i915_request.c 55.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26
#include <linux/dma-fence-chain.h>
27 28
#include <linux/irq_work.h>
#include <linux/prefetch.h>
29 30
#include <linux/sched.h>
#include <linux/sched/clock.h>
31
#include <linux/sched/signal.h>
32

33
#include "gem/i915_gem_context.h"
34
#include "gt/intel_breadcrumbs.h"
35
#include "gt/intel_context.h"
36
#include "gt/intel_ring.h"
37
#include "gt/intel_rps.h"
38

39
#include "i915_active.h"
40
#include "i915_drv.h"
41
#include "i915_globals.h"
42
#include "i915_trace.h"
43
#include "intel_pm.h"
44

45 46 47
struct execute_cb {
	struct irq_work work;
	struct i915_sw_fence *fence;
48 49
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
50 51
};

52
static struct i915_global_request {
53
	struct i915_global base;
54
	struct kmem_cache *slab_requests;
55
	struct kmem_cache *slab_execute_cbs;
56 57
} global;

58
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59
{
60
	return dev_name(to_request(fence)->engine->i915->drm.dev);
61 62
}

63
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64
{
65 66
	const struct i915_gem_context *ctx;

67 68
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
69 70 71 72 73 74 75 76 77 78
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

79
	ctx = i915_request_gem_context(to_request(fence));
80 81 82 83
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
84 85
}

86
static bool i915_fence_signaled(struct dma_fence *fence)
87
{
88
	return i915_request_completed(to_request(fence));
89 90
}

91
static bool i915_fence_enable_signaling(struct dma_fence *fence)
92
{
93
	return i915_request_enable_breadcrumb(to_request(fence));
94 95
}

96
static signed long i915_fence_wait(struct dma_fence *fence,
97
				   bool interruptible,
98
				   signed long timeout)
99
{
100 101 102
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
103 104
}

105 106 107 108 109
struct kmem_cache *i915_request_slab_cache(void)
{
	return global.slab_requests;
}

110
static void i915_fence_release(struct dma_fence *fence)
111
{
112
	struct i915_request *rq = to_request(fence);
113

114 115
	/*
	 * The request is put onto a RCU freelist (i.e. the address
116 117 118 119 120
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
121
	i915_sw_fence_fini(&rq->submit);
122
	i915_sw_fence_fini(&rq->semaphore);
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	/*
	 * Keep one request on each engine for reserved use under mempressure
	 *
	 * We do not hold a reference to the engine here and so have to be
	 * very careful in what rq->engine we poke. The virtual engine is
	 * referenced via the rq->context and we released that ref during
	 * i915_request_retire(), ergo we must not dereference a virtual
	 * engine here. Not that we would want to, as the only consumer of
	 * the reserved engine->request_pool is the power management parking,
	 * which must-not-fail, and that is only run on the physical engines.
	 *
	 * Since the request must have been executed to be have completed,
	 * we know that it will have been processed by the HW and will
	 * not be unsubmitted again, so rq->engine and rq->execution_mask
	 * at this point is stable. rq->execution_mask will be a single
	 * bit if the last and _only_ engine it could execution on was a
	 * physical engine, if it's multiple bits then it started on and
	 * could still be on a virtual engine. Thus if the mask is not a
	 * power-of-two we assume that rq->engine may still be a virtual
	 * engine and so a dangling invalid pointer that we cannot dereference
	 *
	 * For example, consider the flow of a bonded request through a virtual
	 * engine. The request is created with a wide engine mask (all engines
	 * that we might execute on). On processing the bond, the request mask
	 * is reduced to one or more engines. If the request is subsequently
	 * bound to a single engine, it will then be constrained to only
	 * execute on that engine and never returned to the virtual engine
	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
	 * know that if the rq->execution_mask is a single bit, rq->engine
	 * can be a physical engine with the exact corresponding mask.
	 */
	if (is_power_of_2(rq->execution_mask) &&
	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
157 158
		return;

159
	kmem_cache_free(global.slab_requests, rq);
160 161
}

162
const struct dma_fence_ops i915_fence_ops = {
163 164 165 166 167 168 169 170
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
192
	struct execute_cb *cb, *cn;
193 194 195

	lockdep_assert_held(&rq->lock);

196
	GEM_BUG_ON(!i915_request_is_active(rq));
197
	if (llist_empty(&rq->execute_cb))
198 199
		return;

200
	llist_for_each_entry_safe(cb, cn, rq->execute_cb.first, work.llnode)
201 202 203 204 205 206 207 208 209 210 211 212
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
213
	init_llist_head(&rq->execute_cb);
214 215
}

216
static void free_capture_list(struct i915_request *request)
217
{
218
	struct i915_capture_list *capture;
219

220
	capture = fetch_and_zero(&request->capture_list);
221
	while (capture) {
222
		struct i915_capture_list *next = capture->next;
223 224 225 226 227 228

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

242 243 244 245 246 247 248 249 250 251 252
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
253
	spin_lock_irq(&locked->active.lock);
254 255 256 257 258
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
259
	list_del_init(&rq->sched.link);
260 261
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
262
	spin_unlock_irq(&locked->active.lock);
263 264
}

265
bool i915_request_retire(struct i915_request *rq)
266
{
267 268
	if (!i915_request_completed(rq))
		return false;
269

270
	RQ_TRACE(rq, "\n");
271

272 273
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
274

275 276 277 278 279 280 281 282 283
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
284 285
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
286 287 288
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
289
	rq->ring->head = rq->postfix;
290

291 292 293 294 295 296
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
297
	remove_from_engine(rq);
298

299
	i915_request_mark_complete(rq);
300 301
	if (!i915_request_signaled(rq)) {
		spin_lock_irq(&rq->lock);
302
		dma_fence_signal_locked(&rq->fence);
303 304
		spin_unlock_irq(&rq->lock);
	}
305

306
	if (i915_request_has_waitboost(rq)) {
307 308
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
309
	}
310 311 312 313 314 315 316 317 318 319 320 321

	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 *
	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
	 * after removing the breadcrumb and signaling it, so that we do not
	 * inadvertently attach the breadcrumb to a completed request.
	 */
	remove_from_engine(rq);
322
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
323
	spin_unlock_irq(&rq->lock);
324

325
	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
326

327 328
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
329

330 331 332 333 334
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
335 336
}

337
void i915_request_retire_upto(struct i915_request *rq)
338
{
339
	struct intel_timeline * const tl = i915_request_timeline(rq);
340
	struct i915_request *tmp;
341

342
	RQ_TRACE(rq, "\n");
343

344
	GEM_BUG_ON(!i915_request_completed(rq));
345

346
	do {
347
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
348
	} while (i915_request_retire(tmp) && tmp != rq);
349 350
}

351 352 353 354 355 356
static void __llist_add(struct llist_node *node, struct llist_head *head)
{
	node->next = head->first;
	head->first = node;
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
static struct i915_request * const *
__engine_active(struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->execlists.active);
}

static bool __request_in_flight(const struct i915_request *signal)
{
	struct i915_request * const *port, *rq;
	bool inflight = false;

	if (!i915_request_is_ready(signal))
		return false;

	/*
	 * Even if we have unwound the request, it may still be on
	 * the GPU (preempt-to-busy). If that request is inside an
	 * unpreemptible critical section, it will not be removed. Some
	 * GPU functions may even be stuck waiting for the paired request
	 * (__await_execution) to be submitted and cannot be preempted
	 * until the bond is executing.
	 *
	 * As we know that there are always preemption points between
	 * requests, we know that only the currently executing request
	 * may be still active even though we have cleared the flag.
382
	 * However, we can't rely on our tracking of ELSP[0] to know
383 384 385 386
	 * which request is currently active and so maybe stuck, as
	 * the tracking maybe an event behind. Instead assume that
	 * if the context is still inflight, then it is still active
	 * even if the active flag has been cleared.
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	 *
	 * To further complicate matters, if there a pending promotion, the HW
	 * may either perform a context switch to the second inflight execlists,
	 * or it may switch to the pending set of execlists. In the case of the
	 * latter, it may send the ACK and we process the event copying the
	 * pending[] over top of inflight[], _overwriting_ our *active. Since
	 * this implies the HW is arbitrating and not struck in *active, we do
	 * not worry about complete accuracy, but we do require no read/write
	 * tearing of the pointer [the read of the pointer must be valid, even
	 * as the array is being overwritten, for which we require the writes
	 * to avoid tearing.]
	 *
	 * Note that the read of *execlists->active may race with the promotion
	 * of execlists->pending[] to execlists->inflight[], overwritting
	 * the value at *execlists->active. This is fine. The promotion implies
	 * that we received an ACK from the HW, and so the context is not
	 * stuck -- if we do not see ourselves in *active, the inflight status
	 * is valid. If instead we see ourselves being copied into *active,
	 * we are inflight and may signal the callback.
406 407 408 409 410
	 */
	if (!intel_context_inflight(signal->context))
		return false;

	rcu_read_lock();
411 412 413
	for (port = __engine_active(signal->engine);
	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
	     port++) {
414 415 416 417 418 419 420 421 422 423 424
		if (rq->context == signal->context) {
			inflight = i915_seqno_passed(rq->fence.seqno,
						     signal->fence.seqno);
			break;
		}
	}
	rcu_read_unlock();

	return inflight;
}

425
static int
426 427 428 429 430
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
431 432 433
{
	struct execute_cb *cb;

434 435 436
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
437
		return 0;
438
	}
439 440 441 442 443 444 445 446 447

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

448 449 450 451 452 453
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

454
	spin_lock_irq(&signal->lock);
455
	if (i915_request_is_active(signal) || __request_in_flight(signal)) {
456 457 458 459
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
460 461 462
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
463
		__llist_add(&cb->work.llnode, &signal->execute_cb);
464 465 466 467 468 469
	}
	spin_unlock_irq(&signal->lock);

	return 0;
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
static bool fatal_error(int error)
{
	switch (error) {
	case 0: /* not an error! */
	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
		return false;
	default:
		return true;
	}
}

void __i915_request_skip(struct i915_request *rq)
{
	GEM_BUG_ON(!fatal_error(rq->fence.error));

	if (rq->infix == rq->postfix)
		return;

	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	__i915_request_fill(rq, 0);
	rq->infix = rq->postfix;
}

void i915_request_set_error_once(struct i915_request *rq, int error)
{
	int old;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));

	if (i915_request_signaled(rq))
		return;

	old = READ_ONCE(rq->fence.error);
	do {
		if (fatal_error(old))
			return;
	} while (!try_cmpxchg(&rq->fence.error, &old, error));
}

514
bool __i915_request_submit(struct i915_request *request)
515
{
516
	struct intel_engine_cs *engine = request->engine;
517
	bool result = false;
518

519
	RQ_TRACE(request, "\n");
520

521
	GEM_BUG_ON(!irqs_disabled());
522
	lockdep_assert_held(&engine->active.lock);
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

543 544 545 546
	if (unlikely(intel_context_is_banned(request->context)))
		i915_request_set_error_once(request, -EIO);
	if (unlikely(fatal_error(request->fence.error)))
		__i915_request_skip(request);
547

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
566
		engine->saturated |= request->sched.semaphores;
567

568 569
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
570

571 572 573
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
574

575
xfer:
576
	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
577
		list_move_tail(&request->sched.link, &engine->active.requests);
578 579
		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	}
580

581 582 583 584 585 586 587 588 589 590 591
	/*
	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	__notify_execute_cb(request);
592

593 594
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		i915_request_enable_breadcrumb(request);
595

596
	return result;
597 598
}

599
void i915_request_submit(struct i915_request *request)
600 601 602
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
603

604
	/* Will be called from irq-context when using foreign fences. */
605
	spin_lock_irqsave(&engine->active.lock, flags);
606

607
	__i915_request_submit(request);
608

609
	spin_unlock_irqrestore(&engine->active.lock, flags);
610 611
}

612
void __i915_request_unsubmit(struct i915_request *request)
613
{
614
	struct intel_engine_cs *engine = request->engine;
615

616 617 618 619
	/*
	 * Only unwind in reverse order, required so that the per-context list
	 * is kept in seqno/ring order.
	 */
620
	RQ_TRACE(request, "\n");
621

622
	GEM_BUG_ON(!irqs_disabled());
623
	lockdep_assert_held(&engine->active.lock);
624

625
	/*
626 627 628 629 630
	 * Before we remove this breadcrumb from the signal list, we have
	 * to ensure that a concurrent dma_fence_enable_signaling() does not
	 * attach itself. We first mark the request as no longer active and
	 * make sure that is visible to other cores, and then remove the
	 * breadcrumb if attached.
631
	 */
632 633
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
634
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
635
		i915_request_cancel_breadcrumb(request);
636

637
	/* We've already spun, don't charge on resubmitting. */
638
	if (request->sched.semaphores && i915_request_started(request))
639 640
		request->sched.semaphores = 0;

641 642
	/*
	 * We don't need to wake_up any waiters on request->execute, they
643
	 * will get woken by any other event or us re-adding this request
644
	 * to the engine timeline (__i915_request_submit()). The waiters
645 646 647 648 649
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

650
void i915_request_unsubmit(struct i915_request *request)
651 652 653 654 655
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
656
	spin_lock_irqsave(&engine->active.lock, flags);
657

658
	__i915_request_unsubmit(request);
659

660
	spin_unlock_irqrestore(&engine->active.lock, flags);
661 662
}

663
static int __i915_sw_fence_call
664
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
665
{
666
	struct i915_request *request =
667 668 669 670
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
671
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
672 673

		if (unlikely(fence->error))
674
			i915_request_set_error_once(request, fence->error);
C
Chris Wilson 已提交
675

676
		/*
677 678 679 680 681 682
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
683 684
		 */
		rcu_read_lock();
685
		request->engine->submit_request(request);
686
		rcu_read_unlock();
687 688 689
		break;

	case FENCE_FREE:
690
		i915_request_put(request);
691 692 693
		break;
	}

694 695 696
	return NOTIFY_DONE;
}

697 698 699
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
700
	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
701 702 703 704 705 706

	switch (state) {
	case FENCE_COMPLETE:
		break;

	case FENCE_FREE:
707
		i915_request_put(rq);
708 709 710 711 712 713
		break;
	}

	return NOTIFY_DONE;
}

714
static void retire_requests(struct intel_timeline *tl)
715 716 717
{
	struct i915_request *rq, *rn;

718
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
719
		if (!i915_request_retire(rq))
720 721 722 723
			break;
}

static noinline struct i915_request *
724 725 726
request_alloc_slow(struct intel_timeline *tl,
		   struct i915_request **rsvd,
		   gfp_t gfp)
727 728 729
{
	struct i915_request *rq;

730 731 732 733 734
	/* If we cannot wait, dip into our reserves */
	if (!gfpflags_allow_blocking(gfp)) {
		rq = xchg(rsvd, NULL);
		if (!rq) /* Use the normal failure path for one final WARN */
			goto out;
735

736 737 738 739
		return rq;
	}

	if (list_empty(&tl->requests))
740 741
		goto out;

742
	/* Move our oldest request to the slab-cache (if not in use!) */
743
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
744 745 746 747 748 749 750
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

751
	/* Ratelimit ourselves to prevent oom from malicious clients */
752
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
753 754 755
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
756
	retire_requests(tl);
757 758

out:
759
	return kmem_cache_alloc(global.slab_requests, gfp);
760 761
}

762 763 764 765 766 767 768 769 770
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

771 772
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

773 774
	rq->capture_list = NULL;

775
	init_llist_head(&rq->execute_cb);
776 777
}

778
struct i915_request *
779
__i915_request_create(struct intel_context *ce, gfp_t gfp)
780
{
781
	struct intel_timeline *tl = ce->timeline;
782 783
	struct i915_request *rq;
	u32 seqno;
784 785
	int ret;

786
	might_sleep_if(gfpflags_allow_blocking(gfp));
787

788 789
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
790

791 792
	/*
	 * Beware: Dragons be flying overhead.
793 794 795 796
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
797
	 * of being read by __i915_active_request_get_rcu(). As such,
798 799
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
800
	 * read the request->global_seqno and increment the reference count.
801 802 803 804
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
805 806
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
807 808 809 810 811 812 813 814 815 816 817 818 819
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
820
	rq = kmem_cache_alloc(global.slab_requests,
821
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
822
	if (unlikely(!rq)) {
823
		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
824
		if (!rq) {
825 826 827
			ret = -ENOMEM;
			goto err_unreserve;
		}
828
	}
829

830
	rq->context = ce;
831
	rq->engine = ce->engine;
832
	rq->ring = ce->ring;
833
	rq->execution_mask = ce->engine->mask;
834

835 836 837 838 839 840 841 842 843 844 845 846
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

847 848
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
849
	rq->hwsp_seqno = tl->hwsp_seqno;
850
	GEM_BUG_ON(i915_request_completed(rq));
851

852
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
853

854
	/* We bump the ref for the fence chain */
855 856
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
857

858
	i915_sched_node_reinit(&rq->sched);
859

860
	/* No zalloc, everything must be cleared after use */
861
	rq->batch = NULL;
862
	GEM_BUG_ON(rq->capture_list);
863
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
864

865 866 867
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
868
	 * i915_request_add() call can't fail. Note that the reserve may need
869 870
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
871 872 873 874 875
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
876
	 */
877 878
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
879

880 881
	/*
	 * Record the position of the start of the request so that
882 883 884 885
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
886
	rq->head = rq->ring->emit;
887

888
	ret = rq->engine->request_alloc(rq);
889 890
	if (ret)
		goto err_unwind;
891

892 893
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

894
	intel_context_mark_active(ce);
895 896
	list_add_tail_rcu(&rq->link, &tl->requests);

897
	return rq;
898

899
err_unwind:
900
	ce->ring->emit = rq->head;
901

902
	/* Make sure we didn't add ourselves to external state before freeing */
903 904
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
905

906
err_free:
907
	kmem_cache_free(global.slab_requests, rq);
908
err_unreserve:
909
	intel_context_unpin(ce);
910
	return ERR_PTR(ret);
911 912
}

913 914 915 916
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
917
	struct intel_timeline *tl;
918

919 920 921
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
922 923

	/* Move our oldest request to the slab-cache (if not in use!) */
924 925
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
926 927 928 929 930 931 932 933 934
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
935
	rq->cookie = lockdep_pin_lock(&tl->mutex);
936 937 938 939

	return rq;

err_unlock:
940
	intel_context_timeline_unlock(tl);
941 942 943
	return rq;
}

944 945 946
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
947 948
	struct dma_fence *fence;
	int err;
949

950 951
	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
		return 0;
952

953 954 955
	if (i915_request_started(signal))
		return 0;

956
	fence = NULL;
957
	rcu_read_lock();
958
	spin_lock_irq(&signal->lock);
959 960 961 962 963 964 965 966 967 968 969
	do {
		struct list_head *pos = READ_ONCE(signal->link.prev);
		struct i915_request *prev;

		/* Confirm signal has not been retired, the link is valid */
		if (unlikely(i915_request_started(signal)))
			break;

		/* Is signal the earliest request on its timeline? */
		if (pos == &rcu_dereference(signal->timeline)->requests)
			break;
970

971 972 973 974 975 976
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
977 978 979 980 981 982 983 984
		prev = list_entry(pos, typeof(*prev), link);
		if (!i915_request_get_rcu(prev))
			break;

		/* After the strong barrier, confirm prev is still attached */
		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
			i915_request_put(prev);
			break;
985
		}
986 987 988

		fence = &prev->fence;
	} while (0);
989 990 991 992
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
993 994

	err = 0;
995
	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
996 997 998 999 1000 1001
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
1002 1003
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
1019
	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1020 1021
}

1022
static int
1023 1024 1025
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
1026
{
1027
	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1028
	u32 hwsp_offset;
1029
	int len, err;
1030 1031
	u32 *cs;

1032
	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1033
	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1034

1035
	/* We need to pin the signaler's HWSP until we are finished reading. */
1036 1037 1038
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
1039

1040 1041 1042 1043 1044
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
1056 1057 1058 1059 1060
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
1061
	*cs++ = seqno;
1062 1063
	*cs++ = hwsp_offset;
	*cs++ = 0;
1064 1065 1066 1067
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
1068 1069

	intel_ring_advance(to, cs);
1070 1071 1072 1073 1074 1075 1076 1077
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
1078
	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1079
	struct i915_sw_fence *wait = &to->submit;
1080

1081 1082 1083
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

1084 1085 1086
	if (i915_request_has_initial_breadcrumb(to))
		goto await_fence;

1087 1088 1089
	if (!rcu_access_pointer(from->hwsp_cacheline))
		goto await_fence;

1090 1091 1092 1093 1094 1095 1096 1097 1098
	/*
	 * If this or its dependents are waiting on an external fence
	 * that may fail catastrophically, then we want to avoid using
	 * sempahores as they bypass the fence signaling metadata, and we
	 * lose the fence->error propagation.
	 */
	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
		goto await_fence;

1099
	/* Just emit the first semaphore we see as request space is limited. */
1100
	if (already_busywaiting(to) & mask)
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

1113
	to->sched.semaphores |= mask;
1114
	wait = &to->semaphore;
1115 1116

await_fence:
1117
	return i915_sw_fence_await_dma_fence(wait,
1118 1119
					     &from->fence, 0,
					     I915_FENCE_GFP);
1120 1121
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

1136
static int
1137 1138 1139 1140
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
1141
{
1142
	int err;
1143

1144
	GEM_BUG_ON(intel_context_is_barrier(from->context));
1145

1146 1147 1148 1149 1150 1151 1152 1153
	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
1154
		return 0;
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

	/*
	 * Wait until the start of this request.
	 *
	 * The execution cb fires when we submit the request to HW. But in
	 * many cases this may be long before the request itself is ready to
	 * run (consider that we submit 2 requests for the same context, where
	 * the request of interest is behind an indefinite spinner). So we hook
	 * up to both to reduce our queues and keep the execution lag minimised
	 * in the worst case, though we hope that the await_start is elided.
	 */
	err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/*
	 * Ensure both start together [after all semaphores in signal]
	 *
	 * Now that we are queued to the HW at roughly the same time (thanks
	 * to the execute cb) and are ready to run at roughly the same time
	 * (thanks to the await start), our signaler may still be indefinitely
	 * delayed by waiting on a semaphore from a remote engine. If our
	 * signaler depends on a semaphore, so indirectly do we, and we do not
	 * want to start our payload until our signaler also starts theirs.
	 * So we wait.
	 *
	 * However, there is also a second condition for which we need to wait
	 * for the precise start of the signaler. Consider that the signaler
	 * was submitted in a chain of requests following another context
	 * (with just an ordinary intra-engine fence dependency between the
	 * two). In this case the signaler is queued to HW, but not for
	 * immediate execution, and so we must wait until it reaches the
	 * active slot.
	 */
	if (intel_engine_has_semaphores(to->engine) &&
	    !i915_request_has_initial_breadcrumb(to)) {
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
		if (err < 0)
			return err;
1194
	}
1195

1196
	/* Couple the dependency tree for PI on this exposed to->fence */
1197
	if (to->engine->schedule) {
1198
		err = i915_sched_node_add_dependency(&to->sched,
1199
						     &from->sched,
1200 1201 1202
						     I915_DEPENDENCY_WEAK);
		if (err < 0)
			return err;
1203 1204
	}

1205 1206
	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
1207 1208
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
static void mark_external(struct i915_request *rq)
{
	/*
	 * The downside of using semaphores is that we lose metadata passing
	 * along the signaling chain. This is particularly nasty when we
	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
	 * fatal errors we want to scrub the request before it is executed,
	 * which means that we cannot preload the request onto HW and have
	 * it wait upon a semaphore.
	 */
	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
}

1222
static int
1223
__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1224
{
1225
	mark_external(rq);
1226
	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1227
					     i915_fence_context_timeout(rq->engine->i915,
1228
									fence->context),
1229 1230 1231
					     I915_FENCE_GFP);
}

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
static int
i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
	struct dma_fence *iter;
	int err = 0;

	if (!to_dma_fence_chain(fence))
		return __i915_request_await_external(rq, fence);

	dma_fence_chain_for_each(iter, fence) {
		struct dma_fence_chain *chain = to_dma_fence_chain(iter);

		if (!dma_fence_is_i915(chain->fence)) {
			err = __i915_request_await_external(rq, iter);
			break;
		}

		err = i915_request_await_dma_fence(rq, chain->fence);
		if (err < 0)
			break;
	}

	dma_fence_put(iter);
	return err;
}

1258
int
1259 1260 1261 1262
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
1263
{
1264 1265
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
1266 1267
	int ret;

1268 1269 1270
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

1271 1272
		/* XXX Error for signal-on-any fence arrays */

1273 1274 1275 1276
		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
1277

1278 1279
	do {
		fence = *child++;
1280 1281
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1282
			continue;
1283
		}
1284

1285
		if (fence->context == rq->fence.context)
1286 1287
			continue;

1288 1289 1290 1291
		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */
1292

1293
		if (dma_fence_is_i915(fence))
1294 1295 1296
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook);
1297
		else
1298
			ret = i915_request_await_external(rq, fence);
1299 1300
		if (ret < 0)
			return ret;
1301
	} while (--nchild);
1302 1303 1304 1305

	return 0;
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
static int
await_request_submit(struct i915_request *to, struct i915_request *from)
{
	/*
	 * If we are waiting on a virtual engine, then it may be
	 * constrained to execute on a single engine *prior* to submission.
	 * When it is submitted, it will be first submitted to the virtual
	 * engine and then passed to the physical engine. We cannot allow
	 * the waiter to be submitted immediately to the physical engine
	 * as it may then bypass the virtual request.
	 */
	if (to->engine == READ_ONCE(from->engine))
		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
							&from->submit,
							I915_FENCE_GFP);
	else
		return __i915_request_await_execution(to, from, NULL);
}

1325
static int
1326
i915_request_await_request(struct i915_request *to, struct i915_request *from)
1327
{
1328
	int ret;
1329

1330 1331
	GEM_BUG_ON(to == from);
	GEM_BUG_ON(to->timeline == from->timeline);
1332

1333 1334
	if (i915_request_completed(from)) {
		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1335
		return 0;
1336 1337
	}

1338
	if (to->engine->schedule) {
1339
		ret = i915_sched_node_add_dependency(&to->sched,
1340
						     &from->sched,
1341 1342 1343
						     I915_DEPENDENCY_EXTERNAL);
		if (ret < 0)
			return ret;
1344 1345
	}

1346 1347
	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
		ret = await_request_submit(to, from);
1348 1349 1350 1351 1352 1353
	else
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
	if (ret < 0)
		return ret;

	return 0;
1354 1355
}

1356
int
1357
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1358 1359 1360 1361 1362
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

1363 1364 1365 1366 1367 1368 1369 1370
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1381 1382
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1383
			continue;
1384
		}
1385

1386 1387 1388 1389 1390
		/*
		 * Requests on the same timeline are explicitly ordered, along
		 * with their dependencies, by i915_request_add() which ensures
		 * that requests are submitted in-order through each ring.
		 */
1391 1392 1393
		if (fence->context == rq->fence.context)
			continue;

1394 1395 1396 1397 1398
		/* Squash repeated waits to the same timelines */
		if (fence->context &&
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
			continue;
1399 1400

		if (dma_fence_is_i915(fence))
1401
			ret = i915_request_await_request(rq, to_request(fence));
1402
		else
1403
			ret = i915_request_await_external(rq, fence);
1404 1405
		if (ret < 0)
			return ret;
1406 1407 1408 1409 1410

		/* Record the latest fence used against each timeline */
		if (fence->context)
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1411 1412 1413 1414 1415
	} while (--nchild);

	return 0;
}

1416
/**
1417
 * i915_request_await_object - set this request to (async) wait upon a bo
1418 1419
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1420
 * @write: whether the wait is on behalf of a writer
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1437 1438 1439
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1440
{
1441 1442
	struct dma_fence *excl;
	int ret = 0;
1443 1444

	if (write) {
1445 1446 1447
		struct dma_fence **shared;
		unsigned int count, i;

1448
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1449 1450 1451 1452 1453
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1454
			ret = i915_request_await_dma_fence(to, shared[i]);
1455 1456 1457 1458 1459 1460 1461 1462 1463
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1464
	} else {
1465
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1466 1467
	}

1468 1469
	if (excl) {
		if (ret == 0)
1470
			ret = i915_request_await_dma_fence(to, excl);
1471

1472
		dma_fence_put(excl);
1473 1474
	}

1475
	return ret;
1476 1477
}

1478 1479 1480
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1481
	struct intel_timeline *timeline = i915_request_timeline(rq);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1504 1505
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1506
	if (prev && !i915_request_completed(prev)) {
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
		/*
		 * The requests are supposed to be kept in order. However,
		 * we need to be wary in case the timeline->last_request
		 * is used as a barrier for external modification to this
		 * context.
		 */
		GEM_BUG_ON(prev->context == rq->context &&
			   i915_seqno_passed(prev->fence.seqno,
					     rq->fence.seqno));

1517
		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

1532 1533 1534 1535 1536
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1537 1538 1539 1540 1541
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1542 1543 1544 1545 1546
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1547
struct i915_request *__i915_request_commit(struct i915_request *rq)
1548
{
1549 1550
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1551
	u32 *cs;
1552

1553
	RQ_TRACE(rq, "\n");
1554

1555 1556 1557 1558 1559
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1560 1561
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1562
	rq->emitted_jiffies = jiffies;
1563

1564 1565
	/*
	 * Record the position of the start of the breadcrumb so that
1566 1567
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1568
	 * position of the ring's HEAD.
1569
	 */
1570
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1571
	GEM_BUG_ON(IS_ERR(cs));
1572
	rq->postfix = intel_ring_offset(rq, cs);
1573

1574
	return __i915_request_add_to_timeline(rq);
1575 1576 1577 1578 1579
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1580 1581
	/*
	 * Let the backend know a new request has arrived that may need
1582 1583 1584 1585 1586 1587 1588 1589 1590
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1591 1592
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1593
	i915_sw_fence_commit(&rq->semaphore);
1594 1595 1596 1597 1598
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1599
	struct intel_timeline * const tl = i915_request_timeline(rq);
1600
	struct i915_sched_attr attr = {};
1601
	struct i915_gem_context *ctx;
1602

1603 1604
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1605 1606

	trace_i915_request_add(rq);
1607
	__i915_request_commit(rq);
1608

1609 1610 1611 1612 1613 1614
	/* XXX placeholder for selftests */
	rcu_read_lock();
	ctx = rcu_dereference(rq->context->gem_context);
	if (ctx)
		attr = ctx->sched;
	rcu_read_unlock();
1615

1616 1617
	__i915_request_queue(rq, &attr);

1618
	mutex_unlock(&tl->mutex);
1619 1620
}

1621
static unsigned long local_clock_ns(unsigned int *cpu)
1622 1623 1624
{
	unsigned long t;

1625 1626
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
1638
	t = local_clock();
1639 1640 1641 1642 1643 1644 1645 1646 1647
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

1648
	if (time_after(local_clock_ns(&this_cpu), timeout))
1649 1650 1651 1652 1653
		return true;

	return this_cpu != cpu;
}

1654
static bool __i915_spin_request(struct i915_request * const rq, int state)
1655
{
1656
	unsigned long timeout_ns;
1657
	unsigned int cpu;
1658 1659 1660 1661 1662 1663 1664

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1665 1666 1667 1668
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1669
	 */
1670
	if (!i915_request_is_running(rq))
1671 1672
		return false;

1673 1674
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1675 1676 1677 1678 1679 1680 1681 1682 1683
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1684 1685
	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
	timeout_ns += local_clock_ns(&cpu);
1686
	do {
1687
		if (dma_fence_is_signaled(&rq->fence))
1688
			return true;
1689

1690 1691 1692
		if (signal_pending_state(state, current))
			break;

1693
		if (busywait_stop(timeout_ns, cpu))
1694 1695
			break;

1696
		cpu_relax();
1697 1698 1699 1700 1701
	} while (!need_resched());

	return false;
}

1702 1703 1704 1705 1706 1707 1708 1709 1710
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

1711
	wake_up_process(fetch_and_zero(&wait->tsk));
1712 1713
}

1714
/**
1715
 * i915_request_wait - wait until execution of request has finished
1716
 * @rq: the request to wait upon
1717
 * @flags: how to wait
1718 1719
 * @timeout: how long to wait in jiffies
 *
1720
 * i915_request_wait() waits for the request to be completed, for a
1721 1722
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1723
 *
1724 1725 1726 1727
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1728
 */
1729
long i915_request_wait(struct i915_request *rq,
1730 1731
		       unsigned int flags,
		       long timeout)
1732
{
1733 1734
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1735
	struct request_wait wait;
1736 1737

	might_sleep();
1738
	GEM_BUG_ON(timeout < 0);
1739

1740
	if (dma_fence_is_signaled(&rq->fence))
1741
		return timeout;
1742

1743 1744
	if (!timeout)
		return -ETIME;
1745

1746
	trace_i915_request_wait_begin(rq, flags);
1747 1748 1749 1750 1751 1752 1753

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1754
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1755

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1779
	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1780
	    __i915_spin_request(rq, state))
1781
		goto out;
1782

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
1795 1796
	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
		intel_rps_boost(rq);
1797

1798 1799 1800
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	/*
	 * Flush the submission tasklet, but only if it may help this request.
	 *
	 * We sometimes experience some latency between the HW interrupts and
	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
	 * be due to lazy CS events), so lets run the tasklet manually if there
	 * is a chance it may submit this request. If the request is not ready
	 * to run, as it is waiting for other fences to be signaled, flushing
	 * the tasklet is busy work without any advantage for this client.
	 *
	 * If the HW is being lazy, this is the last chance before we go to
	 * sleep to catch any pending events. We will check periodically in
	 * the heartbeat to flush the submission tasklets as a last resort
	 * for unhappy HW.
	 */
	if (i915_request_is_ready(rq))
		intel_engine_flush_submission(rq->engine);

1820 1821
	for (;;) {
		set_current_state(state);
1822

1823
		if (dma_fence_is_signaled(&rq->fence))
1824
			break;
1825 1826

		if (signal_pending_state(state, current)) {
1827
			timeout = -ERESTARTSYS;
1828 1829 1830
			break;
		}

1831 1832
		if (!timeout) {
			timeout = -ETIME;
1833 1834 1835
			break;
		}

1836
		timeout = io_schedule_timeout(timeout);
1837
	}
1838
	__set_current_state(TASK_RUNNING);
1839

1840 1841 1842
	if (READ_ONCE(wait.tsk))
		dma_fence_remove_callback(&rq->fence, &wait.cb);
	GEM_BUG_ON(!list_empty(&wait.cb.node));
1843 1844

out:
1845
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1846
	trace_i915_request_wait_end(rq);
1847
	return timeout;
1848
}
1849

1850 1851
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1852
#include "selftests/i915_request.c"
1853
#endif
1854

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1872 1873
int __init i915_global_request_init(void)
{
1874 1875 1876 1877 1878 1879 1880 1881
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1882 1883 1884
	if (!global.slab_requests)
		return -ENOMEM;

1885 1886 1887 1888 1889 1890 1891
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1892
	i915_global_register(&global.base);
1893 1894 1895 1896 1897 1898
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}