i915_request.c 54.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26
#include <linux/dma-fence-chain.h>
27 28
#include <linux/irq_work.h>
#include <linux/prefetch.h>
29 30
#include <linux/sched.h>
#include <linux/sched/clock.h>
31
#include <linux/sched/signal.h>
32

33
#include "gem/i915_gem_context.h"
34
#include "gt/intel_breadcrumbs.h"
35
#include "gt/intel_context.h"
36
#include "gt/intel_ring.h"
37
#include "gt/intel_rps.h"
38

39
#include "i915_active.h"
40
#include "i915_drv.h"
41
#include "i915_globals.h"
42
#include "i915_trace.h"
43
#include "intel_pm.h"
44

45 46 47
struct execute_cb {
	struct irq_work work;
	struct i915_sw_fence *fence;
48 49
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
50 51
};

52
static struct i915_global_request {
53
	struct i915_global base;
54
	struct kmem_cache *slab_requests;
55
	struct kmem_cache *slab_execute_cbs;
56 57
} global;

58
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59
{
60
	return dev_name(to_request(fence)->engine->i915->drm.dev);
61 62
}

63
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64
{
65 66
	const struct i915_gem_context *ctx;

67 68
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
69 70 71 72 73 74 75 76 77 78
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

79
	ctx = i915_request_gem_context(to_request(fence));
80 81 82 83
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
84 85
}

86
static bool i915_fence_signaled(struct dma_fence *fence)
87
{
88
	return i915_request_completed(to_request(fence));
89 90
}

91
static bool i915_fence_enable_signaling(struct dma_fence *fence)
92
{
93
	return i915_request_enable_breadcrumb(to_request(fence));
94 95
}

96
static signed long i915_fence_wait(struct dma_fence *fence,
97
				   bool interruptible,
98
				   signed long timeout)
99
{
100 101 102
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
103 104
}

105 106 107 108 109
struct kmem_cache *i915_request_slab_cache(void)
{
	return global.slab_requests;
}

110
static void i915_fence_release(struct dma_fence *fence)
111
{
112
	struct i915_request *rq = to_request(fence);
113

114 115
	/*
	 * The request is put onto a RCU freelist (i.e. the address
116 117 118 119 120
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
121
	i915_sw_fence_fini(&rq->submit);
122
	i915_sw_fence_fini(&rq->semaphore);
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	/*
	 * Keep one request on each engine for reserved use under mempressure
	 *
	 * We do not hold a reference to the engine here and so have to be
	 * very careful in what rq->engine we poke. The virtual engine is
	 * referenced via the rq->context and we released that ref during
	 * i915_request_retire(), ergo we must not dereference a virtual
	 * engine here. Not that we would want to, as the only consumer of
	 * the reserved engine->request_pool is the power management parking,
	 * which must-not-fail, and that is only run on the physical engines.
	 *
	 * Since the request must have been executed to be have completed,
	 * we know that it will have been processed by the HW and will
	 * not be unsubmitted again, so rq->engine and rq->execution_mask
	 * at this point is stable. rq->execution_mask will be a single
	 * bit if the last and _only_ engine it could execution on was a
	 * physical engine, if it's multiple bits then it started on and
	 * could still be on a virtual engine. Thus if the mask is not a
	 * power-of-two we assume that rq->engine may still be a virtual
	 * engine and so a dangling invalid pointer that we cannot dereference
	 *
	 * For example, consider the flow of a bonded request through a virtual
	 * engine. The request is created with a wide engine mask (all engines
	 * that we might execute on). On processing the bond, the request mask
	 * is reduced to one or more engines. If the request is subsequently
	 * bound to a single engine, it will then be constrained to only
	 * execute on that engine and never returned to the virtual engine
	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
	 * know that if the rq->execution_mask is a single bit, rq->engine
	 * can be a physical engine with the exact corresponding mask.
	 */
	if (is_power_of_2(rq->execution_mask) &&
	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
157 158
		return;

159
	kmem_cache_free(global.slab_requests, rq);
160 161
}

162
const struct dma_fence_ops i915_fence_ops = {
163 164 165 166 167 168 169 170
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
192
	struct execute_cb *cb, *cn;
193 194 195

	lockdep_assert_held(&rq->lock);

196
	GEM_BUG_ON(!i915_request_is_active(rq));
197
	if (llist_empty(&rq->execute_cb))
198 199
		return;

200
	llist_for_each_entry_safe(cb, cn, rq->execute_cb.first, work.llnode)
201 202 203 204 205 206 207 208 209 210 211 212
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
213
	init_llist_head(&rq->execute_cb);
214 215
}

216
static void free_capture_list(struct i915_request *request)
217
{
218
	struct i915_capture_list *capture;
219

220
	capture = fetch_and_zero(&request->capture_list);
221
	while (capture) {
222
		struct i915_capture_list *next = capture->next;
223 224 225 226 227 228

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

242 243 244 245 246 247 248 249 250 251 252
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
253
	spin_lock_irq(&locked->active.lock);
254 255 256 257 258
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
259
	list_del_init(&rq->sched.link);
260 261
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
262
	spin_unlock_irq(&locked->active.lock);
263 264
}

265
bool i915_request_retire(struct i915_request *rq)
266
{
267 268
	if (!i915_request_completed(rq))
		return false;
269

270
	RQ_TRACE(rq, "\n");
271

272 273
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
274

275 276 277 278 279 280 281 282 283
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
284 285
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
286 287 288
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
289
	rq->ring->head = rq->postfix;
290

291 292 293 294 295 296
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
297
	remove_from_engine(rq);
298

299
	spin_lock_irq(&rq->lock);
300 301 302 303 304
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
305 306
	spin_unlock_irq(&rq->lock);

307
	if (i915_request_has_waitboost(rq)) {
308 309
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
310
	}
311 312 313 314 315 316 317 318 319 320 321 322

	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 *
	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
	 * after removing the breadcrumb and signaling it, so that we do not
	 * inadvertently attach the breadcrumb to a completed request.
	 */
	remove_from_engine(rq);
323
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
324
	spin_unlock_irq(&rq->lock);
325

326
	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
327

328 329
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
330

331 332 333 334 335
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
336 337
}

338
void i915_request_retire_upto(struct i915_request *rq)
339
{
340
	struct intel_timeline * const tl = i915_request_timeline(rq);
341
	struct i915_request *tmp;
342

343
	RQ_TRACE(rq, "\n");
344

345
	GEM_BUG_ON(!i915_request_completed(rq));
346

347
	do {
348
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
349
	} while (i915_request_retire(tmp) && tmp != rq);
350 351
}

352 353 354 355 356 357
static void __llist_add(struct llist_node *node, struct llist_head *head)
{
	node->next = head->first;
	head->first = node;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
static struct i915_request * const *
__engine_active(struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->execlists.active);
}

static bool __request_in_flight(const struct i915_request *signal)
{
	struct i915_request * const *port, *rq;
	bool inflight = false;

	if (!i915_request_is_ready(signal))
		return false;

	/*
	 * Even if we have unwound the request, it may still be on
	 * the GPU (preempt-to-busy). If that request is inside an
	 * unpreemptible critical section, it will not be removed. Some
	 * GPU functions may even be stuck waiting for the paired request
	 * (__await_execution) to be submitted and cannot be preempted
	 * until the bond is executing.
	 *
	 * As we know that there are always preemption points between
	 * requests, we know that only the currently executing request
	 * may be still active even though we have cleared the flag.
	 * However, we can't rely on our tracking of ELSP[0] to known
	 * which request is currently active and so maybe stuck, as
	 * the tracking maybe an event behind. Instead assume that
	 * if the context is still inflight, then it is still active
	 * even if the active flag has been cleared.
	 */
	if (!intel_context_inflight(signal->context))
		return false;

	rcu_read_lock();
	for (port = __engine_active(signal->engine); (rq = *port); port++) {
		if (rq->context == signal->context) {
			inflight = i915_seqno_passed(rq->fence.seqno,
						     signal->fence.seqno);
			break;
		}
	}
	rcu_read_unlock();

	return inflight;
}

405
static int
406 407 408 409 410
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
411 412 413
{
	struct execute_cb *cb;

414 415 416
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
417
		return 0;
418
	}
419 420 421 422 423 424 425 426 427

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

428 429 430 431 432 433
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

434
	spin_lock_irq(&signal->lock);
435
	if (i915_request_is_active(signal) || __request_in_flight(signal)) {
436 437 438 439
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
440 441 442
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
443
		__llist_add(&cb->work.llnode, &signal->execute_cb);
444 445 446 447 448 449
	}
	spin_unlock_irq(&signal->lock);

	return 0;
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
static bool fatal_error(int error)
{
	switch (error) {
	case 0: /* not an error! */
	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
		return false;
	default:
		return true;
	}
}

void __i915_request_skip(struct i915_request *rq)
{
	GEM_BUG_ON(!fatal_error(rq->fence.error));

	if (rq->infix == rq->postfix)
		return;

	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	__i915_request_fill(rq, 0);
	rq->infix = rq->postfix;
}

void i915_request_set_error_once(struct i915_request *rq, int error)
{
	int old;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));

	if (i915_request_signaled(rq))
		return;

	old = READ_ONCE(rq->fence.error);
	do {
		if (fatal_error(old))
			return;
	} while (!try_cmpxchg(&rq->fence.error, &old, error));
}

494
bool __i915_request_submit(struct i915_request *request)
495
{
496
	struct intel_engine_cs *engine = request->engine;
497
	bool result = false;
498

499
	RQ_TRACE(request, "\n");
500

501
	GEM_BUG_ON(!irqs_disabled());
502
	lockdep_assert_held(&engine->active.lock);
503

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

523 524 525 526
	if (unlikely(intel_context_is_banned(request->context)))
		i915_request_set_error_once(request, -EIO);
	if (unlikely(fatal_error(request->fence.error)))
		__i915_request_skip(request);
527

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
546
		engine->saturated |= request->sched.semaphores;
547

548 549
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
550

551 552 553
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
554

555
xfer:
556
	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
557
		list_move_tail(&request->sched.link, &engine->active.requests);
558 559
		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	}
560

561 562 563 564 565 566 567 568 569 570 571
	/*
	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	__notify_execute_cb(request);
572

573 574
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		i915_request_enable_breadcrumb(request);
575

576
	return result;
577 578
}

579
void i915_request_submit(struct i915_request *request)
580 581 582
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
583

584
	/* Will be called from irq-context when using foreign fences. */
585
	spin_lock_irqsave(&engine->active.lock, flags);
586

587
	__i915_request_submit(request);
588

589
	spin_unlock_irqrestore(&engine->active.lock, flags);
590 591
}

592
void __i915_request_unsubmit(struct i915_request *request)
593
{
594
	struct intel_engine_cs *engine = request->engine;
595

596 597 598 599
	/*
	 * Only unwind in reverse order, required so that the per-context list
	 * is kept in seqno/ring order.
	 */
600
	RQ_TRACE(request, "\n");
601

602
	GEM_BUG_ON(!irqs_disabled());
603
	lockdep_assert_held(&engine->active.lock);
604

605
	/*
606 607 608 609 610
	 * Before we remove this breadcrumb from the signal list, we have
	 * to ensure that a concurrent dma_fence_enable_signaling() does not
	 * attach itself. We first mark the request as no longer active and
	 * make sure that is visible to other cores, and then remove the
	 * breadcrumb if attached.
611
	 */
612 613
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
614
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
615
		i915_request_cancel_breadcrumb(request);
616

617
	/* We've already spun, don't charge on resubmitting. */
618
	if (request->sched.semaphores && i915_request_started(request))
619 620
		request->sched.semaphores = 0;

621 622
	/*
	 * We don't need to wake_up any waiters on request->execute, they
623
	 * will get woken by any other event or us re-adding this request
624
	 * to the engine timeline (__i915_request_submit()). The waiters
625 626 627 628 629
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

630
void i915_request_unsubmit(struct i915_request *request)
631 632 633 634 635
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
636
	spin_lock_irqsave(&engine->active.lock, flags);
637

638
	__i915_request_unsubmit(request);
639

640
	spin_unlock_irqrestore(&engine->active.lock, flags);
641 642
}

643
static int __i915_sw_fence_call
644
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
645
{
646
	struct i915_request *request =
647 648 649 650
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
651
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
652 653

		if (unlikely(fence->error))
654
			i915_request_set_error_once(request, fence->error);
C
Chris Wilson 已提交
655

656
		/*
657 658 659 660 661 662
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
663 664
		 */
		rcu_read_lock();
665
		request->engine->submit_request(request);
666
		rcu_read_unlock();
667 668 669
		break;

	case FENCE_FREE:
670
		i915_request_put(request);
671 672 673
		break;
	}

674 675 676
	return NOTIFY_DONE;
}

677 678 679
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
680
	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
681 682 683 684 685 686

	switch (state) {
	case FENCE_COMPLETE:
		break;

	case FENCE_FREE:
687
		i915_request_put(rq);
688 689 690 691 692 693
		break;
	}

	return NOTIFY_DONE;
}

694
static void retire_requests(struct intel_timeline *tl)
695 696 697
{
	struct i915_request *rq, *rn;

698
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
699
		if (!i915_request_retire(rq))
700 701 702 703
			break;
}

static noinline struct i915_request *
704 705 706
request_alloc_slow(struct intel_timeline *tl,
		   struct i915_request **rsvd,
		   gfp_t gfp)
707 708 709
{
	struct i915_request *rq;

710 711 712 713 714
	/* If we cannot wait, dip into our reserves */
	if (!gfpflags_allow_blocking(gfp)) {
		rq = xchg(rsvd, NULL);
		if (!rq) /* Use the normal failure path for one final WARN */
			goto out;
715

716 717 718 719
		return rq;
	}

	if (list_empty(&tl->requests))
720 721
		goto out;

722
	/* Move our oldest request to the slab-cache (if not in use!) */
723
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
724 725 726 727 728 729 730
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

731
	/* Ratelimit ourselves to prevent oom from malicious clients */
732
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
733 734 735
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
736
	retire_requests(tl);
737 738

out:
739
	return kmem_cache_alloc(global.slab_requests, gfp);
740 741
}

742 743 744 745 746 747 748 749 750
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

751 752
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

753 754
	rq->capture_list = NULL;

755
	init_llist_head(&rq->execute_cb);
756 757
}

758
struct i915_request *
759
__i915_request_create(struct intel_context *ce, gfp_t gfp)
760
{
761
	struct intel_timeline *tl = ce->timeline;
762 763
	struct i915_request *rq;
	u32 seqno;
764 765
	int ret;

766
	might_sleep_if(gfpflags_allow_blocking(gfp));
767

768 769
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
770

771 772
	/*
	 * Beware: Dragons be flying overhead.
773 774 775 776
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
777
	 * of being read by __i915_active_request_get_rcu(). As such,
778 779
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
780
	 * read the request->global_seqno and increment the reference count.
781 782 783 784
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
785 786
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
787 788 789 790 791 792 793 794 795 796 797 798 799
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
800
	rq = kmem_cache_alloc(global.slab_requests,
801
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
802
	if (unlikely(!rq)) {
803
		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
804
		if (!rq) {
805 806 807
			ret = -ENOMEM;
			goto err_unreserve;
		}
808
	}
809

810
	rq->context = ce;
811
	rq->engine = ce->engine;
812
	rq->ring = ce->ring;
813
	rq->execution_mask = ce->engine->mask;
814

815 816 817 818 819 820 821 822 823 824 825 826
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

827 828
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
829
	rq->hwsp_seqno = tl->hwsp_seqno;
830
	GEM_BUG_ON(i915_request_completed(rq));
831

832
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
833

834
	/* We bump the ref for the fence chain */
835 836
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
837

838
	i915_sched_node_reinit(&rq->sched);
839

840
	/* No zalloc, everything must be cleared after use */
841
	rq->batch = NULL;
842
	GEM_BUG_ON(rq->capture_list);
843
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
844

845 846 847
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
848
	 * i915_request_add() call can't fail. Note that the reserve may need
849 850
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
851 852 853 854 855
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
856
	 */
857 858
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
859

860 861
	/*
	 * Record the position of the start of the request so that
862 863 864 865
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
866
	rq->head = rq->ring->emit;
867

868
	ret = rq->engine->request_alloc(rq);
869 870
	if (ret)
		goto err_unwind;
871

872 873
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

874
	intel_context_mark_active(ce);
875 876
	list_add_tail_rcu(&rq->link, &tl->requests);

877
	return rq;
878

879
err_unwind:
880
	ce->ring->emit = rq->head;
881

882
	/* Make sure we didn't add ourselves to external state before freeing */
883 884
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
885

886
err_free:
887
	kmem_cache_free(global.slab_requests, rq);
888
err_unreserve:
889
	intel_context_unpin(ce);
890
	return ERR_PTR(ret);
891 892
}

893 894 895 896
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
897
	struct intel_timeline *tl;
898

899 900 901
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
902 903

	/* Move our oldest request to the slab-cache (if not in use!) */
904 905
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
906 907 908 909 910 911 912 913 914
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
915
	rq->cookie = lockdep_pin_lock(&tl->mutex);
916 917 918 919

	return rq;

err_unlock:
920
	intel_context_timeline_unlock(tl);
921 922 923
	return rq;
}

924 925 926
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
927 928
	struct dma_fence *fence;
	int err;
929

930 931
	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
		return 0;
932

933 934 935
	if (i915_request_started(signal))
		return 0;

936
	fence = NULL;
937
	rcu_read_lock();
938
	spin_lock_irq(&signal->lock);
939 940 941 942 943 944 945 946 947 948 949
	do {
		struct list_head *pos = READ_ONCE(signal->link.prev);
		struct i915_request *prev;

		/* Confirm signal has not been retired, the link is valid */
		if (unlikely(i915_request_started(signal)))
			break;

		/* Is signal the earliest request on its timeline? */
		if (pos == &rcu_dereference(signal->timeline)->requests)
			break;
950

951 952 953 954 955 956
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
957 958 959 960 961 962 963 964
		prev = list_entry(pos, typeof(*prev), link);
		if (!i915_request_get_rcu(prev))
			break;

		/* After the strong barrier, confirm prev is still attached */
		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
			i915_request_put(prev);
			break;
965
		}
966 967 968

		fence = &prev->fence;
	} while (0);
969 970 971 972
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
973 974

	err = 0;
975
	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
976 977 978 979 980 981
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
982 983
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
999
	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1000 1001
}

1002
static int
1003 1004 1005
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
1006
{
1007
	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1008
	u32 hwsp_offset;
1009
	int len, err;
1010 1011
	u32 *cs;

1012
	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1013
	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1014

1015
	/* We need to pin the signaler's HWSP until we are finished reading. */
1016 1017 1018
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
1019

1020 1021 1022 1023 1024
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
1036 1037 1038 1039 1040
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
1041
	*cs++ = seqno;
1042 1043
	*cs++ = hwsp_offset;
	*cs++ = 0;
1044 1045 1046 1047
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
1048 1049

	intel_ring_advance(to, cs);
1050 1051 1052 1053 1054 1055 1056 1057
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
1058
	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1059
	struct i915_sw_fence *wait = &to->submit;
1060

1061 1062 1063
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

1064 1065 1066
	if (i915_request_has_initial_breadcrumb(to))
		goto await_fence;

1067 1068 1069
	if (!rcu_access_pointer(from->hwsp_cacheline))
		goto await_fence;

1070 1071 1072 1073 1074 1075 1076 1077 1078
	/*
	 * If this or its dependents are waiting on an external fence
	 * that may fail catastrophically, then we want to avoid using
	 * sempahores as they bypass the fence signaling metadata, and we
	 * lose the fence->error propagation.
	 */
	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
		goto await_fence;

1079
	/* Just emit the first semaphore we see as request space is limited. */
1080
	if (already_busywaiting(to) & mask)
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

1093
	to->sched.semaphores |= mask;
1094
	wait = &to->semaphore;
1095 1096

await_fence:
1097
	return i915_sw_fence_await_dma_fence(wait,
1098 1099
					     &from->fence, 0,
					     I915_FENCE_GFP);
1100 1101
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

1116
static int
1117 1118 1119 1120
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
1121
{
1122
	int err;
1123

1124
	GEM_BUG_ON(intel_context_is_barrier(from->context));
1125

1126 1127 1128 1129 1130 1131 1132 1133
	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
1134
		return 0;
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

	/*
	 * Wait until the start of this request.
	 *
	 * The execution cb fires when we submit the request to HW. But in
	 * many cases this may be long before the request itself is ready to
	 * run (consider that we submit 2 requests for the same context, where
	 * the request of interest is behind an indefinite spinner). So we hook
	 * up to both to reduce our queues and keep the execution lag minimised
	 * in the worst case, though we hope that the await_start is elided.
	 */
	err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/*
	 * Ensure both start together [after all semaphores in signal]
	 *
	 * Now that we are queued to the HW at roughly the same time (thanks
	 * to the execute cb) and are ready to run at roughly the same time
	 * (thanks to the await start), our signaler may still be indefinitely
	 * delayed by waiting on a semaphore from a remote engine. If our
	 * signaler depends on a semaphore, so indirectly do we, and we do not
	 * want to start our payload until our signaler also starts theirs.
	 * So we wait.
	 *
	 * However, there is also a second condition for which we need to wait
	 * for the precise start of the signaler. Consider that the signaler
	 * was submitted in a chain of requests following another context
	 * (with just an ordinary intra-engine fence dependency between the
	 * two). In this case the signaler is queued to HW, but not for
	 * immediate execution, and so we must wait until it reaches the
	 * active slot.
	 */
	if (intel_engine_has_semaphores(to->engine) &&
	    !i915_request_has_initial_breadcrumb(to)) {
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
		if (err < 0)
			return err;
1174
	}
1175

1176
	/* Couple the dependency tree for PI on this exposed to->fence */
1177
	if (to->engine->schedule) {
1178
		err = i915_sched_node_add_dependency(&to->sched,
1179
						     &from->sched,
1180 1181 1182
						     I915_DEPENDENCY_WEAK);
		if (err < 0)
			return err;
1183 1184
	}

1185 1186
	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
1187 1188
}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
static void mark_external(struct i915_request *rq)
{
	/*
	 * The downside of using semaphores is that we lose metadata passing
	 * along the signaling chain. This is particularly nasty when we
	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
	 * fatal errors we want to scrub the request before it is executed,
	 * which means that we cannot preload the request onto HW and have
	 * it wait upon a semaphore.
	 */
	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
}

1202
static int
1203
__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1204
{
1205
	mark_external(rq);
1206
	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1207
					     i915_fence_context_timeout(rq->engine->i915,
1208
									fence->context),
1209 1210 1211
					     I915_FENCE_GFP);
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static int
i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
	struct dma_fence *iter;
	int err = 0;

	if (!to_dma_fence_chain(fence))
		return __i915_request_await_external(rq, fence);

	dma_fence_chain_for_each(iter, fence) {
		struct dma_fence_chain *chain = to_dma_fence_chain(iter);

		if (!dma_fence_is_i915(chain->fence)) {
			err = __i915_request_await_external(rq, iter);
			break;
		}

		err = i915_request_await_dma_fence(rq, chain->fence);
		if (err < 0)
			break;
	}

	dma_fence_put(iter);
	return err;
}

1238
int
1239 1240 1241 1242
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
1243
{
1244 1245
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
1246 1247
	int ret;

1248 1249 1250
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

1251 1252
		/* XXX Error for signal-on-any fence arrays */

1253 1254 1255 1256
		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
1257

1258 1259
	do {
		fence = *child++;
1260 1261
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1262
			continue;
1263
		}
1264

1265
		if (fence->context == rq->fence.context)
1266 1267
			continue;

1268 1269 1270 1271
		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */
1272

1273
		if (dma_fence_is_i915(fence))
1274 1275 1276
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook);
1277
		else
1278
			ret = i915_request_await_external(rq, fence);
1279 1280
		if (ret < 0)
			return ret;
1281
	} while (--nchild);
1282 1283 1284 1285

	return 0;
}

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
static int
await_request_submit(struct i915_request *to, struct i915_request *from)
{
	/*
	 * If we are waiting on a virtual engine, then it may be
	 * constrained to execute on a single engine *prior* to submission.
	 * When it is submitted, it will be first submitted to the virtual
	 * engine and then passed to the physical engine. We cannot allow
	 * the waiter to be submitted immediately to the physical engine
	 * as it may then bypass the virtual request.
	 */
	if (to->engine == READ_ONCE(from->engine))
		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
							&from->submit,
							I915_FENCE_GFP);
	else
		return __i915_request_await_execution(to, from, NULL);
}

1305
static int
1306
i915_request_await_request(struct i915_request *to, struct i915_request *from)
1307
{
1308
	int ret;
1309

1310 1311
	GEM_BUG_ON(to == from);
	GEM_BUG_ON(to->timeline == from->timeline);
1312

1313 1314
	if (i915_request_completed(from)) {
		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1315
		return 0;
1316 1317
	}

1318
	if (to->engine->schedule) {
1319
		ret = i915_sched_node_add_dependency(&to->sched,
1320
						     &from->sched,
1321 1322 1323
						     I915_DEPENDENCY_EXTERNAL);
		if (ret < 0)
			return ret;
1324 1325
	}

1326 1327
	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
		ret = await_request_submit(to, from);
1328 1329 1330 1331 1332 1333
	else
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
	if (ret < 0)
		return ret;

	return 0;
1334 1335
}

1336
int
1337
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1338 1339 1340 1341 1342
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

1343 1344 1345 1346 1347 1348 1349 1350
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1361 1362
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1363
			continue;
1364
		}
1365

1366 1367 1368 1369 1370
		/*
		 * Requests on the same timeline are explicitly ordered, along
		 * with their dependencies, by i915_request_add() which ensures
		 * that requests are submitted in-order through each ring.
		 */
1371 1372 1373
		if (fence->context == rq->fence.context)
			continue;

1374 1375 1376 1377 1378
		/* Squash repeated waits to the same timelines */
		if (fence->context &&
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
			continue;
1379 1380

		if (dma_fence_is_i915(fence))
1381
			ret = i915_request_await_request(rq, to_request(fence));
1382
		else
1383
			ret = i915_request_await_external(rq, fence);
1384 1385
		if (ret < 0)
			return ret;
1386 1387 1388 1389 1390

		/* Record the latest fence used against each timeline */
		if (fence->context)
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1391 1392 1393 1394 1395
	} while (--nchild);

	return 0;
}

1396
/**
1397
 * i915_request_await_object - set this request to (async) wait upon a bo
1398 1399
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1400
 * @write: whether the wait is on behalf of a writer
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1417 1418 1419
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1420
{
1421 1422
	struct dma_fence *excl;
	int ret = 0;
1423 1424

	if (write) {
1425 1426 1427
		struct dma_fence **shared;
		unsigned int count, i;

1428
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1429 1430 1431 1432 1433
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1434
			ret = i915_request_await_dma_fence(to, shared[i]);
1435 1436 1437 1438 1439 1440 1441 1442 1443
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1444
	} else {
1445
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1446 1447
	}

1448 1449
	if (excl) {
		if (ret == 0)
1450
			ret = i915_request_await_dma_fence(to, excl);
1451

1452
		dma_fence_put(excl);
1453 1454
	}

1455
	return ret;
1456 1457
}

1458 1459 1460
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1461
	struct intel_timeline *timeline = i915_request_timeline(rq);
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1484 1485
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1486
	if (prev && !i915_request_completed(prev)) {
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
		/*
		 * The requests are supposed to be kept in order. However,
		 * we need to be wary in case the timeline->last_request
		 * is used as a barrier for external modification to this
		 * context.
		 */
		GEM_BUG_ON(prev->context == rq->context &&
			   i915_seqno_passed(prev->fence.seqno,
					     rq->fence.seqno));

1497
		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

1512 1513 1514 1515 1516
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1517 1518 1519 1520 1521
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1522 1523 1524 1525 1526
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1527
struct i915_request *__i915_request_commit(struct i915_request *rq)
1528
{
1529 1530
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1531
	u32 *cs;
1532

1533
	RQ_TRACE(rq, "\n");
1534

1535 1536 1537 1538 1539
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1540 1541
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1542
	rq->emitted_jiffies = jiffies;
1543

1544 1545
	/*
	 * Record the position of the start of the breadcrumb so that
1546 1547
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1548
	 * position of the ring's HEAD.
1549
	 */
1550
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1551
	GEM_BUG_ON(IS_ERR(cs));
1552
	rq->postfix = intel_ring_offset(rq, cs);
1553

1554
	return __i915_request_add_to_timeline(rq);
1555 1556 1557 1558 1559
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1560 1561
	/*
	 * Let the backend know a new request has arrived that may need
1562 1563 1564 1565 1566 1567 1568 1569 1570
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1571 1572
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1573
	i915_sw_fence_commit(&rq->semaphore);
1574 1575 1576 1577 1578
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1579
	struct intel_timeline * const tl = i915_request_timeline(rq);
1580
	struct i915_sched_attr attr = {};
1581
	struct i915_gem_context *ctx;
1582

1583 1584
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1585 1586

	trace_i915_request_add(rq);
1587
	__i915_request_commit(rq);
1588

1589 1590 1591 1592 1593 1594
	/* XXX placeholder for selftests */
	rcu_read_lock();
	ctx = rcu_dereference(rq->context->gem_context);
	if (ctx)
		attr = ctx->sched;
	rcu_read_unlock();
1595

1596 1597
	__i915_request_queue(rq, &attr);

1598
	mutex_unlock(&tl->mutex);
1599 1600
}

1601
static unsigned long local_clock_ns(unsigned int *cpu)
1602 1603 1604
{
	unsigned long t;

1605 1606
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
1618
	t = local_clock();
1619 1620 1621 1622 1623 1624 1625 1626 1627
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

1628
	if (time_after(local_clock_ns(&this_cpu), timeout))
1629 1630 1631 1632 1633
		return true;

	return this_cpu != cpu;
}

1634
static bool __i915_spin_request(struct i915_request * const rq, int state)
1635
{
1636
	unsigned long timeout_ns;
1637
	unsigned int cpu;
1638 1639 1640 1641 1642 1643 1644

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1645 1646 1647 1648
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1649
	 */
1650
	if (!i915_request_is_running(rq))
1651 1652
		return false;

1653 1654
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1655 1656 1657 1658 1659 1660 1661 1662 1663
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1664 1665
	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
	timeout_ns += local_clock_ns(&cpu);
1666
	do {
1667
		if (dma_fence_is_signaled(&rq->fence))
1668
			return true;
1669

1670 1671 1672
		if (signal_pending_state(state, current))
			break;

1673
		if (busywait_stop(timeout_ns, cpu))
1674 1675
			break;

1676
		cpu_relax();
1677 1678 1679 1680 1681
	} while (!need_resched());

	return false;
}

1682 1683 1684 1685 1686 1687 1688 1689 1690
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

1691
	wake_up_process(fetch_and_zero(&wait->tsk));
1692 1693
}

1694
/**
1695
 * i915_request_wait - wait until execution of request has finished
1696
 * @rq: the request to wait upon
1697
 * @flags: how to wait
1698 1699
 * @timeout: how long to wait in jiffies
 *
1700
 * i915_request_wait() waits for the request to be completed, for a
1701 1702
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1703
 *
1704 1705 1706 1707
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1708
 */
1709
long i915_request_wait(struct i915_request *rq,
1710 1711
		       unsigned int flags,
		       long timeout)
1712
{
1713 1714
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1715
	struct request_wait wait;
1716 1717

	might_sleep();
1718
	GEM_BUG_ON(timeout < 0);
1719

1720
	if (dma_fence_is_signaled(&rq->fence))
1721
		return timeout;
1722

1723 1724
	if (!timeout)
		return -ETIME;
1725

1726
	trace_i915_request_wait_begin(rq, flags);
1727 1728 1729 1730 1731 1732 1733

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1734
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1735

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1759
	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1760
	    __i915_spin_request(rq, state))
1761
		goto out;
1762

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
1775 1776
	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
		intel_rps_boost(rq);
1777

1778 1779 1780
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1781

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	/*
	 * Flush the submission tasklet, but only if it may help this request.
	 *
	 * We sometimes experience some latency between the HW interrupts and
	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
	 * be due to lazy CS events), so lets run the tasklet manually if there
	 * is a chance it may submit this request. If the request is not ready
	 * to run, as it is waiting for other fences to be signaled, flushing
	 * the tasklet is busy work without any advantage for this client.
	 *
	 * If the HW is being lazy, this is the last chance before we go to
	 * sleep to catch any pending events. We will check periodically in
	 * the heartbeat to flush the submission tasklets as a last resort
	 * for unhappy HW.
	 */
	if (i915_request_is_ready(rq))
		intel_engine_flush_submission(rq->engine);

1800 1801
	for (;;) {
		set_current_state(state);
1802

1803
		if (dma_fence_is_signaled(&rq->fence))
1804
			break;
1805 1806

		if (signal_pending_state(state, current)) {
1807
			timeout = -ERESTARTSYS;
1808 1809 1810
			break;
		}

1811 1812
		if (!timeout) {
			timeout = -ETIME;
1813 1814 1815
			break;
		}

1816
		timeout = io_schedule_timeout(timeout);
1817
	}
1818
	__set_current_state(TASK_RUNNING);
1819

1820 1821 1822
	if (READ_ONCE(wait.tsk))
		dma_fence_remove_callback(&rq->fence, &wait.cb);
	GEM_BUG_ON(!list_empty(&wait.cb.node));
1823 1824

out:
1825
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1826
	trace_i915_request_wait_end(rq);
1827
	return timeout;
1828
}
1829

1830 1831
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1832
#include "selftests/i915_request.c"
1833
#endif
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1852 1853
int __init i915_global_request_init(void)
{
1854 1855 1856 1857 1858 1859 1860 1861
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1862 1863 1864
	if (!global.slab_requests)
		return -ENOMEM;

1865 1866 1867 1868 1869 1870 1871
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1872
	i915_global_register(&global.base);
1873 1874 1875 1876 1877 1878
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}