i915_request.c 46.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33 34
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"

35
#include "i915_active.h"
36
#include "i915_drv.h"
37
#include "i915_globals.h"
38
#include "i915_trace.h"
39
#include "intel_pm.h"
40

41 42 43 44
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
45 46
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
47 48
};

49
static struct i915_global_request {
50
	struct i915_global base;
51 52
	struct kmem_cache *slab_requests;
	struct kmem_cache *slab_dependencies;
53
	struct kmem_cache *slab_execute_cbs;
54 55
} global;

56
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
57 58 59 60
{
	return "i915";
}

61
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
62
{
63 64
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
65 66 67 68 69 70 71 72 73 74
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

75
	return to_request(fence)->gem_context->name ?: "[i915]";
76 77
}

78
static bool i915_fence_signaled(struct dma_fence *fence)
79
{
80
	return i915_request_completed(to_request(fence));
81 82
}

83
static bool i915_fence_enable_signaling(struct dma_fence *fence)
84
{
85
	return i915_request_enable_breadcrumb(to_request(fence));
86 87
}

88
static signed long i915_fence_wait(struct dma_fence *fence,
89
				   bool interruptible,
90
				   signed long timeout)
91
{
92 93 94
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
95 96
}

97
static void i915_fence_release(struct dma_fence *fence)
98
{
99
	struct i915_request *rq = to_request(fence);
100

101 102
	/*
	 * The request is put onto a RCU freelist (i.e. the address
103 104 105 106 107
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
108
	i915_sw_fence_fini(&rq->submit);
109
	i915_sw_fence_fini(&rq->semaphore);
110

111
	kmem_cache_free(global.slab_requests, rq);
112 113
}

114
const struct dma_fence_ops i915_fence_ops = {
115 116 117 118 119 120 121 122
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

167
static inline void
168
remove_from_client(struct i915_request *request)
169
{
170
	struct drm_i915_file_private *file_priv;
171

172
	if (!READ_ONCE(request->file_priv))
173 174
		return;

175 176 177 178
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
179
		list_del(&request->client_link);
180
		spin_unlock(&file_priv->mm.lock);
181
	}
182
	rcu_read_unlock();
183 184
}

185
static void free_capture_list(struct i915_request *request)
186
{
187
	struct i915_capture_list *capture;
188 189 190

	capture = request->capture_list;
	while (capture) {
191
		struct i915_capture_list *next = capture->next;
192 193 194 195 196 197

		kfree(capture);
		capture = next;
	}
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
	spin_lock(&locked->active.lock);
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
	list_del(&rq->sched.link);
	spin_unlock(&locked->active.lock);
}

219
static bool i915_request_retire(struct i915_request *rq)
220
{
221
	struct i915_active_request *active, *next;
222

223
	lockdep_assert_held(&rq->timeline->mutex);
224 225
	if (!i915_request_completed(rq))
		return false;
226

227 228 229 230
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
		  hwsp_seqno(rq));
231

232 233
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
234

235 236 237 238 239 240 241 242 243 244 245
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests));
	rq->ring->head = rq->postfix;
246

247 248
	/*
	 * Walk through the active list, calling retire on each. This allows
249 250 251 252 253 254 255 256
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
257
	list_for_each_entry_safe(active, next, &rq->active_list, link) {
258 259
		/*
		 * In microbenchmarks or focusing upon time inside the kernel,
260 261 262
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
263 264 265 266
		 * cache misses when jumping around the list of
		 * i915_active_request.  So we try to keep this loop as
		 * streamlined as possible and also prefetch the next
		 * i915_active_request to try and hide the likely cache miss.
267 268 269 270
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
271
		RCU_INIT_POINTER(active->request, NULL);
272

273
		active->retire(active, rq);
274 275
	}

276
	local_irq_disable();
277

278 279 280 281 282 283
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
284
	remove_from_engine(rq);
285

286 287 288 289 290 291
	spin_lock(&rq->lock);
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
292
	if (i915_request_has_waitboost(rq)) {
293 294 295
		GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
		atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
	}
296 297 298 299 300
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
301 302 303
	spin_unlock(&rq->lock);

	local_irq_enable();
304

305
	remove_from_client(rq);
306
	list_del(&rq->link);
307

308 309 310
	intel_context_exit(rq->hw_context);
	intel_context_unpin(rq->hw_context);

311 312 313 314 315
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
316 317
}

318
void i915_request_retire_upto(struct i915_request *rq)
319
{
320
	struct intel_timeline * const tl = rq->timeline;
321
	struct i915_request *tmp;
322

323
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
324 325
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
326
		  hwsp_seqno(rq));
327

328
	lockdep_assert_held(&tl->mutex);
329
	GEM_BUG_ON(!i915_request_completed(rq));
330

331
	do {
332
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
333
	} while (i915_request_retire(tmp) && tmp != rq);
334 335
}

336
static int
337 338 339 340 341
__i915_request_await_execution(struct i915_request *rq,
			       struct i915_request *signal,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal),
			       gfp_t gfp)
342 343 344
{
	struct execute_cb *cb;

345 346 347
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
348
		return 0;
349
	}
350 351 352 353 354 355 356 357 358

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

359 360 361 362 363 364
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

365 366
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
367 368 369 370
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
371 372 373 374 375 376 377 378 379 380
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

	return 0;
}

381
void __i915_request_submit(struct i915_request *request)
382
{
383
	struct intel_engine_cs *engine = request->engine;
384

385
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
386
		  engine->name,
387
		  request->fence.context, request->fence.seqno,
388
		  hwsp_seqno(request));
389

390
	GEM_BUG_ON(!irqs_disabled());
391
	lockdep_assert_held(&engine->active.lock);
392

393 394 395
	if (i915_gem_context_is_banned(request->gem_context))
		i915_request_skip(request, -EIO);

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
414
		engine->saturated |= request->sched.semaphores;
415

416 417
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
418

419 420
	list_move_tail(&request->sched.link, &engine->active.requests);

421 422
	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
423

424
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
425
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
426 427
	    !i915_request_enable_breadcrumb(request))
		intel_engine_queue_breadcrumbs(engine);
428

429 430
	__notify_execute_cb(request);

431 432
	spin_unlock(&request->lock);

433 434
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
435

436 437
	engine->serial++;

438
	trace_i915_request_execute(request);
439 440
}

441
void i915_request_submit(struct i915_request *request)
442 443 444
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
445

446
	/* Will be called from irq-context when using foreign fences. */
447
	spin_lock_irqsave(&engine->active.lock, flags);
448

449
	__i915_request_submit(request);
450

451
	spin_unlock_irqrestore(&engine->active.lock, flags);
452 453
}

454
void __i915_request_unsubmit(struct i915_request *request)
455
{
456
	struct intel_engine_cs *engine = request->engine;
457

458
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
459
		  engine->name,
460
		  request->fence.context, request->fence.seqno,
461
		  hwsp_seqno(request));
462

463
	GEM_BUG_ON(!irqs_disabled());
464
	lockdep_assert_held(&engine->active.lock);
465

466 467
	/*
	 * Only unwind in reverse order, required so that the per-context list
468 469
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
470

471 472
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
473

474
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
475
		i915_request_cancel_breadcrumb(request);
476

477 478
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
479

480 481
	spin_unlock(&request->lock);

482 483 484 485 486 487
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

488 489
	/*
	 * We don't need to wake_up any waiters on request->execute, they
490
	 * will get woken by any other event or us re-adding this request
491
	 * to the engine timeline (__i915_request_submit()). The waiters
492 493 494 495 496
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

497
void i915_request_unsubmit(struct i915_request *request)
498 499 500 501 502
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
503
	spin_lock_irqsave(&engine->active.lock, flags);
504

505
	__i915_request_unsubmit(request);
506

507
	spin_unlock_irqrestore(&engine->active.lock, flags);
508 509
}

510
static int __i915_sw_fence_call
511
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
512
{
513
	struct i915_request *request =
514 515 516 517
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
518
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
519 520 521 522

		if (unlikely(fence->error))
			i915_request_skip(request, fence->error);

523
		/*
524 525 526 527 528 529
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
530 531
		 */
		rcu_read_lock();
532
		request->engine->submit_request(request);
533
		rcu_read_unlock();
534 535 536
		break;

	case FENCE_FREE:
537
		i915_request_put(request);
538 539 540
		break;
	}

541 542 543
	return NOTIFY_DONE;
}

544 545 546 547 548 549 550 551
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_request *request =
		container_of(fence, typeof(*request), semaphore);

	switch (state) {
	case FENCE_COMPLETE:
552
		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
553 554 555 556 557 558 559 560 561 562
		break;

	case FENCE_FREE:
		i915_request_put(request);
		break;
	}

	return NOTIFY_DONE;
}

563
static void retire_requests(struct intel_timeline *tl)
564 565 566
{
	struct i915_request *rq, *rn;

567
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
568
		if (!i915_request_retire(rq))
569 570 571 572
			break;
}

static noinline struct i915_request *
573
request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
574 575 576
{
	struct i915_request *rq;

577
	if (list_empty(&tl->requests))
578 579
		goto out;

580 581 582
	if (!gfpflags_allow_blocking(gfp))
		goto out;

583
	/* Move our oldest request to the slab-cache (if not in use!) */
584
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
585 586 587 588 589 590 591
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

592
	/* Ratelimit ourselves to prevent oom from malicious clients */
593
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
594 595 596
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
597
	retire_requests(tl);
598 599

out:
600
	return kmem_cache_alloc(global.slab_requests, gfp);
601 602
}

603
struct i915_request *
604
__i915_request_create(struct intel_context *ce, gfp_t gfp)
605
{
606
	struct intel_timeline *tl = ce->timeline;
607 608
	struct i915_request *rq;
	u32 seqno;
609 610
	int ret;

611
	might_sleep_if(gfpflags_allow_blocking(gfp));
612

613 614
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
615

616 617
	/*
	 * Beware: Dragons be flying overhead.
618 619 620 621
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
622
	 * of being read by __i915_active_request_get_rcu(). As such,
623 624
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
625
	 * read the request->global_seqno and increment the reference count.
626 627 628 629
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
630 631
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
632 633 634 635 636 637 638 639 640 641 642 643 644
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
645
	rq = kmem_cache_alloc(global.slab_requests,
646
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
647
	if (unlikely(!rq)) {
648
		rq = request_alloc_slow(tl, gfp);
649
		if (!rq) {
650 651 652
			ret = -ENOMEM;
			goto err_unreserve;
		}
653
	}
654

655
	ret = intel_timeline_get_seqno(tl, rq, &seqno);
656 657 658
	if (ret)
		goto err_free;

659
	rq->i915 = ce->engine->i915;
660
	rq->hw_context = ce;
661 662
	rq->gem_context = ce->gem_context;
	rq->engine = ce->engine;
663
	rq->ring = ce->ring;
664 665 666 667
	rq->timeline = tl;
	rq->hwsp_seqno = tl->hwsp_seqno;
	rq->hwsp_cacheline = tl->hwsp_cacheline;
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
668

669
	spin_lock_init(&rq->lock);
670 671
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
		       tl->fence_context, seqno);
672

673
	/* We bump the ref for the fence chain */
674
	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
675
	i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
676

677
	i915_sched_node_init(&rq->sched);
678

679
	/* No zalloc, must clear what we need by hand */
680 681 682
	rq->file_priv = NULL;
	rq->batch = NULL;
	rq->capture_list = NULL;
683
	rq->flags = 0;
684
	rq->execution_mask = ALL_ENGINES;
685

686 687 688
	INIT_LIST_HEAD(&rq->active_list);
	INIT_LIST_HEAD(&rq->execute_cb);

689 690 691
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
692
	 * i915_request_add() call can't fail. Note that the reserve may need
693 694
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
695 696 697 698 699
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
700
	 */
701 702
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
703

704 705
	/*
	 * Record the position of the start of the request so that
706 707 708 709
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
710
	rq->head = rq->ring->emit;
711

712
	ret = rq->engine->request_alloc(rq);
713 714
	if (ret)
		goto err_unwind;
715

716 717
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

718
	intel_context_mark_active(ce);
719
	return rq;
720

721
err_unwind:
722
	ce->ring->emit = rq->head;
723

724
	/* Make sure we didn't add ourselves to external state before freeing */
725
	GEM_BUG_ON(!list_empty(&rq->active_list));
726 727
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
728

729
err_free:
730
	kmem_cache_free(global.slab_requests, rq);
731
err_unreserve:
732
	intel_context_unpin(ce);
733
	return ERR_PTR(ret);
734 735
}

736 737 738 739
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
740
	struct intel_timeline *tl;
741

742 743 744
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
745 746

	/* Move our oldest request to the slab-cache (if not in use!) */
747 748
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
749 750 751 752 753 754 755 756 757
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
758
	rq->cookie = lockdep_pin_lock(&tl->mutex);
759 760 761 762

	return rq;

err_unlock:
763
	intel_context_timeline_unlock(tl);
764 765 766
	return rq;
}

767 768 769
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
770
	if (list_is_first(&signal->link, &signal->timeline->requests))
771 772
		return 0;

773
	signal = list_prev_entry(signal, link);
774
	if (intel_timeline_sync_is_later(rq->timeline, &signal->fence))
775 776 777 778 779 780 781
		return 0;

	return i915_sw_fence_await_dma_fence(&rq->submit,
					     &signal->fence, 0,
					     I915_FENCE_GFP);
}

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
797
	return rq->sched.semaphores | rq->engine->saturated;
798 799
}

800 801 802 803 804
static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
805
	const int has_token = INTEL_GEN(to->i915) >= 12;
806
	u32 hwsp_offset;
807
	int len;
808 809 810 811 812 813
	u32 *cs;
	int err;

	GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

814
	/* Just emit the first semaphore we see as request space is limited. */
815
	if (already_busywaiting(to) & from->engine->mask)
816 817 818 819
		return i915_sw_fence_await_dma_fence(&to->submit,
						     &from->fence, 0,
						     I915_FENCE_GFP);

820 821 822 823
	err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

824
	/* Only submit our spinner after the signaler is running! */
825
	err = __i915_request_await_execution(to, from, NULL, gfp);
826 827 828
	if (err)
		return err;

829
	/* We need to pin the signaler's HWSP until we are finished reading. */
830
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
831 832 833
	if (err)
		return err;

834 835 836 837 838
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
839 840 841 842 843 844 845 846 847 848 849
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
850 851 852 853 854
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
855 856 857
	*cs++ = from->fence.seqno;
	*cs++ = hwsp_offset;
	*cs++ = 0;
858 859 860 861
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
862 863

	intel_ring_advance(to, cs);
864 865
	to->sched.semaphores |= from->engine->mask;
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
866 867 868
	return 0;
}

869
static int
870
i915_request_await_request(struct i915_request *to, struct i915_request *from)
871
{
872
	int ret;
873 874

	GEM_BUG_ON(to == from);
875
	GEM_BUG_ON(to->timeline == from->timeline);
876

877
	if (i915_request_completed(from))
878 879
		return 0;

880
	if (to->engine->schedule) {
881
		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
882 883 884 885
		if (ret < 0)
			return ret;
	}

886 887 888
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
889
						       I915_FENCE_GFP);
890 891 892
	} else if (intel_engine_has_semaphores(to->engine) &&
		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
893 894 895 896
	} else {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    I915_FENCE_GFP);
897
	}
898 899 900 901 902 903 904 905 906 907
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
908

909
	return 0;
910 911
}

912
int
913
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
914
{
915 916
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
917 918
	int ret;

919 920
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
921 922 923 924 925 926
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
927 928 929 930 931 932 933
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
934

935 936 937 938
	do {
		fence = *child++;
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			continue;
939

940 941
		/*
		 * Requests on the same timeline are explicitly ordered, along
942
		 * with their dependencies, by i915_request_add() which ensures
943 944
		 * that requests are submitted in-order through each ring.
		 */
945
		if (fence->context == rq->fence.context)
946 947
			continue;

948
		/* Squash repeated waits to the same timelines */
949
		if (fence->context &&
950
		    intel_timeline_sync_is_later(rq->timeline, fence))
951 952
			continue;

953
		if (dma_fence_is_i915(fence))
954
			ret = i915_request_await_request(rq, to_request(fence));
955
		else
956
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
957
							    fence->context ? I915_FENCE_TIMEOUT : 0,
958
							    I915_FENCE_GFP);
959 960
		if (ret < 0)
			return ret;
961 962

		/* Record the latest fence used against each timeline */
963
		if (fence->context)
964
			intel_timeline_sync_set(rq->timeline, fence);
965
	} while (--nchild);
966 967 968 969

	return 0;
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			continue;

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook,
							     I915_FENCE_GFP);
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

1016
/**
1017
 * i915_request_await_object - set this request to (async) wait upon a bo
1018 1019
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1020
 * @write: whether the wait is on behalf of a writer
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1037 1038 1039
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1040
{
1041 1042
	struct dma_fence *excl;
	int ret = 0;
1043 1044

	if (write) {
1045 1046 1047
		struct dma_fence **shared;
		unsigned int count, i;

1048
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1049 1050 1051 1052 1053
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1054
			ret = i915_request_await_dma_fence(to, shared[i]);
1055 1056 1057 1058 1059 1060 1061 1062 1063
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1064
	} else {
1065
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1066 1067
	}

1068 1069
	if (excl) {
		if (ret == 0)
1070
			ret = i915_request_await_dma_fence(to, excl);
1071

1072
		dma_fence_put(excl);
1073 1074
	}

1075
	return ret;
1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085
void i915_request_skip(struct i915_request *rq, int error)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
	dma_fence_set_error(&rq->fence, error);

C
Chris Wilson 已提交
1086 1087 1088
	if (rq->infix == rq->postfix)
		return;

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, 0, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, rq->postfix - head);
C
Chris Wilson 已提交
1100
	rq->infix = rq->postfix;
1101 1102
}

1103 1104 1105
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1106
	struct intel_timeline *timeline = rq->timeline;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1129 1130
	prev = rcu_dereference_protected(timeline->last_request.request,
					 lockdep_is_held(&timeline->mutex));
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	if (prev && !i915_request_completed(prev)) {
		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

	list_add_tail(&rq->link, &timeline->requests);

1149 1150 1151 1152 1153
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1154 1155 1156 1157 1158 1159
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
	__i915_active_request_set(&timeline->last_request, rq);

	return prev;
}

1160 1161 1162 1163 1164
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1165
struct i915_request *__i915_request_commit(struct i915_request *rq)
1166
{
1167 1168
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1169
	u32 *cs;
1170

1171
	GEM_TRACE("%s fence %llx:%lld\n",
1172
		  engine->name, rq->fence.context, rq->fence.seqno);
1173

1174 1175 1176 1177 1178
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1179 1180
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1181
	rq->emitted_jiffies = jiffies;
1182

1183 1184
	/*
	 * Record the position of the start of the breadcrumb so that
1185 1186
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1187
	 * position of the ring's HEAD.
1188
	 */
1189
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1190
	GEM_BUG_ON(IS_ERR(cs));
1191
	rq->postfix = intel_ring_offset(rq, cs);
1192

1193
	return __i915_request_add_to_timeline(rq);
1194 1195 1196 1197 1198
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1199 1200
	/*
	 * Let the backend know a new request has arrived that may need
1201 1202 1203 1204 1205 1206 1207 1208 1209
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1210
	i915_sw_fence_commit(&rq->semaphore);
1211 1212
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1213 1214 1215 1216 1217
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1218
	struct i915_sched_attr attr = rq->gem_context->sched;
1219
	struct intel_timeline * const tl = rq->timeline;
1220 1221
	struct i915_request *prev;

1222 1223
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1224 1225 1226 1227 1228

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	/*
	 * Boost actual workloads past semaphores!
	 *
	 * With semaphores we spin on one engine waiting for another,
	 * simply to reduce the latency of starting our work when
	 * the signaler completes. However, if there is any other
	 * work that we could be doing on this engine instead, that
	 * is better utilisation and will reduce the overall duration
	 * of the current work. To avoid PI boosting a semaphore
	 * far in the distance past over useful work, we keep a history
	 * of any semaphore use along our dependency chain.
	 */
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;

	/*
	 * Boost priorities to new clients (new request flows).
	 *
	 * Allow interactive/synchronous clients to jump ahead of
	 * the bulk clients. (FQ_CODEL)
	 */
	if (list_empty(&rq->sched.signalers_list))
		attr.priority |= I915_PRIORITY_WAIT;

1253
	local_bh_disable();
1254
	__i915_request_queue(rq, &attr);
1255
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	/*
	 * In typical scenarios, we do not expect the previous request on
	 * the timeline to be still tracked by timeline->last_request if it
	 * has been completed. If the completed request is still here, that
	 * implies that request retirement is a long way behind submission,
	 * suggesting that we haven't been retiring frequently enough from
	 * the combination of retire-before-alloc, waiters and the background
	 * retirement worker. So if the last request on this timeline was
	 * already completed, do a catch up pass, flushing the retirement queue
	 * up to this client. Since we have now moved the heaviest operations
	 * during retirement onto secondary workers, such as freeing objects
	 * or contexts, retiring a bunch of requests is mostly list management
	 * (and cache misses), and so we should not be overly penalizing this
	 * client by performing excess work, though we may still performing
	 * work on behalf of others -- but instead we should benefit from
	 * improved resource management. (Well, that's the theory at least.)
	 */
1274
	if (prev && i915_request_completed(prev) && prev->timeline == tl)
1275
		i915_request_retire_upto(prev);
1276

1277
	mutex_unlock(&tl->mutex);
1278 1279 1280 1281 1282 1283
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

1284 1285
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1313 1314
static bool __i915_spin_request(const struct i915_request * const rq,
				int state, unsigned long timeout_us)
1315
{
1316
	unsigned int cpu;
1317 1318 1319 1320 1321 1322 1323

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1324 1325 1326 1327
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1328
	 */
1329
	if (!i915_request_is_running(rq))
1330 1331
		return false;

1332 1333
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
1345 1346
		if (i915_request_completed(rq))
			return true;
1347

1348 1349 1350 1351 1352 1353
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1354
		cpu_relax();
1355 1356 1357 1358 1359
	} while (!need_resched());

	return false;
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1372
/**
1373
 * i915_request_wait - wait until execution of request has finished
1374
 * @rq: the request to wait upon
1375
 * @flags: how to wait
1376 1377
 * @timeout: how long to wait in jiffies
 *
1378
 * i915_request_wait() waits for the request to be completed, for a
1379 1380
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1381
 *
1382 1383 1384 1385
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1386
 */
1387
long i915_request_wait(struct i915_request *rq,
1388 1389
		       unsigned int flags,
		       long timeout)
1390
{
1391 1392
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1393
	struct request_wait wait;
1394 1395

	might_sleep();
1396
	GEM_BUG_ON(timeout < 0);
1397

1398
	if (dma_fence_is_signaled(&rq->fence))
1399
		return timeout;
1400

1401 1402
	if (!timeout)
		return -ETIME;
1403

1404
	trace_i915_request_wait_begin(rq, flags);
1405 1406 1407 1408 1409 1410 1411

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1412
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
	if (CONFIG_DRM_I915_SPIN_REQUEST &&
1438 1439
	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
		dma_fence_signal(&rq->fence);
1440
		goto out;
1441
	}
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq);
1458
		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1459
	}
1460

1461 1462 1463
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1464

1465 1466
	for (;;) {
		set_current_state(state);
1467

1468 1469
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1470
			break;
1471
		}
1472 1473

		if (signal_pending_state(state, current)) {
1474
			timeout = -ERESTARTSYS;
1475 1476 1477
			break;
		}

1478 1479
		if (!timeout) {
			timeout = -ETIME;
1480 1481 1482
			break;
		}

1483
		timeout = io_schedule_timeout(timeout);
1484
	}
1485
	__set_current_state(TASK_RUNNING);
1486

1487 1488 1489
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1490
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
1491
	trace_i915_request_wait_end(rq);
1492
	return timeout;
1493
}
1494

1495
bool i915_retire_requests(struct drm_i915_private *i915)
1496
{
1497 1498
	struct intel_gt_timelines *timelines = &i915->gt.timelines;
	struct intel_timeline *tl, *tn;
1499
	unsigned long flags;
1500 1501
	LIST_HEAD(free);

1502
	spin_lock_irqsave(&timelines->lock, flags);
1503 1504 1505
	list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
		if (!mutex_trylock(&tl->mutex))
			continue;
1506

1507 1508 1509
		intel_timeline_get(tl);
		GEM_BUG_ON(!tl->active_count);
		tl->active_count++; /* pin the list element */
1510
		spin_unlock_irqrestore(&timelines->lock, flags);
1511

1512 1513
		retire_requests(tl);

1514
		spin_lock_irqsave(&timelines->lock, flags);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

		/* Resume iteration after dropping lock */
		list_safe_reset_next(tl, tn, link);
		if (!--tl->active_count)
			list_del(&tl->link);

		mutex_unlock(&tl->mutex);

		/* Defer the final release to after the spinlock */
		if (refcount_dec_and_test(&tl->kref.refcount)) {
			GEM_BUG_ON(tl->active_count);
			list_add(&tl->link, &free);
		}
1528
	}
1529
	spin_unlock_irqrestore(&timelines->lock, flags);
1530 1531 1532

	list_for_each_entry_safe(tl, tn, &free, link)
		__intel_timeline_free(&tl->kref);
1533

1534
	return !list_empty(&timelines->active_list);
1535
}
1536 1537 1538

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1539
#include "selftests/i915_request.c"
1540
#endif
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_dependencies);
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_dependencies);
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1561 1562 1563 1564 1565 1566 1567 1568 1569
int __init i915_global_request_init(void)
{
	global.slab_requests = KMEM_CACHE(i915_request,
					  SLAB_HWCACHE_ALIGN |
					  SLAB_RECLAIM_ACCOUNT |
					  SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_requests)
		return -ENOMEM;

1570 1571 1572 1573 1574 1575 1576
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1577 1578 1579 1580
	global.slab_dependencies = KMEM_CACHE(i915_dependency,
					      SLAB_HWCACHE_ALIGN |
					      SLAB_RECLAIM_ACCOUNT);
	if (!global.slab_dependencies)
1581
		goto err_execute_cbs;
1582

1583
	i915_global_register(&global.base);
1584 1585
	return 0;

1586 1587
err_execute_cbs:
	kmem_cache_destroy(global.slab_execute_cbs);
1588 1589 1590 1591
err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}