i915_request.c 47.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
34
#include "gt/intel_ring.h"
35
#include "gt/intel_rps.h"
36

37
#include "i915_active.h"
38
#include "i915_drv.h"
39
#include "i915_globals.h"
40
#include "i915_trace.h"
41
#include "intel_pm.h"
42

43 44 45 46
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
47 48
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
49 50
};

51
static struct i915_global_request {
52
	struct i915_global base;
53 54
	struct kmem_cache *slab_requests;
	struct kmem_cache *slab_dependencies;
55
	struct kmem_cache *slab_execute_cbs;
56 57
} global;

58
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59
{
60
	return dev_name(to_request(fence)->i915->drm.dev);
61 62
}

63
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64
{
65 66
	const struct i915_gem_context *ctx;

67 68
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
69 70 71 72 73 74 75 76 77 78
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

79 80 81 82 83
	ctx = to_request(fence)->context->gem_context;
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
84 85
}

86
static bool i915_fence_signaled(struct dma_fence *fence)
87
{
88
	return i915_request_completed(to_request(fence));
89 90
}

91
static bool i915_fence_enable_signaling(struct dma_fence *fence)
92
{
93
	return i915_request_enable_breadcrumb(to_request(fence));
94 95
}

96
static signed long i915_fence_wait(struct dma_fence *fence,
97
				   bool interruptible,
98
				   signed long timeout)
99
{
100 101 102
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
103 104
}

105
static void i915_fence_release(struct dma_fence *fence)
106
{
107
	struct i915_request *rq = to_request(fence);
108

109 110
	/*
	 * The request is put onto a RCU freelist (i.e. the address
111 112 113 114 115
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
116
	i915_sw_fence_fini(&rq->submit);
117
	i915_sw_fence_fini(&rq->semaphore);
118

119
	kmem_cache_free(global.slab_requests, rq);
120 121
}

122
const struct dma_fence_ops i915_fence_ops = {
123 124 125 126 127 128 129 130
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

175
static inline void
176
remove_from_client(struct i915_request *request)
177
{
178
	struct drm_i915_file_private *file_priv;
179

180
	if (!READ_ONCE(request->file_priv))
181 182
		return;

183 184 185 186
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
187
		list_del(&request->client_link);
188
		spin_unlock(&file_priv->mm.lock);
189
	}
190
	rcu_read_unlock();
191 192
}

193
static void free_capture_list(struct i915_request *request)
194
{
195
	struct i915_capture_list *capture;
196

197
	capture = fetch_and_zero(&request->capture_list);
198
	while (capture) {
199
		struct i915_capture_list *next = capture->next;
200 201 202 203 204 205

		kfree(capture);
		capture = next;
	}
}

206 207 208 209 210 211 212 213 214 215 216
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
217
	spin_lock_irq(&locked->active.lock);
218 219 220 221 222
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
223
	list_del_init(&rq->sched.link);
224
	spin_unlock_irq(&locked->active.lock);
225 226
}

227
bool i915_request_retire(struct i915_request *rq)
228
{
229 230
	if (!i915_request_completed(rq))
		return false;
231

232
	RQ_TRACE(rq, "\n");
233

234 235
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
236

237 238 239 240 241 242 243 244 245
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
246 247
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
248
	rq->ring->head = rq->postfix;
249

250 251 252 253 254 255
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
256
	remove_from_engine(rq);
257

258
	spin_lock_irq(&rq->lock);
259 260 261 262 263
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
264
	if (i915_request_has_waitboost(rq)) {
265 266
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
267
	}
268 269 270 271 272
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
273
	spin_unlock_irq(&rq->lock);
274

275
	remove_from_client(rq);
276
	list_del(&rq->link);
277

278 279
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
280

281 282 283 284 285
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
286 287
}

288
void i915_request_retire_upto(struct i915_request *rq)
289
{
290
	struct intel_timeline * const tl = i915_request_timeline(rq);
291
	struct i915_request *tmp;
292

293
	RQ_TRACE(rq, "\n");
294

295
	GEM_BUG_ON(!i915_request_completed(rq));
296

297
	do {
298
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
299
	} while (i915_request_retire(tmp) && tmp != rq);
300 301
}

302
static int
303 304 305 306 307
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
308 309 310
{
	struct execute_cb *cb;

311 312 313
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
314
		return 0;
315
	}
316 317 318 319 320 321 322 323 324

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

325 326 327 328 329 330
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

331 332
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
333 334 335 336
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
337 338 339 340 341 342 343
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

344 345
	/* Copy across semaphore status as we need the same behaviour */
	rq->sched.flags |= signal->sched.flags;
346 347 348
	return 0;
}

349
bool __i915_request_submit(struct i915_request *request)
350
{
351
	struct intel_engine_cs *engine = request->engine;
352
	bool result = false;
353

354
	RQ_TRACE(request, "\n");
355

356
	GEM_BUG_ON(!irqs_disabled());
357
	lockdep_assert_held(&engine->active.lock);
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

378
	if (intel_context_is_banned(request->context))
379 380
		i915_request_skip(request, -EIO);

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
399
		engine->saturated |= request->sched.semaphores;
400

401 402
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
403

404 405 406
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
407

408 409 410 411 412
xfer:	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);

	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
		list_move_tail(&request->sched.link, &engine->active.requests);
413

414
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
415
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
416
	    !i915_request_enable_breadcrumb(request))
417
		intel_engine_signal_breadcrumbs(engine);
418

419 420
	__notify_execute_cb(request);

421 422
	spin_unlock(&request->lock);

423
	return result;
424 425
}

426
void i915_request_submit(struct i915_request *request)
427 428 429
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
430

431
	/* Will be called from irq-context when using foreign fences. */
432
	spin_lock_irqsave(&engine->active.lock, flags);
433

434
	__i915_request_submit(request);
435

436
	spin_unlock_irqrestore(&engine->active.lock, flags);
437 438
}

439
void __i915_request_unsubmit(struct i915_request *request)
440
{
441
	struct intel_engine_cs *engine = request->engine;
442

443
	RQ_TRACE(request, "\n");
444

445
	GEM_BUG_ON(!irqs_disabled());
446
	lockdep_assert_held(&engine->active.lock);
447

448 449
	/*
	 * Only unwind in reverse order, required so that the per-context list
450 451
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
452

453 454
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
455

456
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
457
		i915_request_cancel_breadcrumb(request);
458

459 460
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
461

462 463
	spin_unlock(&request->lock);

464 465 466 467 468 469
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

470 471
	/*
	 * We don't need to wake_up any waiters on request->execute, they
472
	 * will get woken by any other event or us re-adding this request
473
	 * to the engine timeline (__i915_request_submit()). The waiters
474 475 476 477 478
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

479
void i915_request_unsubmit(struct i915_request *request)
480 481 482 483 484
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
485
	spin_lock_irqsave(&engine->active.lock, flags);
486

487
	__i915_request_unsubmit(request);
488

489
	spin_unlock_irqrestore(&engine->active.lock, flags);
490 491
}

492
static int __i915_sw_fence_call
493
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
494
{
495
	struct i915_request *request =
496 497 498 499
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
500
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
501 502 503 504

		if (unlikely(fence->error))
			i915_request_skip(request, fence->error);

505
		/*
506 507 508 509 510 511
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
512 513
		 */
		rcu_read_lock();
514
		request->engine->submit_request(request);
515
		rcu_read_unlock();
516 517 518
		break;

	case FENCE_FREE:
519
		i915_request_put(request);
520 521 522
		break;
	}

523 524 525
	return NOTIFY_DONE;
}

526 527 528 529 530 531 532 533
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_request *request =
		container_of(fence, typeof(*request), semaphore);

	switch (state) {
	case FENCE_COMPLETE:
534
		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
535 536 537 538 539 540 541 542 543 544
		break;

	case FENCE_FREE:
		i915_request_put(request);
		break;
	}

	return NOTIFY_DONE;
}

545
static void retire_requests(struct intel_timeline *tl)
546 547 548
{
	struct i915_request *rq, *rn;

549
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
550
		if (!i915_request_retire(rq))
551 552 553 554
			break;
}

static noinline struct i915_request *
555
request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
556 557 558
{
	struct i915_request *rq;

559
	if (list_empty(&tl->requests))
560 561
		goto out;

562 563 564
	if (!gfpflags_allow_blocking(gfp))
		goto out;

565
	/* Move our oldest request to the slab-cache (if not in use!) */
566
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
567 568 569 570 571 572 573
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

574
	/* Ratelimit ourselves to prevent oom from malicious clients */
575
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
576 577 578
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
579
	retire_requests(tl);
580 581

out:
582
	return kmem_cache_alloc(global.slab_requests, gfp);
583 584
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

	rq->file_priv = NULL;
	rq->capture_list = NULL;

	INIT_LIST_HEAD(&rq->execute_cb);
}

600
struct i915_request *
601
__i915_request_create(struct intel_context *ce, gfp_t gfp)
602
{
603
	struct intel_timeline *tl = ce->timeline;
604 605
	struct i915_request *rq;
	u32 seqno;
606 607
	int ret;

608
	might_sleep_if(gfpflags_allow_blocking(gfp));
609

610 611
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
612

613 614
	/*
	 * Beware: Dragons be flying overhead.
615 616 617 618
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
619
	 * of being read by __i915_active_request_get_rcu(). As such,
620 621
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
622
	 * read the request->global_seqno and increment the reference count.
623 624 625 626
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
627 628
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
629 630 631 632 633 634 635 636 637 638 639 640 641
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
642
	rq = kmem_cache_alloc(global.slab_requests,
643
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
644
	if (unlikely(!rq)) {
645
		rq = request_alloc_slow(tl, gfp);
646
		if (!rq) {
647 648 649
			ret = -ENOMEM;
			goto err_unreserve;
		}
650
	}
651

652
	ret = intel_timeline_get_seqno(tl, rq, &seqno);
653 654 655
	if (ret)
		goto err_free;

656
	rq->i915 = ce->engine->i915;
657
	rq->context = ce;
658
	rq->engine = ce->engine;
659
	rq->ring = ce->ring;
660
	rq->execution_mask = ce->engine->mask;
661
	rq->flags = 0;
662

663 664
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
665
	rq->hwsp_seqno = tl->hwsp_seqno;
666

667
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
668

669 670
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
		       tl->fence_context, seqno);
671

672
	/* We bump the ref for the fence chain */
673 674
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
675

676
	i915_sched_node_reinit(&rq->sched);
677

678
	/* No zalloc, everything must be cleared after use */
679
	rq->batch = NULL;
680 681 682
	GEM_BUG_ON(rq->file_priv);
	GEM_BUG_ON(rq->capture_list);
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
683

684 685 686
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
687
	 * i915_request_add() call can't fail. Note that the reserve may need
688 689
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
690 691 692 693 694
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
695
	 */
696 697
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
698

699 700
	/*
	 * Record the position of the start of the request so that
701 702 703 704
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
705
	rq->head = rq->ring->emit;
706

707
	ret = rq->engine->request_alloc(rq);
708 709
	if (ret)
		goto err_unwind;
710

711 712
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

713
	intel_context_mark_active(ce);
714
	return rq;
715

716
err_unwind:
717
	ce->ring->emit = rq->head;
718

719
	/* Make sure we didn't add ourselves to external state before freeing */
720 721
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
722

723
err_free:
724
	kmem_cache_free(global.slab_requests, rq);
725
err_unreserve:
726
	intel_context_unpin(ce);
727
	return ERR_PTR(ret);
728 729
}

730 731 732 733
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
734
	struct intel_timeline *tl;
735

736 737 738
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
739 740

	/* Move our oldest request to the slab-cache (if not in use!) */
741 742
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
743 744 745 746 747 748 749 750 751
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
752
	rq->cookie = lockdep_pin_lock(&tl->mutex);
753 754 755 756

	return rq;

err_unlock:
757
	intel_context_timeline_unlock(tl);
758 759 760
	return rq;
}

761 762 763
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
764 765
	struct dma_fence *fence;
	int err;
766

767 768 769
	GEM_BUG_ON(i915_request_timeline(rq) ==
		   rcu_access_pointer(signal->timeline));

770
	fence = NULL;
771
	rcu_read_lock();
772 773 774 775 776
	spin_lock_irq(&signal->lock);
	if (!i915_request_started(signal) &&
	    !list_is_first(&signal->link,
			   &rcu_dereference(signal->timeline)->requests)) {
		struct i915_request *prev = list_prev_entry(signal, link);
777

778 779 780 781 782 783 784 785 786 787 788
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
		if (i915_request_get_rcu(prev)) {
			if (list_next_entry(prev, link) == signal)
				fence = &prev->fence;
			else
				i915_request_put(prev);
789 790
		}
	}
791 792 793 794
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
795 796 797 798 799 800 801 802 803

	err = 0;
	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
804 805
}

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
821
	return rq->sched.semaphores | rq->engine->saturated;
822 823
}

824
static int
825 826 827
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
828
{
829
	const int has_token = INTEL_GEN(to->i915) >= 12;
830
	u32 hwsp_offset;
831
	int len, err;
832 833 834 835
	u32 *cs;

	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

836
	/* We need to pin the signaler's HWSP until we are finished reading. */
837 838 839
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
840

841 842 843 844 845
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
846 847 848 849 850 851 852 853 854 855 856
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
857 858 859 860 861
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
862
	*cs++ = seqno;
863 864
	*cs++ = hwsp_offset;
	*cs++ = 0;
865 866 867 868
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
869 870

	intel_ring_advance(to, cs);
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
	/* Just emit the first semaphore we see as request space is limited. */
	if (already_busywaiting(to) & from->engine->mask)
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

893 894
	to->sched.semaphores |= from->engine->mask;
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
895
	return 0;
896 897 898 899 900

await_fence:
	return i915_sw_fence_await_dma_fence(&to->submit,
					     &from->fence, 0,
					     I915_FENCE_GFP);
901 902
}

903
static int
904
i915_request_await_request(struct i915_request *to, struct i915_request *from)
905
{
906
	int ret;
907 908

	GEM_BUG_ON(to == from);
909
	GEM_BUG_ON(to->timeline == from->timeline);
910

911
	if (i915_request_completed(from))
912 913
		return 0;

914
	if (to->engine->schedule) {
915
		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
916 917 918 919
		if (ret < 0)
			return ret;
	}

920
	if (to->engine == from->engine)
921 922
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
923
						       I915_FENCE_GFP);
924
	else if (intel_context_use_semaphores(to->context))
925
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
926
	else
927 928 929
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    I915_FENCE_GFP);
930 931 932 933 934 935 936 937 938 939
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
940

941
	return 0;
942 943
}

944
int
945
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
946
{
947 948
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
949 950
	int ret;

951 952
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
953 954 955 956 957 958
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
959 960 961 962 963 964 965
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
966

967 968
	do {
		fence = *child++;
969 970
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
971
			continue;
972
		}
973

974 975
		/*
		 * Requests on the same timeline are explicitly ordered, along
976
		 * with their dependencies, by i915_request_add() which ensures
977 978
		 * that requests are submitted in-order through each ring.
		 */
979
		if (fence->context == rq->fence.context)
980 981
			continue;

982
		/* Squash repeated waits to the same timelines */
983
		if (fence->context &&
984 985
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
986 987
			continue;

988
		if (dma_fence_is_i915(fence))
989
			ret = i915_request_await_request(rq, to_request(fence));
990
		else
991
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
992
							    fence->context ? I915_FENCE_TIMEOUT : 0,
993
							    I915_FENCE_GFP);
994 995
		if (ret < 0)
			return ret;
996 997

		/* Record the latest fence used against each timeline */
998
		if (fence->context)
999 1000
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1001
	} while (--nchild);
1002 1003 1004 1005

	return 0;
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

static int
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
{
	int err;

	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
		return 0;

	/* Ensure both start together [after all semaphores in signal] */
	if (intel_engine_has_semaphores(to->engine))
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
	else
		err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/* Couple the dependency tree for PI on this exposed to->fence */
	if (to->engine->schedule) {
		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
		if (err < 0)
			return err;
	}

	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1079 1080
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1081
			continue;
1082
		}
1083 1084 1085 1086 1087 1088 1089 1090 1091

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
1092
							     hook);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

1104
/**
1105
 * i915_request_await_object - set this request to (async) wait upon a bo
1106 1107
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1108
 * @write: whether the wait is on behalf of a writer
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1125 1126 1127
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1128
{
1129 1130
	struct dma_fence *excl;
	int ret = 0;
1131 1132

	if (write) {
1133 1134 1135
		struct dma_fence **shared;
		unsigned int count, i;

1136
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1137 1138 1139 1140 1141
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1142
			ret = i915_request_await_dma_fence(to, shared[i]);
1143 1144 1145 1146 1147 1148 1149 1150 1151
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1152
	} else {
1153
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1154 1155
	}

1156 1157
	if (excl) {
		if (ret == 0)
1158
			ret = i915_request_await_dma_fence(to, excl);
1159

1160
		dma_fence_put(excl);
1161 1162
	}

1163
	return ret;
1164 1165
}

1166 1167 1168 1169 1170 1171 1172 1173
void i915_request_skip(struct i915_request *rq, int error)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
	dma_fence_set_error(&rq->fence, error);

C
Chris Wilson 已提交
1174 1175 1176
	if (rq->infix == rq->postfix)
		return;

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, 0, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, rq->postfix - head);
C
Chris Wilson 已提交
1188
	rq->infix = rq->postfix;
1189 1190
}

1191 1192 1193
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1194
	struct intel_timeline *timeline = i915_request_timeline(rq);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1217 1218
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	if (prev && !i915_request_completed(prev)) {
		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

	list_add_tail(&rq->link, &timeline->requests);

1237 1238 1239 1240 1241
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1242 1243 1244 1245 1246
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1247 1248 1249 1250 1251
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1252
struct i915_request *__i915_request_commit(struct i915_request *rq)
1253
{
1254 1255
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1256
	u32 *cs;
1257

1258
	RQ_TRACE(rq, "\n");
1259

1260 1261 1262 1263 1264
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1265 1266
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1267
	rq->emitted_jiffies = jiffies;
1268

1269 1270
	/*
	 * Record the position of the start of the breadcrumb so that
1271 1272
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1273
	 * position of the ring's HEAD.
1274
	 */
1275
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1276
	GEM_BUG_ON(IS_ERR(cs));
1277
	rq->postfix = intel_ring_offset(rq, cs);
1278

1279
	return __i915_request_add_to_timeline(rq);
1280 1281 1282 1283 1284
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1285 1286
	/*
	 * Let the backend know a new request has arrived that may need
1287 1288 1289 1290 1291 1292 1293 1294 1295
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1296
	i915_sw_fence_commit(&rq->semaphore);
1297 1298
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1299 1300 1301 1302 1303
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1304
	struct i915_sched_attr attr = rq->context->gem_context->sched;
1305
	struct intel_timeline * const tl = i915_request_timeline(rq);
1306 1307
	struct i915_request *prev;

1308 1309
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1310 1311 1312 1313 1314

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	/*
	 * Boost actual workloads past semaphores!
	 *
	 * With semaphores we spin on one engine waiting for another,
	 * simply to reduce the latency of starting our work when
	 * the signaler completes. However, if there is any other
	 * work that we could be doing on this engine instead, that
	 * is better utilisation and will reduce the overall duration
	 * of the current work. To avoid PI boosting a semaphore
	 * far in the distance past over useful work, we keep a history
	 * of any semaphore use along our dependency chain.
	 */
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;

	/*
	 * Boost priorities to new clients (new request flows).
	 *
	 * Allow interactive/synchronous clients to jump ahead of
	 * the bulk clients. (FQ_CODEL)
	 */
	if (list_empty(&rq->sched.signalers_list))
		attr.priority |= I915_PRIORITY_WAIT;

1339
	local_bh_disable();
1340
	__i915_request_queue(rq, &attr);
1341
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	/*
	 * In typical scenarios, we do not expect the previous request on
	 * the timeline to be still tracked by timeline->last_request if it
	 * has been completed. If the completed request is still here, that
	 * implies that request retirement is a long way behind submission,
	 * suggesting that we haven't been retiring frequently enough from
	 * the combination of retire-before-alloc, waiters and the background
	 * retirement worker. So if the last request on this timeline was
	 * already completed, do a catch up pass, flushing the retirement queue
	 * up to this client. Since we have now moved the heaviest operations
	 * during retirement onto secondary workers, such as freeing objects
	 * or contexts, retiring a bunch of requests is mostly list management
	 * (and cache misses), and so we should not be overly penalizing this
	 * client by performing excess work, though we may still performing
	 * work on behalf of others -- but instead we should benefit from
	 * improved resource management. (Well, that's the theory at least.)
	 */
1360 1361 1362
	if (prev &&
	    i915_request_completed(prev) &&
	    rcu_access_pointer(prev->timeline) == tl)
1363
		i915_request_retire_upto(prev);
1364

1365
	mutex_unlock(&tl->mutex);
1366 1367 1368 1369 1370 1371
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

1372 1373
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1401 1402
static bool __i915_spin_request(const struct i915_request * const rq,
				int state, unsigned long timeout_us)
1403
{
1404
	unsigned int cpu;
1405 1406 1407 1408 1409 1410 1411

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1412 1413 1414 1415
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1416
	 */
1417
	if (!i915_request_is_running(rq))
1418 1419
		return false;

1420 1421
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
1433 1434
		if (i915_request_completed(rq))
			return true;
1435

1436 1437 1438 1439 1440 1441
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1442
		cpu_relax();
1443 1444 1445 1446 1447
	} while (!need_resched());

	return false;
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1460
/**
1461
 * i915_request_wait - wait until execution of request has finished
1462
 * @rq: the request to wait upon
1463
 * @flags: how to wait
1464 1465
 * @timeout: how long to wait in jiffies
 *
1466
 * i915_request_wait() waits for the request to be completed, for a
1467 1468
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1469
 *
1470 1471 1472 1473
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1474
 */
1475
long i915_request_wait(struct i915_request *rq,
1476 1477
		       unsigned int flags,
		       long timeout)
1478
{
1479 1480
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1481
	struct request_wait wait;
1482 1483

	might_sleep();
1484
	GEM_BUG_ON(timeout < 0);
1485

1486
	if (dma_fence_is_signaled(&rq->fence))
1487
		return timeout;
1488

1489 1490
	if (!timeout)
		return -ETIME;
1491

1492
	trace_i915_request_wait_begin(rq, flags);
1493 1494 1495 1496 1497 1498 1499

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1500
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1501

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1525
	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1526 1527
	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
		dma_fence_signal(&rq->fence);
1528
		goto out;
1529
	}
1530

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1545
			intel_rps_boost(rq);
1546
		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1547
	}
1548

1549 1550 1551
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1552

1553 1554
	for (;;) {
		set_current_state(state);
1555

1556 1557
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1558
			break;
1559
		}
1560 1561

		if (signal_pending_state(state, current)) {
1562
			timeout = -ERESTARTSYS;
1563 1564 1565
			break;
		}

1566 1567
		if (!timeout) {
			timeout = -ETIME;
1568 1569 1570
			break;
		}

1571
		intel_engine_flush_submission(rq->engine);
1572
		timeout = io_schedule_timeout(timeout);
1573
	}
1574
	__set_current_state(TASK_RUNNING);
1575

1576 1577 1578
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1579
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1580
	trace_i915_request_wait_end(rq);
1581
	return timeout;
1582
}
1583

1584 1585
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1586
#include "selftests/i915_request.c"
1587
#endif
1588

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_dependencies);
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_dependencies);
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1608 1609
int __init i915_global_request_init(void)
{
1610 1611 1612 1613 1614 1615 1616 1617
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1618 1619 1620
	if (!global.slab_requests)
		return -ENOMEM;

1621 1622 1623 1624 1625 1626 1627
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1628 1629 1630 1631
	global.slab_dependencies = KMEM_CACHE(i915_dependency,
					      SLAB_HWCACHE_ALIGN |
					      SLAB_RECLAIM_ACCOUNT);
	if (!global.slab_dependencies)
1632
		goto err_execute_cbs;
1633

1634
	i915_global_register(&global.base);
1635 1636
	return 0;

1637 1638
err_execute_cbs:
	kmem_cache_destroy(global.slab_execute_cbs);
1639 1640 1641 1642
err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}