i915_request.c 51.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26
#include <linux/dma-fence-chain.h>
27 28
#include <linux/irq_work.h>
#include <linux/prefetch.h>
29 30
#include <linux/sched.h>
#include <linux/sched/clock.h>
31
#include <linux/sched/signal.h>
32

33 34
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
35
#include "gt/intel_ring.h"
36
#include "gt/intel_rps.h"
37

38
#include "i915_active.h"
39
#include "i915_drv.h"
40
#include "i915_globals.h"
41
#include "i915_trace.h"
42
#include "intel_pm.h"
43

44 45 46 47
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
48 49
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
50 51
};

52
static struct i915_global_request {
53
	struct i915_global base;
54
	struct kmem_cache *slab_requests;
55
	struct kmem_cache *slab_execute_cbs;
56 57
} global;

58
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59
{
60
	return dev_name(to_request(fence)->i915->drm.dev);
61 62
}

63
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64
{
65 66
	const struct i915_gem_context *ctx;

67 68
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
69 70 71 72 73 74 75 76 77 78
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

79
	ctx = i915_request_gem_context(to_request(fence));
80 81 82 83
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
84 85
}

86
static bool i915_fence_signaled(struct dma_fence *fence)
87
{
88
	return i915_request_completed(to_request(fence));
89 90
}

91
static bool i915_fence_enable_signaling(struct dma_fence *fence)
92
{
93
	return i915_request_enable_breadcrumb(to_request(fence));
94 95
}

96
static signed long i915_fence_wait(struct dma_fence *fence,
97
				   bool interruptible,
98
				   signed long timeout)
99
{
100 101 102
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
103 104
}

105 106 107 108 109
struct kmem_cache *i915_request_slab_cache(void)
{
	return global.slab_requests;
}

110
static void i915_fence_release(struct dma_fence *fence)
111
{
112
	struct i915_request *rq = to_request(fence);
113

114 115
	/*
	 * The request is put onto a RCU freelist (i.e. the address
116 117 118 119 120
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
121
	i915_sw_fence_fini(&rq->submit);
122
	i915_sw_fence_fini(&rq->semaphore);
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	/*
	 * Keep one request on each engine for reserved use under mempressure
	 *
	 * We do not hold a reference to the engine here and so have to be
	 * very careful in what rq->engine we poke. The virtual engine is
	 * referenced via the rq->context and we released that ref during
	 * i915_request_retire(), ergo we must not dereference a virtual
	 * engine here. Not that we would want to, as the only consumer of
	 * the reserved engine->request_pool is the power management parking,
	 * which must-not-fail, and that is only run on the physical engines.
	 *
	 * Since the request must have been executed to be have completed,
	 * we know that it will have been processed by the HW and will
	 * not be unsubmitted again, so rq->engine and rq->execution_mask
	 * at this point is stable. rq->execution_mask will be a single
	 * bit if the last and _only_ engine it could execution on was a
	 * physical engine, if it's multiple bits then it started on and
	 * could still be on a virtual engine. Thus if the mask is not a
	 * power-of-two we assume that rq->engine may still be a virtual
	 * engine and so a dangling invalid pointer that we cannot dereference
	 *
	 * For example, consider the flow of a bonded request through a virtual
	 * engine. The request is created with a wide engine mask (all engines
	 * that we might execute on). On processing the bond, the request mask
	 * is reduced to one or more engines. If the request is subsequently
	 * bound to a single engine, it will then be constrained to only
	 * execute on that engine and never returned to the virtual engine
	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
	 * know that if the rq->execution_mask is a single bit, rq->engine
	 * can be a physical engine with the exact corresponding mask.
	 */
	if (is_power_of_2(rq->execution_mask) &&
	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
157 158
		return;

159
	kmem_cache_free(global.slab_requests, rq);
160 161
}

162
const struct dma_fence_ops i915_fence_ops = {
163 164 165 166 167 168 169 170
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

215
static inline void
216
remove_from_client(struct i915_request *request)
217
{
218
	struct drm_i915_file_private *file_priv;
219

220
	if (!READ_ONCE(request->file_priv))
221 222
		return;

223 224 225 226
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
227
		list_del(&request->client_link);
228
		spin_unlock(&file_priv->mm.lock);
229
	}
230
	rcu_read_unlock();
231 232
}

233
static void free_capture_list(struct i915_request *request)
234
{
235
	struct i915_capture_list *capture;
236

237
	capture = fetch_and_zero(&request->capture_list);
238
	while (capture) {
239
		struct i915_capture_list *next = capture->next;
240 241 242 243 244 245

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

259 260 261 262 263 264 265 266 267 268 269
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
270
	spin_lock_irq(&locked->active.lock);
271 272 273 274 275
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
276
	list_del_init(&rq->sched.link);
277 278
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
279
	spin_unlock_irq(&locked->active.lock);
280 281
}

282
bool i915_request_retire(struct i915_request *rq)
283
{
284 285
	if (!i915_request_completed(rq))
		return false;
286

287
	RQ_TRACE(rq, "\n");
288

289 290
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
291

292 293 294 295 296 297 298 299 300
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
301 302
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
303 304 305
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
306
	rq->ring->head = rq->postfix;
307

308 309 310 311 312 313
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
314
	remove_from_engine(rq);
315

316
	spin_lock_irq(&rq->lock);
317 318 319 320 321
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
322
	if (i915_request_has_waitboost(rq)) {
323 324
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
325
	}
326 327 328 329 330
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
331
	spin_unlock_irq(&rq->lock);
332

333
	remove_from_client(rq);
334
	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
335

336 337
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
338

339 340 341 342 343
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
344 345
}

346
void i915_request_retire_upto(struct i915_request *rq)
347
{
348
	struct intel_timeline * const tl = i915_request_timeline(rq);
349
	struct i915_request *tmp;
350

351
	RQ_TRACE(rq, "\n");
352

353
	GEM_BUG_ON(!i915_request_completed(rq));
354

355
	do {
356
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
357
	} while (i915_request_retire(tmp) && tmp != rq);
358 359
}

360
static int
361 362 363 364 365
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
366 367 368
{
	struct execute_cb *cb;

369 370 371
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
372
		return 0;
373
	}
374 375 376 377 378 379 380 381 382

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

383 384 385 386 387 388
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

389 390
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
391 392 393 394
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
395 396 397 398 399 400 401 402 403 404
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

	return 0;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
static bool fatal_error(int error)
{
	switch (error) {
	case 0: /* not an error! */
	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
		return false;
	default:
		return true;
	}
}

void __i915_request_skip(struct i915_request *rq)
{
	GEM_BUG_ON(!fatal_error(rq->fence.error));

	if (rq->infix == rq->postfix)
		return;

	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	__i915_request_fill(rq, 0);
	rq->infix = rq->postfix;
}

void i915_request_set_error_once(struct i915_request *rq, int error)
{
	int old;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));

	if (i915_request_signaled(rq))
		return;

	old = READ_ONCE(rq->fence.error);
	do {
		if (fatal_error(old))
			return;
	} while (!try_cmpxchg(&rq->fence.error, &old, error));
}

449
bool __i915_request_submit(struct i915_request *request)
450
{
451
	struct intel_engine_cs *engine = request->engine;
452
	bool result = false;
453

454
	RQ_TRACE(request, "\n");
455

456
	GEM_BUG_ON(!irqs_disabled());
457
	lockdep_assert_held(&engine->active.lock);
458

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

478 479 480 481
	if (unlikely(intel_context_is_banned(request->context)))
		i915_request_set_error_once(request, -EIO);
	if (unlikely(fatal_error(request->fence.error)))
		__i915_request_skip(request);
482

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
501
		engine->saturated |= request->sched.semaphores;
502

503 504
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
505

506 507 508
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
509

510 511 512
xfer:	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);

513
	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
514
		list_move_tail(&request->sched.link, &engine->active.requests);
515 516
		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	}
517

518
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
519
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
520
	    !i915_request_enable_breadcrumb(request))
521
		intel_engine_signal_breadcrumbs(engine);
522

523 524
	__notify_execute_cb(request);

525 526
	spin_unlock(&request->lock);

527
	return result;
528 529
}

530
void i915_request_submit(struct i915_request *request)
531 532 533
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
534

535
	/* Will be called from irq-context when using foreign fences. */
536
	spin_lock_irqsave(&engine->active.lock, flags);
537

538
	__i915_request_submit(request);
539

540
	spin_unlock_irqrestore(&engine->active.lock, flags);
541 542
}

543
void __i915_request_unsubmit(struct i915_request *request)
544
{
545
	struct intel_engine_cs *engine = request->engine;
546

547
	RQ_TRACE(request, "\n");
548

549
	GEM_BUG_ON(!irqs_disabled());
550
	lockdep_assert_held(&engine->active.lock);
551

552 553
	/*
	 * Only unwind in reverse order, required so that the per-context list
554 555
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
556

557 558
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
559

560
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
561
		i915_request_cancel_breadcrumb(request);
562

563 564
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
565

566 567
	spin_unlock(&request->lock);

568
	/* We've already spun, don't charge on resubmitting. */
569
	if (request->sched.semaphores && i915_request_started(request))
570 571
		request->sched.semaphores = 0;

572 573
	/*
	 * We don't need to wake_up any waiters on request->execute, they
574
	 * will get woken by any other event or us re-adding this request
575
	 * to the engine timeline (__i915_request_submit()). The waiters
576 577 578 579 580
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

581
void i915_request_unsubmit(struct i915_request *request)
582 583 584 585 586
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
587
	spin_lock_irqsave(&engine->active.lock, flags);
588

589
	__i915_request_unsubmit(request);
590

591
	spin_unlock_irqrestore(&engine->active.lock, flags);
592 593
}

594
static int __i915_sw_fence_call
595
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
596
{
597
	struct i915_request *request =
598 599 600 601
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
602
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
603 604

		if (unlikely(fence->error))
605
			i915_request_set_error_once(request, fence->error);
C
Chris Wilson 已提交
606

607
		/*
608 609 610 611 612 613
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
614 615
		 */
		rcu_read_lock();
616
		request->engine->submit_request(request);
617
		rcu_read_unlock();
618 619 620
		break;

	case FENCE_FREE:
621
		i915_request_put(request);
622 623 624
		break;
	}

625 626 627
	return NOTIFY_DONE;
}

628 629 630
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
631
	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
632 633 634 635 636 637

	switch (state) {
	case FENCE_COMPLETE:
		break;

	case FENCE_FREE:
638
		i915_request_put(rq);
639 640 641 642 643 644
		break;
	}

	return NOTIFY_DONE;
}

645
static void retire_requests(struct intel_timeline *tl)
646 647 648
{
	struct i915_request *rq, *rn;

649
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
650
		if (!i915_request_retire(rq))
651 652 653 654
			break;
}

static noinline struct i915_request *
655 656 657
request_alloc_slow(struct intel_timeline *tl,
		   struct i915_request **rsvd,
		   gfp_t gfp)
658 659 660
{
	struct i915_request *rq;

661 662 663 664 665
	/* If we cannot wait, dip into our reserves */
	if (!gfpflags_allow_blocking(gfp)) {
		rq = xchg(rsvd, NULL);
		if (!rq) /* Use the normal failure path for one final WARN */
			goto out;
666

667 668 669 670
		return rq;
	}

	if (list_empty(&tl->requests))
671 672
		goto out;

673
	/* Move our oldest request to the slab-cache (if not in use!) */
674
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
675 676 677 678 679 680 681
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

682
	/* Ratelimit ourselves to prevent oom from malicious clients */
683
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
684 685 686
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
687
	retire_requests(tl);
688 689

out:
690
	return kmem_cache_alloc(global.slab_requests, gfp);
691 692
}

693 694 695 696 697 698 699 700 701
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

702 703
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

704 705 706 707 708 709
	rq->file_priv = NULL;
	rq->capture_list = NULL;

	INIT_LIST_HEAD(&rq->execute_cb);
}

710
struct i915_request *
711
__i915_request_create(struct intel_context *ce, gfp_t gfp)
712
{
713
	struct intel_timeline *tl = ce->timeline;
714 715
	struct i915_request *rq;
	u32 seqno;
716 717
	int ret;

718
	might_sleep_if(gfpflags_allow_blocking(gfp));
719

720 721
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
722

723 724
	/*
	 * Beware: Dragons be flying overhead.
725 726 727 728
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
729
	 * of being read by __i915_active_request_get_rcu(). As such,
730 731
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
732
	 * read the request->global_seqno and increment the reference count.
733 734 735 736
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
737 738
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
739 740 741 742 743 744 745 746 747 748 749 750 751
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
752
	rq = kmem_cache_alloc(global.slab_requests,
753
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
754
	if (unlikely(!rq)) {
755
		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
756
		if (!rq) {
757 758 759
			ret = -ENOMEM;
			goto err_unreserve;
		}
760
	}
761

762
	rq->i915 = ce->engine->i915;
763
	rq->context = ce;
764
	rq->engine = ce->engine;
765
	rq->ring = ce->ring;
766
	rq->execution_mask = ce->engine->mask;
767

768 769 770 771 772 773 774 775 776 777 778 779
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

780 781
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
782
	rq->hwsp_seqno = tl->hwsp_seqno;
783
	GEM_BUG_ON(i915_request_completed(rq));
784

785
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
786

787
	/* We bump the ref for the fence chain */
788 789
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
790

791
	i915_sched_node_reinit(&rq->sched);
792

793
	/* No zalloc, everything must be cleared after use */
794
	rq->batch = NULL;
795 796 797
	GEM_BUG_ON(rq->file_priv);
	GEM_BUG_ON(rq->capture_list);
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
798

799 800 801
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
802
	 * i915_request_add() call can't fail. Note that the reserve may need
803 804
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
805 806 807 808 809
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
810
	 */
811 812
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
813

814 815
	/*
	 * Record the position of the start of the request so that
816 817 818 819
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
820
	rq->head = rq->ring->emit;
821

822
	ret = rq->engine->request_alloc(rq);
823 824
	if (ret)
		goto err_unwind;
825

826 827
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

828
	intel_context_mark_active(ce);
829 830
	list_add_tail_rcu(&rq->link, &tl->requests);

831
	return rq;
832

833
err_unwind:
834
	ce->ring->emit = rq->head;
835

836
	/* Make sure we didn't add ourselves to external state before freeing */
837 838
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
839

840
err_free:
841
	kmem_cache_free(global.slab_requests, rq);
842
err_unreserve:
843
	intel_context_unpin(ce);
844
	return ERR_PTR(ret);
845 846
}

847 848 849 850
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
851
	struct intel_timeline *tl;
852

853 854 855
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
856 857

	/* Move our oldest request to the slab-cache (if not in use!) */
858 859
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
860 861 862 863 864 865 866 867 868
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
869
	rq->cookie = lockdep_pin_lock(&tl->mutex);
870 871 872 873

	return rq;

err_unlock:
874
	intel_context_timeline_unlock(tl);
875 876 877
	return rq;
}

878 879 880
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
881 882
	struct dma_fence *fence;
	int err;
883

884 885
	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
		return 0;
886

887 888 889
	if (i915_request_started(signal))
		return 0;

890
	fence = NULL;
891
	rcu_read_lock();
892
	spin_lock_irq(&signal->lock);
893 894 895 896 897 898 899 900 901 902 903
	do {
		struct list_head *pos = READ_ONCE(signal->link.prev);
		struct i915_request *prev;

		/* Confirm signal has not been retired, the link is valid */
		if (unlikely(i915_request_started(signal)))
			break;

		/* Is signal the earliest request on its timeline? */
		if (pos == &rcu_dereference(signal->timeline)->requests)
			break;
904

905 906 907 908 909 910
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
911 912 913 914 915 916 917 918
		prev = list_entry(pos, typeof(*prev), link);
		if (!i915_request_get_rcu(prev))
			break;

		/* After the strong barrier, confirm prev is still attached */
		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
			i915_request_put(prev);
			break;
919
		}
920 921 922

		fence = &prev->fence;
	} while (0);
923 924 925 926
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
927 928

	err = 0;
929
	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
930 931 932 933 934 935
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
936 937
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
953
	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
954 955
}

956
static int
957 958 959
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
960
{
961
	const int has_token = INTEL_GEN(to->i915) >= 12;
962
	u32 hwsp_offset;
963
	int len, err;
964 965 966
	u32 *cs;

	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
967
	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
968

969
	/* We need to pin the signaler's HWSP until we are finished reading. */
970 971 972
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
973

974 975 976 977 978
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
979 980 981 982 983 984 985 986 987 988 989
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
990 991 992 993 994
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
995
	*cs++ = seqno;
996 997
	*cs++ = hwsp_offset;
	*cs++ = 0;
998 999 1000 1001
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
1002 1003

	intel_ring_advance(to, cs);
1004 1005 1006 1007 1008 1009 1010 1011
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
1012
	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1013
	struct i915_sw_fence *wait = &to->submit;
1014

1015 1016 1017
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

1018 1019 1020
	if (i915_request_has_initial_breadcrumb(to))
		goto await_fence;

1021 1022 1023
	if (!rcu_access_pointer(from->hwsp_cacheline))
		goto await_fence;

1024 1025 1026 1027 1028 1029 1030 1031 1032
	/*
	 * If this or its dependents are waiting on an external fence
	 * that may fail catastrophically, then we want to avoid using
	 * sempahores as they bypass the fence signaling metadata, and we
	 * lose the fence->error propagation.
	 */
	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
		goto await_fence;

1033
	/* Just emit the first semaphore we see as request space is limited. */
1034
	if (already_busywaiting(to) & mask)
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

1047
	to->sched.semaphores |= mask;
1048
	wait = &to->semaphore;
1049 1050

await_fence:
1051
	return i915_sw_fence_await_dma_fence(wait,
1052 1053
					     &from->fence, 0,
					     I915_FENCE_GFP);
1054 1055
}

1056
static int
1057
i915_request_await_request(struct i915_request *to, struct i915_request *from)
1058
{
1059
	int ret;
1060 1061

	GEM_BUG_ON(to == from);
1062
	GEM_BUG_ON(to->timeline == from->timeline);
1063

1064 1065
	if (i915_request_completed(from)) {
		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1066
		return 0;
1067
	}
1068

1069
	if (to->engine->schedule) {
1070 1071 1072
		ret = i915_sched_node_add_dependency(&to->sched,
						     &from->sched,
						     I915_DEPENDENCY_EXTERNAL);
1073 1074 1075 1076
		if (ret < 0)
			return ret;
	}

1077
	if (to->engine == from->engine)
1078 1079
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
1080
						       I915_FENCE_GFP);
1081
	else
1082
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1083 1084 1085 1086
	if (ret < 0)
		return ret;

	return 0;
1087 1088
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
static void mark_external(struct i915_request *rq)
{
	/*
	 * The downside of using semaphores is that we lose metadata passing
	 * along the signaling chain. This is particularly nasty when we
	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
	 * fatal errors we want to scrub the request before it is executed,
	 * which means that we cannot preload the request onto HW and have
	 * it wait upon a semaphore.
	 */
	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
}

1102
static int
1103
__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1104
{
1105
	mark_external(rq);
1106
	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1107 1108
					     i915_fence_context_timeout(rq->i915,
									fence->context),
1109 1110 1111
					     I915_FENCE_GFP);
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
static int
i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
	struct dma_fence *iter;
	int err = 0;

	if (!to_dma_fence_chain(fence))
		return __i915_request_await_external(rq, fence);

	dma_fence_chain_for_each(iter, fence) {
		struct dma_fence_chain *chain = to_dma_fence_chain(iter);

		if (!dma_fence_is_i915(chain->fence)) {
			err = __i915_request_await_external(rq, iter);
			break;
		}

		err = i915_request_await_dma_fence(rq, chain->fence);
		if (err < 0)
			break;
	}

	dma_fence_put(iter);
	return err;
}

1138
int
1139
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1140
{
1141 1142
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
1143 1144
	int ret;

1145 1146
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
1147 1148 1149 1150 1151 1152
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
1153 1154 1155 1156 1157 1158 1159
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
1160

1161 1162
	do {
		fence = *child++;
1163 1164
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1165
			continue;
1166
		}
1167

1168 1169
		/*
		 * Requests on the same timeline are explicitly ordered, along
1170
		 * with their dependencies, by i915_request_add() which ensures
1171 1172
		 * that requests are submitted in-order through each ring.
		 */
1173
		if (fence->context == rq->fence.context)
1174 1175
			continue;

1176
		/* Squash repeated waits to the same timelines */
1177
		if (fence->context &&
1178 1179
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
1180 1181
			continue;

1182
		if (dma_fence_is_i915(fence))
1183
			ret = i915_request_await_request(rq, to_request(fence));
1184
		else
1185
			ret = i915_request_await_external(rq, fence);
1186 1187
		if (ret < 0)
			return ret;
1188 1189

		/* Record the latest fence used against each timeline */
1190
		if (fence->context)
1191 1192
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1193
	} while (--nchild);
1194 1195 1196 1197

	return 0;
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

static int
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
{
	int err;

1220 1221
	GEM_BUG_ON(intel_context_is_barrier(from->context));

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
		return 0;

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	/*
	 * Wait until the start of this request.
	 *
	 * The execution cb fires when we submit the request to HW. But in
	 * many cases this may be long before the request itself is ready to
	 * run (consider that we submit 2 requests for the same context, where
	 * the request of interest is behind an indefinite spinner). So we hook
	 * up to both to reduce our queues and keep the execution lag minimised
	 * in the worst case, though we hope that the await_start is elided.
	 */
	err = i915_request_await_start(to, from);
1243 1244 1245
	if (err < 0)
		return err;

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	/*
	 * Ensure both start together [after all semaphores in signal]
	 *
	 * Now that we are queued to the HW at roughly the same time (thanks
	 * to the execute cb) and are ready to run at roughly the same time
	 * (thanks to the await start), our signaler may still be indefinitely
	 * delayed by waiting on a semaphore from a remote engine. If our
	 * signaler depends on a semaphore, so indirectly do we, and we do not
	 * want to start our payload until our signaler also starts theirs.
	 * So we wait.
	 *
	 * However, there is also a second condition for which we need to wait
	 * for the precise start of the signaler. Consider that the signaler
	 * was submitted in a chain of requests following another context
	 * (with just an ordinary intra-engine fence dependency between the
	 * two). In this case the signaler is queued to HW, but not for
	 * immediate execution, and so we must wait until it reaches the
	 * active slot.
	 */
1265 1266
	if (intel_engine_has_semaphores(to->engine) &&
	    !i915_request_has_initial_breadcrumb(to)) {
1267 1268 1269 1270 1271
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
		if (err < 0)
			return err;
	}

1272 1273
	/* Couple the dependency tree for PI on this exposed to->fence */
	if (to->engine->schedule) {
1274 1275 1276
		err = i915_sched_node_add_dependency(&to->sched,
						     &from->sched,
						     I915_DEPENDENCY_WEAK);
1277 1278 1279 1280 1281 1282 1283 1284
		if (err < 0)
			return err;
	}

	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1307 1308
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1309
			continue;
1310
		}
1311

1312 1313 1314
		if (fence->context == rq->fence.context)
			continue;

1315 1316 1317 1318 1319 1320 1321 1322
		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
1323
							     hook);
1324
		else
1325
			ret = i915_request_await_external(rq, fence);
1326 1327 1328 1329 1330 1331 1332
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

1333
/**
1334
 * i915_request_await_object - set this request to (async) wait upon a bo
1335 1336
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1337
 * @write: whether the wait is on behalf of a writer
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1354 1355 1356
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1357
{
1358 1359
	struct dma_fence *excl;
	int ret = 0;
1360 1361

	if (write) {
1362 1363 1364
		struct dma_fence **shared;
		unsigned int count, i;

1365
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1366 1367 1368 1369 1370
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1371
			ret = i915_request_await_dma_fence(to, shared[i]);
1372 1373 1374 1375 1376 1377 1378 1379 1380
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1381
	} else {
1382
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1383 1384
	}

1385 1386
	if (excl) {
		if (ret == 0)
1387
			ret = i915_request_await_dma_fence(to, excl);
1388

1389
		dma_fence_put(excl);
1390 1391
	}

1392
	return ret;
1393 1394
}

1395 1396 1397
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1398
	struct intel_timeline *timeline = i915_request_timeline(rq);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1421 1422
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1423
	if (prev && !i915_request_completed(prev)) {
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
		/*
		 * The requests are supposed to be kept in order. However,
		 * we need to be wary in case the timeline->last_request
		 * is used as a barrier for external modification to this
		 * context.
		 */
		GEM_BUG_ON(prev->context == rq->context &&
			   i915_seqno_passed(prev->fence.seqno,
					     rq->fence.seqno));

1434
		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

1449 1450 1451 1452 1453
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1454 1455 1456 1457 1458
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1459 1460 1461 1462 1463
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1464
struct i915_request *__i915_request_commit(struct i915_request *rq)
1465
{
1466 1467
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1468
	u32 *cs;
1469

1470
	RQ_TRACE(rq, "\n");
1471

1472 1473 1474 1475 1476
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1477 1478
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1479
	rq->emitted_jiffies = jiffies;
1480

1481 1482
	/*
	 * Record the position of the start of the breadcrumb so that
1483 1484
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1485
	 * position of the ring's HEAD.
1486
	 */
1487
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1488
	GEM_BUG_ON(IS_ERR(cs));
1489
	rq->postfix = intel_ring_offset(rq, cs);
1490

1491
	return __i915_request_add_to_timeline(rq);
1492 1493 1494 1495 1496
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1497 1498
	/*
	 * Let the backend know a new request has arrived that may need
1499 1500 1501 1502 1503 1504 1505 1506 1507
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1508 1509
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1510
	i915_sw_fence_commit(&rq->semaphore);
1511 1512 1513 1514 1515
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1516
	struct intel_timeline * const tl = i915_request_timeline(rq);
1517
	struct i915_sched_attr attr = {};
1518
	struct i915_gem_context *ctx;
1519

1520 1521
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1522 1523

	trace_i915_request_add(rq);
1524
	__i915_request_commit(rq);
1525

1526 1527 1528 1529 1530 1531
	/* XXX placeholder for selftests */
	rcu_read_lock();
	ctx = rcu_dereference(rq->context->gem_context);
	if (ctx)
		attr = ctx->sched;
	rcu_read_unlock();
1532

1533 1534
	__i915_request_queue(rq, &attr);

1535
	mutex_unlock(&tl->mutex);
1536 1537
}

1538
static unsigned long local_clock_ns(unsigned int *cpu)
1539 1540 1541
{
	unsigned long t;

1542 1543
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
1555
	t = local_clock();
1556 1557 1558 1559 1560 1561 1562 1563 1564
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

1565
	if (time_after(local_clock_ns(&this_cpu), timeout))
1566 1567 1568 1569 1570
		return true;

	return this_cpu != cpu;
}

1571
static bool __i915_spin_request(const struct i915_request * const rq, int state)
1572
{
1573
	unsigned long timeout_ns;
1574
	unsigned int cpu;
1575 1576 1577 1578 1579 1580 1581

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1582 1583 1584 1585
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1586
	 */
1587
	if (!i915_request_is_running(rq))
1588 1589
		return false;

1590 1591
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1592 1593 1594 1595 1596 1597 1598 1599 1600
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1601 1602
	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
	timeout_ns += local_clock_ns(&cpu);
1603
	do {
1604 1605
		if (i915_request_completed(rq))
			return true;
1606

1607 1608 1609
		if (signal_pending_state(state, current))
			break;

1610
		if (busywait_stop(timeout_ns, cpu))
1611 1612
			break;

1613
		cpu_relax();
1614 1615 1616 1617 1618
	} while (!need_resched());

	return false;
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1631
/**
1632
 * i915_request_wait - wait until execution of request has finished
1633
 * @rq: the request to wait upon
1634
 * @flags: how to wait
1635 1636
 * @timeout: how long to wait in jiffies
 *
1637
 * i915_request_wait() waits for the request to be completed, for a
1638 1639
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1640
 *
1641 1642 1643 1644
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1645
 */
1646
long i915_request_wait(struct i915_request *rq,
1647 1648
		       unsigned int flags,
		       long timeout)
1649
{
1650 1651
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1652
	struct request_wait wait;
1653 1654

	might_sleep();
1655
	GEM_BUG_ON(timeout < 0);
1656

1657
	if (dma_fence_is_signaled(&rq->fence))
1658
		return timeout;
1659

1660 1661
	if (!timeout)
		return -ETIME;
1662

1663
	trace_i915_request_wait_begin(rq, flags);
1664 1665 1666 1667 1668 1669 1670

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1671
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1696 1697
	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
	    __i915_spin_request(rq, state)) {
1698
		dma_fence_signal(&rq->fence);
1699
		goto out;
1700
	}
1701

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1716
			intel_rps_boost(rq);
1717
	}
1718

1719 1720 1721
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1722

1723 1724
	for (;;) {
		set_current_state(state);
1725

1726 1727
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1728
			break;
1729
		}
1730

1731 1732
		intel_engine_flush_submission(rq->engine);

1733
		if (signal_pending_state(state, current)) {
1734
			timeout = -ERESTARTSYS;
1735 1736 1737
			break;
		}

1738 1739
		if (!timeout) {
			timeout = -ETIME;
1740 1741 1742
			break;
		}

1743
		timeout = io_schedule_timeout(timeout);
1744
	}
1745
	__set_current_state(TASK_RUNNING);
1746

1747 1748 1749
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1750
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1751
	trace_i915_request_wait_end(rq);
1752
	return timeout;
1753
}
1754

1755 1756
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1757
#include "selftests/i915_request.c"
1758
#endif
1759

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1777 1778
int __init i915_global_request_init(void)
{
1779 1780 1781 1782 1783 1784 1785 1786
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1787 1788 1789
	if (!global.slab_requests)
		return -ENOMEM;

1790 1791 1792 1793 1794 1795 1796
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1797
	i915_global_register(&global.base);
1798 1799 1800 1801 1802 1803
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}