i915_request.c 49.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
34
#include "gt/intel_ring.h"
35
#include "gt/intel_rps.h"
36

37
#include "i915_active.h"
38
#include "i915_drv.h"
39
#include "i915_globals.h"
40
#include "i915_trace.h"
41
#include "intel_pm.h"
42

43 44 45 46
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
47 48
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
49 50
};

51
static struct i915_global_request {
52
	struct i915_global base;
53
	struct kmem_cache *slab_requests;
54
	struct kmem_cache *slab_execute_cbs;
55 56
} global;

57
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58
{
59
	return dev_name(to_request(fence)->i915->drm.dev);
60 61
}

62
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63
{
64 65
	const struct i915_gem_context *ctx;

66 67
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
68 69 70 71 72 73 74 75 76 77
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

78
	ctx = i915_request_gem_context(to_request(fence));
79 80 81 82
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
83 84
}

85
static bool i915_fence_signaled(struct dma_fence *fence)
86
{
87
	return i915_request_completed(to_request(fence));
88 89
}

90
static bool i915_fence_enable_signaling(struct dma_fence *fence)
91
{
92
	return i915_request_enable_breadcrumb(to_request(fence));
93 94
}

95
static signed long i915_fence_wait(struct dma_fence *fence,
96
				   bool interruptible,
97
				   signed long timeout)
98
{
99 100 101
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
102 103
}

104 105 106 107 108
struct kmem_cache *i915_request_slab_cache(void)
{
	return global.slab_requests;
}

109
static void i915_fence_release(struct dma_fence *fence)
110
{
111
	struct i915_request *rq = to_request(fence);
112

113 114
	/*
	 * The request is put onto a RCU freelist (i.e. the address
115 116 117 118 119
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
120
	i915_sw_fence_fini(&rq->submit);
121
	i915_sw_fence_fini(&rq->semaphore);
122

123 124 125 126
	/* Keep one request on each engine for reserved use under mempressure */
	if (!cmpxchg(&rq->engine->request_pool, NULL, rq))
		return;

127
	kmem_cache_free(global.slab_requests, rq);
128 129
}

130
const struct dma_fence_ops i915_fence_ops = {
131 132 133 134 135 136 137 138
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

183
static inline void
184
remove_from_client(struct i915_request *request)
185
{
186
	struct drm_i915_file_private *file_priv;
187

188
	if (!READ_ONCE(request->file_priv))
189 190
		return;

191 192 193 194
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
195
		list_del(&request->client_link);
196
		spin_unlock(&file_priv->mm.lock);
197
	}
198
	rcu_read_unlock();
199 200
}

201
static void free_capture_list(struct i915_request *request)
202
{
203
	struct i915_capture_list *capture;
204

205
	capture = fetch_and_zero(&request->capture_list);
206
	while (capture) {
207
		struct i915_capture_list *next = capture->next;
208 209 210 211 212 213

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

227 228 229 230 231 232 233 234 235 236 237
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
238
	spin_lock_irq(&locked->active.lock);
239 240 241 242 243
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
244
	list_del_init(&rq->sched.link);
245 246
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
247
	spin_unlock_irq(&locked->active.lock);
248 249
}

250
bool i915_request_retire(struct i915_request *rq)
251
{
252 253
	if (!i915_request_completed(rq))
		return false;
254

255
	RQ_TRACE(rq, "\n");
256

257 258
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
259

260 261 262 263 264 265 266 267 268
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
269 270
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
271 272 273
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
274
	rq->ring->head = rq->postfix;
275

276 277 278 279 280 281
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
282
	remove_from_engine(rq);
283

284
	spin_lock_irq(&rq->lock);
285 286 287 288 289
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
290
	if (i915_request_has_waitboost(rq)) {
291 292
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
293
	}
294 295 296 297 298
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
299
	spin_unlock_irq(&rq->lock);
300

301
	remove_from_client(rq);
302
	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
303

304 305
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
306

307 308 309 310 311
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
312 313
}

314
void i915_request_retire_upto(struct i915_request *rq)
315
{
316
	struct intel_timeline * const tl = i915_request_timeline(rq);
317
	struct i915_request *tmp;
318

319
	RQ_TRACE(rq, "\n");
320

321
	GEM_BUG_ON(!i915_request_completed(rq));
322

323
	do {
324
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
325
	} while (i915_request_retire(tmp) && tmp != rq);
326 327
}

328
static int
329 330 331 332 333
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
334 335 336
{
	struct execute_cb *cb;

337 338 339
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
340
		return 0;
341
	}
342 343 344 345 346 347 348 349 350

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

351 352 353 354 355 356
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

357 358
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
359 360 361 362
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
363 364 365 366 367 368 369
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

370 371
	/* Copy across semaphore status as we need the same behaviour */
	rq->sched.flags |= signal->sched.flags;
372 373 374
	return 0;
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
static bool fatal_error(int error)
{
	switch (error) {
	case 0: /* not an error! */
	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
		return false;
	default:
		return true;
	}
}

void __i915_request_skip(struct i915_request *rq)
{
	GEM_BUG_ON(!fatal_error(rq->fence.error));

	if (rq->infix == rq->postfix)
		return;

	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	__i915_request_fill(rq, 0);
	rq->infix = rq->postfix;
}

void i915_request_set_error_once(struct i915_request *rq, int error)
{
	int old;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));

	if (i915_request_signaled(rq))
		return;

	old = READ_ONCE(rq->fence.error);
	do {
		if (fatal_error(old))
			return;
	} while (!try_cmpxchg(&rq->fence.error, &old, error));
}

419
bool __i915_request_submit(struct i915_request *request)
420
{
421
	struct intel_engine_cs *engine = request->engine;
422
	bool result = false;
423

424
	RQ_TRACE(request, "\n");
425

426
	GEM_BUG_ON(!irqs_disabled());
427
	lockdep_assert_held(&engine->active.lock);
428

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

448 449 450 451
	if (unlikely(intel_context_is_banned(request->context)))
		i915_request_set_error_once(request, -EIO);
	if (unlikely(fatal_error(request->fence.error)))
		__i915_request_skip(request);
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
471
		engine->saturated |= request->sched.semaphores;
472

473 474
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
475

476 477 478
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
479

480 481 482
xfer:	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);

483
	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
484
		list_move_tail(&request->sched.link, &engine->active.requests);
485 486
		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	}
487

488
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
489
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
490
	    !i915_request_enable_breadcrumb(request))
491
		intel_engine_signal_breadcrumbs(engine);
492

493 494
	__notify_execute_cb(request);

495 496
	spin_unlock(&request->lock);

497
	return result;
498 499
}

500
void i915_request_submit(struct i915_request *request)
501 502 503
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
504

505
	/* Will be called from irq-context when using foreign fences. */
506
	spin_lock_irqsave(&engine->active.lock, flags);
507

508
	__i915_request_submit(request);
509

510
	spin_unlock_irqrestore(&engine->active.lock, flags);
511 512
}

513
void __i915_request_unsubmit(struct i915_request *request)
514
{
515
	struct intel_engine_cs *engine = request->engine;
516

517
	RQ_TRACE(request, "\n");
518

519
	GEM_BUG_ON(!irqs_disabled());
520
	lockdep_assert_held(&engine->active.lock);
521

522 523
	/*
	 * Only unwind in reverse order, required so that the per-context list
524 525
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
526

527 528
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
529

530
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
531
		i915_request_cancel_breadcrumb(request);
532

533 534
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
535

536 537
	spin_unlock(&request->lock);

538 539 540 541 542 543
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

544 545
	/*
	 * We don't need to wake_up any waiters on request->execute, they
546
	 * will get woken by any other event or us re-adding this request
547
	 * to the engine timeline (__i915_request_submit()). The waiters
548 549 550 551 552
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

553
void i915_request_unsubmit(struct i915_request *request)
554 555 556 557 558
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
559
	spin_lock_irqsave(&engine->active.lock, flags);
560

561
	__i915_request_unsubmit(request);
562

563
	spin_unlock_irqrestore(&engine->active.lock, flags);
564 565
}

566
static int __i915_sw_fence_call
567
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
568
{
569
	struct i915_request *request =
570 571 572 573
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
574
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
575 576

		if (unlikely(fence->error))
577
			i915_request_set_error_once(request, fence->error);
C
Chris Wilson 已提交
578

579
		/*
580 581 582 583 584 585
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
586 587
		 */
		rcu_read_lock();
588
		request->engine->submit_request(request);
589
		rcu_read_unlock();
590 591 592
		break;

	case FENCE_FREE:
593
		i915_request_put(request);
594 595 596
		break;
	}

597 598 599
	return NOTIFY_DONE;
}

600 601 602 603 604 605 606 607 608
static void irq_semaphore_cb(struct irq_work *wrk)
{
	struct i915_request *rq =
		container_of(wrk, typeof(*rq), semaphore_work);

	i915_schedule_bump_priority(rq, I915_PRIORITY_NOSEMAPHORE);
	i915_request_put(rq);
}

609 610 611
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
612
	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
613 614 615

	switch (state) {
	case FENCE_COMPLETE:
616 617 618 619 620
		if (!(READ_ONCE(rq->sched.attr.priority) & I915_PRIORITY_NOSEMAPHORE)) {
			i915_request_get(rq);
			init_irq_work(&rq->semaphore_work, irq_semaphore_cb);
			irq_work_queue(&rq->semaphore_work);
		}
621 622 623
		break;

	case FENCE_FREE:
624
		i915_request_put(rq);
625 626 627 628 629 630
		break;
	}

	return NOTIFY_DONE;
}

631
static void retire_requests(struct intel_timeline *tl)
632 633 634
{
	struct i915_request *rq, *rn;

635
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
636
		if (!i915_request_retire(rq))
637 638 639 640
			break;
}

static noinline struct i915_request *
641 642 643
request_alloc_slow(struct intel_timeline *tl,
		   struct i915_request **rsvd,
		   gfp_t gfp)
644 645 646
{
	struct i915_request *rq;

647 648 649 650 651
	/* If we cannot wait, dip into our reserves */
	if (!gfpflags_allow_blocking(gfp)) {
		rq = xchg(rsvd, NULL);
		if (!rq) /* Use the normal failure path for one final WARN */
			goto out;
652

653 654 655 656
		return rq;
	}

	if (list_empty(&tl->requests))
657 658
		goto out;

659
	/* Move our oldest request to the slab-cache (if not in use!) */
660
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
661 662 663 664 665 666 667
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

668
	/* Ratelimit ourselves to prevent oom from malicious clients */
669
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
670 671 672
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
673
	retire_requests(tl);
674 675

out:
676
	return kmem_cache_alloc(global.slab_requests, gfp);
677 678
}

679 680 681 682 683 684 685 686 687
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

688 689
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

690 691 692 693 694 695
	rq->file_priv = NULL;
	rq->capture_list = NULL;

	INIT_LIST_HEAD(&rq->execute_cb);
}

696
struct i915_request *
697
__i915_request_create(struct intel_context *ce, gfp_t gfp)
698
{
699
	struct intel_timeline *tl = ce->timeline;
700 701
	struct i915_request *rq;
	u32 seqno;
702 703
	int ret;

704
	might_sleep_if(gfpflags_allow_blocking(gfp));
705

706 707
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
708

709 710
	/*
	 * Beware: Dragons be flying overhead.
711 712 713 714
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
715
	 * of being read by __i915_active_request_get_rcu(). As such,
716 717
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
718
	 * read the request->global_seqno and increment the reference count.
719 720 721 722
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
723 724
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
725 726 727 728 729 730 731 732 733 734 735 736 737
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
738
	rq = kmem_cache_alloc(global.slab_requests,
739
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
740
	if (unlikely(!rq)) {
741
		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
742
		if (!rq) {
743 744 745
			ret = -ENOMEM;
			goto err_unreserve;
		}
746
	}
747

748
	rq->i915 = ce->engine->i915;
749
	rq->context = ce;
750
	rq->engine = ce->engine;
751
	rq->ring = ce->ring;
752
	rq->execution_mask = ce->engine->mask;
753

754 755 756 757 758 759 760 761 762 763 764 765
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

766 767
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
768
	rq->hwsp_seqno = tl->hwsp_seqno;
769
	GEM_BUG_ON(i915_request_completed(rq));
770

771
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
772

773
	/* We bump the ref for the fence chain */
774 775
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
776

777
	i915_sched_node_reinit(&rq->sched);
778

779
	/* No zalloc, everything must be cleared after use */
780
	rq->batch = NULL;
781 782 783
	GEM_BUG_ON(rq->file_priv);
	GEM_BUG_ON(rq->capture_list);
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
784

785 786 787
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
788
	 * i915_request_add() call can't fail. Note that the reserve may need
789 790
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
791 792 793 794 795
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
796
	 */
797 798
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
799

800 801
	/*
	 * Record the position of the start of the request so that
802 803 804 805
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
806
	rq->head = rq->ring->emit;
807

808
	ret = rq->engine->request_alloc(rq);
809 810
	if (ret)
		goto err_unwind;
811

812 813
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

814
	intel_context_mark_active(ce);
815 816
	list_add_tail_rcu(&rq->link, &tl->requests);

817
	return rq;
818

819
err_unwind:
820
	ce->ring->emit = rq->head;
821

822
	/* Make sure we didn't add ourselves to external state before freeing */
823 824
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
825

826
err_free:
827
	kmem_cache_free(global.slab_requests, rq);
828
err_unreserve:
829
	intel_context_unpin(ce);
830
	return ERR_PTR(ret);
831 832
}

833 834 835 836
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
837
	struct intel_timeline *tl;
838

839 840 841
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
842 843

	/* Move our oldest request to the slab-cache (if not in use!) */
844 845
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
846 847 848 849 850 851 852 853 854
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
855
	rq->cookie = lockdep_pin_lock(&tl->mutex);
856 857 858 859

	return rq;

err_unlock:
860
	intel_context_timeline_unlock(tl);
861 862 863
	return rq;
}

864 865 866
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
867 868
	struct dma_fence *fence;
	int err;
869

870 871
	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
		return 0;
872

873 874 875
	if (i915_request_started(signal))
		return 0;

876
	fence = NULL;
877
	rcu_read_lock();
878
	spin_lock_irq(&signal->lock);
879 880 881 882 883 884 885 886 887 888 889
	do {
		struct list_head *pos = READ_ONCE(signal->link.prev);
		struct i915_request *prev;

		/* Confirm signal has not been retired, the link is valid */
		if (unlikely(i915_request_started(signal)))
			break;

		/* Is signal the earliest request on its timeline? */
		if (pos == &rcu_dereference(signal->timeline)->requests)
			break;
890

891 892 893 894 895 896
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
897 898 899 900 901 902 903 904
		prev = list_entry(pos, typeof(*prev), link);
		if (!i915_request_get_rcu(prev))
			break;

		/* After the strong barrier, confirm prev is still attached */
		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
			i915_request_put(prev);
			break;
905
		}
906 907 908

		fence = &prev->fence;
	} while (0);
909 910 911 912
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
913 914

	err = 0;
915
	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
916 917 918 919 920 921
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
922 923
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
939
	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
940 941
}

942
static int
943 944 945
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
946
{
947
	const int has_token = INTEL_GEN(to->i915) >= 12;
948
	u32 hwsp_offset;
949
	int len, err;
950 951 952 953
	u32 *cs;

	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

954
	/* We need to pin the signaler's HWSP until we are finished reading. */
955 956 957
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
958

959 960 961 962 963
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
964 965 966 967 968 969 970 971 972 973 974
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
975 976 977 978 979
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
980
	*cs++ = seqno;
981 982
	*cs++ = hwsp_offset;
	*cs++ = 0;
983 984 985 986
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
987 988

	intel_ring_advance(to, cs);
989 990 991 992 993 994 995 996
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
997 998
	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;

999 1000 1001 1002 1003 1004
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

	if (!rcu_access_pointer(from->hwsp_cacheline))
		goto await_fence;

1005
	/* Just emit the first semaphore we see as request space is limited. */
1006
	if (already_busywaiting(to) & mask)
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

1019
	to->sched.semaphores |= mask;
1020
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
1021
	return 0;
1022 1023 1024 1025 1026

await_fence:
	return i915_sw_fence_await_dma_fence(&to->submit,
					     &from->fence, 0,
					     I915_FENCE_GFP);
1027 1028
}

1029
static int
1030
i915_request_await_request(struct i915_request *to, struct i915_request *from)
1031
{
1032
	int ret;
1033 1034

	GEM_BUG_ON(to == from);
1035
	GEM_BUG_ON(to->timeline == from->timeline);
1036

1037 1038
	if (i915_request_completed(from)) {
		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1039
		return 0;
1040
	}
1041

1042
	if (to->engine->schedule) {
1043 1044 1045
		ret = i915_sched_node_add_dependency(&to->sched,
						     &from->sched,
						     I915_DEPENDENCY_EXTERNAL);
1046 1047 1048 1049
		if (ret < 0)
			return ret;
	}

1050
	if (to->engine == from->engine)
1051 1052
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
1053
						       I915_FENCE_GFP);
1054
	else
1055
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
1066

1067
	return 0;
1068 1069
}

1070
int
1071
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1072
{
1073 1074
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
1075 1076
	int ret;

1077 1078
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
1079 1080 1081 1082 1083 1084
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
1085 1086 1087 1088 1089 1090 1091
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
1092

1093 1094
	do {
		fence = *child++;
1095 1096
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1097
			continue;
1098
		}
1099

1100 1101
		/*
		 * Requests on the same timeline are explicitly ordered, along
1102
		 * with their dependencies, by i915_request_add() which ensures
1103 1104
		 * that requests are submitted in-order through each ring.
		 */
1105
		if (fence->context == rq->fence.context)
1106 1107
			continue;

1108
		/* Squash repeated waits to the same timelines */
1109
		if (fence->context &&
1110 1111
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
1112 1113
			continue;

1114
		if (dma_fence_is_i915(fence))
1115
			ret = i915_request_await_request(rq, to_request(fence));
1116
		else
1117
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1118
							    fence->context ? I915_FENCE_TIMEOUT : 0,
1119
							    I915_FENCE_GFP);
1120 1121
		if (ret < 0)
			return ret;
1122 1123

		/* Record the latest fence used against each timeline */
1124
		if (fence->context)
1125 1126
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1127
	} while (--nchild);
1128 1129 1130 1131

	return 0;
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

static int
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
{
	int err;

1154 1155
	GEM_BUG_ON(intel_context_is_barrier(from->context));

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
		return 0;

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	/*
	 * Wait until the start of this request.
	 *
	 * The execution cb fires when we submit the request to HW. But in
	 * many cases this may be long before the request itself is ready to
	 * run (consider that we submit 2 requests for the same context, where
	 * the request of interest is behind an indefinite spinner). So we hook
	 * up to both to reduce our queues and keep the execution lag minimised
	 * in the worst case, though we hope that the await_start is elided.
	 */
	err = i915_request_await_start(to, from);
1177 1178 1179
	if (err < 0)
		return err;

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	/*
	 * Ensure both start together [after all semaphores in signal]
	 *
	 * Now that we are queued to the HW at roughly the same time (thanks
	 * to the execute cb) and are ready to run at roughly the same time
	 * (thanks to the await start), our signaler may still be indefinitely
	 * delayed by waiting on a semaphore from a remote engine. If our
	 * signaler depends on a semaphore, so indirectly do we, and we do not
	 * want to start our payload until our signaler also starts theirs.
	 * So we wait.
	 *
	 * However, there is also a second condition for which we need to wait
	 * for the precise start of the signaler. Consider that the signaler
	 * was submitted in a chain of requests following another context
	 * (with just an ordinary intra-engine fence dependency between the
	 * two). In this case the signaler is queued to HW, but not for
	 * immediate execution, and so we must wait until it reaches the
	 * active slot.
	 */
	if (intel_engine_has_semaphores(to->engine)) {
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
		if (err < 0)
			return err;
	}

1205 1206
	/* Couple the dependency tree for PI on this exposed to->fence */
	if (to->engine->schedule) {
1207 1208 1209
		err = i915_sched_node_add_dependency(&to->sched,
						     &from->sched,
						     I915_DEPENDENCY_WEAK);
1210 1211 1212 1213 1214 1215 1216 1217
		if (err < 0)
			return err;
	}

	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1240 1241
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1242
			continue;
1243
		}
1244 1245 1246 1247 1248 1249 1250 1251 1252

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
1253
							     hook);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

1265
/**
1266
 * i915_request_await_object - set this request to (async) wait upon a bo
1267 1268
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1269
 * @write: whether the wait is on behalf of a writer
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1286 1287 1288
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1289
{
1290 1291
	struct dma_fence *excl;
	int ret = 0;
1292 1293

	if (write) {
1294 1295 1296
		struct dma_fence **shared;
		unsigned int count, i;

1297
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1298 1299 1300 1301 1302
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1303
			ret = i915_request_await_dma_fence(to, shared[i]);
1304 1305 1306 1307 1308 1309 1310 1311 1312
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1313
	} else {
1314
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1315 1316
	}

1317 1318
	if (excl) {
		if (ret == 0)
1319
			ret = i915_request_await_dma_fence(to, excl);
1320

1321
		dma_fence_put(excl);
1322 1323
	}

1324
	return ret;
1325 1326
}

1327 1328 1329
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1330
	struct intel_timeline *timeline = i915_request_timeline(rq);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1353 1354
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1355
	if (prev && !i915_request_completed(prev)) {
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
		/*
		 * The requests are supposed to be kept in order. However,
		 * we need to be wary in case the timeline->last_request
		 * is used as a barrier for external modification to this
		 * context.
		 */
		GEM_BUG_ON(prev->context == rq->context &&
			   i915_seqno_passed(prev->fence.seqno,
					     rq->fence.seqno));

1366
		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

1381 1382 1383 1384 1385
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1386 1387 1388 1389 1390
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1391 1392 1393 1394 1395
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1396
struct i915_request *__i915_request_commit(struct i915_request *rq)
1397
{
1398 1399
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1400
	u32 *cs;
1401

1402
	RQ_TRACE(rq, "\n");
1403

1404 1405 1406 1407 1408
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1409 1410
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1411
	rq->emitted_jiffies = jiffies;
1412

1413 1414
	/*
	 * Record the position of the start of the breadcrumb so that
1415 1416
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1417
	 * position of the ring's HEAD.
1418
	 */
1419
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1420
	GEM_BUG_ON(IS_ERR(cs));
1421
	rq->postfix = intel_ring_offset(rq, cs);
1422

1423
	return __i915_request_add_to_timeline(rq);
1424 1425 1426 1427 1428
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1429 1430
	/*
	 * Let the backend know a new request has arrived that may need
1431 1432 1433 1434 1435 1436 1437 1438 1439
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1440 1441
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1442
	i915_sw_fence_commit(&rq->semaphore);
1443 1444 1445 1446 1447
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1448
	struct intel_timeline * const tl = i915_request_timeline(rq);
1449
	struct i915_sched_attr attr = {};
1450
	struct i915_gem_context *ctx;
1451

1452 1453
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1454 1455

	trace_i915_request_add(rq);
1456
	__i915_request_commit(rq);
1457

1458 1459 1460 1461 1462 1463
	/* XXX placeholder for selftests */
	rcu_read_lock();
	ctx = rcu_dereference(rq->context->gem_context);
	if (ctx)
		attr = ctx->sched;
	rcu_read_unlock();
1464

1465 1466 1467 1468 1469
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;

	__i915_request_queue(rq, &attr);

1470
	mutex_unlock(&tl->mutex);
1471 1472
}

1473
static unsigned long local_clock_ns(unsigned int *cpu)
1474 1475 1476
{
	unsigned long t;

1477 1478
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
1490
	t = local_clock();
1491 1492 1493 1494 1495 1496 1497 1498 1499
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

1500
	if (time_after(local_clock_ns(&this_cpu), timeout))
1501 1502 1503 1504 1505
		return true;

	return this_cpu != cpu;
}

1506
static bool __i915_spin_request(const struct i915_request * const rq, int state)
1507
{
1508
	unsigned long timeout_ns;
1509
	unsigned int cpu;
1510 1511 1512 1513 1514 1515 1516

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1517 1518 1519 1520
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1521
	 */
1522
	if (!i915_request_is_running(rq))
1523 1524
		return false;

1525 1526
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1527 1528 1529 1530 1531 1532 1533 1534 1535
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1536 1537
	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
	timeout_ns += local_clock_ns(&cpu);
1538
	do {
1539 1540
		if (i915_request_completed(rq))
			return true;
1541

1542 1543 1544
		if (signal_pending_state(state, current))
			break;

1545
		if (busywait_stop(timeout_ns, cpu))
1546 1547
			break;

1548
		cpu_relax();
1549 1550 1551 1552 1553
	} while (!need_resched());

	return false;
}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1566
/**
1567
 * i915_request_wait - wait until execution of request has finished
1568
 * @rq: the request to wait upon
1569
 * @flags: how to wait
1570 1571
 * @timeout: how long to wait in jiffies
 *
1572
 * i915_request_wait() waits for the request to be completed, for a
1573 1574
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1575
 *
1576 1577 1578 1579
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1580
 */
1581
long i915_request_wait(struct i915_request *rq,
1582 1583
		       unsigned int flags,
		       long timeout)
1584
{
1585 1586
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1587
	struct request_wait wait;
1588 1589

	might_sleep();
1590
	GEM_BUG_ON(timeout < 0);
1591

1592
	if (dma_fence_is_signaled(&rq->fence))
1593
		return timeout;
1594

1595 1596
	if (!timeout)
		return -ETIME;
1597

1598
	trace_i915_request_wait_begin(rq, flags);
1599 1600 1601 1602 1603 1604 1605

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1606
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1607

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1631 1632
	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
	    __i915_spin_request(rq, state)) {
1633
		dma_fence_signal(&rq->fence);
1634
		goto out;
1635
	}
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1651
			intel_rps_boost(rq);
1652
	}
1653

1654 1655 1656
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1657

1658 1659
	for (;;) {
		set_current_state(state);
1660

1661 1662
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1663
			break;
1664
		}
1665

1666 1667
		intel_engine_flush_submission(rq->engine);

1668
		if (signal_pending_state(state, current)) {
1669
			timeout = -ERESTARTSYS;
1670 1671 1672
			break;
		}

1673 1674
		if (!timeout) {
			timeout = -ETIME;
1675 1676 1677
			break;
		}

1678
		timeout = io_schedule_timeout(timeout);
1679
	}
1680
	__set_current_state(TASK_RUNNING);
1681

1682 1683 1684
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1685
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1686
	trace_i915_request_wait_end(rq);
1687
	return timeout;
1688
}
1689

1690 1691
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1692
#include "selftests/i915_request.c"
1693
#endif
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1712 1713
int __init i915_global_request_init(void)
{
1714 1715 1716 1717 1718 1719 1720 1721
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1722 1723 1724
	if (!global.slab_requests)
		return -ENOMEM;

1725 1726 1727 1728 1729 1730 1731
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1732
	i915_global_register(&global.base);
1733 1734 1735 1736 1737 1738
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}