i915_request.c 56.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26
#include <linux/dma-fence-chain.h>
27 28
#include <linux/irq_work.h>
#include <linux/prefetch.h>
29 30
#include <linux/sched.h>
#include <linux/sched/clock.h>
31
#include <linux/sched/signal.h>
32

33
#include "gem/i915_gem_context.h"
34
#include "gt/intel_breadcrumbs.h"
35
#include "gt/intel_context.h"
36
#include "gt/intel_ring.h"
37
#include "gt/intel_rps.h"
38

39
#include "i915_active.h"
40
#include "i915_drv.h"
41
#include "i915_globals.h"
42
#include "i915_trace.h"
43
#include "intel_pm.h"
44

45 46 47
struct execute_cb {
	struct irq_work work;
	struct i915_sw_fence *fence;
48 49
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
50 51
};

52
static struct i915_global_request {
53
	struct i915_global base;
54
	struct kmem_cache *slab_requests;
55
	struct kmem_cache *slab_execute_cbs;
56 57
} global;

58
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59
{
60
	return dev_name(to_request(fence)->engine->i915->drm.dev);
61 62
}

63
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64
{
65 66
	const struct i915_gem_context *ctx;

67 68
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
69 70 71 72 73 74 75 76 77 78
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

79
	ctx = i915_request_gem_context(to_request(fence));
80 81 82 83
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
84 85
}

86
static bool i915_fence_signaled(struct dma_fence *fence)
87
{
88
	return i915_request_completed(to_request(fence));
89 90
}

91
static bool i915_fence_enable_signaling(struct dma_fence *fence)
92
{
93
	return i915_request_enable_breadcrumb(to_request(fence));
94 95
}

96
static signed long i915_fence_wait(struct dma_fence *fence,
97
				   bool interruptible,
98
				   signed long timeout)
99
{
100 101 102
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
103 104
}

105 106 107 108 109
struct kmem_cache *i915_request_slab_cache(void)
{
	return global.slab_requests;
}

110
static void i915_fence_release(struct dma_fence *fence)
111
{
112
	struct i915_request *rq = to_request(fence);
113

114 115
	/*
	 * The request is put onto a RCU freelist (i.e. the address
116 117 118 119 120
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
121
	i915_sw_fence_fini(&rq->submit);
122
	i915_sw_fence_fini(&rq->semaphore);
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	/*
	 * Keep one request on each engine for reserved use under mempressure
	 *
	 * We do not hold a reference to the engine here and so have to be
	 * very careful in what rq->engine we poke. The virtual engine is
	 * referenced via the rq->context and we released that ref during
	 * i915_request_retire(), ergo we must not dereference a virtual
	 * engine here. Not that we would want to, as the only consumer of
	 * the reserved engine->request_pool is the power management parking,
	 * which must-not-fail, and that is only run on the physical engines.
	 *
	 * Since the request must have been executed to be have completed,
	 * we know that it will have been processed by the HW and will
	 * not be unsubmitted again, so rq->engine and rq->execution_mask
	 * at this point is stable. rq->execution_mask will be a single
	 * bit if the last and _only_ engine it could execution on was a
	 * physical engine, if it's multiple bits then it started on and
	 * could still be on a virtual engine. Thus if the mask is not a
	 * power-of-two we assume that rq->engine may still be a virtual
	 * engine and so a dangling invalid pointer that we cannot dereference
	 *
	 * For example, consider the flow of a bonded request through a virtual
	 * engine. The request is created with a wide engine mask (all engines
	 * that we might execute on). On processing the bond, the request mask
	 * is reduced to one or more engines. If the request is subsequently
	 * bound to a single engine, it will then be constrained to only
	 * execute on that engine and never returned to the virtual engine
	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
	 * know that if the rq->execution_mask is a single bit, rq->engine
	 * can be a physical engine with the exact corresponding mask.
	 */
	if (is_power_of_2(rq->execution_mask) &&
	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
157 158
		return;

159
	kmem_cache_free(global.slab_requests, rq);
160 161
}

162
const struct dma_fence_ops i915_fence_ops = {
163 164 165 166 167 168 169 170
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

190 191
static __always_inline void
__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
192
{
193
	struct execute_cb *cb, *cn;
194

195
	if (llist_empty(&rq->execute_cb))
196 197
		return;

198 199 200 201 202
	llist_for_each_entry_safe(cb, cn,
				  llist_del_all(&rq->execute_cb),
				  work.llnode)
		fn(&cb->work);
}
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217
static void __notify_execute_cb_irq(struct i915_request *rq)
{
	__notify_execute_cb(rq, irq_work_queue);
}

static bool irq_work_imm(struct irq_work *wrk)
{
	wrk->func(wrk);
	return false;
}

static void __notify_execute_cb_imm(struct i915_request *rq)
{
	__notify_execute_cb(rq, irq_work_imm);
218 219
}

220
static void free_capture_list(struct i915_request *request)
221
{
222
	struct i915_capture_list *capture;
223

224
	capture = fetch_and_zero(&request->capture_list);
225
	while (capture) {
226
		struct i915_capture_list *next = capture->next;
227 228 229 230 231 232

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

246 247 248 249 250 251 252 253 254 255 256
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
257
	spin_lock_irq(&locked->active.lock);
258 259 260 261 262
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
263
	list_del_init(&rq->sched.link);
264

265 266
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
267 268 269 270

	/* Prevent further __await_execution() registering a cb, then flush */
	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);

271
	spin_unlock_irq(&locked->active.lock);
272 273

	__notify_execute_cb_imm(rq);
274 275
}

276
bool i915_request_retire(struct i915_request *rq)
277
{
278 279
	if (!i915_request_completed(rq))
		return false;
280

281
	RQ_TRACE(rq, "\n");
282

283 284
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
285
	i915_request_mark_complete(rq);
C
Chris Wilson 已提交
286

287 288 289 290 291 292 293 294 295
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
296 297
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
298 299 300
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
301
	rq->ring->head = rq->postfix;
302

303 304
	if (!i915_request_signaled(rq)) {
		spin_lock_irq(&rq->lock);
305
		dma_fence_signal_locked(&rq->fence);
306 307
		spin_unlock_irq(&rq->lock);
	}
308

309
	if (i915_request_has_waitboost(rq)) {
310 311
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
312
	}
313 314 315 316 317 318 319 320 321 322 323 324

	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 *
	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
	 * after removing the breadcrumb and signaling it, so that we do not
	 * inadvertently attach the breadcrumb to a completed request.
	 */
	remove_from_engine(rq);
325
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
326

327
	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
328

329 330
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
331

332 333 334 335 336
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
337 338
}

339
void i915_request_retire_upto(struct i915_request *rq)
340
{
341
	struct intel_timeline * const tl = i915_request_timeline(rq);
342
	struct i915_request *tmp;
343

344
	RQ_TRACE(rq, "\n");
345

346
	GEM_BUG_ON(!i915_request_completed(rq));
347

348
	do {
349
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
350
	} while (i915_request_retire(tmp) && tmp != rq);
351 352
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
static struct i915_request * const *
__engine_active(struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->execlists.active);
}

static bool __request_in_flight(const struct i915_request *signal)
{
	struct i915_request * const *port, *rq;
	bool inflight = false;

	if (!i915_request_is_ready(signal))
		return false;

	/*
	 * Even if we have unwound the request, it may still be on
	 * the GPU (preempt-to-busy). If that request is inside an
	 * unpreemptible critical section, it will not be removed. Some
	 * GPU functions may even be stuck waiting for the paired request
	 * (__await_execution) to be submitted and cannot be preempted
	 * until the bond is executing.
	 *
	 * As we know that there are always preemption points between
	 * requests, we know that only the currently executing request
	 * may be still active even though we have cleared the flag.
378
	 * However, we can't rely on our tracking of ELSP[0] to know
379 380 381 382
	 * which request is currently active and so maybe stuck, as
	 * the tracking maybe an event behind. Instead assume that
	 * if the context is still inflight, then it is still active
	 * even if the active flag has been cleared.
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	 *
	 * To further complicate matters, if there a pending promotion, the HW
	 * may either perform a context switch to the second inflight execlists,
	 * or it may switch to the pending set of execlists. In the case of the
	 * latter, it may send the ACK and we process the event copying the
	 * pending[] over top of inflight[], _overwriting_ our *active. Since
	 * this implies the HW is arbitrating and not struck in *active, we do
	 * not worry about complete accuracy, but we do require no read/write
	 * tearing of the pointer [the read of the pointer must be valid, even
	 * as the array is being overwritten, for which we require the writes
	 * to avoid tearing.]
	 *
	 * Note that the read of *execlists->active may race with the promotion
	 * of execlists->pending[] to execlists->inflight[], overwritting
	 * the value at *execlists->active. This is fine. The promotion implies
	 * that we received an ACK from the HW, and so the context is not
	 * stuck -- if we do not see ourselves in *active, the inflight status
	 * is valid. If instead we see ourselves being copied into *active,
	 * we are inflight and may signal the callback.
402 403 404 405 406
	 */
	if (!intel_context_inflight(signal->context))
		return false;

	rcu_read_lock();
407 408 409
	for (port = __engine_active(signal->engine);
	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
	     port++) {
410 411 412 413 414 415 416 417 418 419 420
		if (rq->context == signal->context) {
			inflight = i915_seqno_passed(rq->fence.seqno,
						     signal->fence.seqno);
			break;
		}
	}
	rcu_read_unlock();

	return inflight;
}

421
static int
422 423 424 425 426
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
427 428 429
{
	struct execute_cb *cb;

430 431 432
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
433
		return 0;
434
	}
435 436 437 438 439 440 441 442 443

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

444 445 446 447 448 449
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	/*
	 * Register the callback first, then see if the signaler is already
	 * active. This ensures that if we race with the
	 * __notify_execute_cb from i915_request_submit() and we are not
	 * included in that list, we get a second bite of the cherry and
	 * execute it ourselves. After this point, a future
	 * i915_request_submit() will notify us.
	 *
	 * In i915_request_retire() we set the ACTIVE bit on a completed
	 * request (then flush the execute_cb). So by registering the
	 * callback first, then checking the ACTIVE bit, we serialise with
	 * the completed/retired request.
	 */
	if (llist_add(&cb->work.llnode, &signal->execute_cb)) {
		if (i915_request_is_active(signal) ||
		    __request_in_flight(signal))
			__notify_execute_cb_imm(signal);
467 468 469 470 471
	}

	return 0;
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
static bool fatal_error(int error)
{
	switch (error) {
	case 0: /* not an error! */
	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
		return false;
	default:
		return true;
	}
}

void __i915_request_skip(struct i915_request *rq)
{
	GEM_BUG_ON(!fatal_error(rq->fence.error));

	if (rq->infix == rq->postfix)
		return;

	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	__i915_request_fill(rq, 0);
	rq->infix = rq->postfix;
}

void i915_request_set_error_once(struct i915_request *rq, int error)
{
	int old;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));

	if (i915_request_signaled(rq))
		return;

	old = READ_ONCE(rq->fence.error);
	do {
		if (fatal_error(old))
			return;
	} while (!try_cmpxchg(&rq->fence.error, &old, error));
}

516
bool __i915_request_submit(struct i915_request *request)
517
{
518
	struct intel_engine_cs *engine = request->engine;
519
	bool result = false;
520

521
	RQ_TRACE(request, "\n");
522

523
	GEM_BUG_ON(!irqs_disabled());
524
	lockdep_assert_held(&engine->active.lock);
525

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

545 546 547 548
	if (unlikely(intel_context_is_closed(request->context) &&
		     !intel_engine_has_heartbeat(engine)))
		intel_context_set_banned(request->context);

549 550
	if (unlikely(intel_context_is_banned(request->context)))
		i915_request_set_error_once(request, -EIO);
551

552 553
	if (unlikely(fatal_error(request->fence.error)))
		__i915_request_skip(request);
554

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
573
		engine->saturated |= request->sched.semaphores;
574

575 576
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
577

578 579 580
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
581

582
xfer:
583
	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
584
		list_move_tail(&request->sched.link, &engine->active.requests);
585 586
		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	}
587

588 589 590 591 592 593 594 595 596 597
	/*
	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
598 599 600
	__notify_execute_cb_irq(request);

	/* We may be recursing from the signal callback of another i915 fence */
601 602
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		i915_request_enable_breadcrumb(request);
603

604
	return result;
605 606
}

607
void i915_request_submit(struct i915_request *request)
608 609 610
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
611

612
	/* Will be called from irq-context when using foreign fences. */
613
	spin_lock_irqsave(&engine->active.lock, flags);
614

615
	__i915_request_submit(request);
616

617
	spin_unlock_irqrestore(&engine->active.lock, flags);
618 619
}

620
void __i915_request_unsubmit(struct i915_request *request)
621
{
622
	struct intel_engine_cs *engine = request->engine;
623

624 625 626 627
	/*
	 * Only unwind in reverse order, required so that the per-context list
	 * is kept in seqno/ring order.
	 */
628
	RQ_TRACE(request, "\n");
629

630
	GEM_BUG_ON(!irqs_disabled());
631
	lockdep_assert_held(&engine->active.lock);
632

633
	/*
634 635 636 637 638
	 * Before we remove this breadcrumb from the signal list, we have
	 * to ensure that a concurrent dma_fence_enable_signaling() does not
	 * attach itself. We first mark the request as no longer active and
	 * make sure that is visible to other cores, and then remove the
	 * breadcrumb if attached.
639
	 */
640 641
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
642
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
643
		i915_request_cancel_breadcrumb(request);
644

645
	/* We've already spun, don't charge on resubmitting. */
646
	if (request->sched.semaphores && i915_request_started(request))
647 648
		request->sched.semaphores = 0;

649 650
	/*
	 * We don't need to wake_up any waiters on request->execute, they
651
	 * will get woken by any other event or us re-adding this request
652
	 * to the engine timeline (__i915_request_submit()). The waiters
653 654 655 656 657
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

658
void i915_request_unsubmit(struct i915_request *request)
659 660 661 662 663
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
664
	spin_lock_irqsave(&engine->active.lock, flags);
665

666
	__i915_request_unsubmit(request);
667

668
	spin_unlock_irqrestore(&engine->active.lock, flags);
669 670
}

671
static int __i915_sw_fence_call
672
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
673
{
674
	struct i915_request *request =
675 676 677 678
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
679
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
680 681

		if (unlikely(fence->error))
682
			i915_request_set_error_once(request, fence->error);
C
Chris Wilson 已提交
683

684
		/*
685 686 687 688 689 690
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
691 692
		 */
		rcu_read_lock();
693
		request->engine->submit_request(request);
694
		rcu_read_unlock();
695 696 697
		break;

	case FENCE_FREE:
698
		i915_request_put(request);
699 700 701
		break;
	}

702 703 704
	return NOTIFY_DONE;
}

705 706 707
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
708
	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
709 710 711 712 713 714

	switch (state) {
	case FENCE_COMPLETE:
		break;

	case FENCE_FREE:
715
		i915_request_put(rq);
716 717 718 719 720 721
		break;
	}

	return NOTIFY_DONE;
}

722
static void retire_requests(struct intel_timeline *tl)
723 724 725
{
	struct i915_request *rq, *rn;

726
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
727
		if (!i915_request_retire(rq))
728 729 730 731
			break;
}

static noinline struct i915_request *
732 733 734
request_alloc_slow(struct intel_timeline *tl,
		   struct i915_request **rsvd,
		   gfp_t gfp)
735 736 737
{
	struct i915_request *rq;

738 739 740 741 742
	/* If we cannot wait, dip into our reserves */
	if (!gfpflags_allow_blocking(gfp)) {
		rq = xchg(rsvd, NULL);
		if (!rq) /* Use the normal failure path for one final WARN */
			goto out;
743

744 745 746 747
		return rq;
	}

	if (list_empty(&tl->requests))
748 749
		goto out;

750
	/* Move our oldest request to the slab-cache (if not in use!) */
751
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
752 753 754 755 756 757 758
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

759
	/* Ratelimit ourselves to prevent oom from malicious clients */
760
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
761 762 763
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
764
	retire_requests(tl);
765 766

out:
767
	return kmem_cache_alloc(global.slab_requests, gfp);
768 769
}

770 771 772 773 774 775 776 777 778
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

779 780
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

781 782
	rq->capture_list = NULL;

783
	init_llist_head(&rq->execute_cb);
784 785
}

786
struct i915_request *
787
__i915_request_create(struct intel_context *ce, gfp_t gfp)
788
{
789
	struct intel_timeline *tl = ce->timeline;
790 791
	struct i915_request *rq;
	u32 seqno;
792 793
	int ret;

794
	might_sleep_if(gfpflags_allow_blocking(gfp));
795

796 797
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
798

799 800
	/*
	 * Beware: Dragons be flying overhead.
801 802 803 804
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
805
	 * of being read by __i915_active_request_get_rcu(). As such,
806 807
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
808
	 * read the request->global_seqno and increment the reference count.
809 810 811 812
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
813 814
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
815 816 817 818 819 820 821 822 823 824 825 826 827
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
828
	rq = kmem_cache_alloc(global.slab_requests,
829
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
830
	if (unlikely(!rq)) {
831
		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
832
		if (!rq) {
833 834 835
			ret = -ENOMEM;
			goto err_unreserve;
		}
836
	}
837

838
	rq->context = ce;
839
	rq->engine = ce->engine;
840
	rq->ring = ce->ring;
841
	rq->execution_mask = ce->engine->mask;
842

843 844 845 846 847 848 849 850 851 852 853 854
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

855 856
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
857
	rq->hwsp_seqno = tl->hwsp_seqno;
858
	GEM_BUG_ON(i915_request_completed(rq));
859

860
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
861

862
	/* We bump the ref for the fence chain */
863 864
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
865

866
	i915_sched_node_reinit(&rq->sched);
867

868
	/* No zalloc, everything must be cleared after use */
869
	rq->batch = NULL;
870
	GEM_BUG_ON(rq->capture_list);
871
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
872

873 874 875
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
876
	 * i915_request_add() call can't fail. Note that the reserve may need
877 878
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
879 880 881 882 883
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
884
	 */
885 886
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
887

888 889
	/*
	 * Record the position of the start of the request so that
890 891 892 893
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
894
	rq->head = rq->ring->emit;
895

896
	ret = rq->engine->request_alloc(rq);
897 898
	if (ret)
		goto err_unwind;
899

900 901
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

902
	intel_context_mark_active(ce);
903 904
	list_add_tail_rcu(&rq->link, &tl->requests);

905
	return rq;
906

907
err_unwind:
908
	ce->ring->emit = rq->head;
909

910
	/* Make sure we didn't add ourselves to external state before freeing */
911 912
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
913

914
err_free:
915
	kmem_cache_free(global.slab_requests, rq);
916
err_unreserve:
917
	intel_context_unpin(ce);
918
	return ERR_PTR(ret);
919 920
}

921 922 923 924
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
925
	struct intel_timeline *tl;
926

927 928 929
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
930 931

	/* Move our oldest request to the slab-cache (if not in use!) */
932 933
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
934 935 936 937 938 939 940 941 942
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
943
	rq->cookie = lockdep_pin_lock(&tl->mutex);
944 945 946 947

	return rq;

err_unlock:
948
	intel_context_timeline_unlock(tl);
949 950 951
	return rq;
}

952 953 954
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
955 956
	struct dma_fence *fence;
	int err;
957

958 959
	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
		return 0;
960

961 962 963
	if (i915_request_started(signal))
		return 0;

964
	fence = NULL;
965
	rcu_read_lock();
966
	spin_lock_irq(&signal->lock);
967 968 969 970 971 972 973 974 975 976 977
	do {
		struct list_head *pos = READ_ONCE(signal->link.prev);
		struct i915_request *prev;

		/* Confirm signal has not been retired, the link is valid */
		if (unlikely(i915_request_started(signal)))
			break;

		/* Is signal the earliest request on its timeline? */
		if (pos == &rcu_dereference(signal->timeline)->requests)
			break;
978

979 980 981 982 983 984
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
985 986 987 988 989 990 991 992
		prev = list_entry(pos, typeof(*prev), link);
		if (!i915_request_get_rcu(prev))
			break;

		/* After the strong barrier, confirm prev is still attached */
		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
			i915_request_put(prev);
			break;
993
		}
994 995 996

		fence = &prev->fence;
	} while (0);
997 998 999 1000
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
1001 1002

	err = 0;
1003
	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1004 1005 1006 1007 1008 1009
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
1010 1011
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
1027
	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1028 1029
}

1030
static int
1031 1032 1033
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
1034
{
1035
	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1036
	u32 hwsp_offset;
1037
	int len, err;
1038 1039
	u32 *cs;

1040
	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1041
	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1042

1043
	/* We need to pin the signaler's HWSP until we are finished reading. */
1044 1045 1046
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
1047

1048 1049 1050 1051 1052
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
1064 1065 1066 1067 1068
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
1069
	*cs++ = seqno;
1070 1071
	*cs++ = hwsp_offset;
	*cs++ = 0;
1072 1073 1074 1075
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
1076 1077

	intel_ring_advance(to, cs);
1078 1079 1080 1081 1082 1083 1084 1085
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
1086
	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1087
	struct i915_sw_fence *wait = &to->submit;
1088

1089 1090 1091
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

1092 1093 1094
	if (i915_request_has_initial_breadcrumb(to))
		goto await_fence;

1095 1096 1097
	if (!rcu_access_pointer(from->hwsp_cacheline))
		goto await_fence;

1098 1099 1100 1101 1102 1103 1104 1105 1106
	/*
	 * If this or its dependents are waiting on an external fence
	 * that may fail catastrophically, then we want to avoid using
	 * sempahores as they bypass the fence signaling metadata, and we
	 * lose the fence->error propagation.
	 */
	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
		goto await_fence;

1107
	/* Just emit the first semaphore we see as request space is limited. */
1108
	if (already_busywaiting(to) & mask)
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

1121
	to->sched.semaphores |= mask;
1122
	wait = &to->semaphore;
1123 1124

await_fence:
1125
	return i915_sw_fence_await_dma_fence(wait,
1126 1127
					     &from->fence, 0,
					     I915_FENCE_GFP);
1128 1129
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

1144
static int
1145 1146 1147 1148
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
1149
{
1150
	int err;
1151

1152
	GEM_BUG_ON(intel_context_is_barrier(from->context));
1153

1154 1155 1156 1157 1158 1159 1160 1161
	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
1162
		return 0;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

	/*
	 * Wait until the start of this request.
	 *
	 * The execution cb fires when we submit the request to HW. But in
	 * many cases this may be long before the request itself is ready to
	 * run (consider that we submit 2 requests for the same context, where
	 * the request of interest is behind an indefinite spinner). So we hook
	 * up to both to reduce our queues and keep the execution lag minimised
	 * in the worst case, though we hope that the await_start is elided.
	 */
	err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/*
	 * Ensure both start together [after all semaphores in signal]
	 *
	 * Now that we are queued to the HW at roughly the same time (thanks
	 * to the execute cb) and are ready to run at roughly the same time
	 * (thanks to the await start), our signaler may still be indefinitely
	 * delayed by waiting on a semaphore from a remote engine. If our
	 * signaler depends on a semaphore, so indirectly do we, and we do not
	 * want to start our payload until our signaler also starts theirs.
	 * So we wait.
	 *
	 * However, there is also a second condition for which we need to wait
	 * for the precise start of the signaler. Consider that the signaler
	 * was submitted in a chain of requests following another context
	 * (with just an ordinary intra-engine fence dependency between the
	 * two). In this case the signaler is queued to HW, but not for
	 * immediate execution, and so we must wait until it reaches the
	 * active slot.
	 */
	if (intel_engine_has_semaphores(to->engine) &&
	    !i915_request_has_initial_breadcrumb(to)) {
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
		if (err < 0)
			return err;
1202
	}
1203

1204
	/* Couple the dependency tree for PI on this exposed to->fence */
1205
	if (to->engine->schedule) {
1206
		err = i915_sched_node_add_dependency(&to->sched,
1207
						     &from->sched,
1208 1209 1210
						     I915_DEPENDENCY_WEAK);
		if (err < 0)
			return err;
1211 1212
	}

1213 1214
	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
1215 1216
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
static void mark_external(struct i915_request *rq)
{
	/*
	 * The downside of using semaphores is that we lose metadata passing
	 * along the signaling chain. This is particularly nasty when we
	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
	 * fatal errors we want to scrub the request before it is executed,
	 * which means that we cannot preload the request onto HW and have
	 * it wait upon a semaphore.
	 */
	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
}

1230
static int
1231
__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1232
{
1233
	mark_external(rq);
1234
	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1235
					     i915_fence_context_timeout(rq->engine->i915,
1236
									fence->context),
1237 1238 1239
					     I915_FENCE_GFP);
}

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static int
i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
	struct dma_fence *iter;
	int err = 0;

	if (!to_dma_fence_chain(fence))
		return __i915_request_await_external(rq, fence);

	dma_fence_chain_for_each(iter, fence) {
		struct dma_fence_chain *chain = to_dma_fence_chain(iter);

		if (!dma_fence_is_i915(chain->fence)) {
			err = __i915_request_await_external(rq, iter);
			break;
		}

		err = i915_request_await_dma_fence(rq, chain->fence);
		if (err < 0)
			break;
	}

	dma_fence_put(iter);
	return err;
}

1266
int
1267 1268 1269 1270
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
1271
{
1272 1273
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
1274 1275
	int ret;

1276 1277 1278
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

1279 1280
		/* XXX Error for signal-on-any fence arrays */

1281 1282 1283 1284
		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
1285

1286 1287
	do {
		fence = *child++;
1288 1289
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1290
			continue;
1291
		}
1292

1293
		if (fence->context == rq->fence.context)
1294 1295
			continue;

1296 1297 1298 1299
		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */
1300

1301
		if (dma_fence_is_i915(fence))
1302 1303 1304
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook);
1305
		else
1306
			ret = i915_request_await_external(rq, fence);
1307 1308
		if (ret < 0)
			return ret;
1309
	} while (--nchild);
1310 1311 1312 1313

	return 0;
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
static int
await_request_submit(struct i915_request *to, struct i915_request *from)
{
	/*
	 * If we are waiting on a virtual engine, then it may be
	 * constrained to execute on a single engine *prior* to submission.
	 * When it is submitted, it will be first submitted to the virtual
	 * engine and then passed to the physical engine. We cannot allow
	 * the waiter to be submitted immediately to the physical engine
	 * as it may then bypass the virtual request.
	 */
	if (to->engine == READ_ONCE(from->engine))
		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
							&from->submit,
							I915_FENCE_GFP);
	else
		return __i915_request_await_execution(to, from, NULL);
}

1333
static int
1334
i915_request_await_request(struct i915_request *to, struct i915_request *from)
1335
{
1336
	int ret;
1337

1338 1339
	GEM_BUG_ON(to == from);
	GEM_BUG_ON(to->timeline == from->timeline);
1340

1341 1342
	if (i915_request_completed(from)) {
		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1343
		return 0;
1344 1345
	}

1346
	if (to->engine->schedule) {
1347
		ret = i915_sched_node_add_dependency(&to->sched,
1348
						     &from->sched,
1349 1350 1351
						     I915_DEPENDENCY_EXTERNAL);
		if (ret < 0)
			return ret;
1352 1353
	}

1354 1355
	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
		ret = await_request_submit(to, from);
1356 1357 1358 1359 1360 1361
	else
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
	if (ret < 0)
		return ret;

	return 0;
1362 1363
}

1364
int
1365
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1366 1367 1368 1369 1370
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

1371 1372 1373 1374 1375 1376 1377 1378
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1389 1390
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1391
			continue;
1392
		}
1393

1394 1395 1396 1397 1398
		/*
		 * Requests on the same timeline are explicitly ordered, along
		 * with their dependencies, by i915_request_add() which ensures
		 * that requests are submitted in-order through each ring.
		 */
1399 1400 1401
		if (fence->context == rq->fence.context)
			continue;

1402 1403 1404 1405 1406
		/* Squash repeated waits to the same timelines */
		if (fence->context &&
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
			continue;
1407 1408

		if (dma_fence_is_i915(fence))
1409
			ret = i915_request_await_request(rq, to_request(fence));
1410
		else
1411
			ret = i915_request_await_external(rq, fence);
1412 1413
		if (ret < 0)
			return ret;
1414 1415 1416 1417 1418

		/* Record the latest fence used against each timeline */
		if (fence->context)
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1419 1420 1421 1422 1423
	} while (--nchild);

	return 0;
}

1424
/**
1425
 * i915_request_await_object - set this request to (async) wait upon a bo
1426 1427
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1428
 * @write: whether the wait is on behalf of a writer
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1445 1446 1447
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1448
{
1449 1450
	struct dma_fence *excl;
	int ret = 0;
1451 1452

	if (write) {
1453 1454 1455
		struct dma_fence **shared;
		unsigned int count, i;

1456
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1457 1458 1459 1460 1461
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1462
			ret = i915_request_await_dma_fence(to, shared[i]);
1463 1464 1465 1466 1467 1468 1469 1470 1471
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1472
	} else {
1473
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1474 1475
	}

1476 1477
	if (excl) {
		if (ret == 0)
1478
			ret = i915_request_await_dma_fence(to, excl);
1479

1480
		dma_fence_put(excl);
1481 1482
	}

1483
	return ret;
1484 1485
}

1486 1487 1488
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1489
	struct intel_timeline *timeline = i915_request_timeline(rq);
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1512 1513
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1514
	if (prev && !i915_request_completed(prev)) {
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		/*
		 * The requests are supposed to be kept in order. However,
		 * we need to be wary in case the timeline->last_request
		 * is used as a barrier for external modification to this
		 * context.
		 */
		GEM_BUG_ON(prev->context == rq->context &&
			   i915_seqno_passed(prev->fence.seqno,
					     rq->fence.seqno));

1525
		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

1540 1541 1542 1543 1544
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1545 1546 1547 1548 1549
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1550 1551 1552 1553 1554
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1555
struct i915_request *__i915_request_commit(struct i915_request *rq)
1556
{
1557 1558
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1559
	u32 *cs;
1560

1561
	RQ_TRACE(rq, "\n");
1562

1563 1564 1565 1566 1567
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1568 1569
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1570
	rq->emitted_jiffies = jiffies;
1571

1572 1573
	/*
	 * Record the position of the start of the breadcrumb so that
1574 1575
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1576
	 * position of the ring's HEAD.
1577
	 */
1578
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1579
	GEM_BUG_ON(IS_ERR(cs));
1580
	rq->postfix = intel_ring_offset(rq, cs);
1581

1582
	return __i915_request_add_to_timeline(rq);
1583 1584 1585 1586 1587
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1588 1589
	/*
	 * Let the backend know a new request has arrived that may need
1590 1591 1592 1593 1594 1595 1596 1597 1598
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1599 1600
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1601
	i915_sw_fence_commit(&rq->semaphore);
1602 1603 1604 1605 1606
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1607
	struct intel_timeline * const tl = i915_request_timeline(rq);
1608
	struct i915_sched_attr attr = {};
1609
	struct i915_gem_context *ctx;
1610

1611 1612
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1613 1614

	trace_i915_request_add(rq);
1615
	__i915_request_commit(rq);
1616

1617 1618 1619 1620 1621 1622
	/* XXX placeholder for selftests */
	rcu_read_lock();
	ctx = rcu_dereference(rq->context->gem_context);
	if (ctx)
		attr = ctx->sched;
	rcu_read_unlock();
1623

1624 1625
	__i915_request_queue(rq, &attr);

1626
	mutex_unlock(&tl->mutex);
1627 1628
}

1629
static unsigned long local_clock_ns(unsigned int *cpu)
1630 1631 1632
{
	unsigned long t;

1633 1634
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
1646
	t = local_clock();
1647 1648 1649 1650 1651 1652 1653 1654 1655
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

1656
	if (time_after(local_clock_ns(&this_cpu), timeout))
1657 1658 1659 1660 1661
		return true;

	return this_cpu != cpu;
}

1662
static bool __i915_spin_request(struct i915_request * const rq, int state)
1663
{
1664
	unsigned long timeout_ns;
1665
	unsigned int cpu;
1666 1667 1668 1669 1670 1671 1672

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1673 1674 1675 1676
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1677
	 */
1678
	if (!i915_request_is_running(rq))
1679 1680
		return false;

1681 1682
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1683 1684 1685 1686 1687 1688 1689 1690 1691
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1692 1693
	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
	timeout_ns += local_clock_ns(&cpu);
1694
	do {
1695
		if (dma_fence_is_signaled(&rq->fence))
1696
			return true;
1697

1698 1699 1700
		if (signal_pending_state(state, current))
			break;

1701
		if (busywait_stop(timeout_ns, cpu))
1702 1703
			break;

1704
		cpu_relax();
1705 1706 1707 1708 1709
	} while (!need_resched());

	return false;
}

1710 1711 1712 1713 1714 1715 1716 1717 1718
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

1719
	wake_up_process(fetch_and_zero(&wait->tsk));
1720 1721
}

1722
/**
1723
 * i915_request_wait - wait until execution of request has finished
1724
 * @rq: the request to wait upon
1725
 * @flags: how to wait
1726 1727
 * @timeout: how long to wait in jiffies
 *
1728
 * i915_request_wait() waits for the request to be completed, for a
1729 1730
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1731
 *
1732 1733 1734 1735
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1736
 */
1737
long i915_request_wait(struct i915_request *rq,
1738 1739
		       unsigned int flags,
		       long timeout)
1740
{
1741 1742
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1743
	struct request_wait wait;
1744 1745

	might_sleep();
1746
	GEM_BUG_ON(timeout < 0);
1747

1748
	if (dma_fence_is_signaled(&rq->fence))
1749
		return timeout;
1750

1751 1752
	if (!timeout)
		return -ETIME;
1753

1754
	trace_i915_request_wait_begin(rq, flags);
1755 1756 1757 1758 1759 1760 1761

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1762
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1763

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1787
	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1788
	    __i915_spin_request(rq, state))
1789
		goto out;
1790

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
1803 1804
	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
		intel_rps_boost(rq);
1805

1806 1807 1808
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1809

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	/*
	 * Flush the submission tasklet, but only if it may help this request.
	 *
	 * We sometimes experience some latency between the HW interrupts and
	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
	 * be due to lazy CS events), so lets run the tasklet manually if there
	 * is a chance it may submit this request. If the request is not ready
	 * to run, as it is waiting for other fences to be signaled, flushing
	 * the tasklet is busy work without any advantage for this client.
	 *
	 * If the HW is being lazy, this is the last chance before we go to
	 * sleep to catch any pending events. We will check periodically in
	 * the heartbeat to flush the submission tasklets as a last resort
	 * for unhappy HW.
	 */
	if (i915_request_is_ready(rq))
		intel_engine_flush_submission(rq->engine);

1828 1829
	for (;;) {
		set_current_state(state);
1830

1831
		if (dma_fence_is_signaled(&rq->fence))
1832
			break;
1833 1834

		if (signal_pending_state(state, current)) {
1835
			timeout = -ERESTARTSYS;
1836 1837 1838
			break;
		}

1839 1840
		if (!timeout) {
			timeout = -ETIME;
1841 1842 1843
			break;
		}

1844
		timeout = io_schedule_timeout(timeout);
1845
	}
1846
	__set_current_state(TASK_RUNNING);
1847

1848 1849 1850
	if (READ_ONCE(wait.tsk))
		dma_fence_remove_callback(&rq->fence, &wait.cb);
	GEM_BUG_ON(!list_empty(&wait.cb.node));
1851 1852

out:
1853
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1854
	trace_i915_request_wait_end(rq);
1855
	return timeout;
1856
}
1857

1858 1859
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1860
#include "selftests/i915_request.c"
1861
#endif
1862

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1880 1881
int __init i915_global_request_init(void)
{
1882 1883 1884 1885 1886 1887 1888 1889
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1890 1891 1892
	if (!global.slab_requests)
		return -ENOMEM;

1893 1894 1895 1896 1897 1898 1899
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1900
	i915_global_register(&global.base);
1901 1902 1903 1904 1905 1906
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}