_breadcrumb(to_request(fence));
93 94
}

95
static signed long i915_fence_wait(struct dma_fence *fence,
96
				   bool interruptible,
97
				   signed long timeout)
98
{
99 100 101
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
102 103
}

104
static void i915_fence_release(struct dma_fence *fence)
105
{
106
	struct i915_request *rq = to_request(fence);
107

108 109
	/*
	 * The request is put onto a RCU freelist (i.e. the address
110 111 112 113 114
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
115
	i915_sw_fence_fini(&rq->submit);
116
	i915_sw_fence_fini(&rq->semaphore);
117

118
	kmem_cache_free(global.slab_requests, rq);
119 120
}

121
const struct dma_fence_ops i915_fence_ops = {
122 123 124 125 126 127 128 129
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

174
static inline void
175
remove_from_client(struct i915_request *request)
176
{
177
	struct drm_i915_file_private *file_priv;
178

179
	if (!READ_ONCE(request->file_priv))
180 181
		return;

182 183 184 185
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
186
		list_del(&request->client_link);
187
		spin_unlock(&file_priv->mm.lock);
188
	}
189
	rcu_read_unlock();
190 191
}

192
static void free_capture_list(struct i915_request *request)
193
{
194
	struct i915_capture_list *capture;
195

196
	capture = fetch_and_zero(&request->capture_list);
197
	while (capture) {
198
		struct i915_capture_list *next = capture->next;
199 200 201 202 203 204

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

218 219 220 221 222 223 224 225 226 227 228
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
229
	spin_lock_irq(&locked->active.lock);
230 231 232 233 234
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
235
	list_del_init(&rq->sched.link);
236 237
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
238
	spin_unlock_irq(&locked->active.lock);
239 240
}

241
bool i915_request_retire(struct i915_request *rq)
242
{
243 244
	if (!i915_request_completed(rq))
		return false;
245

246
	RQ_TRACE(rq, "\n");
247

248 249
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
250

251 252 253 254 255 256 257 258 259
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
260 261
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
262 263 264
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
265
	rq->ring->head = rq->postfix;
266

267 268 269 270 271 272
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
273
	remove_from_engine(rq);
274

275
	spin_lock_irq(&rq->lock);
276 277 278 279 280
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
281
	if (i915_request_has_waitboost(rq)) {
282 283
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
284
	}
285 286 287 288 289
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
290
	spin_unlock_irq(&rq->lock);
291

292
	remove_from_client(rq);
293
	list_del(&rq->link);
294

295 296
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
297

298 299 300 301 302
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
303 304
}

305
void i915_request_retire_upto(struct i915_request *rq)
306
{
307
	struct intel_timeline * const tl = i915_request_timeline(rq);
308
	struct i915_request *tmp;
309

310
	RQ_TRACE(rq, "\n");
311

312
	GEM_BUG_ON(!i915_request_completed(rq));
313

314
	do {
315
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
316
	} while (i915_request_retire(tmp) && tmp != rq);
317 318
}

319
static int
320 321 322 323 324
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
325 326 327
{
	struct execute_cb *cb;

328 329 330
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
331
		return 0;
332
	}
333 334 335 336 337 338 339 340 341

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

342 343 344 345 346 347
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

348 349
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
350 351 352 353
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
354 355 356 357 358 359 360
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

361 362
	/* Copy across semaphore status as we need the same behaviour */
	rq->sched.flags |= signal->sched.flags;
363 364 365
	return 0;
}

366
bool __i915_request_submit(struct i915_request *request)
367
{
368
	struct intel_engine_cs *engine = request->engine;
369
	bool result = false;
370

371
	RQ_TRACE(request, "\n");
372

373
	GEM_BUG_ON(!irqs_disabled());
374
	lockdep_assert_held(&engine->active.lock);
375

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

395
	if (intel_context_is_banned(request->context))
396 397
		i915_request_skip(request, -EIO);

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
416
		engine->saturated |= request->sched.semaphores;
417

418 419
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
420

421 422 423
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
424

425 426 427
xfer:	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);

428
	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
429
		list_move_tail(&request->sched.link, &engine->active.requests);
430 431
		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	}
432

433
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
434
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
435
	    !i915_request_enable_breadcrumb(request))
436
		intel_engine_signal_breadcrumbs(engine);
437

438 439
	__notify_execute_cb(request);

440 441
	spin_unlock(&request->lock);

442
	return result;
443 444
}

445
void i915_request_submit(struct i915_request *request)
446 447 448
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
449

450
	/* Will be called from irq-context when using foreign fences. */
451
	spin_lock_irqsave(&engine->active.lock, flags);
452

453
	__i915_request_submit(request);
454

455
	spin_unlock_irqrestore(&engine->active.lock, flags);
456 457
}

458
void __i915_request_unsubmit(struct i915_request *request)
459
{
460
	struct intel_engine_cs *engine = request->engine;
461

462
	RQ_TRACE(request, "\n");
463

464
	GEM_BUG_ON(!irqs_disabled());
465
	lockdep_assert_held(&engine->active.lock);
466

467 468
	/*
	 * Only unwind in reverse order, required so that the per-context list
469 470
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
471

472 473
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
474

475
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
476
		i915_request_cancel_breadcrumb(request);
477

478 479
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
480

481 482
	spin_unlock(&request->lock);

483 484 485 486 487 488
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

489 490
	/*
	 * We don't need to wake_up any waiters on request->execute, they
491
	 * will get woken by any other event or us re-adding this request
492
	 * to the engine timeline (__i915_request_submit()). The waiters
493 494 495 496 497
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

498
void i915_request_unsubmit(struct i915_request *request)
499 500 501 502 503
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
504
	spin_lock_irqsave(&engine->active.lock, flags);
505

506
	__i915_request_unsubmit(request);
507

508
	spin_unlock_irqrestore(&engine->active.lock, flags);
509 510
}

511
static int __i915_sw_fence_call
512
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
513
{
514
	struct i915_request *request =
515 516 517 518
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
519
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
520 521 522 523

		if (unlikely(fence->error))
			i915_request_skip(request, fence->error);

524
		/*
525 526 527 528 529 530
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
531 532
		 */
		rcu_read_lock();
533
		request->engine->submit_request(request);
534
		rcu_read_unlock();
535 536 537
		break;

	case FENCE_FREE:
538
		i915_request_put(request);
539 540 541
		break;
	}

542 543 544
	return NOTIFY_DONE;
}

545 546 547 548 549 550 551 552
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_request *request =
		container_of(fence, typeof(*request), semaphore);

	switch (state) {
	case FENCE_COMPLETE:
553
		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
554 555 556 557 558 559 560 561 562 563
		break;

	case FENCE_FREE:
		i915_request_put(request);
		break;
	}

	return NOTIFY_DONE;
}

564
static void retire_requests(struct intel_timeline *tl)
565 566 567
{
	struct i915_request *rq, *rn;

568
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
569
		if (!i915_request_retire(rq))
570 571 572 573
			break;
}

static noinline struct i915_request *
574
request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
575 576 577
{
	struct i915_request *rq;

578
	if (list_empty(&tl->requests))
579 580
		goto out;

581 582 583
	if (!gfpflags_allow_blocking(gfp))
		goto out;

584
	/* Move our oldest request to the slab-cache (if not in use!) */
585
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
586 587 588 589 590 591 592
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

593
	/* Ratelimit ourselves to prevent oom from malicious clients */
594
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
595 596 597
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
598
	retire_requests(tl);
599 600

out:
601
	return kmem_cache_alloc(global.slab_requests, gfp);
602 603
}

604 605 606 607 608 609 610 611 612
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

613 614
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

615 616 617 618 619 620
	rq->file_priv = NULL;
	rq->capture_list = NULL;

	INIT_LIST_HEAD(&rq->execute_cb);
}

621
struct i915_request *
622
__i915_request_create(struct intel_context *ce, gfp_t gfp)
623
{
624
	struct intel_timeline *tl = ce->timeline;
625 626
	struct i915_request *rq;
	u32 seqno;
627 628
	int ret;

629
	might_sleep_if(gfpflags_allow_blocking(gfp));
630

631 632
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
633

634 635
	/*
	 * Beware: Dragons be flying overhead.
636 637 638 639
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
640
	 * of being read by __i915_active_request_get_rcu(). As such,
641 642
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
643
	 * read the request->global_seqno and increment the reference count.
644 645 646 647
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
648 649
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
650 651 652 653 654 655 656 657 658 659 660 661 662
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
663
	rq = kmem_cache_alloc(global.slab_requests,
664
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
665
	if (unlikely(!rq)) {
666
		rq = request_alloc_slow(tl, gfp);
667
		if (!rq) {
668 669 670
			ret = -ENOMEM;
			goto err_unreserve;
		}
671
	}
672

673
	rq->i915 = ce->engine->i915;
674
	rq->context = ce;
675
	rq->engine = ce->engine;
676
	rq->ring = ce->ring;
677
	rq->execution_mask = ce->engine->mask;
678

679 680 681 682 683 684 685 686 687 688 689 690
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

691 692
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
693
	rq->hwsp_seqno = tl->hwsp_seqno;
694

695
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
696

697
	/* We bump the ref for the fence chain */
698 699
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
700

701
	i915_sched_node_reinit(&rq->sched);
702

703
	/* No zalloc, everything must be cleared after use */
704
	rq->batch = NULL;
705 706 707
	GEM_BUG_ON(rq->file_priv);
	GEM_BUG_ON(rq->capture_list);
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
708

709 710 711
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
712
	 * i915_request_add() call can't fail. Note that the reserve may need
713 714
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
715 716 717 718 719
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
720
	 */
721 722
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
723

724 725
	/*
	 * Record the position of the start of the request so that
726 727 728 729
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
730
	rq->head = rq->ring->emit;
731

732
	ret = rq->engine->request_alloc(rq);
733 734
	if (ret)
		goto err_unwind;
735

736 737
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

738
	intel_context_mark_active(ce);
739
	return rq;
740

741
err_unwind:
742
	ce->ring->emit = rq->head;
743

744
	/* Make sure we didn't add ourselves to external state before freeing */
745 746
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
747

748
err_free:
749
	kmem_cache_free(global.slab_requests, rq);
750
err_unreserve:
751
	intel_context_unpin(ce);
752
	return ERR_PTR(ret);
753 754
}

755 756 757 758
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
759
	struct intel_timeline *tl;
760

761 762 763
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
764 765

	/* Move our oldest request to the slab-cache (if not in use!) */
766 767
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
768 769 770 771 772 773 774 775 776
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
777
	rq->cookie = lockdep_pin_lock(&tl->mutex);
778 779 780 781

	return rq;

err_unlock:
782
	intel_context_timeline_unlock(tl);
783 784 785
	return rq;
}

786 787 788
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
789 790
	struct dma_fence *fence;
	int err;
791

792 793 794
	GEM_BUG_ON(i915_request_timeline(rq) ==
		   rcu_access_pointer(signal->timeline));

795
	fence = NULL;
796
	rcu_read_lock();
797 798 799 800 801
	spin_lock_irq(&signal->lock);
	if (!i915_request_started(signal) &&
	    !list_is_first(&signal->link,
			   &rcu_dereference(signal->timeline)->requests)) {
		struct i915_request *prev = list_prev_entry(signal, link);
802

803 804 805 806 807 808 809 810 811 812 813
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
		if (i915_request_get_rcu(prev)) {
			if (list_next_entry(prev, link) == signal)
				fence = &prev->fence;
			else
				i915_request_put(prev);
814 815
		}
	}
816 817 818 819
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
820 821 822 823 824 825 826 827 828

	err = 0;
	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
829 830
}

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
846
	return rq->sched.semaphores | rq->engine->saturated;
847 848
}

849
static int
850 851 852
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
853
{
854
	const int has_token = INTEL_GEN(to->i915) >= 12;
855
	u32 hwsp_offset;
856
	int len, err;
857 858 859 860
	u32 *cs;

	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

861
	/* We need to pin the signaler's HWSP until we are finished reading. */
862 863 864
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
865

866 867 868 869 870
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
871 872 873 874 875 876 877 878 879 880 881
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
882 883 884 885 886
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
887
	*cs++ = seqno;
888 889
	*cs++ = hwsp_offset;
	*cs++ = 0;
890 891 892 893
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
894 895

	intel_ring_advance(to, cs);
896 897 898 899 900 901 902 903
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
904 905 906 907 908 909
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

	if (!rcu_access_pointer(from->hwsp_cacheline))
		goto await_fence;

910 911 912 913 914 915 916 917 918 919 920 921 922 923
	/* Just emit the first semaphore we see as request space is limited. */
	if (already_busywaiting(to) & from->engine->mask)
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

924 925
	to->sched.semaphores |= from->engine->mask;
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
926
	return 0;
927 928 929 930 931

await_fence:
	return i915_sw_fence_await_dma_fence(&to->submit,
					     &from->fence, 0,
					     I915_FENCE_GFP);
932 933
}

934
static int
935
i915_request_await_request(struct i915_request *to, struct i915_request *from)
936
{
937
	int ret;
938 939

	GEM_BUG_ON(to == from);
940
	GEM_BUG_ON(to->timeline == from->timeline);
941

942
	if (i915_request_completed(from))
943 944
		return 0;

945
	if (to->engine->schedule) {
946
		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
947 948 949 950
		if (ret < 0)
			return ret;
	}

951
	if (to->engine == from->engine)
952 953
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
954
						       I915_FENCE_GFP);
955
	else
956
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
957 958 959 960 961 962 963 964 965 966
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
967

968
	return 0;
969 970
}

971
int
972
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
973
{
974 975
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
976 977
	int ret;

978 979
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
980 981 982 983 984 985
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
986 987 988 989 990 991 992
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
993

994 995
	do {
		fence = *child++;
996 997
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
998
			continue;
999
		}
1000

1001 1002
		/*
		 * Requests on the same timeline are explicitly ordered, along
1003
		 * with their dependencies, by i915_request_add() which ensures
1004 1005
		 * that requests are submitted in-order through each ring.
		 */
1006
		if (fence->context == rq->fence.context)
1007 1008
			continue;

1009
		/* Squash repeated waits to the same timelines */
1010
		if (fence->context &&
1011 1012
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
1013 1014
			continue;

1015
		if (dma_fence_is_i915(fence))
1016
			ret = i915_request_await_request(rq, to_request(fence));
1017
		else
1018
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1019
							    fence->context ? I915_FENCE_TIMEOUT : 0,
1020
							    I915_FENCE_GFP);
1021 1022
		if (ret < 0)
			return ret;
1023 1024

		/* Record the latest fence used against each timeline */
1025
		if (fence->context)
1026 1027
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1028
	} while (--nchild);
1029 1030 1031 1032

	return 0;
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

static int
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
{
	int err;

1055 1056
	GEM_BUG_ON(intel_context_is_barrier(from->context));

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
		return 0;

	/* Ensure both start together [after all semaphores in signal] */
	if (intel_engine_has_semaphores(to->engine))
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
	else
		err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/* Couple the dependency tree for PI on this exposed to->fence */
	if (to->engine->schedule) {
		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
		if (err < 0)
			return err;
	}

	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1108 1109
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1110
			continue;
1111
		}
1112 1113 1114 1115 1116 1117 1118 1119 1120

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
1121
							     hook);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

1133
/**
1134
 * i915_request_await_object - set this request to (async) wait upon a bo
1135 1136
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1137
 * @write: whether the wait is on behalf of a writer
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1154 1155 1156
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1157
{
1158 1159
	struct dma_fence *excl;
	int ret = 0;
1160 1161

	if (write) {
1162 1163 1164
		struct dma_fence **shared;
		unsigned int count, i;

1165
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1166 1167 1168 1169 1170
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1171
			ret = i915_request_await_dma_fence(to, shared[i]);
1172 1173 1174 1175 1176 1177 1178 1179 1180
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1181
	} else {
1182
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1183 1184
	}

1185 1186
	if (excl) {
		if (ret == 0)
1187
			ret = i915_request_await_dma_fence(to, excl);
1188

1189
		dma_fence_put(excl);
1190 1191
	}

1192
	return ret;
1193 1194
}

1195 1196 1197 1198 1199
void i915_request_skip(struct i915_request *rq, int error)
{
	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
	dma_fence_set_error(&rq->fence, error);

C
Chris Wilson 已提交
1200 1201 1202
	if (rq->infix == rq->postfix)
		return;

1203 1204 1205 1206 1207
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
C
Chris Wilson 已提交
1208
	__i915_request_fill(rq, 0);
C
Chris Wilson 已提交
1209
	rq->infix = rq->postfix;
1210 1211
}

1212 1213 1214
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1215
	struct intel_timeline *timeline = i915_request_timeline(rq);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1238 1239
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	if (prev && !i915_request_completed(prev)) {
		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

	list_add_tail(&rq->link, &timeline->requests);

1258 1259 1260 1261 1262
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1263 1264 1265 1266 1267
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1268 1269 1270 1271 1272
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1273
struct i915_request *__i915_request_commit(struct i915_request *rq)
1274
{
1275 1276
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1277
	u32 *cs;
1278

1279
	RQ_TRACE(rq, "\n");
1280

1281 1282 1283 1284 1285
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1286 1287
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1288
	rq->emitted_jiffies = jiffies;
1289

1290 1291
	/*
	 * Record the position of the start of the breadcrumb so that
1292 1293
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1294
	 * position of the ring's HEAD.
1295
	 */
1296
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1297
	GEM_BUG_ON(IS_ERR(cs));
1298
	rq->postfix = intel_ring_offset(rq, cs);
1299

1300
	return __i915_request_add_to_timeline(rq);
1301 1302 1303 1304 1305
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1306 1307
	/*
	 * Let the backend know a new request has arrived that may need
1308 1309 1310 1311 1312 1313 1314 1315 1316
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1317
	i915_sw_fence_commit(&rq->semaphore);
1318 1319
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1320 1321 1322 1323 1324
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1325
	struct intel_timeline * const tl = i915_request_timeline(rq);
1326
	struct i915_sched_attr attr = {};
1327 1328
	struct i915_request *prev;

1329 1330
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1331 1332 1333 1334 1335

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

1336 1337
	if (rcu_access_pointer(rq->context->gem_context))
		attr = i915_request_gem_context(rq)->sched;
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	/*
	 * Boost actual workloads past semaphores!
	 *
	 * With semaphores we spin on one engine waiting for another,
	 * simply to reduce the latency of starting our work when
	 * the signaler completes. However, if there is any other
	 * work that we could be doing on this engine instead, that
	 * is better utilisation and will reduce the overall duration
	 * of the current work. To avoid PI boosting a semaphore
	 * far in the distance past over useful work, we keep a history
	 * of any semaphore use along our dependency chain.
	 */
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;

	/*
	 * Boost priorities to new clients (new request flows).
	 *
	 * Allow interactive/synchronous clients to jump ahead of
	 * the bulk clients. (FQ_CODEL)
	 */
	if (list_empty(&rq->sched.signalers_list))
		attr.priority |= I915_PRIORITY_WAIT;

1363
	local_bh_disable();
1364
	__i915_request_queue(rq, &attr);
1365
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	/*
	 * In typical scenarios, we do not expect the previous request on
	 * the timeline to be still tracked by timeline->last_request if it
	 * has been completed. If the completed request is still here, that
	 * implies that request retirement is a long way behind submission,
	 * suggesting that we haven't been retiring frequently enough from
	 * the combination of retire-before-alloc, waiters and the background
	 * retirement worker. So if the last request on this timeline was
	 * already completed, do a catch up pass, flushing the retirement queue
	 * up to this client. Since we have now moved the heaviest operations
	 * during retirement onto secondary workers, such as freeing objects
	 * or contexts, retiring a bunch of requests is mostly list management
	 * (and cache misses), and so we should not be overly penalizing this
	 * client by performing excess work, though we may still performing
	 * work on behalf of others -- but instead we should benefit from
	 * improved resource management. (Well, that's the theory at least.)
	 */
1384 1385 1386
	if (prev &&
	    i915_request_completed(prev) &&
	    rcu_access_pointer(prev->timeline) == tl)
1387
		i915_request_retire_upto(prev);
1388

1389
	mutex_unlock(&tl->mutex);
1390 1391 1392 1393 1394 1395
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

1396 1397
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1425 1426
static bool __i915_spin_request(const struct i915_request * const rq,
				int state, unsigned long timeout_us)
1427
{
1428
	unsigned int cpu;
1429 1430 1431 1432 1433 1434 1435

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1436 1437 1438 1439
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1440
	 */
1441
	if (!i915_request_is_running(rq))
1442 1443
		return false;

1444 1445
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
1457 1458
		if (i915_request_completed(rq))
			return true;
1459

1460 1461 1462 1463 1464 1465
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1466
		cpu_relax();
1467 1468 1469 1470 1471
	} while (!need_resched());

	return false;
}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1484
/**
1485
 * i915_request_wait - wait until execution of request has finished
1486
 * @rq: the request to wait upon
1487
 * @flags: how to wait
1488 1489
 * @timeout: how long to wait in jiffies
 *
1490
 * i915_request_wait() waits for the request to be completed, for a
1491 1492
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1493
 *
1494 1495 1496 1497
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1498
 */
1499
long i915_request_wait(struct i915_request *rq,
1500 1501
		       unsigned int flags,
		       long timeout)
1502
{
1503 1504
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1505
	struct request_wait wait;
1506 1507

	might_sleep();
1508
	GEM_BUG_ON(timeout < 0);
1509

1510
	if (dma_fence_is_signaled(&rq->fence))
1511
		return timeout;
1512

1513 1514
	if (!timeout)
		return -ETIME;
1515

1516
	trace_i915_request_wait_begin(rq, flags);
1517 1518 1519 1520 1521 1522 1523

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1524
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1525

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1549
	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1550 1551
	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
		dma_fence_signal(&rq->fence);
1552
		goto out;
1553
	}
1554

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1569
			intel_rps_boost(rq);
1570
		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1571
	}
1572

1573 1574 1575
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1576

1577 1578
	for (;;) {
		set_current_state(state);
1579

1580 1581
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1582
			break;
1583
		}
1584

1585 1586
		intel_engine_flush_submission(rq->engine);

1587
		if (signal_pending_state(state, current)) {
1588
			timeout = -ERESTARTSYS;
1589 1590 1591
			break;
		}

1592 1593
		if (!timeout) {
			timeout = -ETIME;
1594 1595 1596
			break;
		}

1597
		timeout = io_schedule_timeout(timeout);
1598
	}
1599
	__set_current_state(TASK_RUNNING);
1600

1601 1602 1603
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1604
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1605
	trace_i915_request_wait_end(rq);
1606
	return timeout;
1607
}
1608

1609 1610
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1611
#include "selftests/i915_request.c"
1612
#endif
1613

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1631 1632
int __init i915_global_request_init(void)
{
1633 1634 1635 1636 1637 1638 1639 1640
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1641 1642 1643
	if (!global.slab_requests)
		return -ENOMEM;

1644 1645 1646 1647 1648 1649 1650
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1651
	i915_global_register(&global.base);
1652 1653 1654 1655 1656 1657
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}