i915_request.c 58.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26
#include <linux/dma-fence-chain.h>
27 28
#include <linux/irq_work.h>
#include <linux/prefetch.h>
29 30
#include <linux/sched.h>
#include <linux/sched/clock.h>
31
#include <linux/sched/signal.h>
32

33
#include "gem/i915_gem_context.h"
34
#include "gt/intel_breadcrumbs.h"
35
#include "gt/intel_context.h"
36
#include "gt/intel_gpu_commands.h"
37
#include "gt/intel_ring.h"
38
#include "gt/intel_rps.h"
39

40
#include "i915_active.h"
41
#include "i915_drv.h"
42
#include "i915_globals.h"
43
#include "i915_trace.h"
44
#include "intel_pm.h"
45

46 47 48
struct execute_cb {
	struct irq_work work;
	struct i915_sw_fence *fence;
49 50
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
51 52
};

53
static struct i915_global_request {
54
	struct i915_global base;
55
	struct kmem_cache *slab_requests;
56
	struct kmem_cache *slab_execute_cbs;
57 58
} global;

59
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
60
{
61
	return dev_name(to_request(fence)->engine->i915->drm.dev);
62 63
}

64
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
65
{
66 67
	const struct i915_gem_context *ctx;

68 69
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
70 71 72 73 74 75 76 77 78 79
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

80
	ctx = i915_request_gem_context(to_request(fence));
81 82 83 84
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
85 86
}

87
static bool i915_fence_signaled(struct dma_fence *fence)
88
{
89
	return i915_request_completed(to_request(fence));
90 91
}

92
static bool i915_fence_enable_signaling(struct dma_fence *fence)
93
{
94
	return i915_request_enable_breadcrumb(to_request(fence));
95 96
}

97
static signed long i915_fence_wait(struct dma_fence *fence,
98
				   bool interruptible,
99
				   signed long timeout)
100
{
101 102 103
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
104 105
}

106 107 108 109 110
struct kmem_cache *i915_request_slab_cache(void)
{
	return global.slab_requests;
}

111
static void i915_fence_release(struct dma_fence *fence)
112
{
113
	struct i915_request *rq = to_request(fence);
114

115 116
	/*
	 * The request is put onto a RCU freelist (i.e. the address
117 118 119 120 121
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
122
	i915_sw_fence_fini(&rq->submit);
123
	i915_sw_fence_fini(&rq->semaphore);
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
	/*
	 * Keep one request on each engine for reserved use under mempressure
	 *
	 * We do not hold a reference to the engine here and so have to be
	 * very careful in what rq->engine we poke. The virtual engine is
	 * referenced via the rq->context and we released that ref during
	 * i915_request_retire(), ergo we must not dereference a virtual
	 * engine here. Not that we would want to, as the only consumer of
	 * the reserved engine->request_pool is the power management parking,
	 * which must-not-fail, and that is only run on the physical engines.
	 *
	 * Since the request must have been executed to be have completed,
	 * we know that it will have been processed by the HW and will
	 * not be unsubmitted again, so rq->engine and rq->execution_mask
	 * at this point is stable. rq->execution_mask will be a single
	 * bit if the last and _only_ engine it could execution on was a
	 * physical engine, if it's multiple bits then it started on and
	 * could still be on a virtual engine. Thus if the mask is not a
	 * power-of-two we assume that rq->engine may still be a virtual
	 * engine and so a dangling invalid pointer that we cannot dereference
	 *
	 * For example, consider the flow of a bonded request through a virtual
	 * engine. The request is created with a wide engine mask (all engines
	 * that we might execute on). On processing the bond, the request mask
	 * is reduced to one or more engines. If the request is subsequently
	 * bound to a single engine, it will then be constrained to only
	 * execute on that engine and never returned to the virtual engine
	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
	 * know that if the rq->execution_mask is a single bit, rq->engine
	 * can be a physical engine with the exact corresponding mask.
	 */
	if (is_power_of_2(rq->execution_mask) &&
	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
158 159
		return;

160
	kmem_cache_free(global.slab_requests, rq);
161 162
}

163
const struct dma_fence_ops i915_fence_ops = {
164 165 166 167 168 169 170 171
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

191 192
static __always_inline void
__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
193
{
194
	struct execute_cb *cb, *cn;
195

196
	if (llist_empty(&rq->execute_cb))
197 198
		return;

199 200
	llist_for_each_entry_safe(cb, cn,
				  llist_del_all(&rq->execute_cb),
P
Peter Zijlstra 已提交
201
				  work.node.llist)
202 203
		fn(&cb->work);
}
204

205 206 207 208 209 210 211 212 213 214 215 216 217 218
static void __notify_execute_cb_irq(struct i915_request *rq)
{
	__notify_execute_cb(rq, irq_work_queue);
}

static bool irq_work_imm(struct irq_work *wrk)
{
	wrk->func(wrk);
	return false;
}

static void __notify_execute_cb_imm(struct i915_request *rq)
{
	__notify_execute_cb(rq, irq_work_imm);
219 220
}

221
static void free_capture_list(struct i915_request *request)
222
{
223
	struct i915_capture_list *capture;
224

225
	capture = fetch_and_zero(&request->capture_list);
226
	while (capture) {
227
		struct i915_capture_list *next = capture->next;
228 229 230 231 232 233

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

247 248 249 250 251 252 253 254 255 256 257
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
258
	spin_lock_irq(&locked->active.lock);
259 260 261 262 263
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
264
	list_del_init(&rq->sched.link);
265

266 267
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
268 269 270 271

	/* Prevent further __await_execution() registering a cb, then flush */
	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);

272
	spin_unlock_irq(&locked->active.lock);
273 274

	__notify_execute_cb_imm(rq);
275 276
}

277
bool i915_request_retire(struct i915_request *rq)
278
{
279
	if (!__i915_request_is_complete(rq))
280
		return false;
281

282
	RQ_TRACE(rq, "\n");
283

284 285
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
286
	i915_request_mark_complete(rq);
C
Chris Wilson 已提交
287

288 289 290 291 292 293 294 295 296
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
297 298
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
299 300 301
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
302
	rq->ring->head = rq->postfix;
303

304 305
	if (!i915_request_signaled(rq)) {
		spin_lock_irq(&rq->lock);
306
		dma_fence_signal_locked(&rq->fence);
307 308
		spin_unlock_irq(&rq->lock);
	}
309

310
	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
311
		atomic_dec(&rq->engine->gt->rps.num_waiters);
312 313 314 315 316 317 318 319 320 321 322

	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 *
	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
	 * after removing the breadcrumb and signaling it, so that we do not
	 * inadvertently attach the breadcrumb to a completed request.
	 */
323 324
	if (!list_empty(&rq->sched.link))
		remove_from_engine(rq);
325
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
326

327
	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
328

329 330
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
331

332 333 334 335 336
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
337 338
}

339
void i915_request_retire_upto(struct i915_request *rq)
340
{
341
	struct intel_timeline * const tl = i915_request_timeline(rq);
342
	struct i915_request *tmp;
343

344
	RQ_TRACE(rq, "\n");
345
	GEM_BUG_ON(!__i915_request_is_complete(rq));
346

347
	do {
348
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
349
	} while (i915_request_retire(tmp) && tmp != rq);
350 351
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static struct i915_request * const *
__engine_active(struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->execlists.active);
}

static bool __request_in_flight(const struct i915_request *signal)
{
	struct i915_request * const *port, *rq;
	bool inflight = false;

	if (!i915_request_is_ready(signal))
		return false;

	/*
	 * Even if we have unwound the request, it may still be on
	 * the GPU (preempt-to-busy). If that request is inside an
	 * unpreemptible critical section, it will not be removed. Some
	 * GPU functions may even be stuck waiting for the paired request
	 * (__await_execution) to be submitted and cannot be preempted
	 * until the bond is executing.
	 *
	 * As we know that there are always preemption points between
	 * requests, we know that only the currently executing request
	 * may be still active even though we have cleared the flag.
377
	 * However, we can't rely on our tracking of ELSP[0] to know
378 379 380 381
	 * which request is currently active and so maybe stuck, as
	 * the tracking maybe an event behind. Instead assume that
	 * if the context is still inflight, then it is still active
	 * even if the active flag has been cleared.
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	 *
	 * To further complicate matters, if there a pending promotion, the HW
	 * may either perform a context switch to the second inflight execlists,
	 * or it may switch to the pending set of execlists. In the case of the
	 * latter, it may send the ACK and we process the event copying the
	 * pending[] over top of inflight[], _overwriting_ our *active. Since
	 * this implies the HW is arbitrating and not struck in *active, we do
	 * not worry about complete accuracy, but we do require no read/write
	 * tearing of the pointer [the read of the pointer must be valid, even
	 * as the array is being overwritten, for which we require the writes
	 * to avoid tearing.]
	 *
	 * Note that the read of *execlists->active may race with the promotion
	 * of execlists->pending[] to execlists->inflight[], overwritting
	 * the value at *execlists->active. This is fine. The promotion implies
	 * that we received an ACK from the HW, and so the context is not
	 * stuck -- if we do not see ourselves in *active, the inflight status
	 * is valid. If instead we see ourselves being copied into *active,
	 * we are inflight and may signal the callback.
401 402 403 404 405
	 */
	if (!intel_context_inflight(signal->context))
		return false;

	rcu_read_lock();
406 407 408
	for (port = __engine_active(signal->engine);
	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
	     port++) {
409 410 411 412 413 414 415 416 417 418 419
		if (rq->context == signal->context) {
			inflight = i915_seqno_passed(rq->fence.seqno,
						     signal->fence.seqno);
			break;
		}
	}
	rcu_read_unlock();

	return inflight;
}

420
static int
421 422 423 424 425
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
426 427 428
{
	struct execute_cb *cb;

429 430 431
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
432
		return 0;
433
	}
434 435 436 437 438 439 440 441 442

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

443 444 445 446 447 448
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

449 450 451 452 453 454 455 456 457 458 459 460 461
	/*
	 * Register the callback first, then see if the signaler is already
	 * active. This ensures that if we race with the
	 * __notify_execute_cb from i915_request_submit() and we are not
	 * included in that list, we get a second bite of the cherry and
	 * execute it ourselves. After this point, a future
	 * i915_request_submit() will notify us.
	 *
	 * In i915_request_retire() we set the ACTIVE bit on a completed
	 * request (then flush the execute_cb). So by registering the
	 * callback first, then checking the ACTIVE bit, we serialise with
	 * the completed/retired request.
	 */
P
Peter Zijlstra 已提交
462
	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
463 464 465
		if (i915_request_is_active(signal) ||
		    __request_in_flight(signal))
			__notify_execute_cb_imm(signal);
466 467 468 469 470
	}

	return 0;
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static bool fatal_error(int error)
{
	switch (error) {
	case 0: /* not an error! */
	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
		return false;
	default:
		return true;
	}
}

void __i915_request_skip(struct i915_request *rq)
{
	GEM_BUG_ON(!fatal_error(rq->fence.error));

	if (rq->infix == rq->postfix)
		return;

490 491
	RQ_TRACE(rq, "error: %d\n", rq->fence.error);

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	__i915_request_fill(rq, 0);
	rq->infix = rq->postfix;
}

void i915_request_set_error_once(struct i915_request *rq, int error)
{
	int old;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));

	if (i915_request_signaled(rq))
		return;

	old = READ_ONCE(rq->fence.error);
	do {
		if (fatal_error(old))
			return;
	} while (!try_cmpxchg(&rq->fence.error, &old, error));
}

517 518 519 520 521 522 523 524 525 526 527
void i915_request_mark_eio(struct i915_request *rq)
{
	if (__i915_request_is_complete(rq))
		return;

	GEM_BUG_ON(i915_request_signaled(rq));

	i915_request_set_error_once(rq, -EIO);
	i915_request_mark_complete(rq);
}

528
bool __i915_request_submit(struct i915_request *request)
529
{
530
	struct intel_engine_cs *engine = request->engine;
531
	bool result = false;
532

533
	RQ_TRACE(request, "\n");
534

535
	GEM_BUG_ON(!irqs_disabled());
536
	lockdep_assert_held(&engine->active.lock);
537

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
554
	if (__i915_request_is_complete(request))
555 556
		goto xfer;

557 558
	if (unlikely(intel_context_is_banned(request->context)))
		i915_request_set_error_once(request, -EIO);
559

560 561
	if (unlikely(fatal_error(request->fence.error)))
		__i915_request_skip(request);
562

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
581
		engine->saturated |= request->sched.semaphores;
582

583 584
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
585

586 587 588
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
589

590
xfer:
591
	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
592
		list_move_tail(&request->sched.link, &engine->active.requests);
593 594
		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	}
595

596 597 598 599 600 601 602 603 604 605
	/*
	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
606 607 608
	__notify_execute_cb_irq(request);

	/* We may be recursing from the signal callback of another i915 fence */
609 610
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		i915_request_enable_breadcrumb(request);
611

612
	return result;
613 614
}

615
void i915_request_submit(struct i915_request *request)
616 617 618
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
619

620
	/* Will be called from irq-context when using foreign fences. */
621
	spin_lock_irqsave(&engine->active.lock, flags);
622

623
	__i915_request_submit(request);
624

625
	spin_unlock_irqrestore(&engine->active.lock, flags);
626 627
}

628
void __i915_request_unsubmit(struct i915_request *request)
629
{
630
	struct intel_engine_cs *engine = request->engine;
631

632 633 634 635
	/*
	 * Only unwind in reverse order, required so that the per-context list
	 * is kept in seqno/ring order.
	 */
636
	RQ_TRACE(request, "\n");
637

638
	GEM_BUG_ON(!irqs_disabled());
639
	lockdep_assert_held(&engine->active.lock);
640

641
	/*
642 643 644 645 646
	 * Before we remove this breadcrumb from the signal list, we have
	 * to ensure that a concurrent dma_fence_enable_signaling() does not
	 * attach itself. We first mark the request as no longer active and
	 * make sure that is visible to other cores, and then remove the
	 * breadcrumb if attached.
647
	 */
648 649
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
650
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
651
		i915_request_cancel_breadcrumb(request);
652

653
	/* We've already spun, don't charge on resubmitting. */
654
	if (request->sched.semaphores && __i915_request_has_started(request))
655 656
		request->sched.semaphores = 0;

657 658
	/*
	 * We don't need to wake_up any waiters on request->execute, they
659
	 * will get woken by any other event or us re-adding this request
660
	 * to the engine timeline (__i915_request_submit()). The waiters
661 662 663 664 665
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

666
void i915_request_unsubmit(struct i915_request *request)
667 668 669 670 671
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
672
	spin_lock_irqsave(&engine->active.lock, flags);
673

674
	__i915_request_unsubmit(request);
675

676
	spin_unlock_irqrestore(&engine->active.lock, flags);
677 678
}

679
static int __i915_sw_fence_call
680
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
681
{
682
	struct i915_request *request =
683 684 685 686
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
687
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
688 689

		if (unlikely(fence->error))
690
			i915_request_set_error_once(request, fence->error);
C
Chris Wilson 已提交
691

692
		/*
693 694 695 696 697 698
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
699 700
		 */
		rcu_read_lock();
701
		request->engine->submit_request(request);
702
		rcu_read_unlock();
703 704 705
		break;

	case FENCE_FREE:
706
		i915_request_put(request);
707 708 709
		break;
	}

710 711 712
	return NOTIFY_DONE;
}

713 714 715
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
716
	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
717 718 719 720 721 722

	switch (state) {
	case FENCE_COMPLETE:
		break;

	case FENCE_FREE:
723
		i915_request_put(rq);
724 725 726 727 728 729
		break;
	}

	return NOTIFY_DONE;
}

730
static void retire_requests(struct intel_timeline *tl)
731 732 733
{
	struct i915_request *rq, *rn;

734
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
735
		if (!i915_request_retire(rq))
736 737 738 739
			break;
}

static noinline struct i915_request *
740 741 742
request_alloc_slow(struct intel_timeline *tl,
		   struct i915_request **rsvd,
		   gfp_t gfp)
743 744 745
{
	struct i915_request *rq;

746 747 748 749 750
	/* If we cannot wait, dip into our reserves */
	if (!gfpflags_allow_blocking(gfp)) {
		rq = xchg(rsvd, NULL);
		if (!rq) /* Use the normal failure path for one final WARN */
			goto out;
751

752 753 754 755
		return rq;
	}

	if (list_empty(&tl->requests))
756 757
		goto out;

758
	/* Move our oldest request to the slab-cache (if not in use!) */
759
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
760 761 762 763 764 765 766
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

767
	/* Ratelimit ourselves to prevent oom from malicious clients */
768
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
769 770 771
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
772
	retire_requests(tl);
773 774

out:
775
	return kmem_cache_alloc(global.slab_requests, gfp);
776 777
}

778 779 780 781 782 783 784 785 786
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

787 788
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

789 790
	rq->capture_list = NULL;

791
	init_llist_head(&rq->execute_cb);
792 793
}

794
struct i915_request *
795
__i915_request_create(struct intel_context *ce, gfp_t gfp)
796
{
797
	struct intel_timeline *tl = ce->timeline;
798 799
	struct i915_request *rq;
	u32 seqno;
800 801
	int ret;

802
	might_sleep_if(gfpflags_allow_blocking(gfp));
803

804 805
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
806

807 808
	/*
	 * Beware: Dragons be flying overhead.
809 810 811 812
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
813
	 * of being read by __i915_active_request_get_rcu(). As such,
814 815
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
816
	 * read the request->global_seqno and increment the reference count.
817 818 819 820
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
821 822
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
823 824 825 826 827 828 829 830 831 832 833 834 835
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
836
	rq = kmem_cache_alloc(global.slab_requests,
837
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
838
	if (unlikely(!rq)) {
839
		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
840
		if (!rq) {
841 842 843
			ret = -ENOMEM;
			goto err_unreserve;
		}
844
	}
845

846
	rq->context = ce;
847
	rq->engine = ce->engine;
848
	rq->ring = ce->ring;
849
	rq->execution_mask = ce->engine->mask;
850

851 852 853 854 855 856 857 858 859 860 861 862
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

863 864
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
865
	rq->hwsp_seqno = tl->hwsp_seqno;
866
	GEM_BUG_ON(__i915_request_is_complete(rq));
867

868
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
869

870
	/* We bump the ref for the fence chain */
871 872
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
873

874
	i915_sched_node_reinit(&rq->sched);
875

876
	/* No zalloc, everything must be cleared after use */
877
	rq->batch = NULL;
878
	GEM_BUG_ON(rq->capture_list);
879
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
880

881 882 883
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
884
	 * i915_request_add() call can't fail. Note that the reserve may need
885 886
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
887 888 889 890 891
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
892
	 */
893 894
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
895

896 897
	/*
	 * Record the position of the start of the request so that
898 899 900 901
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
902
	rq->head = rq->ring->emit;
903

904
	ret = rq->engine->request_alloc(rq);
905 906
	if (ret)
		goto err_unwind;
907

908 909
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

910
	intel_context_mark_active(ce);
911 912
	list_add_tail_rcu(&rq->link, &tl->requests);

913
	return rq;
914

915
err_unwind:
916
	ce->ring->emit = rq->head;
917

918
	/* Make sure we didn't add ourselves to external state before freeing */
919 920
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
921

922
err_free:
923
	kmem_cache_free(global.slab_requests, rq);
924
err_unreserve:
925
	intel_context_unpin(ce);
926
	return ERR_PTR(ret);
927 928
}

929 930 931 932
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
933
	struct intel_timeline *tl;
934

935 936 937
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
938 939

	/* Move our oldest request to the slab-cache (if not in use!) */
940 941
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
942 943 944 945 946 947 948 949 950
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
951
	rq->cookie = lockdep_pin_lock(&tl->mutex);
952 953 954 955

	return rq;

err_unlock:
956
	intel_context_timeline_unlock(tl);
957 958 959
	return rq;
}

960 961 962
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
963 964
	struct dma_fence *fence;
	int err;
965

966 967
	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
		return 0;
968

969 970 971
	if (i915_request_started(signal))
		return 0;

972
	fence = NULL;
973
	rcu_read_lock();
974
	spin_lock_irq(&signal->lock);
975 976 977 978 979
	do {
		struct list_head *pos = READ_ONCE(signal->link.prev);
		struct i915_request *prev;

		/* Confirm signal has not been retired, the link is valid */
980
		if (unlikely(__i915_request_has_started(signal)))
981 982 983 984 985
			break;

		/* Is signal the earliest request on its timeline? */
		if (pos == &rcu_dereference(signal->timeline)->requests)
			break;
986

987 988 989 990 991 992
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
993 994 995 996 997 998 999 1000
		prev = list_entry(pos, typeof(*prev), link);
		if (!i915_request_get_rcu(prev))
			break;

		/* After the strong barrier, confirm prev is still attached */
		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
			i915_request_put(prev);
			break;
1001
		}
1002 1003 1004

		fence = &prev->fence;
	} while (0);
1005 1006 1007 1008
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
1009 1010

	err = 0;
1011
	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1012 1013 1014 1015 1016 1017
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
1018 1019
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
1035
	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1036 1037
}

1038
static int
1039 1040 1041
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
1042
{
1043
	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1044
	u32 hwsp_offset;
1045
	int len, err;
1046 1047
	u32 *cs;

1048
	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1049
	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1050

1051
	/* We need to pin the signaler's HWSP until we are finished reading. */
1052 1053 1054
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
1055

1056 1057 1058 1059 1060
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
1072 1073 1074 1075 1076
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
1077
	*cs++ = seqno;
1078 1079
	*cs++ = hwsp_offset;
	*cs++ = 0;
1080 1081 1082 1083
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
1084 1085

	intel_ring_advance(to, cs);
1086 1087 1088 1089 1090 1091 1092 1093
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
1094
	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1095
	struct i915_sw_fence *wait = &to->submit;
1096

1097 1098 1099
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

1100 1101 1102
	if (i915_request_has_initial_breadcrumb(to))
		goto await_fence;

1103 1104 1105
	if (!rcu_access_pointer(from->hwsp_cacheline))
		goto await_fence;

1106 1107 1108 1109 1110 1111 1112 1113 1114
	/*
	 * If this or its dependents are waiting on an external fence
	 * that may fail catastrophically, then we want to avoid using
	 * sempahores as they bypass the fence signaling metadata, and we
	 * lose the fence->error propagation.
	 */
	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
		goto await_fence;

1115
	/* Just emit the first semaphore we see as request space is limited. */
1116
	if (already_busywaiting(to) & mask)
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

1129
	to->sched.semaphores |= mask;
1130
	wait = &to->semaphore;
1131 1132

await_fence:
1133
	return i915_sw_fence_await_dma_fence(wait,
1134 1135
					     &from->fence, 0,
					     I915_FENCE_GFP);
1136 1137
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

1152
static int
1153 1154 1155 1156
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
1157
{
1158
	int err;
1159

1160
	GEM_BUG_ON(intel_context_is_barrier(from->context));
1161

1162 1163 1164 1165 1166 1167 1168 1169
	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
1170
		return 0;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

	/*
	 * Wait until the start of this request.
	 *
	 * The execution cb fires when we submit the request to HW. But in
	 * many cases this may be long before the request itself is ready to
	 * run (consider that we submit 2 requests for the same context, where
	 * the request of interest is behind an indefinite spinner). So we hook
	 * up to both to reduce our queues and keep the execution lag minimised
	 * in the worst case, though we hope that the await_start is elided.
	 */
	err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/*
	 * Ensure both start together [after all semaphores in signal]
	 *
	 * Now that we are queued to the HW at roughly the same time (thanks
	 * to the execute cb) and are ready to run at roughly the same time
	 * (thanks to the await start), our signaler may still be indefinitely
	 * delayed by waiting on a semaphore from a remote engine. If our
	 * signaler depends on a semaphore, so indirectly do we, and we do not
	 * want to start our payload until our signaler also starts theirs.
	 * So we wait.
	 *
	 * However, there is also a second condition for which we need to wait
	 * for the precise start of the signaler. Consider that the signaler
	 * was submitted in a chain of requests following another context
	 * (with just an ordinary intra-engine fence dependency between the
	 * two). In this case the signaler is queued to HW, but not for
	 * immediate execution, and so we must wait until it reaches the
	 * active slot.
	 */
	if (intel_engine_has_semaphores(to->engine) &&
	    !i915_request_has_initial_breadcrumb(to)) {
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
		if (err < 0)
			return err;
1210
	}
1211

1212
	/* Couple the dependency tree for PI on this exposed to->fence */
1213
	if (to->engine->schedule) {
1214
		err = i915_sched_node_add_dependency(&to->sched,
1215
						     &from->sched,
1216 1217 1218
						     I915_DEPENDENCY_WEAK);
		if (err < 0)
			return err;
1219 1220
	}

1221 1222
	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
1223 1224
}

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static void mark_external(struct i915_request *rq)
{
	/*
	 * The downside of using semaphores is that we lose metadata passing
	 * along the signaling chain. This is particularly nasty when we
	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
	 * fatal errors we want to scrub the request before it is executed,
	 * which means that we cannot preload the request onto HW and have
	 * it wait upon a semaphore.
	 */
	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
}

1238
static int
1239
__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1240
{
1241
	mark_external(rq);
1242
	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1243
					     i915_fence_context_timeout(rq->engine->i915,
1244
									fence->context),
1245 1246 1247
					     I915_FENCE_GFP);
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static int
i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
	struct dma_fence *iter;
	int err = 0;

	if (!to_dma_fence_chain(fence))
		return __i915_request_await_external(rq, fence);

	dma_fence_chain_for_each(iter, fence) {
		struct dma_fence_chain *chain = to_dma_fence_chain(iter);

		if (!dma_fence_is_i915(chain->fence)) {
			err = __i915_request_await_external(rq, iter);
			break;
		}

		err = i915_request_await_dma_fence(rq, chain->fence);
		if (err < 0)
			break;
	}

	dma_fence_put(iter);
	return err;
}

1274
int
1275 1276 1277 1278
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
1279
{
1280 1281
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
1282 1283
	int ret;

1284 1285 1286
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

1287 1288
		/* XXX Error for signal-on-any fence arrays */

1289 1290 1291 1292
		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
1293

1294 1295
	do {
		fence = *child++;
1296 1297
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1298
			continue;
1299
		}
1300

1301
		if (fence->context == rq->fence.context)
1302 1303
			continue;

1304 1305 1306 1307
		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */
1308

1309
		if (dma_fence_is_i915(fence))
1310 1311 1312
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook);
1313
		else
1314
			ret = i915_request_await_external(rq, fence);
1315 1316
		if (ret < 0)
			return ret;
1317
	} while (--nchild);
1318 1319 1320 1321

	return 0;
}

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
static int
await_request_submit(struct i915_request *to, struct i915_request *from)
{
	/*
	 * If we are waiting on a virtual engine, then it may be
	 * constrained to execute on a single engine *prior* to submission.
	 * When it is submitted, it will be first submitted to the virtual
	 * engine and then passed to the physical engine. We cannot allow
	 * the waiter to be submitted immediately to the physical engine
	 * as it may then bypass the virtual request.
	 */
	if (to->engine == READ_ONCE(from->engine))
		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
							&from->submit,
							I915_FENCE_GFP);
	else
		return __i915_request_await_execution(to, from, NULL);
}

1341
static int
1342
i915_request_await_request(struct i915_request *to, struct i915_request *from)
1343
{
1344
	int ret;
1345

1346 1347
	GEM_BUG_ON(to == from);
	GEM_BUG_ON(to->timeline == from->timeline);
1348

1349 1350
	if (i915_request_completed(from)) {
		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1351
		return 0;
1352 1353
	}

1354
	if (to->engine->schedule) {
1355
		ret = i915_sched_node_add_dependency(&to->sched,
1356
						     &from->sched,
1357 1358 1359
						     I915_DEPENDENCY_EXTERNAL);
		if (ret < 0)
			return ret;
1360 1361
	}

1362 1363
	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
		ret = await_request_submit(to, from);
1364 1365 1366 1367 1368 1369
	else
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
	if (ret < 0)
		return ret;

	return 0;
1370 1371
}

1372
int
1373
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1374 1375 1376 1377 1378
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

1379 1380 1381 1382 1383 1384 1385 1386
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1397 1398
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1399
			continue;
1400
		}
1401

1402 1403 1404 1405 1406
		/*
		 * Requests on the same timeline are explicitly ordered, along
		 * with their dependencies, by i915_request_add() which ensures
		 * that requests are submitted in-order through each ring.
		 */
1407 1408 1409
		if (fence->context == rq->fence.context)
			continue;

1410 1411 1412 1413 1414
		/* Squash repeated waits to the same timelines */
		if (fence->context &&
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
			continue;
1415 1416

		if (dma_fence_is_i915(fence))
1417
			ret = i915_request_await_request(rq, to_request(fence));
1418
		else
1419
			ret = i915_request_await_external(rq, fence);
1420 1421
		if (ret < 0)
			return ret;
1422 1423 1424 1425 1426

		/* Record the latest fence used against each timeline */
		if (fence->context)
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1427 1428 1429 1430 1431
	} while (--nchild);

	return 0;
}

1432
/**
1433
 * i915_request_await_object - set this request to (async) wait upon a bo
1434 1435
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1436
 * @write: whether the wait is on behalf of a writer
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1453 1454 1455
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1456
{
1457 1458
	struct dma_fence *excl;
	int ret = 0;
1459 1460

	if (write) {
1461 1462 1463
		struct dma_fence **shared;
		unsigned int count, i;

1464
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1465 1466 1467 1468 1469
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1470
			ret = i915_request_await_dma_fence(to, shared[i]);
1471 1472 1473 1474 1475 1476 1477 1478 1479
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1480
	} else {
1481
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1482 1483
	}

1484 1485
	if (excl) {
		if (ret == 0)
1486
			ret = i915_request_await_dma_fence(to, excl);
1487

1488
		dma_fence_put(excl);
1489 1490
	}

1491
	return ret;
1492 1493
}

1494 1495 1496
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1497
	struct intel_timeline *timeline = i915_request_timeline(rq);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1520 1521
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1522
	if (prev && !__i915_request_is_complete(prev)) {
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		/*
		 * The requests are supposed to be kept in order. However,
		 * we need to be wary in case the timeline->last_request
		 * is used as a barrier for external modification to this
		 * context.
		 */
		GEM_BUG_ON(prev->context == rq->context &&
			   i915_seqno_passed(prev->fence.seqno,
					     rq->fence.seqno));

1533
		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

1548 1549 1550 1551 1552
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1553 1554 1555 1556 1557
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1558 1559 1560 1561 1562
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1563
struct i915_request *__i915_request_commit(struct i915_request *rq)
1564
{
1565 1566
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1567
	u32 *cs;
1568

1569
	RQ_TRACE(rq, "\n");
1570

1571 1572 1573 1574 1575
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1576 1577
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1578
	rq->emitted_jiffies = jiffies;
1579

1580 1581
	/*
	 * Record the position of the start of the breadcrumb so that
1582 1583
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1584
	 * position of the ring's HEAD.
1585
	 */
1586
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1587
	GEM_BUG_ON(IS_ERR(cs));
1588
	rq->postfix = intel_ring_offset(rq, cs);
1589

1590
	return __i915_request_add_to_timeline(rq);
1591 1592
}

1593 1594 1595 1596 1597 1598
void __i915_request_queue_bh(struct i915_request *rq)
{
	i915_sw_fence_commit(&rq->semaphore);
	i915_sw_fence_commit(&rq->submit);
}

1599 1600 1601
void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1602 1603
	/*
	 * Let the backend know a new request has arrived that may need
1604 1605 1606 1607 1608 1609 1610 1611 1612
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1613 1614
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1615 1616 1617 1618

	local_bh_disable();
	__i915_request_queue_bh(rq);
	local_bh_enable(); /* kick tasklets */
1619 1620 1621 1622
}

void i915_request_add(struct i915_request *rq)
{
1623
	struct intel_timeline * const tl = i915_request_timeline(rq);
1624
	struct i915_sched_attr attr = {};
1625
	struct i915_gem_context *ctx;
1626

1627 1628
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1629 1630

	trace_i915_request_add(rq);
1631
	__i915_request_commit(rq);
1632

1633 1634 1635 1636 1637 1638
	/* XXX placeholder for selftests */
	rcu_read_lock();
	ctx = rcu_dereference(rq->context->gem_context);
	if (ctx)
		attr = ctx->sched;
	rcu_read_unlock();
1639

1640 1641
	__i915_request_queue(rq, &attr);

1642
	mutex_unlock(&tl->mutex);
1643 1644
}

1645
static unsigned long local_clock_ns(unsigned int *cpu)
1646 1647 1648
{
	unsigned long t;

1649 1650
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
1662
	t = local_clock();
1663 1664 1665 1666 1667 1668 1669 1670 1671
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

1672
	if (time_after(local_clock_ns(&this_cpu), timeout))
1673 1674 1675 1676 1677
		return true;

	return this_cpu != cpu;
}

1678
static bool __i915_spin_request(struct i915_request * const rq, int state)
1679
{
1680
	unsigned long timeout_ns;
1681
	unsigned int cpu;
1682 1683 1684 1685 1686 1687 1688

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1689 1690 1691 1692
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1693
	 */
1694
	if (!i915_request_is_running(rq))
1695 1696
		return false;

1697 1698
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1699 1700 1701 1702 1703 1704 1705 1706 1707
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1708 1709
	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
	timeout_ns += local_clock_ns(&cpu);
1710
	do {
1711
		if (dma_fence_is_signaled(&rq->fence))
1712
			return true;
1713

1714 1715 1716
		if (signal_pending_state(state, current))
			break;

1717
		if (busywait_stop(timeout_ns, cpu))
1718 1719
			break;

1720
		cpu_relax();
1721 1722 1723 1724 1725
	} while (!need_resched());

	return false;
}

1726 1727 1728 1729 1730 1731 1732 1733 1734
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

1735
	wake_up_process(fetch_and_zero(&wait->tsk));
1736 1737
}

1738
/**
1739
 * i915_request_wait - wait until execution of request has finished
1740
 * @rq: the request to wait upon
1741
 * @flags: how to wait
1742 1743
 * @timeout: how long to wait in jiffies
 *
1744
 * i915_request_wait() waits for the request to be completed, for a
1745 1746
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1747
 *
1748 1749 1750 1751
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1752
 */
1753
long i915_request_wait(struct i915_request *rq,
1754 1755
		       unsigned int flags,
		       long timeout)
1756
{
1757 1758
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1759
	struct request_wait wait;
1760 1761

	might_sleep();
1762
	GEM_BUG_ON(timeout < 0);
1763

1764
	if (dma_fence_is_signaled(&rq->fence))
1765
		return timeout;
1766

1767 1768
	if (!timeout)
		return -ETIME;
1769

1770
	trace_i915_request_wait_begin(rq, flags);
1771 1772 1773 1774 1775 1776 1777

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1778
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1779

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1803
	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1804
	    __i915_spin_request(rq, state))
1805
		goto out;
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
1819 1820
	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
		intel_rps_boost(rq);
1821

1822 1823 1824
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1825

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	/*
	 * Flush the submission tasklet, but only if it may help this request.
	 *
	 * We sometimes experience some latency between the HW interrupts and
	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
	 * be due to lazy CS events), so lets run the tasklet manually if there
	 * is a chance it may submit this request. If the request is not ready
	 * to run, as it is waiting for other fences to be signaled, flushing
	 * the tasklet is busy work without any advantage for this client.
	 *
	 * If the HW is being lazy, this is the last chance before we go to
	 * sleep to catch any pending events. We will check periodically in
	 * the heartbeat to flush the submission tasklets as a last resort
	 * for unhappy HW.
	 */
	if (i915_request_is_ready(rq))
1842
		__intel_engine_flush_submission(rq->engine, false);
1843

1844 1845
	for (;;) {
		set_current_state(state);
1846

1847
		if (dma_fence_is_signaled(&rq->fence))
1848
			break;
1849 1850

		if (signal_pending_state(state, current)) {
1851
			timeout = -ERESTARTSYS;
1852 1853 1854
			break;
		}

1855 1856
		if (!timeout) {
			timeout = -ETIME;
1857 1858 1859
			break;
		}

1860
		timeout = io_schedule_timeout(timeout);
1861
	}
1862
	__set_current_state(TASK_RUNNING);
1863

1864 1865 1866
	if (READ_ONCE(wait.tsk))
		dma_fence_remove_callback(&rq->fence, &wait.cb);
	GEM_BUG_ON(!list_empty(&wait.cb.node));
1867 1868

out:
1869
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1870
	trace_i915_request_wait_end(rq);
1871
	return timeout;
1872
}
1873

C
Chris Wilson 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
static int print_sched_attr(const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
{
	if (attr->priority == I915_PRIORITY_INVALID)
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);

	return x;
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
static char queue_status(const struct i915_request *rq)
{
	if (i915_request_is_active(rq))
		return 'E';

	if (i915_request_is_ready(rq))
		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';

	return 'U';
}

static const char *run_status(const struct i915_request *rq)
{
1899
	if (__i915_request_is_complete(rq))
1900 1901
		return "!";

1902
	if (__i915_request_has_started(rq))
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
		return "*";

	if (!i915_sw_fence_signaled(&rq->semaphore))
		return "&";

	return "";
}

static const char *fence_status(const struct i915_request *rq)
{
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
		return "+";

	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		return "-";

	return "";
}

C
Chris Wilson 已提交
1922 1923
void i915_request_show(struct drm_printer *m,
		       const struct i915_request *rq,
1924 1925
		       const char *prefix,
		       int indent)
C
Chris Wilson 已提交
1926 1927 1928 1929 1930
{
	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
	char buf[80] = "";
	int x = 0;

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	/*
	 * The prefix is used to show the queue status, for which we use
	 * the following flags:
	 *
	 *  U [Unready]
	 *    - initial status upon being submitted by the user
	 *
	 *    - the request is not ready for execution as it is waiting
	 *      for external fences
	 *
	 *  R [Ready]
	 *    - all fences the request was waiting on have been signaled,
	 *      and the request is now ready for execution and will be
	 *      in a backend queue
	 *
	 *    - a ready request may still need to wait on semaphores
	 *      [internal fences]
	 *
	 *  V [Ready/virtual]
	 *    - same as ready, but queued over multiple backends
	 *
	 *  E [Executing]
	 *    - the request has been transferred from the backend queue and
	 *      submitted for execution on HW
	 *
	 *    - a completed request may still be regarded as executing, its
	 *      status may not be updated until it is retired and removed
	 *      from the lists
	 */

C
Chris Wilson 已提交
1961 1962
	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));

1963 1964 1965
	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
		   prefix, indent, "                ",
		   queue_status(rq),
C
Chris Wilson 已提交
1966
		   rq->fence.context, rq->fence.seqno,
1967 1968
		   run_status(rq),
		   fence_status(rq),
C
Chris Wilson 已提交
1969 1970 1971 1972 1973
		   buf,
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
		   name);
}

1974 1975
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1976
#include "selftests/i915_request.c"
1977
#endif
1978

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1996 1997
int __init i915_global_request_init(void)
{
1998 1999 2000 2001 2002 2003 2004 2005
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
2006 2007 2008
	if (!global.slab_requests)
		return -ENOMEM;

2009 2010 2011 2012 2013 2014 2015
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

2016
	i915_global_register(&global.base);
2017 2018 2019 2020 2021 2022
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}