i915_request.c 47.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
34
#include "gt/intel_ring.h"
35
#include "gt/intel_rps.h"
36

37
#include "i915_active.h"
38
#include "i915_drv.h"
39
#include "i915_globals.h"
40
#include "i915_trace.h"
41
#include "intel_pm.h"
42

43 44 45 46
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
47 48
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
49 50
};

51
static struct i915_global_request {
52
	struct i915_global base;
53 54
	struct kmem_cache *slab_requests;
	struct kmem_cache *slab_dependencies;
55
	struct kmem_cache *slab_execute_cbs;
56 57
} global;

58
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59
{
60
	return dev_name(to_request(fence)->i915->drm.dev);
61 62
}

63
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64
{
65 66
	const struct i915_gem_context *ctx;

67 68
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
69 70 71 72 73 74 75 76 77 78
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

79
	ctx = i915_request_gem_context(to_request(fence));
80 81 82 83
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
84 85
}

86
static bool i915_fence_signaled(struct dma_fence *fence)
87
{
88
	return i915_request_completed(to_request(fence));
89 90
}

91
static bool i915_fence_enable_signaling(struct dma_fence *fence)
92
{
93
	return i915_request_enable_breadcrumb(to_request(fence));
94 95
}

96
static signed long i915_fence_wait(struct dma_fence *fence,
97
				   bool interruptible,
98
				   signed long timeout)
99
{
100 101 102
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
103 104
}

105
static void i915_fence_release(struct dma_fence *fence)
106
{
107
	struct i915_request *rq = to_request(fence);
108

109 110
	/*
	 * The request is put onto a RCU freelist (i.e. the address
111 112 113 114 115
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
116
	i915_sw_fence_fini(&rq->submit);
117
	i915_sw_fence_fini(&rq->semaphore);
118

119
	kmem_cache_free(global.slab_requests, rq);
120 121
}

122
const struct dma_fence_ops i915_fence_ops = {
123 124 125 126 127 128 129 130
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

175
static inline void
176
remove_from_client(struct i915_request *request)
177
{
178
	struct drm_i915_file_private *file_priv;
179

180
	if (!READ_ONCE(request->file_priv))
181 182
		return;

183 184 185 186
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
187
		list_del(&request->client_link);
188
		spin_unlock(&file_priv->mm.lock);
189
	}
190
	rcu_read_unlock();
191 192
}

193
static void free_capture_list(struct i915_request *request)
194
{
195
	struct i915_capture_list *capture;
196

197
	capture = fetch_and_zero(&request->capture_list);
198
	while (capture) {
199
		struct i915_capture_list *next = capture->next;
200 201 202 203 204 205

		kfree(capture);
		capture = next;
	}
}

206 207 208 209 210 211 212 213 214 215 216
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
217
	spin_lock_irq(&locked->active.lock);
218 219 220 221 222
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
223
	list_del_init(&rq->sched.link);
224
	spin_unlock_irq(&locked->active.lock);
225 226
}

227
bool i915_request_retire(struct i915_request *rq)
228
{
229 230
	if (!i915_request_completed(rq))
		return false;
231

232
	RQ_TRACE(rq, "\n");
233

234 235
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
236

237 238 239 240 241 242 243 244 245
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
246 247
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
248
	rq->ring->head = rq->postfix;
249

250 251 252 253 254 255
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
256
	remove_from_engine(rq);
257

258
	spin_lock_irq(&rq->lock);
259 260 261 262 263
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
264
	if (i915_request_has_waitboost(rq)) {
265 266
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
267
	}
268 269 270 271 272
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
273
	spin_unlock_irq(&rq->lock);
274

275
	remove_from_client(rq);
276
	list_del(&rq->link);
277

278 279
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
280

281 282 283 284 285
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
286 287
}

288
void i915_request_retire_upto(struct i915_request *rq)
289
{
290
	struct intel_timeline * const tl = i915_request_timeline(rq);
291
	struct i915_request *tmp;
292

293
	RQ_TRACE(rq, "\n");
294

295
	GEM_BUG_ON(!i915_request_completed(rq));
296

297
	do {
298
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
299
	} while (i915_request_retire(tmp) && tmp != rq);
300 301
}

302
static int
303 304 305 306 307
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
308 309 310
{
	struct execute_cb *cb;

311 312 313
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
314
		return 0;
315
	}
316 317 318 319 320 321 322 323 324

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

325 326 327 328 329 330
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

331 332
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
333 334 335 336
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
337 338 339 340 341 342 343
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

344 345
	/* Copy across semaphore status as we need the same behaviour */
	rq->sched.flags |= signal->sched.flags;
346 347 348
	return 0;
}

349
bool __i915_request_submit(struct i915_request *request)
350
{
351
	struct intel_engine_cs *engine = request->engine;
352
	bool result = false;
353

354
	RQ_TRACE(request, "\n");
355

356
	GEM_BUG_ON(!irqs_disabled());
357
	lockdep_assert_held(&engine->active.lock);
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

378
	if (intel_context_is_banned(request->context))
379 380
		i915_request_skip(request, -EIO);

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
399
		engine->saturated |= request->sched.semaphores;
400

401 402
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
403

404 405 406
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
407

408 409 410
xfer:	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);

411
	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
412
		list_move_tail(&request->sched.link, &engine->active.requests);
413 414
		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	}
415

416
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
417
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
418
	    !i915_request_enable_breadcrumb(request))
419
		intel_engine_signal_breadcrumbs(engine);
420

421 422
	__notify_execute_cb(request);

423 424
	spin_unlock(&request->lock);

425
	return result;
426 427
}

428
void i915_request_submit(struct i915_request *request)
429 430 431
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
432

433
	/* Will be called from irq-context when using foreign fences. */
434
	spin_lock_irqsave(&engine->active.lock, flags);
435

436
	__i915_request_submit(request);
437

438
	spin_unlock_irqrestore(&engine->active.lock, flags);
439 440
}

441
void __i915_request_unsubmit(struct i915_request *request)
442
{
443
	struct intel_engine_cs *engine = request->engine;
444

445
	RQ_TRACE(request, "\n");
446

447
	GEM_BUG_ON(!irqs_disabled());
448
	lockdep_assert_held(&engine->active.lock);
449

450 451
	/*
	 * Only unwind in reverse order, required so that the per-context list
452 453
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
454

455 456
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
457

458
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
459
		i915_request_cancel_breadcrumb(request);
460

461 462
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
463

464 465
	spin_unlock(&request->lock);

466 467 468 469 470 471
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

472 473
	/*
	 * We don't need to wake_up any waiters on request->execute, they
474
	 * will get woken by any other event or us re-adding this request
475
	 * to the engine timeline (__i915_request_submit()). The waiters
476 477 478 479 480
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

481
void i915_request_unsubmit(struct i915_request *request)
482 483 484 485 486
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
487
	spin_lock_irqsave(&engine->active.lock, flags);
488

489
	__i915_request_unsubmit(request);
490

491
	spin_unlock_irqrestore(&engine->active.lock, flags);
492 493
}

494
static int __i915_sw_fence_call
495
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
496
{
497
	struct i915_request *request =
498 499 500 501
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
502
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
503 504 505 506

		if (unlikely(fence->error))
			i915_request_skip(request, fence->error);

507
		/*
508 509 510 511 512 513
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
514 515
		 */
		rcu_read_lock();
516
		request->engine->submit_request(request);
517
		rcu_read_unlock();
518 519 520
		break;

	case FENCE_FREE:
521
		i915_request_put(request);
522 523 524
		break;
	}

525 526 527
	return NOTIFY_DONE;
}

528 529 530 531 532 533 534 535
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_request *request =
		container_of(fence, typeof(*request), semaphore);

	switch (state) {
	case FENCE_COMPLETE:
536
		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
537 538 539 540 541 542 543 544 545 546
		break;

	case FENCE_FREE:
		i915_request_put(request);
		break;
	}

	return NOTIFY_DONE;
}

547
static void retire_requests(struct intel_timeline *tl)
548 549 550
{
	struct i915_request *rq, *rn;

551
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
552
		if (!i915_request_retire(rq))
553 554 555 556
			break;
}

static noinline struct i915_request *
557
request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
558 559 560
{
	struct i915_request *rq;

561
	if (list_empty(&tl->requests))
562 563
		goto out;

564 565 566
	if (!gfpflags_allow_blocking(gfp))
		goto out;

567
	/* Move our oldest request to the slab-cache (if not in use!) */
568
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
569 570 571 572 573 574 575
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

576
	/* Ratelimit ourselves to prevent oom from malicious clients */
577
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
578 579 580
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
581
	retire_requests(tl);
582 583

out:
584
	return kmem_cache_alloc(global.slab_requests, gfp);
585 586
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

	rq->file_priv = NULL;
	rq->capture_list = NULL;

	INIT_LIST_HEAD(&rq->execute_cb);
}

602
struct i915_request *
603
__i915_request_create(struct intel_context *ce, gfp_t gfp)
604
{
605
	struct intel_timeline *tl = ce->timeline;
606 607
	struct i915_request *rq;
	u32 seqno;
608 609
	int ret;

610
	might_sleep_if(gfpflags_allow_blocking(gfp));
611

612 613
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
614

615 616
	/*
	 * Beware: Dragons be flying overhead.
617 618 619 620
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
621
	 * of being read by __i915_active_request_get_rcu(). As such,
622 623
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
624
	 * read the request->global_seqno and increment the reference count.
625 626 627 628
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
629 630
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
631 632 633 634 635 636 637 638 639 640 641 642 643
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
644
	rq = kmem_cache_alloc(global.slab_requests,
645
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
646
	if (unlikely(!rq)) {
647
		rq = request_alloc_slow(tl, gfp);
648
		if (!rq) {
649 650 651
			ret = -ENOMEM;
			goto err_unreserve;
		}
652
	}
653

654
	ret = intel_timeline_get_seqno(tl, rq, &seqno);
655 656 657
	if (ret)
		goto err_free;

658
	rq->i915 = ce->engine->i915;
659
	rq->context = ce;
660
	rq->engine = ce->engine;
661
	rq->ring = ce->ring;
662
	rq->execution_mask = ce->engine->mask;
663

664 665
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
666
	rq->hwsp_seqno = tl->hwsp_seqno;
667

668
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
669

670 671
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
		       tl->fence_context, seqno);
672

673
	/* We bump the ref for the fence chain */
674 675
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
676

677
	i915_sched_node_reinit(&rq->sched);
678

679
	/* No zalloc, everything must be cleared after use */
680
	rq->batch = NULL;
681 682 683
	GEM_BUG_ON(rq->file_priv);
	GEM_BUG_ON(rq->capture_list);
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
684

685 686 687
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
688
	 * i915_request_add() call can't fail. Note that the reserve may need
689 690
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
691 692 693 694 695
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
696
	 */
697 698
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
699

700 701
	/*
	 * Record the position of the start of the request so that
702 703 704 705
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
706
	rq->head = rq->ring->emit;
707

708
	ret = rq->engine->request_alloc(rq);
709 710
	if (ret)
		goto err_unwind;
711

712 713
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

714
	intel_context_mark_active(ce);
715
	return rq;
716

717
err_unwind:
718
	ce->ring->emit = rq->head;
719

720
	/* Make sure we didn't add ourselves to external state before freeing */
721 722
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
723

724
err_free:
725
	kmem_cache_free(global.slab_requests, rq);
726
err_unreserve:
727
	intel_context_unpin(ce);
728
	return ERR_PTR(ret);
729 730
}

731 732 733 734
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
735
	struct intel_timeline *tl;
736

737 738 739
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
740 741

	/* Move our oldest request to the slab-cache (if not in use!) */
742 743
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
744 745 746 747 748 749 750 751 752
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
753
	rq->cookie = lockdep_pin_lock(&tl->mutex);
754 755 756 757

	return rq;

err_unlock:
758
	intel_context_timeline_unlock(tl);
759 760 761
	return rq;
}

762 763 764
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
765 766
	struct dma_fence *fence;
	int err;
767

768 769 770
	GEM_BUG_ON(i915_request_timeline(rq) ==
		   rcu_access_pointer(signal->timeline));

771
	fence = NULL;
772
	rcu_read_lock();
773 774 775 776 777
	spin_lock_irq(&signal->lock);
	if (!i915_request_started(signal) &&
	    !list_is_first(&signal->link,
			   &rcu_dereference(signal->timeline)->requests)) {
		struct i915_request *prev = list_prev_entry(signal, link);
778

779 780 781 782 783 784 785 786 787 788 789
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
		if (i915_request_get_rcu(prev)) {
			if (list_next_entry(prev, link) == signal)
				fence = &prev->fence;
			else
				i915_request_put(prev);
790 791
		}
	}
792 793 794 795
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
796 797 798 799 800 801 802 803 804

	err = 0;
	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
805 806
}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
822
	return rq->sched.semaphores | rq->engine->saturated;
823 824
}

825
static int
826 827 828
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
829
{
830
	const int has_token = INTEL_GEN(to->i915) >= 12;
831
	u32 hwsp_offset;
832
	int len, err;
833 834 835 836
	u32 *cs;

	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

837
	/* We need to pin the signaler's HWSP until we are finished reading. */
838 839 840
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
841

842 843 844 845 846
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
847 848 849 850 851 852 853 854 855 856 857
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
858 859 860 861 862
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
863
	*cs++ = seqno;
864 865
	*cs++ = hwsp_offset;
	*cs++ = 0;
866 867 868 869
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
870 871

	intel_ring_advance(to, cs);
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
	/* Just emit the first semaphore we see as request space is limited. */
	if (already_busywaiting(to) & from->engine->mask)
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

894 895
	to->sched.semaphores |= from->engine->mask;
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
896
	return 0;
897 898 899 900 901

await_fence:
	return i915_sw_fence_await_dma_fence(&to->submit,
					     &from->fence, 0,
					     I915_FENCE_GFP);
902 903
}

904
static int
905
i915_request_await_request(struct i915_request *to, struct i915_request *from)
906
{
907
	int ret;
908 909

	GEM_BUG_ON(to == from);
910
	GEM_BUG_ON(to->timeline == from->timeline);
911

912
	if (i915_request_completed(from))
913 914
		return 0;

915
	if (to->engine->schedule) {
916
		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
917 918 919 920
		if (ret < 0)
			return ret;
	}

921
	if (to->engine == from->engine)
922 923
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
924
						       I915_FENCE_GFP);
925
	else if (intel_context_use_semaphores(to->context))
926
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
927
	else
928 929 930
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    I915_FENCE_GFP);
931 932 933 934 935 936 937 938 939 940
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
941

942
	return 0;
943 944
}

945
int
946
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
947
{
948 949
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
950 951
	int ret;

952 953
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
954 955 956 957 958 959
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
960 961 962 963 964 965 966
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
967

968 969
	do {
		fence = *child++;
970 971
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
972
			continue;
973
		}
974

975 976
		/*
		 * Requests on the same timeline are explicitly ordered, along
977
		 * with their dependencies, by i915_request_add() which ensures
978 979
		 * that requests are submitted in-order through each ring.
		 */
980
		if (fence->context == rq->fence.context)
981 982
			continue;

983
		/* Squash repeated waits to the same timelines */
984
		if (fence->context &&
985 986
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
987 988
			continue;

989
		if (dma_fence_is_i915(fence))
990
			ret = i915_request_await_request(rq, to_request(fence));
991
		else
992
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
993
							    fence->context ? I915_FENCE_TIMEOUT : 0,
994
							    I915_FENCE_GFP);
995 996
		if (ret < 0)
			return ret;
997 998

		/* Record the latest fence used against each timeline */
999
		if (fence->context)
1000 1001
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1002
	} while (--nchild);
1003 1004 1005 1006

	return 0;
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

static int
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
{
	int err;

	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
		return 0;

	/* Ensure both start together [after all semaphores in signal] */
	if (intel_engine_has_semaphores(to->engine))
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
	else
		err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/* Couple the dependency tree for PI on this exposed to->fence */
	if (to->engine->schedule) {
		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
		if (err < 0)
			return err;
	}

	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1080 1081
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1082
			continue;
1083
		}
1084 1085 1086 1087 1088 1089 1090 1091 1092

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
1093
							     hook);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

1105
/**
1106
 * i915_request_await_object - set this request to (async) wait upon a bo
1107 1108
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1109
 * @write: whether the wait is on behalf of a writer
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1126 1127 1128
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1129
{
1130 1131
	struct dma_fence *excl;
	int ret = 0;
1132 1133

	if (write) {
1134 1135 1136
		struct dma_fence **shared;
		unsigned int count, i;

1137
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1138 1139 1140 1141 1142
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1143
			ret = i915_request_await_dma_fence(to, shared[i]);
1144 1145 1146 1147 1148 1149 1150 1151 1152
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1153
	} else {
1154
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1155 1156
	}

1157 1158
	if (excl) {
		if (ret == 0)
1159
			ret = i915_request_await_dma_fence(to, excl);
1160

1161
		dma_fence_put(excl);
1162 1163
	}

1164
	return ret;
1165 1166
}

1167 1168 1169 1170 1171 1172 1173 1174
void i915_request_skip(struct i915_request *rq, int error)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
	dma_fence_set_error(&rq->fence, error);

C
Chris Wilson 已提交
1175 1176 1177
	if (rq->infix == rq->postfix)
		return;

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, 0, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, rq->postfix - head);
C
Chris Wilson 已提交
1189
	rq->infix = rq->postfix;
1190 1191
}

1192 1193 1194
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1195
	struct intel_timeline *timeline = i915_request_timeline(rq);
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1218 1219
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	if (prev && !i915_request_completed(prev)) {
		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

	list_add_tail(&rq->link, &timeline->requests);

1238 1239 1240 1241 1242
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1243 1244 1245 1246 1247
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1248 1249 1250 1251 1252
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1253
struct i915_request *__i915_request_commit(struct i915_request *rq)
1254
{
1255 1256
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1257
	u32 *cs;
1258

1259
	RQ_TRACE(rq, "\n");
1260

1261 1262 1263 1264 1265
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1266 1267
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1268
	rq->emitted_jiffies = jiffies;
1269

1270 1271
	/*
	 * Record the position of the start of the breadcrumb so that
1272 1273
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1274
	 * position of the ring's HEAD.
1275
	 */
1276
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1277
	GEM_BUG_ON(IS_ERR(cs));
1278
	rq->postfix = intel_ring_offset(rq, cs);
1279

1280
	return __i915_request_add_to_timeline(rq);
1281 1282 1283 1284 1285
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1286 1287
	/*
	 * Let the backend know a new request has arrived that may need
1288 1289 1290 1291 1292 1293 1294 1295 1296
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1297
	i915_sw_fence_commit(&rq->semaphore);
1298 1299
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1300 1301 1302 1303 1304
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1305
	struct intel_timeline * const tl = i915_request_timeline(rq);
1306
	struct i915_sched_attr attr = {};
1307 1308
	struct i915_request *prev;

1309 1310
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1311 1312 1313 1314 1315

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

1316 1317
	if (rcu_access_pointer(rq->context->gem_context))
		attr = i915_request_gem_context(rq)->sched;
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	/*
	 * Boost actual workloads past semaphores!
	 *
	 * With semaphores we spin on one engine waiting for another,
	 * simply to reduce the latency of starting our work when
	 * the signaler completes. However, if there is any other
	 * work that we could be doing on this engine instead, that
	 * is better utilisation and will reduce the overall duration
	 * of the current work. To avoid PI boosting a semaphore
	 * far in the distance past over useful work, we keep a history
	 * of any semaphore use along our dependency chain.
	 */
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;

	/*
	 * Boost priorities to new clients (new request flows).
	 *
	 * Allow interactive/synchronous clients to jump ahead of
	 * the bulk clients. (FQ_CODEL)
	 */
	if (list_empty(&rq->sched.signalers_list))
		attr.priority |= I915_PRIORITY_WAIT;

1343
	local_bh_disable();
1344
	__i915_request_queue(rq, &attr);
1345
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1346

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	/*
	 * In typical scenarios, we do not expect the previous request on
	 * the timeline to be still tracked by timeline->last_request if it
	 * has been completed. If the completed request is still here, that
	 * implies that request retirement is a long way behind submission,
	 * suggesting that we haven't been retiring frequently enough from
	 * the combination of retire-before-alloc, waiters and the background
	 * retirement worker. So if the last request on this timeline was
	 * already completed, do a catch up pass, flushing the retirement queue
	 * up to this client. Since we have now moved the heaviest operations
	 * during retirement onto secondary workers, such as freeing objects
	 * or contexts, retiring a bunch of requests is mostly list management
	 * (and cache misses), and so we should not be overly penalizing this
	 * client by performing excess work, though we may still performing
	 * work on behalf of others -- but instead we should benefit from
	 * improved resource management. (Well, that's the theory at least.)
	 */
1364 1365 1366
	if (prev &&
	    i915_request_completed(prev) &&
	    rcu_access_pointer(prev->timeline) == tl)
1367
		i915_request_retire_upto(prev);
1368

1369
	mutex_unlock(&tl->mutex);
1370 1371 1372 1373 1374 1375
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

1376 1377
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1405 1406
static bool __i915_spin_request(const struct i915_request * const rq,
				int state, unsigned long timeout_us)
1407
{
1408
	unsigned int cpu;
1409 1410 1411 1412 1413 1414 1415

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1416 1417 1418 1419
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1420
	 */
1421
	if (!i915_request_is_running(rq))
1422 1423
		return false;

1424 1425
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
1437 1438
		if (i915_request_completed(rq))
			return true;
1439

1440 1441 1442 1443 1444 1445
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1446
		cpu_relax();
1447 1448 1449 1450 1451
	} while (!need_resched());

	return false;
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1464
/**
1465
 * i915_request_wait - wait until execution of request has finished
1466
 * @rq: the request to wait upon
1467
 * @flags: how to wait
1468 1469
 * @timeout: how long to wait in jiffies
 *
1470
 * i915_request_wait() waits for the request to be completed, for a
1471 1472
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1473
 *
1474 1475 1476 1477
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1478
 */
1479
long i915_request_wait(struct i915_request *rq,
1480 1481
		       unsigned int flags,
		       long timeout)
1482
{
1483 1484
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1485
	struct request_wait wait;
1486 1487

	might_sleep();
1488
	GEM_BUG_ON(timeout < 0);
1489

1490
	if (dma_fence_is_signaled(&rq->fence))
1491
		return timeout;
1492

1493 1494
	if (!timeout)
		return -ETIME;
1495

1496
	trace_i915_request_wait_begin(rq, flags);
1497 1498 1499 1500 1501 1502 1503

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1504
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1505

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1529
	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1530 1531
	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
		dma_fence_signal(&rq->fence);
1532
		goto out;
1533
	}
1534

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1549
			intel_rps_boost(rq);
1550
		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1551
	}
1552

1553 1554 1555
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1556

1557 1558
	for (;;) {
		set_current_state(state);
1559

1560 1561
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1562
			break;
1563
		}
1564 1565

		if (signal_pending_state(state, current)) {
1566
			timeout = -ERESTARTSYS;
1567 1568 1569
			break;
		}

1570 1571
		if (!timeout) {
			timeout = -ETIME;
1572 1573 1574
			break;
		}

1575
		intel_engine_flush_submission(rq->engine);
1576
		timeout = io_schedule_timeout(timeout);
1577
	}
1578
	__set_current_state(TASK_RUNNING);
1579

1580 1581 1582
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1583
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1584
	trace_i915_request_wait_end(rq);
1585
	return timeout;
1586
}
1587

1588 1589
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1590
#include "selftests/i915_request.c"
1591
#endif
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_dependencies);
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_dependencies);
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1612 1613
int __init i915_global_request_init(void)
{
1614 1615 1616 1617 1618 1619 1620 1621
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1622 1623 1624
	if (!global.slab_requests)
		return -ENOMEM;

1625 1626 1627 1628 1629 1630 1631
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1632 1633 1634 1635
	global.slab_dependencies = KMEM_CACHE(i915_dependency,
					      SLAB_HWCACHE_ALIGN |
					      SLAB_RECLAIM_ACCOUNT);
	if (!global.slab_dependencies)
1636
		goto err_execute_cbs;
1637

1638
	i915_global_register(&global.base);
1639 1640
	return 0;

1641 1642
err_execute_cbs:
	kmem_cache_destroy(global.slab_execute_cbs);
1643 1644 1645 1646
err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}