i915_request.c 53.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26
#include <linux/dma-fence-chain.h>
27 28
#include <linux/irq_work.h>
#include <linux/prefetch.h>
29 30
#include <linux/sched.h>
#include <linux/sched/clock.h>
31
#include <linux/sched/signal.h>
32

33 34
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
35
#include "gt/intel_ring.h"
36
#include "gt/intel_rps.h"
37

38
#include "i915_active.h"
39
#include "i915_drv.h"
40
#include "i915_globals.h"
41
#include "i915_trace.h"
42
#include "intel_pm.h"
43

44 45 46
struct execute_cb {
	struct irq_work work;
	struct i915_sw_fence *fence;
47 48
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
49 50
};

51
static struct i915_global_request {
52
	struct i915_global base;
53
	struct kmem_cache *slab_requests;
54
	struct kmem_cache *slab_execute_cbs;
55 56
} global;

57
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58
{
59
	return dev_name(to_request(fence)->engine->i915->drm.dev);
60 61
}

62
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63
{
64 65
	const struct i915_gem_context *ctx;

66 67
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
68 69 70 71 72 73 74 75 76 77
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

78
	ctx = i915_request_gem_context(to_request(fence));
79 80 81 82
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
83 84
}

85
static bool i915_fence_signaled(struct dma_fence *fence)
86
{
87
	return i915_request_completed(to_request(fence));
88 89
}

90
static bool i915_fence_enable_signaling(struct dma_fence *fence)
91
{
92
	return i915_request_enable_breadcrumb(to_request(fence));
93 94
}

95
static signed long i915_fence_wait(struct dma_fence *fence,
96
				   bool interruptible,
97
				   signed long timeout)
98
{
99 100 101
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
102 103
}

104 105 106 107 108
struct kmem_cache *i915_request_slab_cache(void)
{
	return global.slab_requests;
}

109
static void i915_fence_release(struct dma_fence *fence)
110
{
111
	struct i915_request *rq = to_request(fence);
112

113 114
	/*
	 * The request is put onto a RCU freelist (i.e. the address
115 116 117 118 119
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
120
	i915_sw_fence_fini(&rq->submit);
121
	i915_sw_fence_fini(&rq->semaphore);
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	/*
	 * Keep one request on each engine for reserved use under mempressure
	 *
	 * We do not hold a reference to the engine here and so have to be
	 * very careful in what rq->engine we poke. The virtual engine is
	 * referenced via the rq->context and we released that ref during
	 * i915_request_retire(), ergo we must not dereference a virtual
	 * engine here. Not that we would want to, as the only consumer of
	 * the reserved engine->request_pool is the power management parking,
	 * which must-not-fail, and that is only run on the physical engines.
	 *
	 * Since the request must have been executed to be have completed,
	 * we know that it will have been processed by the HW and will
	 * not be unsubmitted again, so rq->engine and rq->execution_mask
	 * at this point is stable. rq->execution_mask will be a single
	 * bit if the last and _only_ engine it could execution on was a
	 * physical engine, if it's multiple bits then it started on and
	 * could still be on a virtual engine. Thus if the mask is not a
	 * power-of-two we assume that rq->engine may still be a virtual
	 * engine and so a dangling invalid pointer that we cannot dereference
	 *
	 * For example, consider the flow of a bonded request through a virtual
	 * engine. The request is created with a wide engine mask (all engines
	 * that we might execute on). On processing the bond, the request mask
	 * is reduced to one or more engines. If the request is subsequently
	 * bound to a single engine, it will then be constrained to only
	 * execute on that engine and never returned to the virtual engine
	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
	 * know that if the rq->execution_mask is a single bit, rq->engine
	 * can be a physical engine with the exact corresponding mask.
	 */
	if (is_power_of_2(rq->execution_mask) &&
	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
156 157
		return;

158
	kmem_cache_free(global.slab_requests, rq);
159 160
}

161
const struct dma_fence_ops i915_fence_ops = {
162 163 164 165 166 167 168 169
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
191
	struct execute_cb *cb, *cn;
192 193 194

	lockdep_assert_held(&rq->lock);

195
	GEM_BUG_ON(!i915_request_is_active(rq));
196
	if (llist_empty(&rq->execute_cb))
197 198
		return;

199
	llist_for_each_entry_safe(cb, cn, rq->execute_cb.first, work.llnode)
200 201 202 203 204 205 206 207 208 209 210 211
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
212
	init_llist_head(&rq->execute_cb);
213 214
}

215
static inline void
216
remove_from_client(struct i915_request *request)
217
{
218
	struct drm_i915_file_private *file_priv;
219

220
	if (!READ_ONCE(request->file_priv))
221 222
		return;

223 224 225 226
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
227
		list_del(&request->client_link);
228
		spin_unlock(&file_priv->mm.lock);
229
	}
230
	rcu_read_unlock();
231 232
}

233
static void free_capture_list(struct i915_request *request)
234
{
235
	struct i915_capture_list *capture;
236

237
	capture = fetch_and_zero(&request->capture_list);
238
	while (capture) {
239
		struct i915_capture_list *next = capture->next;
240 241 242 243 244 245

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

259 260 261 262 263 264 265 266 267 268 269
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
270
	spin_lock_irq(&locked->active.lock);
271 272 273 274 275
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
276
	list_del_init(&rq->sched.link);
277 278
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
279
	spin_unlock_irq(&locked->active.lock);
280 281
}

282
bool i915_request_retire(struct i915_request *rq)
283
{
284 285
	if (!i915_request_completed(rq))
		return false;
286

287
	RQ_TRACE(rq, "\n");
288

289 290
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
291

292 293 294 295 296 297 298 299 300
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
301 302
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
303 304 305
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
306
	rq->ring->head = rq->postfix;
307

308 309 310 311 312 313
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
314
	remove_from_engine(rq);
315

316
	spin_lock_irq(&rq->lock);
317 318 319 320 321
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
322
	if (i915_request_has_waitboost(rq)) {
323 324
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
325
	}
326 327 328 329
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
330
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
331
	spin_unlock_irq(&rq->lock);
332

333
	remove_from_client(rq);
334
	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
335

336 337
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
338

339 340 341 342 343
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
344 345
}

346
void i915_request_retire_upto(struct i915_request *rq)
347
{
348
	struct intel_timeline * const tl = i915_request_timeline(rq);
349
	struct i915_request *tmp;
350

351
	RQ_TRACE(rq, "\n");
352

353
	GEM_BUG_ON(!i915_request_completed(rq));
354

355
	do {
356
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
357
	} while (i915_request_retire(tmp) && tmp != rq);
358 359
}

360 361 362 363 364 365
static void __llist_add(struct llist_node *node, struct llist_head *head)
{
	node->next = head->first;
	head->first = node;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
static struct i915_request * const *
__engine_active(struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->execlists.active);
}

static bool __request_in_flight(const struct i915_request *signal)
{
	struct i915_request * const *port, *rq;
	bool inflight = false;

	if (!i915_request_is_ready(signal))
		return false;

	/*
	 * Even if we have unwound the request, it may still be on
	 * the GPU (preempt-to-busy). If that request is inside an
	 * unpreemptible critical section, it will not be removed. Some
	 * GPU functions may even be stuck waiting for the paired request
	 * (__await_execution) to be submitted and cannot be preempted
	 * until the bond is executing.
	 *
	 * As we know that there are always preemption points between
	 * requests, we know that only the currently executing request
	 * may be still active even though we have cleared the flag.
	 * However, we can't rely on our tracking of ELSP[0] to known
	 * which request is currently active and so maybe stuck, as
	 * the tracking maybe an event behind. Instead assume that
	 * if the context is still inflight, then it is still active
	 * even if the active flag has been cleared.
	 */
	if (!intel_context_inflight(signal->context))
		return false;

	rcu_read_lock();
	for (port = __engine_active(signal->engine); (rq = *port); port++) {
		if (rq->context == signal->context) {
			inflight = i915_seqno_passed(rq->fence.seqno,
						     signal->fence.seqno);
			break;
		}
	}
	rcu_read_unlock();

	return inflight;
}

413
static int
414 415 416 417 418
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
419 420 421
{
	struct execute_cb *cb;

422 423 424
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
425
		return 0;
426
	}
427 428 429 430 431 432 433 434 435

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

436 437 438 439 440 441
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

442
	spin_lock_irq(&signal->lock);
443
	if (i915_request_is_active(signal) || __request_in_flight(signal)) {
444 445 446 447
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
448 449 450
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
451
		__llist_add(&cb->work.llnode, &signal->execute_cb);
452 453 454 455 456 457
	}
	spin_unlock_irq(&signal->lock);

	return 0;
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
static bool fatal_error(int error)
{
	switch (error) {
	case 0: /* not an error! */
	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
		return false;
	default:
		return true;
	}
}

void __i915_request_skip(struct i915_request *rq)
{
	GEM_BUG_ON(!fatal_error(rq->fence.error));

	if (rq->infix == rq->postfix)
		return;

	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	__i915_request_fill(rq, 0);
	rq->infix = rq->postfix;
}

void i915_request_set_error_once(struct i915_request *rq, int error)
{
	int old;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));

	if (i915_request_signaled(rq))
		return;

	old = READ_ONCE(rq->fence.error);
	do {
		if (fatal_error(old))
			return;
	} while (!try_cmpxchg(&rq->fence.error, &old, error));
}

502
bool __i915_request_submit(struct i915_request *request)
503
{
504
	struct intel_engine_cs *engine = request->engine;
505
	bool result = false;
506

507
	RQ_TRACE(request, "\n");
508

509
	GEM_BUG_ON(!irqs_disabled());
510
	lockdep_assert_held(&engine->active.lock);
511

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

531 532 533 534
	if (unlikely(intel_context_is_banned(request->context)))
		i915_request_set_error_once(request, -EIO);
	if (unlikely(fatal_error(request->fence.error)))
		__i915_request_skip(request);
535

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
554
		engine->saturated |= request->sched.semaphores;
555

556 557
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
558

559 560 561
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
562

563
xfer:
564
	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
565
		list_move_tail(&request->sched.link, &engine->active.requests);
566 567
		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	}
568

569 570 571
	/* We may be recursing from the signal callback of another i915 fence */
	if (!i915_request_signaled(request)) {
		spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
572

573 574 575 576 577 578 579 580 581
		__notify_execute_cb(request);
		if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
			     &request->fence.flags) &&
		    !i915_request_enable_breadcrumb(request))
			intel_engine_signal_breadcrumbs(engine);

		spin_unlock(&request->lock);
		GEM_BUG_ON(!llist_empty(&request->execute_cb));
	}
582

583
	return result;
584 585
}

586
void i915_request_submit(struct i915_request *request)
587 588 589
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
590

591
	/* Will be called from irq-context when using foreign fences. */
592
	spin_lock_irqsave(&engine->active.lock, flags);
593

594
	__i915_request_submit(request);
595

596
	spin_unlock_irqrestore(&engine->active.lock, flags);
597 598
}

599
void __i915_request_unsubmit(struct i915_request *request)
600
{
601
	struct intel_engine_cs *engine = request->engine;
602

603
	RQ_TRACE(request, "\n");
604

605
	GEM_BUG_ON(!irqs_disabled());
606
	lockdep_assert_held(&engine->active.lock);
607

608 609
	/*
	 * Only unwind in reverse order, required so that the per-context list
610 611
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
612

613 614
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
615

616
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
617
		i915_request_cancel_breadcrumb(request);
618

619 620
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
621

622 623
	spin_unlock(&request->lock);

624
	/* We've already spun, don't charge on resubmitting. */
625
	if (request->sched.semaphores && i915_request_started(request))
626 627
		request->sched.semaphores = 0;

628 629
	/*
	 * We don't need to wake_up any waiters on request->execute, they
630
	 * will get woken by any other event or us re-adding this request
631
	 * to the engine timeline (__i915_request_submit()). The waiters
632 633 634 635 636
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

637
void i915_request_unsubmit(struct i915_request *request)
638 639 640 641 642
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
643
	spin_lock_irqsave(&engine->active.lock, flags);
644

645
	__i915_request_unsubmit(request);
646

647
	spin_unlock_irqrestore(&engine->active.lock, flags);
648 649
}

650
static int __i915_sw_fence_call
651
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
652
{
653
	struct i915_request *request =
654 655 656 657
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
658
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
659 660

		if (unlikely(fence->error))
661
			i915_request_set_error_once(request, fence->error);
C
Chris Wilson 已提交
662

663
		/*
664 665 666 667 668 669
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
670 671
		 */
		rcu_read_lock();
672
		request->engine->submit_request(request);
673
		rcu_read_unlock();
674 675 676
		break;

	case FENCE_FREE:
677
		i915_request_put(request);
678 679 680
		break;
	}

681 682 683
	return NOTIFY_DONE;
}

684 685 686
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
687
	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
688 689 690 691 692 693

	switch (state) {
	case FENCE_COMPLETE:
		break;

	case FENCE_FREE:
694
		i915_request_put(rq);
695 696 697 698 699 700
		break;
	}

	return NOTIFY_DONE;
}

701
static void retire_requests(struct intel_timeline *tl)
702 703 704
{
	struct i915_request *rq, *rn;

705
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
706
		if (!i915_request_retire(rq))
707 708 709 710
			break;
}

static noinline struct i915_request *
711 712 713
request_alloc_slow(struct intel_timeline *tl,
		   struct i915_request **rsvd,
		   gfp_t gfp)
714 715 716
{
	struct i915_request *rq;

717 718 719 720 721
	/* If we cannot wait, dip into our reserves */
	if (!gfpflags_allow_blocking(gfp)) {
		rq = xchg(rsvd, NULL);
		if (!rq) /* Use the normal failure path for one final WARN */
			goto out;
722

723 724 725 726
		return rq;
	}

	if (list_empty(&tl->requests))
727 728
		goto out;

729
	/* Move our oldest request to the slab-cache (if not in use!) */
730
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
731 732 733 734 735 736 737
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

738
	/* Ratelimit ourselves to prevent oom from malicious clients */
739
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
740 741 742
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
743
	retire_requests(tl);
744 745

out:
746
	return kmem_cache_alloc(global.slab_requests, gfp);
747 748
}

749 750 751 752 753 754 755 756 757
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

758 759
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

760 761 762
	rq->file_priv = NULL;
	rq->capture_list = NULL;

763
	init_llist_head(&rq->execute_cb);
764 765
}

766
struct i915_request *
767
__i915_request_create(struct intel_context *ce, gfp_t gfp)
768
{
769
	struct intel_timeline *tl = ce->timeline;
770 771
	struct i915_request *rq;
	u32 seqno;
772 773
	int ret;

774
	might_sleep_if(gfpflags_allow_blocking(gfp));
775

776 777
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
778

779 780
	/*
	 * Beware: Dragons be flying overhead.
781 782 783 784
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
785
	 * of being read by __i915_active_request_get_rcu(). As such,
786 787
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
788
	 * read the request->global_seqno and increment the reference count.
789 790 791 792
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
793 794
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
795 796 797 798 799 800 801 802 803 804 805 806 807
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
808
	rq = kmem_cache_alloc(global.slab_requests,
809
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
810
	if (unlikely(!rq)) {
811
		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
812
		if (!rq) {
813 814 815
			ret = -ENOMEM;
			goto err_unreserve;
		}
816
	}
817

818
	rq->context = ce;
819
	rq->engine = ce->engine;
820
	rq->ring = ce->ring;
821
	rq->execution_mask = ce->engine->mask;
822

823 824 825 826 827 828 829 830 831 832 833 834
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

835 836
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
837
	rq->hwsp_seqno = tl->hwsp_seqno;
838
	GEM_BUG_ON(i915_request_completed(rq));
839

840
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
841

842
	/* We bump the ref for the fence chain */
843 844
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
845

846
	i915_sched_node_reinit(&rq->sched);
847

848
	/* No zalloc, everything must be cleared after use */
849
	rq->batch = NULL;
850 851
	GEM_BUG_ON(rq->file_priv);
	GEM_BUG_ON(rq->capture_list);
852
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
853

854 855 856
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
857
	 * i915_request_add() call can't fail. Note that the reserve may need
858 859
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
860 861 862 863 864
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
865
	 */
866 867
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
868

869 870
	/*
	 * Record the position of the start of the request so that
871 872 873 874
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
875
	rq->head = rq->ring->emit;
876

877
	ret = rq->engine->request_alloc(rq);
878 879
	if (ret)
		goto err_unwind;
880

881 882
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

883
	intel_context_mark_active(ce);
884 885
	list_add_tail_rcu(&rq->link, &tl->requests);

886
	return rq;
887

888
err_unwind:
889
	ce->ring->emit = rq->head;
890

891
	/* Make sure we didn't add ourselves to external state before freeing */
892 893
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
894

895
err_free:
896
	kmem_cache_free(global.slab_requests, rq);
897
err_unreserve:
898
	intel_context_unpin(ce);
899
	return ERR_PTR(ret);
900 901
}

902 903 904 905
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
906
	struct intel_timeline *tl;
907

908 909 910
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
911 912

	/* Move our oldest request to the slab-cache (if not in use!) */
913 914
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
915 916 917 918 919 920 921 922 923
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
924
	rq->cookie = lockdep_pin_lock(&tl->mutex);
925 926 927 928

	return rq;

err_unlock:
929
	intel_context_timeline_unlock(tl);
930 931 932
	return rq;
}

933 934 935
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
936 937
	struct dma_fence *fence;
	int err;
938

939 940
	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
		return 0;
941

942 943 944
	if (i915_request_started(signal))
		return 0;

945
	fence = NULL;
946
	rcu_read_lock();
947
	spin_lock_irq(&signal->lock);
948 949 950 951 952 953 954 955 956 957 958
	do {
		struct list_head *pos = READ_ONCE(signal->link.prev);
		struct i915_request *prev;

		/* Confirm signal has not been retired, the link is valid */
		if (unlikely(i915_request_started(signal)))
			break;

		/* Is signal the earliest request on its timeline? */
		if (pos == &rcu_dereference(signal->timeline)->requests)
			break;
959

960 961 962 963 964 965
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
966 967 968 969 970 971 972 973
		prev = list_entry(pos, typeof(*prev), link);
		if (!i915_request_get_rcu(prev))
			break;

		/* After the strong barrier, confirm prev is still attached */
		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
			i915_request_put(prev);
			break;
974
		}
975 976 977

		fence = &prev->fence;
	} while (0);
978 979 980 981
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
982 983

	err = 0;
984
	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
985 986 987 988 989 990
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
991 992
}

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
1008
	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1009 1010
}

1011
static int
1012 1013 1014
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
1015
{
1016
	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1017
	u32 hwsp_offset;
1018
	int len, err;
1019 1020
	u32 *cs;

1021
	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1022
	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1023

1024
	/* We need to pin the signaler's HWSP until we are finished reading. */
1025 1026 1027
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
1028

1029 1030 1031 1032 1033
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
1045 1046 1047 1048 1049
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
1050
	*cs++ = seqno;
1051 1052
	*cs++ = hwsp_offset;
	*cs++ = 0;
1053 1054 1055 1056
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
1057 1058

	intel_ring_advance(to, cs);
1059 1060 1061 1062 1063 1064 1065 1066
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
1067
	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1068
	struct i915_sw_fence *wait = &to->submit;
1069

1070 1071 1072
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

1073 1074 1075
	if (i915_request_has_initial_breadcrumb(to))
		goto await_fence;

1076 1077 1078
	if (!rcu_access_pointer(from->hwsp_cacheline))
		goto await_fence;

1079 1080 1081 1082 1083 1084 1085 1086 1087
	/*
	 * If this or its dependents are waiting on an external fence
	 * that may fail catastrophically, then we want to avoid using
	 * sempahores as they bypass the fence signaling metadata, and we
	 * lose the fence->error propagation.
	 */
	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
		goto await_fence;

1088
	/* Just emit the first semaphore we see as request space is limited. */
1089
	if (already_busywaiting(to) & mask)
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

1102
	to->sched.semaphores |= mask;
1103
	wait = &to->semaphore;
1104 1105

await_fence:
1106
	return i915_sw_fence_await_dma_fence(wait,
1107 1108
					     &from->fence, 0,
					     I915_FENCE_GFP);
1109 1110
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

1125
static int
1126 1127 1128 1129
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
1130
{
1131
	int err;
1132

1133
	GEM_BUG_ON(intel_context_is_barrier(from->context));
1134

1135 1136 1137 1138 1139 1140 1141 1142
	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
1143
		return 0;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	/*
	 * Wait until the start of this request.
	 *
	 * The execution cb fires when we submit the request to HW. But in
	 * many cases this may be long before the request itself is ready to
	 * run (consider that we submit 2 requests for the same context, where
	 * the request of interest is behind an indefinite spinner). So we hook
	 * up to both to reduce our queues and keep the execution lag minimised
	 * in the worst case, though we hope that the await_start is elided.
	 */
	err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/*
	 * Ensure both start together [after all semaphores in signal]
	 *
	 * Now that we are queued to the HW at roughly the same time (thanks
	 * to the execute cb) and are ready to run at roughly the same time
	 * (thanks to the await start), our signaler may still be indefinitely
	 * delayed by waiting on a semaphore from a remote engine. If our
	 * signaler depends on a semaphore, so indirectly do we, and we do not
	 * want to start our payload until our signaler also starts theirs.
	 * So we wait.
	 *
	 * However, there is also a second condition for which we need to wait
	 * for the precise start of the signaler. Consider that the signaler
	 * was submitted in a chain of requests following another context
	 * (with just an ordinary intra-engine fence dependency between the
	 * two). In this case the signaler is queued to HW, but not for
	 * immediate execution, and so we must wait until it reaches the
	 * active slot.
	 */
	if (intel_engine_has_semaphores(to->engine) &&
	    !i915_request_has_initial_breadcrumb(to)) {
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
		if (err < 0)
			return err;
1183
	}
1184

1185
	/* Couple the dependency tree for PI on this exposed to->fence */
1186
	if (to->engine->schedule) {
1187
		err = i915_sched_node_add_dependency(&to->sched,
1188
						     &from->sched,
1189 1190 1191
						     I915_DEPENDENCY_WEAK);
		if (err < 0)
			return err;
1192 1193
	}

1194 1195
	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
1196 1197
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
static void mark_external(struct i915_request *rq)
{
	/*
	 * The downside of using semaphores is that we lose metadata passing
	 * along the signaling chain. This is particularly nasty when we
	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
	 * fatal errors we want to scrub the request before it is executed,
	 * which means that we cannot preload the request onto HW and have
	 * it wait upon a semaphore.
	 */
	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
}

1211
static int
1212
__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1213
{
1214
	mark_external(rq);
1215
	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1216
					     i915_fence_context_timeout(rq->engine->i915,
1217
									fence->context),
1218 1219 1220
					     I915_FENCE_GFP);
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
static int
i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
	struct dma_fence *iter;
	int err = 0;

	if (!to_dma_fence_chain(fence))
		return __i915_request_await_external(rq, fence);

	dma_fence_chain_for_each(iter, fence) {
		struct dma_fence_chain *chain = to_dma_fence_chain(iter);

		if (!dma_fence_is_i915(chain->fence)) {
			err = __i915_request_await_external(rq, iter);
			break;
		}

		err = i915_request_await_dma_fence(rq, chain->fence);
		if (err < 0)
			break;
	}

	dma_fence_put(iter);
	return err;
}

1247
int
1248 1249 1250 1251
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
1252
{
1253 1254
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
1255 1256
	int ret;

1257 1258 1259
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

1260 1261
		/* XXX Error for signal-on-any fence arrays */

1262 1263 1264 1265
		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
1266

1267 1268
	do {
		fence = *child++;
1269 1270
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1271
			continue;
1272
		}
1273

1274
		if (fence->context == rq->fence.context)
1275 1276
			continue;

1277 1278 1279 1280
		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */
1281

1282
		if (dma_fence_is_i915(fence))
1283 1284 1285
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook);
1286
		else
1287
			ret = i915_request_await_external(rq, fence);
1288 1289
		if (ret < 0)
			return ret;
1290
	} while (--nchild);
1291 1292 1293 1294

	return 0;
}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
static int
await_request_submit(struct i915_request *to, struct i915_request *from)
{
	/*
	 * If we are waiting on a virtual engine, then it may be
	 * constrained to execute on a single engine *prior* to submission.
	 * When it is submitted, it will be first submitted to the virtual
	 * engine and then passed to the physical engine. We cannot allow
	 * the waiter to be submitted immediately to the physical engine
	 * as it may then bypass the virtual request.
	 */
	if (to->engine == READ_ONCE(from->engine))
		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
							&from->submit,
							I915_FENCE_GFP);
	else
		return __i915_request_await_execution(to, from, NULL);
}

1314
static int
1315
i915_request_await_request(struct i915_request *to, struct i915_request *from)
1316
{
1317
	int ret;
1318

1319 1320
	GEM_BUG_ON(to == from);
	GEM_BUG_ON(to->timeline == from->timeline);
1321

1322 1323
	if (i915_request_completed(from)) {
		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1324
		return 0;
1325 1326
	}

1327
	if (to->engine->schedule) {
1328
		ret = i915_sched_node_add_dependency(&to->sched,
1329
						     &from->sched,
1330 1331 1332
						     I915_DEPENDENCY_EXTERNAL);
		if (ret < 0)
			return ret;
1333 1334
	}

1335 1336
	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
		ret = await_request_submit(to, from);
1337 1338 1339 1340 1341 1342
	else
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
	if (ret < 0)
		return ret;

	return 0;
1343 1344
}

1345
int
1346
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1347 1348 1349 1350 1351
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

1352 1353 1354 1355 1356 1357 1358 1359
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1370 1371
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1372
			continue;
1373
		}
1374

1375 1376 1377 1378 1379
		/*
		 * Requests on the same timeline are explicitly ordered, along
		 * with their dependencies, by i915_request_add() which ensures
		 * that requests are submitted in-order through each ring.
		 */
1380 1381 1382
		if (fence->context == rq->fence.context)
			continue;

1383 1384 1385 1386 1387
		/* Squash repeated waits to the same timelines */
		if (fence->context &&
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
			continue;
1388 1389

		if (dma_fence_is_i915(fence))
1390
			ret = i915_request_await_request(rq, to_request(fence));
1391
		else
1392
			ret = i915_request_await_external(rq, fence);
1393 1394
		if (ret < 0)
			return ret;
1395 1396 1397 1398 1399

		/* Record the latest fence used against each timeline */
		if (fence->context)
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1400 1401 1402 1403 1404
	} while (--nchild);

	return 0;
}

1405
/**
1406
 * i915_request_await_object - set this request to (async) wait upon a bo
1407 1408
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1409
 * @write: whether the wait is on behalf of a writer
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1426 1427 1428
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1429
{
1430 1431
	struct dma_fence *excl;
	int ret = 0;
1432 1433

	if (write) {
1434 1435 1436
		struct dma_fence **shared;
		unsigned int count, i;

1437
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1438 1439 1440 1441 1442
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1443
			ret = i915_request_await_dma_fence(to, shared[i]);
1444 1445 1446 1447 1448 1449 1450 1451 1452
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1453
	} else {
1454
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1455 1456
	}

1457 1458
	if (excl) {
		if (ret == 0)
1459
			ret = i915_request_await_dma_fence(to, excl);
1460

1461
		dma_fence_put(excl);
1462 1463
	}

1464
	return ret;
1465 1466
}

1467 1468 1469
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1470
	struct intel_timeline *timeline = i915_request_timeline(rq);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1493 1494
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1495
	if (prev && !i915_request_completed(prev)) {
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		/*
		 * The requests are supposed to be kept in order. However,
		 * we need to be wary in case the timeline->last_request
		 * is used as a barrier for external modification to this
		 * context.
		 */
		GEM_BUG_ON(prev->context == rq->context &&
			   i915_seqno_passed(prev->fence.seqno,
					     rq->fence.seqno));

1506
		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

1521 1522 1523 1524 1525
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1526 1527 1528 1529 1530
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1531 1532 1533 1534 1535
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1536
struct i915_request *__i915_request_commit(struct i915_request *rq)
1537
{
1538 1539
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1540
	u32 *cs;
1541

1542
	RQ_TRACE(rq, "\n");
1543

1544 1545 1546 1547 1548
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1549 1550
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1551
	rq->emitted_jiffies = jiffies;
1552

1553 1554
	/*
	 * Record the position of the start of the breadcrumb so that
1555 1556
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1557
	 * position of the ring's HEAD.
1558
	 */
1559
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1560
	GEM_BUG_ON(IS_ERR(cs));
1561
	rq->postfix = intel_ring_offset(rq, cs);
1562

1563
	return __i915_request_add_to_timeline(rq);
1564 1565 1566 1567 1568
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1569 1570
	/*
	 * Let the backend know a new request has arrived that may need
1571 1572 1573 1574 1575 1576 1577 1578 1579
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1580 1581
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1582
	i915_sw_fence_commit(&rq->semaphore);
1583 1584 1585 1586 1587
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1588
	struct intel_timeline * const tl = i915_request_timeline(rq);
1589
	struct i915_sched_attr attr = {};
1590
	struct i915_gem_context *ctx;
1591

1592 1593
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1594 1595

	trace_i915_request_add(rq);
1596
	__i915_request_commit(rq);
1597

1598 1599 1600 1601 1602 1603
	/* XXX placeholder for selftests */
	rcu_read_lock();
	ctx = rcu_dereference(rq->context->gem_context);
	if (ctx)
		attr = ctx->sched;
	rcu_read_unlock();
1604

1605 1606
	__i915_request_queue(rq, &attr);

1607
	mutex_unlock(&tl->mutex);
1608 1609
}

1610
static unsigned long local_clock_ns(unsigned int *cpu)
1611 1612 1613
{
	unsigned long t;

1614 1615
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
1627
	t = local_clock();
1628 1629 1630 1631 1632 1633 1634 1635 1636
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

1637
	if (time_after(local_clock_ns(&this_cpu), timeout))
1638 1639 1640 1641 1642
		return true;

	return this_cpu != cpu;
}

1643
static bool __i915_spin_request(const struct i915_request * const rq, int state)
1644
{
1645
	unsigned long timeout_ns;
1646
	unsigned int cpu;
1647 1648 1649 1650 1651 1652 1653

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1654 1655 1656 1657
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1658
	 */
1659
	if (!i915_request_is_running(rq))
1660 1661
		return false;

1662 1663
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1664 1665 1666 1667 1668 1669 1670 1671 1672
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1673 1674
	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
	timeout_ns += local_clock_ns(&cpu);
1675
	do {
1676 1677
		if (i915_request_completed(rq))
			return true;
1678

1679 1680 1681
		if (signal_pending_state(state, current))
			break;

1682
		if (busywait_stop(timeout_ns, cpu))
1683 1684
			break;

1685
		cpu_relax();
1686 1687 1688 1689 1690
	} while (!need_resched());

	return false;
}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1703
/**
1704
 * i915_request_wait - wait until execution of request has finished
1705
 * @rq: the request to wait upon
1706
 * @flags: how to wait
1707 1708
 * @timeout: how long to wait in jiffies
 *
1709
 * i915_request_wait() waits for the request to be completed, for a
1710 1711
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1712
 *
1713 1714 1715 1716
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1717
 */
1718
long i915_request_wait(struct i915_request *rq,
1719 1720
		       unsigned int flags,
		       long timeout)
1721
{
1722 1723
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1724
	struct request_wait wait;
1725 1726

	might_sleep();
1727
	GEM_BUG_ON(timeout < 0);
1728

1729
	if (dma_fence_is_signaled(&rq->fence))
1730
		return timeout;
1731

1732 1733
	if (!timeout)
		return -ETIME;
1734

1735
	trace_i915_request_wait_begin(rq, flags);
1736 1737 1738 1739 1740 1741 1742

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1743
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1744

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1768 1769
	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
	    __i915_spin_request(rq, state)) {
1770
		dma_fence_signal(&rq->fence);
1771
		goto out;
1772
	}
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
1787 1788
		if (!i915_request_started(rq) &&
		    INTEL_GEN(rq->engine->i915) >= 6)
1789
			intel_rps_boost(rq);
1790
	}
1791

1792 1793 1794
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1795

1796 1797
	for (;;) {
		set_current_state(state);
1798

1799 1800
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1801
			break;
1802
		}
1803

1804 1805
		intel_engine_flush_submission(rq->engine);

1806
		if (signal_pending_state(state, current)) {
1807
			timeout = -ERESTARTSYS;
1808 1809 1810
			break;
		}

1811 1812
		if (!timeout) {
			timeout = -ETIME;
1813 1814 1815
			break;
		}

1816
		timeout = io_schedule_timeout(timeout);
1817
	}
1818
	__set_current_state(TASK_RUNNING);
1819

1820 1821 1822
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1823
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1824
	trace_i915_request_wait_end(rq);
1825
	return timeout;
1826
}
1827

1828 1829
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1830
#include "selftests/i915_request.c"
1831
#endif
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1850 1851
int __init i915_global_request_init(void)
{
1852 1853 1854 1855 1856 1857 1858 1859
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1860 1861 1862
	if (!global.slab_requests)
		return -ENOMEM;

1863 1864 1865 1866 1867 1868 1869
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1870
	i915_global_register(&global.base);
1871 1872 1873 1874 1875 1876
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}