i915_request.c 46.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
34
#include "gt/intel_ring.h"
35
#include "gt/intel_rps.h"
36

37
#include "i915_active.h"
38
#include "i915_drv.h"
39
#include "i915_globals.h"
40
#include "i915_trace.h"
41
#include "intel_pm.h"
42

43 44 45 46
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
47 48
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
49 50
};

51
static struct i915_global_request {
52
	struct i915_global base;
53
	struct kmem_cache *slab_requests;
54
	struct kmem_cache *slab_execute_cbs;
55 56
} global;

57
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58
{
59
	return dev_name(to_request(fence)->i915->drm.dev);
60 61
}

62
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63
{
64 65
	const struct i915_gem_context *ctx;

66 67
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
68 69 70 71 72 73 74 75 76 77
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

78
	ctx = i915_request_gem_context(to_request(fence));
79 80 81 82
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
83 84
}

85
static bool i915_fence_signaled(struct dma_fence *fence)
86
{
87
	return i915_request_completed(to_request(fence));
88 89
}

90
static bool i915_fence_enable_signaling(struct dma_fence *fence)
91
{
92
	return i915_request_enable_breadcrumb(to_request(fence));
93 94
}

95
static signed long i915_fence_wait(struct dma_fence *fence,
96
				   bool interruptible,
97
				   signed long timeout)
98
{
99 100 101
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
102 103
}

104
static void i915_fence_release(struct dma_fence *fence)
105
{
106
	struct i915_request *rq = to_request(fence);
107

108 109
	/*
	 * The request is put onto a RCU freelist (i.e. the address
110 111 112 113 114
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
115
	i915_sw_fence_fini(&rq->submit);
116
	i915_sw_fence_fini(&rq->semaphore);
117

118
	kmem_cache_free(global.slab_requests, rq);
119 120
}

121
const struct dma_fence_ops i915_fence_ops = {
122 123 124 125 126 127 128 129
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

174
static inline void
175
remove_from_client(struct i915_request *request)
176
{
177
	struct drm_i915_file_private *file_priv;
178

179
	if (!READ_ONCE(request->file_priv))
180 181
		return;

182 183 184 185
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
186
		list_del(&request->client_link);
187
		spin_unlock(&file_priv->mm.lock);
188
	}
189
	rcu_read_unlock();
190 191
}

192
static void free_capture_list(struct i915_request *request)
193
{
194
	struct i915_capture_list *capture;
195

196
	capture = fetch_and_zero(&request->capture_list);
197
	while (capture) {
198
		struct i915_capture_list *next = capture->next;
199 200 201 202 203 204

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

218 219 220 221 222 223 224 225 226 227 228
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
229
	spin_lock_irq(&locked->active.lock);
230 231 232 233 234
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
235
	list_del_init(&rq->sched.link);
236 237
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
238
	spin_unlock_irq(&locked->active.lock);
239 240
}

241
bool i915_request_retire(struct i915_request *rq)
242
{
243 244
	if (!i915_request_completed(rq))
		return false;
245

246
	RQ_TRACE(rq, "\n");
247

248 249
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
250

251 252 253 254 255 256 257 258 259
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
260 261
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
262 263 264
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
265
	rq->ring->head = rq->postfix;
266

267 268 269 270 271 272
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
273
	remove_from_engine(rq);
274

275
	spin_lock_irq(&rq->lock);
276 277 278 279 280
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
281
	if (i915_request_has_waitboost(rq)) {
282 283
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
284
	}
285 286 287 288 289
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
290
	spin_unlock_irq(&rq->lock);
291

292
	remove_from_client(rq);
293
	list_del_rcu(&rq->link);
294

295 296
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
297

298 299 300 301 302
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
303 304
}

305
void i915_request_retire_upto(struct i915_request *rq)
306
{
307
	struct intel_timeline * const tl = i915_request_timeline(rq);
308
	struct i915_request *tmp;
309

310
	RQ_TRACE(rq, "\n");
311

312
	GEM_BUG_ON(!i915_request_completed(rq));
313

314
	do {
315
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
316
	} while (i915_request_retire(tmp) && tmp != rq);
317 318
}

319
static int
320 321 322 323 324
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
325 326 327
{
	struct execute_cb *cb;

328 329 330
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
331
		return 0;
332
	}
333 334 335 336 337 338 339 340 341

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

342 343 344 345 346 347
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

348 349
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
350 351 352 353
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
354 355 356 357 358 359 360
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

361 362
	/* Copy across semaphore status as we need the same behaviour */
	rq->sched.flags |= signal->sched.flags;
363 364 365
	return 0;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
static bool fatal_error(int error)
{
	switch (error) {
	case 0: /* not an error! */
	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
		return false;
	default:
		return true;
	}
}

void __i915_request_skip(struct i915_request *rq)
{
	GEM_BUG_ON(!fatal_error(rq->fence.error));

	if (rq->infix == rq->postfix)
		return;

	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	__i915_request_fill(rq, 0);
	rq->infix = rq->postfix;
}

void i915_request_set_error_once(struct i915_request *rq, int error)
{
	int old;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));

	if (i915_request_signaled(rq))
		return;

	old = READ_ONCE(rq->fence.error);
	do {
		if (fatal_error(old))
			return;
	} while (!try_cmpxchg(&rq->fence.error, &old, error));
}

410
bool __i915_request_submit(struct i915_request *request)
411
{
412
	struct intel_engine_cs *engine = request->engine;
413
	bool result = false;
414

415
	RQ_TRACE(request, "\n");
416

417
	GEM_BUG_ON(!irqs_disabled());
418
	lockdep_assert_held(&engine->active.lock);
419

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

439 440 441 442
	if (unlikely(intel_context_is_banned(request->context)))
		i915_request_set_error_once(request, -EIO);
	if (unlikely(fatal_error(request->fence.error)))
		__i915_request_skip(request);
443

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
462
		engine->saturated |= request->sched.semaphores;
463

464 465
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
466

467 468 469
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
470

471 472 473
xfer:	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);

474
	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
475
		list_move_tail(&request->sched.link, &engine->active.requests);
476 477
		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	}
478

479
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
480
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
481
	    !i915_request_enable_breadcrumb(request))
482
		intel_engine_signal_breadcrumbs(engine);
483

484 485
	__notify_execute_cb(request);

486 487
	spin_unlock(&request->lock);

488
	return result;
489 490
}

491
void i915_request_submit(struct i915_request *request)
492 493 494
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
495

496
	/* Will be called from irq-context when using foreign fences. */
497
	spin_lock_irqsave(&engine->active.lock, flags);
498

499
	__i915_request_submit(request);
500

501
	spin_unlock_irqrestore(&engine->active.lock, flags);
502 503
}

504
void __i915_request_unsubmit(struct i915_request *request)
505
{
506
	struct intel_engine_cs *engine = request->engine;
507

508
	RQ_TRACE(request, "\n");
509

510
	GEM_BUG_ON(!irqs_disabled());
511
	lockdep_assert_held(&engine->active.lock);
512

513 514
	/*
	 * Only unwind in reverse order, required so that the per-context list
515 516
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
517

518 519
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
520

521
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
522
		i915_request_cancel_breadcrumb(request);
523

524 525
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
526

527 528
	spin_unlock(&request->lock);

529 530 531 532 533 534
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

535 536
	/*
	 * We don't need to wake_up any waiters on request->execute, they
537
	 * will get woken by any other event or us re-adding this request
538
	 * to the engine timeline (__i915_request_submit()). The waiters
539 540 541 542 543
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

544
void i915_request_unsubmit(struct i915_request *request)
545 546 547 548 549
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
550
	spin_lock_irqsave(&engine->active.lock, flags);
551

552
	__i915_request_unsubmit(request);
553

554
	spin_unlock_irqrestore(&engine->active.lock, flags);
555 556
}

557
static int __i915_sw_fence_call
558
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
559
{
560
	struct i915_request *request =
561 562 563 564
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
565
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
566 567

		if (unlikely(fence->error))
568
			i915_request_set_error_once(request, fence->error);
C
Chris Wilson 已提交
569

570
		/*
571 572 573 574 575 576
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
577 578
		 */
		rcu_read_lock();
579
		request->engine->submit_request(request);
580
		rcu_read_unlock();
581 582 583
		break;

	case FENCE_FREE:
584
		i915_request_put(request);
585 586 587
		break;
	}

588 589 590
	return NOTIFY_DONE;
}

591 592 593 594 595 596 597 598
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_request *request =
		container_of(fence, typeof(*request), semaphore);

	switch (state) {
	case FENCE_COMPLETE:
599
		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
600 601 602 603 604 605 606 607 608 609
		break;

	case FENCE_FREE:
		i915_request_put(request);
		break;
	}

	return NOTIFY_DONE;
}

610
static void retire_requests(struct intel_timeline *tl)
611 612 613
{
	struct i915_request *rq, *rn;

614
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
615
		if (!i915_request_retire(rq))
616 617 618 619
			break;
}

static noinline struct i915_request *
620
request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
621 622 623
{
	struct i915_request *rq;

624
	if (list_empty(&tl->requests))
625 626
		goto out;

627 628 629
	if (!gfpflags_allow_blocking(gfp))
		goto out;

630
	/* Move our oldest request to the slab-cache (if not in use!) */
631
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
632 633 634 635 636 637 638
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

639
	/* Ratelimit ourselves to prevent oom from malicious clients */
640
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
641 642 643
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
644
	retire_requests(tl);
645 646

out:
647
	return kmem_cache_alloc(global.slab_requests, gfp);
648 649
}

650 651 652 653 654 655 656 657 658
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

659 660
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

661 662 663 664 665 666
	rq->file_priv = NULL;
	rq->capture_list = NULL;

	INIT_LIST_HEAD(&rq->execute_cb);
}

667
struct i915_request *
668
__i915_request_create(struct intel_context *ce, gfp_t gfp)
669
{
670
	struct intel_timeline *tl = ce->timeline;
671 672
	struct i915_request *rq;
	u32 seqno;
673 674
	int ret;

675
	might_sleep_if(gfpflags_allow_blocking(gfp));
676

677 678
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
679

680 681
	/*
	 * Beware: Dragons be flying overhead.
682 683 684 685
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
686
	 * of being read by __i915_active_request_get_rcu(). As such,
687 688
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
689
	 * read the request->global_seqno and increment the reference count.
690 691 692 693
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
694 695
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
696 697 698 699 700 701 702 703 704 705 706 707 708
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
709
	rq = kmem_cache_alloc(global.slab_requests,
710
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
711
	if (unlikely(!rq)) {
712
		rq = request_alloc_slow(tl, gfp);
713
		if (!rq) {
714 715 716
			ret = -ENOMEM;
			goto err_unreserve;
		}
717
	}
718

719
	rq->i915 = ce->engine->i915;
720
	rq->context = ce;
721
	rq->engine = ce->engine;
722
	rq->ring = ce->ring;
723
	rq->execution_mask = ce->engine->mask;
724

725 726 727 728 729 730 731 732 733 734 735 736
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

737 738
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
739
	rq->hwsp_seqno = tl->hwsp_seqno;
740

741
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
742

743
	/* We bump the ref for the fence chain */
744 745
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
746

747
	i915_sched_node_reinit(&rq->sched);
748

749
	/* No zalloc, everything must be cleared after use */
750
	rq->batch = NULL;
751 752 753
	GEM_BUG_ON(rq->file_priv);
	GEM_BUG_ON(rq->capture_list);
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
754

755 756 757
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
758
	 * i915_request_add() call can't fail. Note that the reserve may need
759 760
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
761 762 763 764 765
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
766
	 */
767 768
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
769

770 771
	/*
	 * Record the position of the start of the request so that
772 773 774 775
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
776
	rq->head = rq->ring->emit;
777

778
	ret = rq->engine->request_alloc(rq);
779 780
	if (ret)
		goto err_unwind;
781

782 783
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

784
	intel_context_mark_active(ce);
785 786
	list_add_tail_rcu(&rq->link, &tl->requests);

787
	return rq;
788

789
err_unwind:
790
	ce->ring->emit = rq->head;
791

792
	/* Make sure we didn't add ourselves to external state before freeing */
793 794
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
795

796
err_free:
797
	kmem_cache_free(global.slab_requests, rq);
798
err_unreserve:
799
	intel_context_unpin(ce);
800
	return ERR_PTR(ret);
801 802
}

803 804 805 806
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
807
	struct intel_timeline *tl;
808

809 810 811
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
812 813

	/* Move our oldest request to the slab-cache (if not in use!) */
814 815
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
816 817 818 819 820 821 822 823 824
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
825
	rq->cookie = lockdep_pin_lock(&tl->mutex);
826 827 828 829

	return rq;

err_unlock:
830
	intel_context_timeline_unlock(tl);
831 832 833
	return rq;
}

834 835 836
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
837 838
	struct dma_fence *fence;
	int err;
839

840 841 842
	GEM_BUG_ON(i915_request_timeline(rq) ==
		   rcu_access_pointer(signal->timeline));

843 844 845
	if (i915_request_started(signal))
		return 0;

846
	fence = NULL;
847
	rcu_read_lock();
848
	spin_lock_irq(&signal->lock);
849 850 851 852 853 854 855 856 857 858 859
	do {
		struct list_head *pos = READ_ONCE(signal->link.prev);
		struct i915_request *prev;

		/* Confirm signal has not been retired, the link is valid */
		if (unlikely(i915_request_started(signal)))
			break;

		/* Is signal the earliest request on its timeline? */
		if (pos == &rcu_dereference(signal->timeline)->requests)
			break;
860

861 862 863 864 865 866
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
867 868 869 870 871 872 873 874
		prev = list_entry(pos, typeof(*prev), link);
		if (!i915_request_get_rcu(prev))
			break;

		/* After the strong barrier, confirm prev is still attached */
		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
			i915_request_put(prev);
			break;
875
		}
876 877 878

		fence = &prev->fence;
	} while (0);
879 880 881 882
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
883 884 885 886 887 888 889 890 891

	err = 0;
	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
892 893
}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
909
	return rq->sched.semaphores | rq->engine->saturated;
910 911
}

912
static int
913 914 915
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
916
{
917
	const int has_token = INTEL_GEN(to->i915) >= 12;
918
	u32 hwsp_offset;
919
	int len, err;
920 921 922 923
	u32 *cs;

	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

924
	/* We need to pin the signaler's HWSP until we are finished reading. */
925 926 927
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
928

929 930 931 932 933
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
934 935 936 937 938 939 940 941 942 943 944
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
945 946 947 948 949
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
950
	*cs++ = seqno;
951 952
	*cs++ = hwsp_offset;
	*cs++ = 0;
953 954 955 956
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
957 958

	intel_ring_advance(to, cs);
959 960 961 962 963 964 965 966
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
967 968 969 970 971 972
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

	if (!rcu_access_pointer(from->hwsp_cacheline))
		goto await_fence;

973 974 975 976 977 978 979 980 981 982 983 984 985 986
	/* Just emit the first semaphore we see as request space is limited. */
	if (already_busywaiting(to) & from->engine->mask)
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

987 988
	to->sched.semaphores |= from->engine->mask;
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
989
	return 0;
990 991 992 993 994

await_fence:
	return i915_sw_fence_await_dma_fence(&to->submit,
					     &from->fence, 0,
					     I915_FENCE_GFP);
995 996
}

997
static int
998
i915_request_await_request(struct i915_request *to, struct i915_request *from)
999
{
1000
	int ret;
1001 1002

	GEM_BUG_ON(to == from);
1003
	GEM_BUG_ON(to->timeline == from->timeline);
1004

1005
	if (i915_request_completed(from))
1006 1007
		return 0;

1008
	if (to->engine->schedule) {
1009
		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
1010 1011 1012 1013
		if (ret < 0)
			return ret;
	}

1014
	if (to->engine == from->engine)
1015 1016
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
1017
						       I915_FENCE_GFP);
1018
	else
1019
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
1030

1031
	return 0;
1032 1033
}

1034
int
1035
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1036
{
1037 1038
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
1039 1040
	int ret;

1041 1042
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
1043 1044 1045 1046 1047 1048
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
1049 1050 1051 1052 1053 1054 1055
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
1056

1057 1058
	do {
		fence = *child++;
1059 1060
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1061
			continue;
1062
		}
1063

1064 1065
		/*
		 * Requests on the same timeline are explicitly ordered, along
1066
		 * with their dependencies, by i915_request_add() which ensures
1067 1068
		 * that requests are submitted in-order through each ring.
		 */
1069
		if (fence->context == rq->fence.context)
1070 1071
			continue;

1072
		/* Squash repeated waits to the same timelines */
1073
		if (fence->context &&
1074 1075
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
1076 1077
			continue;

1078
		if (dma_fence_is_i915(fence))
1079
			ret = i915_request_await_request(rq, to_request(fence));
1080
		else
1081
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1082
							    fence->context ? I915_FENCE_TIMEOUT : 0,
1083
							    I915_FENCE_GFP);
1084 1085
		if (ret < 0)
			return ret;
1086 1087

		/* Record the latest fence used against each timeline */
1088
		if (fence->context)
1089 1090
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1091
	} while (--nchild);
1092 1093 1094 1095

	return 0;
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

static int
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
{
	int err;

1118 1119
	GEM_BUG_ON(intel_context_is_barrier(from->context));

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
		return 0;

	/* Ensure both start together [after all semaphores in signal] */
	if (intel_engine_has_semaphores(to->engine))
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
	else
		err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/* Couple the dependency tree for PI on this exposed to->fence */
	if (to->engine->schedule) {
		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
		if (err < 0)
			return err;
	}

	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1171 1172
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1173
			continue;
1174
		}
1175 1176 1177 1178 1179 1180 1181 1182 1183

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
1184
							     hook);
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

1196
/**
1197
 * i915_request_await_object - set this request to (async) wait upon a bo
1198 1199
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1200
 * @write: whether the wait is on behalf of a writer
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1217 1218 1219
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1220
{
1221 1222
	struct dma_fence *excl;
	int ret = 0;
1223 1224

	if (write) {
1225 1226 1227
		struct dma_fence **shared;
		unsigned int count, i;

1228
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1229 1230 1231 1232 1233
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1234
			ret = i915_request_await_dma_fence(to, shared[i]);
1235 1236 1237 1238 1239 1240 1241 1242 1243
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1244
	} else {
1245
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1246 1247
	}

1248 1249
	if (excl) {
		if (ret == 0)
1250
			ret = i915_request_await_dma_fence(to, excl);
1251

1252
		dma_fence_put(excl);
1253 1254
	}

1255
	return ret;
1256 1257
}

1258 1259 1260
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1261
	struct intel_timeline *timeline = i915_request_timeline(rq);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1284 1285
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	if (prev && !i915_request_completed(prev)) {
		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

1302 1303 1304 1305 1306
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1307 1308 1309 1310 1311
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1312 1313 1314 1315 1316
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1317
struct i915_request *__i915_request_commit(struct i915_request *rq)
1318
{
1319 1320
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1321
	u32 *cs;
1322

1323
	RQ_TRACE(rq, "\n");
1324

1325 1326 1327 1328 1329
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1330 1331
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1332
	rq->emitted_jiffies = jiffies;
1333

1334 1335
	/*
	 * Record the position of the start of the breadcrumb so that
1336 1337
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1338
	 * position of the ring's HEAD.
1339
	 */
1340
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1341
	GEM_BUG_ON(IS_ERR(cs));
1342
	rq->postfix = intel_ring_offset(rq, cs);
1343

1344
	return __i915_request_add_to_timeline(rq);
1345 1346 1347 1348 1349
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1350 1351
	/*
	 * Let the backend know a new request has arrived that may need
1352 1353 1354 1355 1356 1357 1358 1359 1360
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1361
	i915_sw_fence_commit(&rq->semaphore);
1362 1363
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1364 1365 1366 1367 1368
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1369
	struct intel_timeline * const tl = i915_request_timeline(rq);
1370
	struct i915_sched_attr attr = {};
1371
	struct i915_gem_context *ctx;
1372

1373 1374
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1375 1376

	trace_i915_request_add(rq);
1377
	__i915_request_commit(rq);
1378

1379 1380 1381 1382 1383 1384
	/* XXX placeholder for selftests */
	rcu_read_lock();
	ctx = rcu_dereference(rq->context->gem_context);
	if (ctx)
		attr = ctx->sched;
	rcu_read_unlock();
1385

1386 1387 1388 1389 1390
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
	if (list_empty(&rq->sched.signalers_list))
		attr.priority |= I915_PRIORITY_WAIT;

1391
	local_bh_disable();
1392
	__i915_request_queue(rq, &attr);
1393
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1394

1395
	mutex_unlock(&tl->mutex);
1396 1397
}

1398
static unsigned long local_clock_ns(unsigned int *cpu)
1399 1400 1401
{
	unsigned long t;

1402 1403
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
1415
	t = local_clock();
1416 1417 1418 1419 1420 1421 1422 1423 1424
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

1425
	if (time_after(local_clock_ns(&this_cpu), timeout))
1426 1427 1428 1429 1430
		return true;

	return this_cpu != cpu;
}

1431
static bool __i915_spin_request(const struct i915_request * const rq, int state)
1432
{
1433
	unsigned long timeout_ns;
1434
	unsigned int cpu;
1435 1436 1437 1438 1439 1440 1441

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1442 1443 1444 1445
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1446
	 */
1447
	if (!i915_request_is_running(rq))
1448 1449
		return false;

1450 1451
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1452 1453 1454 1455 1456 1457 1458 1459 1460
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1461 1462
	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
	timeout_ns += local_clock_ns(&cpu);
1463
	do {
1464 1465
		if (i915_request_completed(rq))
			return true;
1466

1467 1468 1469
		if (signal_pending_state(state, current))
			break;

1470
		if (busywait_stop(timeout_ns, cpu))
1471 1472
			break;

1473
		cpu_relax();
1474 1475 1476 1477 1478
	} while (!need_resched());

	return false;
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1491
/**
1492
 * i915_request_wait - wait until execution of request has finished
1493
 * @rq: the request to wait upon
1494
 * @flags: how to wait
1495 1496
 * @timeout: how long to wait in jiffies
 *
1497
 * i915_request_wait() waits for the request to be completed, for a
1498 1499
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1500
 *
1501 1502 1503 1504
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1505
 */
1506
long i915_request_wait(struct i915_request *rq,
1507 1508
		       unsigned int flags,
		       long timeout)
1509
{
1510 1511
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1512
	struct request_wait wait;
1513 1514

	might_sleep();
1515
	GEM_BUG_ON(timeout < 0);
1516

1517
	if (dma_fence_is_signaled(&rq->fence))
1518
		return timeout;
1519

1520 1521
	if (!timeout)
		return -ETIME;
1522

1523
	trace_i915_request_wait_begin(rq, flags);
1524 1525 1526 1527 1528 1529 1530

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1531
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1532

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1556 1557
	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
	    __i915_spin_request(rq, state)) {
1558
		dma_fence_signal(&rq->fence);
1559
		goto out;
1560
	}
1561

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1576
			intel_rps_boost(rq);
1577
		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1578
	}
1579

1580 1581 1582
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1583

1584 1585
	for (;;) {
		set_current_state(state);
1586

1587 1588
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1589
			break;
1590
		}
1591

1592 1593
		intel_engine_flush_submission(rq->engine);

1594
		if (signal_pending_state(state, current)) {
1595
			timeout = -ERESTARTSYS;
1596 1597 1598
			break;
		}

1599 1600
		if (!timeout) {
			timeout = -ETIME;
1601 1602 1603
			break;
		}

1604
		timeout = io_schedule_timeout(timeout);
1605
	}
1606
	__set_current_state(TASK_RUNNING);
1607

1608 1609 1610
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1611
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1612
	trace_i915_request_wait_end(rq);
1613
	return timeout;
1614
}
1615

1616 1617
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1618
#include "selftests/i915_request.c"
1619
#endif
1620

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1638 1639
int __init i915_global_request_init(void)
{
1640 1641 1642 1643 1644 1645 1646 1647
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1648 1649 1650
	if (!global.slab_requests)
		return -ENOMEM;

1651 1652 1653 1654 1655 1656 1657
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1658
	i915_global_register(&global.base);
1659 1660 1661 1662 1663 1664
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}