i915_gem.c 129.3 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49

50 51 52 53 54 55
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

56 57 58 59 60 61 62 63
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

64 65 66 67
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
68
	spin_lock(&dev_priv->mm.object_stat_lock);
69 70
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
71
	spin_unlock(&dev_priv->mm.object_stat_lock);
72 73 74 75 76
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
77
	spin_lock(&dev_priv->mm.object_stat_lock);
78 79
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
80
	spin_unlock(&dev_priv->mm.object_stat_lock);
81 82
}

83
static int
84
i915_gem_wait_for_error(struct i915_gpu_error *error)
85 86 87
{
	int ret;

88 89
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
90
	if (EXIT_COND)
91 92
		return 0;

93 94 95 96 97
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
98 99 100
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
101 102 103 104
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
105
		return ret;
106
	}
107
#undef EXIT_COND
108

109
	return 0;
110 111
}

112
int i915_mutex_lock_interruptible(struct drm_device *dev)
113
{
114
	struct drm_i915_private *dev_priv = dev->dev_private;
115 116
	int ret;

117
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 119 120 121 122 123 124
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

125
	WARN_ON(i915_verify_lists(dev));
126 127
	return 0;
}
128

129 130
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131
			    struct drm_file *file)
132
{
133
	struct drm_i915_private *dev_priv = dev->dev_private;
134
	struct drm_i915_gem_get_aperture *args = data;
135 136
	struct i915_gtt *ggtt = &dev_priv->gtt;
	struct i915_vma *vma;
137
	size_t pinned;
138

139
	pinned = 0;
140
	mutex_lock(&dev->struct_mutex);
141 142 143 144 145 146
	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
		if (vma->pin_count)
			pinned += vma->node.size;
	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
		if (vma->pin_count)
			pinned += vma->node.size;
147
	mutex_unlock(&dev->struct_mutex);
148

149
	args->aper_size = dev_priv->gtt.base.total;
150
	args->aper_available_size = args->aper_size - pinned;
151

152 153 154
	return 0;
}

155 156
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157
{
158 159 160 161 162
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
198

199 200 201 202 203 204 205 206 207 208 209 210 211
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
212

213 214 215 216 217 218 219 220 221 222 223 224 225
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
226
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227
		char *vaddr = obj->phys_handle->vaddr;
228 229 230
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 232 233 234 235 236 237 238 239 240 241 242 243 244
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
245
				mark_page_accessed(page);
246
			page_cache_release(page);
247 248
			vaddr += PAGE_SIZE;
		}
249
		obj->dirty = 0;
250 251
	}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
283 284 285 286 287 288 289
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
290
	int ret;
291 292 293 294 295 296 297 298 299 300 301 302 303 304

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

305 306 307 308
	ret = drop_pages(obj);
	if (ret)
		return ret;

309 310 311 312 313 314
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
315 316 317
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
318 319 320 321 322 323 324 325 326 327
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
328
	int ret = 0;
329 330 331 332 333 334 335

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
336

337
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 339 340 341 342 343 344 345 346 347
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
348 349 350 351
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
352 353
	}

354
	drm_clflush_virt_range(vaddr, args->size);
355
	i915_gem_chipset_flush(dev);
356 357

out:
358
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359
	return ret;
360 361
}

362 363 364
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
365
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 367 368 369 370
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371
	kmem_cache_free(dev_priv->objects, obj);
372 373
}

374 375 376 377 378
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
379
{
380
	struct drm_i915_gem_object *obj;
381 382
	int ret;
	u32 handle;
383

384
	size = roundup(size, PAGE_SIZE);
385 386
	if (size == 0)
		return -EINVAL;
387 388

	/* Allocate the new object */
389
	obj = i915_gem_alloc_object(dev, size);
390 391 392
	if (obj == NULL)
		return -ENOMEM;

393
	ret = drm_gem_handle_create(file, &obj->base, &handle);
394
	/* drop reference from allocate - handle holds it now */
395 396 397
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
398

399
	*handle_p = handle;
400 401 402
	return 0;
}

403 404 405 406 407 408
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
409
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 411
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
412
			       args->size, &args->handle);
413 414 415 416 417 418 419 420 421 422
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
423

424
	return i915_gem_create(file, dev,
425
			       args->size, &args->handle);
426 427
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

454
static inline int
455 456
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

516 517 518
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
519
static int
520 521 522 523 524 525 526
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

527
	if (unlikely(page_do_bit17_swizzling))
528 529 530 531 532 533 534 535 536 537 538
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

539
	return ret ? -EFAULT : 0;
540 541
}

542 543 544 545
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
546
	if (unlikely(swizzled)) {
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

564 565 566 567 568 569 570 571 572 573 574 575
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
576 577 578
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
579 580 581 582 583 584 585 586 587 588 589

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

590
	return ret ? - EFAULT : 0;
591 592
}

593
static int
594 595 596 597
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
598
{
599
	char __user *user_data;
600
	ssize_t remain;
601
	loff_t offset;
602
	int shmem_page_offset, page_length, ret = 0;
603
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604
	int prefaulted = 0;
605
	int needs_clflush = 0;
606
	struct sg_page_iter sg_iter;
607

V
Ville Syrjälä 已提交
608
	user_data = to_user_ptr(args->data_ptr);
609 610
	remain = args->size;

611
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612

613
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 615 616
	if (ret)
		return ret;

617
	offset = args->offset;
618

619 620
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
621
		struct page *page = sg_page_iter_page(&sg_iter);
622 623 624 625

		if (remain <= 0)
			break;

626 627 628 629 630
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
631
		shmem_page_offset = offset_in_page(offset);
632 633 634 635
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

636 637 638
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

639 640 641 642 643
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
644 645 646

		mutex_unlock(&dev->struct_mutex);

647
		if (likely(!i915.prefault_disable) && !prefaulted) {
648
			ret = fault_in_multipages_writeable(user_data, remain);
649 650 651 652 653 654 655
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
656

657 658 659
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
660

661
		mutex_lock(&dev->struct_mutex);
662 663

		if (ret)
664 665
			goto out;

666
next_page:
667
		remain -= page_length;
668
		user_data += page_length;
669 670 671
		offset += page_length;
	}

672
out:
673 674
	i915_gem_object_unpin_pages(obj);

675 676 677
	return ret;
}

678 679 680 681 682 683 684
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685
		     struct drm_file *file)
686 687
{
	struct drm_i915_gem_pread *args = data;
688
	struct drm_i915_gem_object *obj;
689
	int ret = 0;
690

691 692 693 694
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
695
		       to_user_ptr(args->data_ptr),
696 697 698
		       args->size))
		return -EFAULT;

699
	ret = i915_mutex_lock_interruptible(dev);
700
	if (ret)
701
		return ret;
702

703
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704
	if (&obj->base == NULL) {
705 706
		ret = -ENOENT;
		goto unlock;
707
	}
708

709
	/* Bounds check source.  */
710 711
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
712
		ret = -EINVAL;
713
		goto out;
C
Chris Wilson 已提交
714 715
	}

716 717 718 719 720 721 722 723
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
724 725
	trace_i915_gem_object_pread(obj, args->offset, args->size);

726
	ret = i915_gem_shmem_pread(dev, obj, args, file);
727

728
out:
729
	drm_gem_object_unreference(&obj->base);
730
unlock:
731
	mutex_unlock(&dev->struct_mutex);
732
	return ret;
733 734
}

735 736
/* This is the fast write path which cannot handle
 * page faults in the source data
737
 */
738 739 740 741 742 743

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
744
{
745 746
	void __iomem *vaddr_atomic;
	void *vaddr;
747
	unsigned long unwritten;
748

P
Peter Zijlstra 已提交
749
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 751 752
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753
						      user_data, length);
P
Peter Zijlstra 已提交
754
	io_mapping_unmap_atomic(vaddr_atomic);
755
	return unwritten;
756 757
}

758 759 760 761
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
762
static int
763 764
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
765
			 struct drm_i915_gem_pwrite *args,
766
			 struct drm_file *file)
767
{
768
	struct drm_i915_private *dev_priv = dev->dev_private;
769
	ssize_t remain;
770
	loff_t offset, page_base;
771
	char __user *user_data;
D
Daniel Vetter 已提交
772 773
	int page_offset, page_length, ret;

774
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
775 776 777 778 779 780 781 782 783 784
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
785

V
Ville Syrjälä 已提交
786
	user_data = to_user_ptr(args->data_ptr);
787 788
	remain = args->size;

789
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790

791
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792

793 794 795
	while (remain > 0) {
		/* Operation in this page
		 *
796 797 798
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
799
		 */
800 801
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
802 803 804 805 806
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
807 808
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
809
		 */
B
Ben Widawsky 已提交
810
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
811 812
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
813
			goto out_flush;
D
Daniel Vetter 已提交
814
		}
815

816 817 818
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
819 820
	}

821
out_flush:
822
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
823
out_unpin:
B
Ben Widawsky 已提交
824
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
825
out:
826
	return ret;
827 828
}

829 830 831 832
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
833
static int
834 835 836 837 838
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
839
{
840
	char *vaddr;
841
	int ret;
842

843
	if (unlikely(page_do_bit17_swizzling))
844
		return -EINVAL;
845

846 847 848 849
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
850 851
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
852 853 854 855
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
856

857
	return ret ? -EFAULT : 0;
858 859
}

860 861
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
862
static int
863 864 865 866 867
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
868
{
869 870
	char *vaddr;
	int ret;
871

872
	vaddr = kmap(page);
873
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 875 876
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
877 878
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 880
						user_data,
						page_length);
881 882 883 884 885
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
886 887 888
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
889
	kunmap(page);
890

891
	return ret ? -EFAULT : 0;
892 893 894
}

static int
895 896 897 898
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
899 900
{
	ssize_t remain;
901 902
	loff_t offset;
	char __user *user_data;
903
	int shmem_page_offset, page_length, ret = 0;
904
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905
	int hit_slowpath = 0;
906 907
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
908
	struct sg_page_iter sg_iter;
909

V
Ville Syrjälä 已提交
910
	user_data = to_user_ptr(args->data_ptr);
911 912
	remain = args->size;

913
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914

915 916 917 918 919
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
920
		needs_clflush_after = cpu_write_needs_clflush(obj);
921 922 923
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
924
	}
925 926 927 928 929
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
930

931 932 933 934
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

935
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936

937 938
	i915_gem_object_pin_pages(obj);

939
	offset = args->offset;
940
	obj->dirty = 1;
941

942 943
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
944
		struct page *page = sg_page_iter_page(&sg_iter);
945
		int partial_cacheline_write;
946

947 948 949
		if (remain <= 0)
			break;

950 951 952 953 954
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
955
		shmem_page_offset = offset_in_page(offset);
956 957 958 959 960

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

961 962 963 964 965 966 967
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

968 969 970
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

971 972 973 974 975 976
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
977 978 979

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
980 981 982 983
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
984

985
		mutex_lock(&dev->struct_mutex);
986 987

		if (ret)
988 989
			goto out;

990
next_page:
991
		remain -= page_length;
992
		user_data += page_length;
993
		offset += page_length;
994 995
	}

996
out:
997 998
	i915_gem_object_unpin_pages(obj);

999
	if (hit_slowpath) {
1000 1001 1002 1003 1004 1005 1006
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 1008
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1009
		}
1010
	}
1011

1012
	if (needs_clflush_after)
1013
		i915_gem_chipset_flush(dev);
1014

1015
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1016
	return ret;
1017 1018 1019 1020 1021 1022 1023 1024 1025
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1026
		      struct drm_file *file)
1027
{
1028
	struct drm_i915_private *dev_priv = dev->dev_private;
1029
	struct drm_i915_gem_pwrite *args = data;
1030
	struct drm_i915_gem_object *obj;
1031 1032 1033 1034 1035 1036
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1037
		       to_user_ptr(args->data_ptr),
1038 1039 1040
		       args->size))
		return -EFAULT;

1041
	if (likely(!i915.prefault_disable)) {
1042 1043 1044 1045 1046
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1047

1048 1049
	intel_runtime_pm_get(dev_priv);

1050
	ret = i915_mutex_lock_interruptible(dev);
1051
	if (ret)
1052
		goto put_rpm;
1053

1054
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1055
	if (&obj->base == NULL) {
1056 1057
		ret = -ENOENT;
		goto unlock;
1058
	}
1059

1060
	/* Bounds check destination. */
1061 1062
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1063
		ret = -EINVAL;
1064
		goto out;
C
Chris Wilson 已提交
1065 1066
	}

1067 1068 1069 1070 1071 1072 1073 1074
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1075 1076
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1077
	ret = -EFAULT;
1078 1079 1080 1081 1082 1083
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1084 1085 1086
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1087
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1088 1089 1090
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1091
	}
1092

1093 1094 1095 1096 1097 1098
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1099

1100
out:
1101
	drm_gem_object_unreference(&obj->base);
1102
unlock:
1103
	mutex_unlock(&dev->struct_mutex);
1104 1105 1106
put_rpm:
	intel_runtime_pm_put(dev_priv);

1107 1108 1109
	return ret;
}

1110
int
1111
i915_gem_check_wedge(struct i915_gpu_error *error,
1112 1113
		     bool interruptible)
{
1114
	if (i915_reset_in_progress(error)) {
1115 1116 1117 1118 1119
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1120 1121
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1122 1123
			return -EIO;

1124 1125 1126 1127 1128 1129 1130
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1131 1132 1133 1134 1135
	}

	return 0;
}

1136 1137 1138 1139 1140 1141
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1142
		       struct intel_engine_cs *ring)
1143 1144 1145 1146
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

D
Daniel Vetter 已提交
1147
static int __i915_spin_request(struct drm_i915_gem_request *req)
1148
{
1149 1150
	unsigned long timeout;

D
Daniel Vetter 已提交
1151
	if (i915_gem_request_get_ring(req)->irq_refcount)
1152 1153 1154 1155
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
D
Daniel Vetter 已提交
1156
		if (i915_gem_request_completed(req, true))
1157 1158 1159 1160
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1161

1162 1163
		cpu_relax_lowlatency();
	}
D
Daniel Vetter 已提交
1164
	if (i915_gem_request_completed(req, false))
1165 1166 1167
		return 0;

	return -EAGAIN;
1168 1169
}

1170
/**
1171 1172 1173
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1174 1175 1176
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1177 1178 1179 1180 1181 1182 1183
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1184
 * Returns 0 if the request was found within the alloted time. Else returns the
1185 1186
 * errno with remaining time filled in timeout argument.
 */
1187
int __i915_wait_request(struct drm_i915_gem_request *req,
1188
			unsigned reset_counter,
1189
			bool interruptible,
1190
			s64 *timeout,
1191
			struct intel_rps_client *rps)
1192
{
1193
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1194
	struct drm_device *dev = ring->dev;
1195
	struct drm_i915_private *dev_priv = dev->dev_private;
1196 1197
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1198
	DEFINE_WAIT(wait);
1199
	unsigned long timeout_expire;
1200
	s64 before, now;
1201 1202
	int ret;

1203
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1204

1205 1206 1207
	if (list_empty(&req->list))
		return 0;

1208
	if (i915_gem_request_completed(req, true))
1209 1210
		return 0;

1211 1212
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1213

1214
	if (INTEL_INFO(dev_priv)->gen >= 6)
1215
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1216

1217
	/* Record current time in case interrupted by signal, or wedged */
1218
	trace_i915_gem_request_wait_begin(req);
1219
	before = ktime_get_raw_ns();
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1231 1232
	for (;;) {
		struct timer_list timer;
1233

1234 1235
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1236

1237 1238
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1239 1240 1241 1242 1243 1244 1245 1246
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1247

1248
		if (i915_gem_request_completed(req, false)) {
1249 1250 1251
			ret = 0;
			break;
		}
1252

1253 1254 1255 1256 1257
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1258
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1259 1260 1261 1262 1263 1264
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1265 1266
			unsigned long expire;

1267
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1268
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1269 1270 1271
			mod_timer(&timer, expire);
		}

1272
		io_schedule();
1273 1274 1275 1276 1277 1278

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1279 1280
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1281 1282

	finish_wait(&ring->irq_queue, &wait);
1283

1284 1285 1286 1287
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1288
	if (timeout) {
1289 1290 1291
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1302 1303
	}

1304
	return ret;
1305 1306
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->ring->dev->dev_private;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1346 1347 1348

	put_pid(request->pid);
	request->pid = NULL;
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1392
/**
1393
 * Waits for a request to be signaled, and cleans up the
1394 1395 1396
 * request and object lists appropriately for that event.
 */
int
1397
i915_wait_request(struct drm_i915_gem_request *req)
1398
{
1399 1400 1401
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1402 1403
	int ret;

1404 1405 1406 1407 1408 1409
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1410 1411
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1412
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1413 1414 1415
	if (ret)
		return ret;

1416 1417
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1418
				  interruptible, NULL, NULL);
1419 1420
	if (ret)
		return ret;
1421

1422
	__i915_gem_request_retire__upto(req);
1423 1424 1425
	return 0;
}

1426 1427 1428 1429
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1430
int
1431 1432 1433
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1434
	int ret, i;
1435

1436
	if (!obj->active)
1437 1438
		return 0;

1439 1440 1441 1442 1443
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1480 1481
}

1482 1483 1484 1485 1486
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1487
					    struct intel_rps_client *rps,
1488 1489 1490 1491
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1492
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1493
	unsigned reset_counter;
1494
	int ret, i, n = 0;
1495 1496 1497 1498

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1499
	if (!obj->active)
1500 1501
		return 0;

1502
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1503 1504 1505
	if (ret)
		return ret;

1506
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1528
	mutex_unlock(&dev->struct_mutex);
1529 1530
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1531
					  NULL, rps);
1532 1533
	mutex_lock(&dev->struct_mutex);

1534 1535 1536 1537 1538 1539 1540
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1541 1542
}

1543 1544 1545 1546 1547 1548
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1549
/**
1550 1551
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1552 1553 1554
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1555
			  struct drm_file *file)
1556 1557
{
	struct drm_i915_gem_set_domain *args = data;
1558
	struct drm_i915_gem_object *obj;
1559 1560
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1561 1562
	int ret;

1563
	/* Only handle setting domains to types used by the CPU. */
1564
	if (write_domain & I915_GEM_GPU_DOMAINS)
1565 1566
		return -EINVAL;

1567
	if (read_domains & I915_GEM_GPU_DOMAINS)
1568 1569 1570 1571 1572 1573 1574 1575
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1576
	ret = i915_mutex_lock_interruptible(dev);
1577
	if (ret)
1578
		return ret;
1579

1580
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1581
	if (&obj->base == NULL) {
1582 1583
		ret = -ENOENT;
		goto unlock;
1584
	}
1585

1586 1587 1588 1589
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1590
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1591
							  to_rps_client(file),
1592
							  !write_domain);
1593 1594 1595
	if (ret)
		goto unref;

1596
	if (read_domains & I915_GEM_DOMAIN_GTT)
1597
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1598
	else
1599
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1600

1601 1602 1603 1604 1605
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1606
unref:
1607
	drm_gem_object_unreference(&obj->base);
1608
unlock:
1609 1610 1611 1612 1613 1614 1615 1616 1617
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1618
			 struct drm_file *file)
1619 1620
{
	struct drm_i915_gem_sw_finish *args = data;
1621
	struct drm_i915_gem_object *obj;
1622 1623
	int ret = 0;

1624
	ret = i915_mutex_lock_interruptible(dev);
1625
	if (ret)
1626
		return ret;
1627

1628
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1629
	if (&obj->base == NULL) {
1630 1631
		ret = -ENOENT;
		goto unlock;
1632 1633 1634
	}

	/* Pinned buffers may be scanout, so flush the cache */
1635
	if (obj->pin_display)
1636
		i915_gem_object_flush_cpu_write_domain(obj);
1637

1638
	drm_gem_object_unreference(&obj->base);
1639
unlock:
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1660 1661 1662
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1663
		    struct drm_file *file)
1664 1665 1666 1667 1668
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1669 1670 1671 1672 1673 1674
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1675
	obj = drm_gem_object_lookup(dev, file, args->handle);
1676
	if (obj == NULL)
1677
		return -ENOENT;
1678

1679 1680 1681 1682 1683 1684 1685 1686
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1687
	addr = vm_mmap(obj->filp, 0, args->size,
1688 1689
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1703
	drm_gem_object_unreference_unlocked(obj);
1704 1705 1706 1707 1708 1709 1710 1711
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1730 1731
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1732
	struct drm_i915_private *dev_priv = dev->dev_private;
1733
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1734 1735 1736
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1737
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1738

1739 1740
	intel_runtime_pm_get(dev_priv);

1741 1742 1743 1744
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1745 1746 1747
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1748

C
Chris Wilson 已提交
1749 1750
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1751 1752 1753 1754 1755 1756 1757 1758 1759
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1760 1761
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1762
		ret = -EFAULT;
1763 1764 1765
		goto unlock;
	}

1766
	/* Use a partial view if the object is bigger than the aperture. */
1767 1768
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1769
		static const unsigned int chunk_size = 256; // 1 MiB
1770

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1783 1784
	if (ret)
		goto unlock;
1785

1786 1787 1788
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1789

1790
	ret = i915_gem_object_get_fence(obj);
1791
	if (ret)
1792
		goto unpin;
1793

1794
	/* Finally, remap it using the new GTT offset */
1795 1796
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1797
	pfn >>= PAGE_SHIFT;
1798

1799 1800 1801 1802 1803 1804 1805 1806 1807
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1808

1809 1810
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1811 1812 1813 1814 1815
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1837
unpin:
1838
	i915_gem_object_ggtt_unpin_view(obj, &view);
1839
unlock:
1840
	mutex_unlock(&dev->struct_mutex);
1841
out:
1842
	switch (ret) {
1843
	case -EIO:
1844 1845 1846 1847 1848 1849 1850
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1851 1852 1853
			ret = VM_FAULT_SIGBUS;
			break;
		}
1854
	case -EAGAIN:
D
Daniel Vetter 已提交
1855 1856 1857 1858
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1859
		 */
1860 1861
	case 0:
	case -ERESTARTSYS:
1862
	case -EINTR:
1863 1864 1865 1866 1867
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1868 1869
		ret = VM_FAULT_NOPAGE;
		break;
1870
	case -ENOMEM:
1871 1872
		ret = VM_FAULT_OOM;
		break;
1873
	case -ENOSPC:
1874
	case -EFAULT:
1875 1876
		ret = VM_FAULT_SIGBUS;
		break;
1877
	default:
1878
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1879 1880
		ret = VM_FAULT_SIGBUS;
		break;
1881
	}
1882 1883 1884

	intel_runtime_pm_put(dev_priv);
	return ret;
1885 1886
}

1887 1888 1889 1890
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1891
 * Preserve the reservation of the mmapping with the DRM core code, but
1892 1893 1894 1895 1896 1897 1898 1899 1900
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1901
void
1902
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1903
{
1904 1905
	if (!obj->fault_mappable)
		return;
1906

1907 1908
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1909
	obj->fault_mappable = false;
1910 1911
}

1912 1913 1914 1915 1916 1917 1918 1919 1920
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1921
uint32_t
1922
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1923
{
1924
	uint32_t gtt_size;
1925 1926

	if (INTEL_INFO(dev)->gen >= 4 ||
1927 1928
	    tiling_mode == I915_TILING_NONE)
		return size;
1929 1930 1931

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1932
		gtt_size = 1024*1024;
1933
	else
1934
		gtt_size = 512*1024;
1935

1936 1937
	while (gtt_size < size)
		gtt_size <<= 1;
1938

1939
	return gtt_size;
1940 1941
}

1942 1943 1944 1945 1946
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1947
 * potential fence register mapping.
1948
 */
1949 1950 1951
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1952 1953 1954 1955 1956
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1957
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1958
	    tiling_mode == I915_TILING_NONE)
1959 1960
		return 4096;

1961 1962 1963 1964
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1965
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1966 1967
}

1968 1969 1970 1971 1972
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1973
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1974 1975
		return 0;

1976 1977
	dev_priv->mm.shrinker_no_lock_stealing = true;

1978 1979
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1980
		goto out;
1981 1982 1983 1984 1985 1986 1987 1988

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1989 1990 1991 1992 1993
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1994 1995
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1996
		goto out;
1997 1998

	i915_gem_shrink_all(dev_priv);
1999 2000 2001 2002 2003
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2004 2005 2006 2007 2008 2009 2010
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2011
int
2012 2013
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2014
		  uint32_t handle,
2015
		  uint64_t *offset)
2016
{
2017
	struct drm_i915_gem_object *obj;
2018 2019
	int ret;

2020
	ret = i915_mutex_lock_interruptible(dev);
2021
	if (ret)
2022
		return ret;
2023

2024
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2025
	if (&obj->base == NULL) {
2026 2027 2028
		ret = -ENOENT;
		goto unlock;
	}
2029

2030
	if (obj->madv != I915_MADV_WILLNEED) {
2031
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2032
		ret = -EFAULT;
2033
		goto out;
2034 2035
	}

2036 2037 2038
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2039

2040
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2041

2042
out:
2043
	drm_gem_object_unreference(&obj->base);
2044
unlock:
2045
	mutex_unlock(&dev->struct_mutex);
2046
	return ret;
2047 2048
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2070
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2071 2072
}

D
Daniel Vetter 已提交
2073 2074 2075
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2076
{
2077
	i915_gem_object_free_mmap_offset(obj);
2078

2079 2080
	if (obj->base.filp == NULL)
		return;
2081

D
Daniel Vetter 已提交
2082 2083 2084 2085 2086
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2087
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2088 2089
	obj->madv = __I915_MADV_PURGED;
}
2090

2091 2092 2093
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2094
{
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2109 2110
}

2111
static void
2112
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2113
{
2114 2115
	struct sg_page_iter sg_iter;
	int ret;
2116

2117
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2118

C
Chris Wilson 已提交
2119 2120 2121 2122 2123 2124
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2125
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2126 2127 2128
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2129 2130
	i915_gem_gtt_finish_object(obj);

2131
	if (i915_gem_object_needs_bit17_swizzle(obj))
2132 2133
		i915_gem_object_save_bit_17_swizzle(obj);

2134 2135
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2136

2137
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2138
		struct page *page = sg_page_iter_page(&sg_iter);
2139

2140
		if (obj->dirty)
2141
			set_page_dirty(page);
2142

2143
		if (obj->madv == I915_MADV_WILLNEED)
2144
			mark_page_accessed(page);
2145

2146
		page_cache_release(page);
2147
	}
2148
	obj->dirty = 0;
2149

2150 2151
	sg_free_table(obj->pages);
	kfree(obj->pages);
2152
}
C
Chris Wilson 已提交
2153

2154
int
2155 2156 2157 2158
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2159
	if (obj->pages == NULL)
2160 2161
		return 0;

2162 2163 2164
	if (obj->pages_pin_count)
		return -EBUSY;

2165
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2166

2167 2168 2169
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2170
	list_del(&obj->global_list);
2171

2172
	ops->put_pages(obj);
2173
	obj->pages = NULL;
2174

2175
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2176 2177 2178 2179

	return 0;
}

2180
static int
C
Chris Wilson 已提交
2181
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2182
{
C
Chris Wilson 已提交
2183
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2184 2185
	int page_count, i;
	struct address_space *mapping;
2186 2187
	struct sg_table *st;
	struct scatterlist *sg;
2188
	struct sg_page_iter sg_iter;
2189
	struct page *page;
2190
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2191
	int ret;
C
Chris Wilson 已提交
2192
	gfp_t gfp;
2193

C
Chris Wilson 已提交
2194 2195 2196 2197 2198 2199 2200
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2201 2202 2203 2204
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2205
	page_count = obj->base.size / PAGE_SIZE;
2206 2207
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2208
		return -ENOMEM;
2209
	}
2210

2211 2212 2213 2214 2215
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2216
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2217
	gfp = mapping_gfp_mask(mapping);
2218
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2219
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2220 2221 2222
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2223 2224
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2225 2226 2227 2228 2229
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2230 2231 2232 2233 2234 2235 2236 2237
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2238
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2239 2240
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2241
				goto err_pages;
I
Imre Deak 已提交
2242
			}
C
Chris Wilson 已提交
2243
		}
2244 2245 2246 2247 2248 2249 2250 2251
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2252 2253 2254 2255 2256 2257 2258 2259 2260
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2261 2262 2263

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2264
	}
2265 2266 2267 2268
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2269 2270
	obj->pages = st;

I
Imre Deak 已提交
2271 2272 2273 2274
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2275
	if (i915_gem_object_needs_bit17_swizzle(obj))
2276 2277
		i915_gem_object_do_bit_17_swizzle(obj);

2278 2279 2280 2281
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2282 2283 2284
	return 0;

err_pages:
2285 2286
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2287
		page_cache_release(sg_page_iter_page(&sg_iter));
2288 2289
	sg_free_table(st);
	kfree(st);
2290 2291 2292 2293 2294 2295 2296 2297 2298

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2299 2300 2301 2302
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2303 2304
}

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2319
	if (obj->pages)
2320 2321
		return 0;

2322
	if (obj->madv != I915_MADV_WILLNEED) {
2323
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2324
		return -EFAULT;
2325 2326
	}

2327 2328
	BUG_ON(obj->pages_pin_count);

2329 2330 2331 2332
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2333
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2334 2335 2336 2337

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2338
	return 0;
2339 2340
}

2341
void i915_vma_move_to_active(struct i915_vma *vma,
2342
			     struct drm_i915_gem_request *req)
2343
{
2344
	struct drm_i915_gem_object *obj = vma->obj;
2345 2346 2347
	struct intel_engine_cs *ring;

	ring = i915_gem_request_get_ring(req);
2348 2349

	/* Add a reference if we're newly entering the active list. */
2350
	if (obj->active == 0)
2351
		drm_gem_object_reference(&obj->base);
2352
	obj->active |= intel_ring_flag(ring);
2353

2354
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2355
	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2356

2357
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2358 2359
}

2360 2361
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2362
{
2363 2364 2365 2366
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
2367
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2368 2369
}

2370
static void
2371
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2372
{
2373
	struct i915_vma *vma;
2374

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2387

2388 2389 2390
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2391
	}
2392

2393
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2394
	drm_gem_object_unreference(&obj->base);
2395 2396
}

2397
static int
2398
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2399
{
2400
	struct drm_i915_private *dev_priv = dev->dev_private;
2401
	struct intel_engine_cs *ring;
2402
	int ret, i, j;
2403

2404
	/* Carefully retire all requests without writing to the rings */
2405
	for_each_ring(ring, dev_priv, i) {
2406 2407 2408
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2409 2410
	}
	i915_gem_retire_requests(dev);
2411 2412

	/* Finally reset hw state */
2413
	for_each_ring(ring, dev_priv, i) {
2414
		intel_ring_init_seqno(ring, seqno);
2415

2416 2417
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2418
	}
2419

2420
	return 0;
2421 2422
}

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2449 2450
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2451
{
2452 2453 2454 2455
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2456
		int ret = i915_gem_init_seqno(dev, 0);
2457 2458
		if (ret)
			return ret;
2459

2460 2461
		dev_priv->next_seqno = 1;
	}
2462

2463
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2464
	return 0;
2465 2466
}

2467 2468 2469 2470 2471
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2472
void __i915_add_request(struct drm_i915_gem_request *request,
2473 2474
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2475
{
2476 2477
	struct intel_engine_cs *ring;
	struct drm_i915_private *dev_priv;
2478
	struct intel_ringbuffer *ringbuf;
2479
	u32 request_start;
2480 2481
	int ret;

2482
	if (WARN_ON(request == NULL))
2483
		return;
2484

2485 2486 2487 2488
	ring = request->ring;
	dev_priv = ring->dev->dev_private;
	ringbuf = request->ringbuf;

2489 2490 2491 2492 2493 2494 2495
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2496
	request_start = intel_ring_get_tail(ringbuf);
2497 2498 2499 2500 2501 2502 2503
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2504 2505
	if (flush_caches) {
		if (i915.enable_execlists)
2506
			ret = logical_ring_flush_all_caches(request);
2507
		else
2508
			ret = intel_ring_flush_all_caches(request);
2509 2510 2511
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2512

2513 2514 2515 2516 2517
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2518
	request->postfix = intel_ring_get_tail(ringbuf);
2519

2520
	if (i915.enable_execlists)
2521
		ret = ring->emit_request(request);
2522
	else {
2523
		ret = ring->add_request(request);
2524 2525

		request->tail = intel_ring_get_tail(ringbuf);
2526
	}
2527 2528
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2529

2530 2531 2532 2533 2534 2535 2536 2537
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2538
	request->batch_obj = obj;
2539

2540
	request->emitted_jiffies = jiffies;
2541
	ring->last_submitted_seqno = request->seqno;
2542
	list_add_tail(&request->list, &ring->request_list);
2543

2544
	trace_i915_gem_request_add(request);
C
Chris Wilson 已提交
2545

2546
	i915_queue_hangcheck(ring->dev);
2547

2548 2549 2550 2551
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2552

2553 2554
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2555 2556
}

2557
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2558
				   const struct intel_context *ctx)
2559
{
2560
	unsigned long elapsed;
2561

2562 2563 2564
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2565 2566
		return true;

2567 2568
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2569
		if (!i915_gem_context_is_default(ctx)) {
2570
			DRM_DEBUG("context hanging too fast, banning!\n");
2571
			return true;
2572 2573 2574
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2575
			return true;
2576
		}
2577 2578 2579 2580 2581
	}

	return false;
}

2582
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2583
				  struct intel_context *ctx,
2584
				  const bool guilty)
2585
{
2586 2587 2588 2589
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2590

2591 2592 2593
	hs = &ctx->hang_stats;

	if (guilty) {
2594
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2595 2596 2597 2598
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2599 2600 2601
	}
}

2602 2603 2604 2605 2606 2607
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2608 2609 2610
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2611 2612
	if (ctx) {
		if (i915.enable_execlists) {
2613 2614
			if (ctx != req->ring->default_context)
				intel_lr_context_unpin(req);
2615
		}
2616

2617 2618
		i915_gem_context_unreference(ctx);
	}
2619

2620
	kmem_cache_free(req->i915->requests, req);
2621 2622
}

2623
int i915_gem_request_alloc(struct intel_engine_cs *ring,
2624 2625
			   struct intel_context *ctx,
			   struct drm_i915_gem_request **req_out)
2626
{
2627
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2628
	struct drm_i915_gem_request *req;
2629 2630
	int ret;

2631 2632 2633
	if (!req_out)
		return -EINVAL;

2634
	*req_out = NULL;
2635

D
Daniel Vetter 已提交
2636 2637
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2638 2639
		return -ENOMEM;

D
Daniel Vetter 已提交
2640
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2641 2642
	if (ret)
		goto err;
2643

2644 2645
	kref_init(&req->ref);
	req->i915 = dev_priv;
D
Daniel Vetter 已提交
2646
	req->ring = ring;
2647 2648
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2649 2650

	if (i915.enable_execlists)
2651
		ret = intel_logical_ring_alloc_request_extras(req);
2652
	else
D
Daniel Vetter 已提交
2653
		ret = intel_ring_alloc_request_extras(req);
2654 2655
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2656
		goto err;
2657
	}
2658

2659 2660 2661 2662 2663 2664 2665
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
		i915_gem_request_cancel(req);
		return ret;
	}
2679

2680
	*req_out = req;
2681
	return 0;
2682 2683 2684 2685

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2686 2687
}

2688 2689 2690 2691 2692 2693 2694
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2695
struct drm_i915_gem_request *
2696
i915_gem_find_active_request(struct intel_engine_cs *ring)
2697
{
2698 2699 2700
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2701
		if (i915_gem_request_completed(request, false))
2702
			continue;
2703

2704
		return request;
2705
	}
2706 2707 2708 2709 2710

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2711
				       struct intel_engine_cs *ring)
2712 2713 2714 2715
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2716
	request = i915_gem_find_active_request(ring);
2717 2718 2719 2720 2721 2722

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2723
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2724 2725

	list_for_each_entry_continue(request, &ring->request_list, list)
2726
		i915_set_reset_status(dev_priv, request->ctx, false);
2727
}
2728

2729
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2730
					struct intel_engine_cs *ring)
2731
{
2732
	while (!list_empty(&ring->active_list)) {
2733
		struct drm_i915_gem_object *obj;
2734

2735 2736
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2737
				       ring_list[ring->id]);
2738

2739
		i915_gem_object_retire__read(obj, ring->id);
2740
	}
2741

2742 2743 2744 2745 2746 2747
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2748
		struct drm_i915_gem_request *submit_req;
2749 2750

		submit_req = list_first_entry(&ring->execlist_queue,
2751
				struct drm_i915_gem_request,
2752 2753
				execlist_link);
		list_del(&submit_req->execlist_link);
2754 2755

		if (submit_req->ctx != ring->default_context)
2756
			intel_lr_context_unpin(submit_req);
2757

2758
		i915_gem_request_unreference(submit_req);
2759 2760
	}

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2775
		i915_gem_request_retire(request);
2776
	}
2777 2778
}

2779
void i915_gem_reset(struct drm_device *dev)
2780
{
2781
	struct drm_i915_private *dev_priv = dev->dev_private;
2782
	struct intel_engine_cs *ring;
2783
	int i;
2784

2785 2786 2787 2788 2789 2790 2791 2792
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2793
	for_each_ring(ring, dev_priv, i)
2794
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2795

2796 2797
	i915_gem_context_reset(dev);

2798
	i915_gem_restore_fences(dev);
2799 2800

	WARN_ON(i915_verify_lists(dev));
2801 2802 2803 2804 2805
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2806
void
2807
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2808
{
C
Chris Wilson 已提交
2809
	WARN_ON(i915_verify_lists(ring->dev));
2810

2811 2812 2813 2814
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2815
	 */
2816
	while (!list_empty(&ring->request_list)) {
2817 2818
		struct drm_i915_gem_request *request;

2819
		request = list_first_entry(&ring->request_list,
2820 2821 2822
					   struct drm_i915_gem_request,
					   list);

2823
		if (!i915_gem_request_completed(request, true))
2824 2825
			break;

2826
		i915_gem_request_retire(request);
2827
	}
2828

2829 2830 2831 2832 2833 2834 2835 2836 2837
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2838
				      ring_list[ring->id]);
2839

2840
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2841 2842
			break;

2843
		i915_gem_object_retire__read(obj, ring->id);
2844 2845
	}

2846 2847
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2848
		ring->irq_put(ring);
2849
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2850
	}
2851

C
Chris Wilson 已提交
2852
	WARN_ON(i915_verify_lists(ring->dev));
2853 2854
}

2855
bool
2856 2857
i915_gem_retire_requests(struct drm_device *dev)
{
2858
	struct drm_i915_private *dev_priv = dev->dev_private;
2859
	struct intel_engine_cs *ring;
2860
	bool idle = true;
2861
	int i;
2862

2863
	for_each_ring(ring, dev_priv, i) {
2864
		i915_gem_retire_requests_ring(ring);
2865
		idle &= list_empty(&ring->request_list);
2866 2867 2868 2869 2870 2871 2872 2873 2874
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2875 2876 2877 2878 2879 2880 2881 2882
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2883 2884
}

2885
static void
2886 2887
i915_gem_retire_work_handler(struct work_struct *work)
{
2888 2889 2890
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2891
	bool idle;
2892

2893
	/* Come back later if the device is busy... */
2894 2895 2896 2897
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2898
	}
2899
	if (!idle)
2900 2901
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2902
}
2903

2904 2905 2906 2907 2908
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2909
	struct drm_device *dev = dev_priv->dev;
2910 2911
	struct intel_engine_cs *ring;
	int i;
2912

2913 2914 2915
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2916 2917 2918 2919 2920 2921 2922 2923 2924

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2925

2926 2927
		mutex_unlock(&dev->struct_mutex);
	}
2928 2929
}

2930 2931 2932 2933 2934 2935 2936 2937
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2938
	int i;
2939 2940 2941

	if (!obj->active)
		return 0;
2942

2943 2944
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
2945

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
2958 2959 2960 2961 2962
	}

	return 0;
}

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2988
	struct drm_i915_private *dev_priv = dev->dev_private;
2989 2990
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2991
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
2992
	unsigned reset_counter;
2993 2994
	int i, n = 0;
	int ret;
2995

2996 2997 2998
	if (args->flags != 0)
		return -EINVAL;

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3009 3010
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3011 3012 3013
	if (ret)
		goto out;

3014
	if (!obj->active)
3015
		goto out;
3016 3017

	/* Do this after OLR check to make sure we make forward progress polling
3018
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3019
	 */
3020
	if (args->timeout_ns == 0) {
3021 3022 3023 3024 3025
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3026
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3027 3028 3029 3030 3031 3032 3033 3034

	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3035 3036
	mutex_unlock(&dev->struct_mutex);

3037 3038 3039 3040 3041 3042 3043
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						  file->driver_priv);
		i915_gem_request_unreference__unlocked(req[i]);
	}
3044
	return ret;
3045 3046 3047 3048 3049 3050 3051

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3052 3053 3054
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3055 3056
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3057 3058 3059 3060
{
	struct intel_engine_cs *from;
	int ret;

3061
	from = i915_gem_request_get_ring(from_req);
3062 3063 3064
	if (to == from)
		return 0;

3065
	if (i915_gem_request_completed(from_req, true))
3066 3067 3068
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3069
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3070
		ret = __i915_wait_request(from_req,
3071 3072 3073 3074
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3075 3076 3077
		if (ret)
			return ret;

3078
		i915_gem_object_retire_request(obj, from_req);
3079 3080
	} else {
		int idx = intel_ring_sync_index(from, to);
3081 3082 3083
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3084 3085 3086 3087

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3088 3089 3090 3091 3092 3093
		if (*to_req == NULL) {
			ret = i915_gem_request_alloc(to, to->default_context, to_req);
			if (ret)
				return ret;
		}

3094 3095
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3110 3111 3112 3113 3114
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3115 3116 3117
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3118 3119 3120
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3121
 * rather than a particular GPU ring. Conceptually we serialise writes
3122
 * between engines inside the GPU. We only allow one engine to write
3123 3124 3125 3126 3127 3128 3129 3130 3131
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3132
 *
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3143 3144
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3145 3146
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3147 3148
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3149
{
3150 3151 3152
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3153

3154
	if (!obj->active)
3155 3156
		return 0;

3157 3158
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3159

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3170
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3171 3172 3173
		if (ret)
			return ret;
	}
3174

3175
	return 0;
3176 3177
}

3178 3179 3180 3181 3182 3183 3184
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3185 3186 3187
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3188 3189 3190
	/* Wait for any direct GTT access to complete */
	mb();

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3202
int i915_vma_unbind(struct i915_vma *vma)
3203
{
3204
	struct drm_i915_gem_object *obj = vma->obj;
3205
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3206
	int ret;
3207

3208
	if (list_empty(&vma->vma_link))
3209 3210
		return 0;

3211 3212 3213 3214
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3215

B
Ben Widawsky 已提交
3216
	if (vma->pin_count)
3217
		return -EBUSY;
3218

3219 3220
	BUG_ON(obj->pages == NULL);

3221
	ret = i915_gem_object_wait_rendering(obj, false);
3222
	if (ret)
3223 3224 3225 3226 3227 3228
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3229 3230
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3231
		i915_gem_object_finish_gtt(obj);
3232

3233 3234 3235 3236 3237
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3238

3239
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3240

3241
	vma->vm->unbind_vma(vma);
3242
	vma->bound = 0;
3243

3244
	list_del_init(&vma->mm_list);
3245 3246 3247 3248 3249 3250 3251
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3252
		vma->ggtt_view.pages = NULL;
3253
	}
3254

B
Ben Widawsky 已提交
3255 3256 3257 3258
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3259
	 * no more VMAs exist. */
I
Imre Deak 已提交
3260
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3261
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3262

3263 3264 3265 3266 3267 3268
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3269
	return 0;
3270 3271
}

3272
int i915_gpu_idle(struct drm_device *dev)
3273
{
3274
	struct drm_i915_private *dev_priv = dev->dev_private;
3275
	struct intel_engine_cs *ring;
3276
	int ret, i;
3277 3278

	/* Flush everything onto the inactive list. */
3279
	for_each_ring(ring, dev_priv, i) {
3280
		if (!i915.enable_execlists) {
3281 3282 3283
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3284 3285
			if (ret)
				return ret;
3286

3287
			ret = i915_switch_context(req);
3288 3289 3290 3291 3292
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3293
			i915_add_request_no_flush(req);
3294
		}
3295

3296
		ret = intel_ring_idle(ring);
3297 3298 3299
		if (ret)
			return ret;
	}
3300

3301
	WARN_ON(i915_verify_lists(dev));
3302
	return 0;
3303 3304
}

3305
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3306 3307
				     unsigned long cache_level)
{
3308
	struct drm_mm_node *gtt_space = &vma->node;
3309 3310
	struct drm_mm_node *other;

3311 3312 3313 3314 3315 3316
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3317
	 */
3318
	if (vma->vm->mm.color_adjust == NULL)
3319 3320
		return true;

3321
	if (!drm_mm_node_allocated(gtt_space))
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3338
/**
3339 3340
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3341
 */
3342
static struct i915_vma *
3343 3344
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3345
			   const struct i915_ggtt_view *ggtt_view,
3346
			   unsigned alignment,
3347
			   uint64_t flags)
3348
{
3349
	struct drm_device *dev = obj->base.dev;
3350
	struct drm_i915_private *dev_priv = dev->dev_private;
3351
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3352
	u64 start =
3353
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3354
	u64 end =
3355
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3356
	struct i915_vma *vma;
3357
	int ret;
3358

3359 3360 3361 3362 3363
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3364

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3394

3395
	if (alignment == 0)
3396
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3397
						unfenced_alignment;
3398
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3399 3400 3401
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3402
		return ERR_PTR(-EINVAL);
3403 3404
	}

3405 3406 3407
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3408
	 */
3409
	if (size > end) {
3410
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%llu\n",
3411 3412
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3413
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3414
			  end);
3415
		return ERR_PTR(-E2BIG);
3416 3417
	}

3418
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3419
	if (ret)
3420
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3421

3422 3423
	i915_gem_object_pin_pages(obj);

3424 3425 3426
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3427
	if (IS_ERR(vma))
3428
		goto err_unpin;
B
Ben Widawsky 已提交
3429

3430
search_free:
3431
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3432
						  size, alignment,
3433 3434
						  obj->cache_level,
						  start, end,
3435 3436
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3437
	if (ret) {
3438
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3439 3440 3441
					       obj->cache_level,
					       start, end,
					       flags);
3442 3443
		if (ret == 0)
			goto search_free;
3444

3445
		goto err_free_vma;
3446
	}
3447
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3448
		ret = -EINVAL;
3449
		goto err_remove_node;
3450 3451
	}

3452
	trace_i915_vma_bind(vma, flags);
3453
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3454
	if (ret)
I
Imre Deak 已提交
3455
		goto err_remove_node;
3456

3457
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3458
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3459

3460
	return vma;
B
Ben Widawsky 已提交
3461

3462
err_remove_node:
3463
	drm_mm_remove_node(&vma->node);
3464
err_free_vma:
B
Ben Widawsky 已提交
3465
	i915_gem_vma_destroy(vma);
3466
	vma = ERR_PTR(ret);
3467
err_unpin:
B
Ben Widawsky 已提交
3468
	i915_gem_object_unpin_pages(obj);
3469
	return vma;
3470 3471
}

3472
bool
3473 3474
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3475 3476 3477 3478 3479
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3480
	if (obj->pages == NULL)
3481
		return false;
3482

3483 3484 3485 3486
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3487
	if (obj->stolen || obj->phys_handle)
3488
		return false;
3489

3490 3491 3492 3493 3494 3495 3496 3497
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3498 3499
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3500
		return false;
3501
	}
3502

C
Chris Wilson 已提交
3503
	trace_i915_gem_object_clflush(obj);
3504
	drm_clflush_sg(obj->pages);
3505
	obj->cache_dirty = false;
3506 3507

	return true;
3508 3509 3510 3511
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3512
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3513
{
C
Chris Wilson 已提交
3514 3515
	uint32_t old_write_domain;

3516
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3517 3518
		return;

3519
	/* No actual flushing is required for the GTT write domain.  Writes
3520 3521
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3522 3523 3524 3525
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3526
	 */
3527 3528
	wmb();

3529 3530
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3531

3532
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3533

C
Chris Wilson 已提交
3534
	trace_i915_gem_object_change_domain(obj,
3535
					    obj->base.read_domains,
C
Chris Wilson 已提交
3536
					    old_write_domain);
3537 3538 3539 3540
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3541
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3542
{
C
Chris Wilson 已提交
3543
	uint32_t old_write_domain;
3544

3545
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3546 3547
		return;

3548
	if (i915_gem_clflush_object(obj, obj->pin_display))
3549 3550
		i915_gem_chipset_flush(obj->base.dev);

3551 3552
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3553

3554
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3555

C
Chris Wilson 已提交
3556
	trace_i915_gem_object_change_domain(obj,
3557
					    obj->base.read_domains,
C
Chris Wilson 已提交
3558
					    old_write_domain);
3559 3560
}

3561 3562 3563 3564 3565 3566
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3567
int
3568
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3569
{
C
Chris Wilson 已提交
3570
	uint32_t old_write_domain, old_read_domains;
3571
	struct i915_vma *vma;
3572
	int ret;
3573

3574 3575 3576
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3577
	ret = i915_gem_object_wait_rendering(obj, !write);
3578 3579 3580
	if (ret)
		return ret;

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3593
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3594

3595 3596 3597 3598 3599 3600 3601
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3602 3603
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3604

3605 3606 3607
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3608 3609
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3610
	if (write) {
3611 3612 3613
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3614 3615
	}

C
Chris Wilson 已提交
3616 3617 3618 3619
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3620
	/* And bump the LRU for this access */
3621 3622
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3623
		list_move_tail(&vma->mm_list,
3624
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3625

3626 3627 3628
	return 0;
}

3629 3630 3631
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3632
	struct drm_device *dev = obj->base.dev;
3633
	struct i915_vma *vma, *next;
3634 3635 3636 3637 3638
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3639
	if (i915_gem_obj_is_pinned(obj)) {
3640 3641 3642 3643
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3644
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3645
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3646
			ret = i915_vma_unbind(vma);
3647 3648 3649
			if (ret)
				return ret;
		}
3650 3651
	}

3652
	if (i915_gem_obj_bound_any(obj)) {
3653
		ret = i915_gem_object_wait_rendering(obj, false);
3654 3655 3656 3657 3658 3659 3660 3661 3662
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3663
		if (INTEL_INFO(dev)->gen < 6) {
3664 3665 3666 3667 3668
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3669
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3670 3671
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
3672
						    PIN_UPDATE);
3673 3674 3675
				if (ret)
					return ret;
			}
3676 3677
	}

3678 3679 3680 3681
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3682 3683 3684 3685 3686
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3687 3688 3689 3690 3691
	}

	return 0;
}

B
Ben Widawsky 已提交
3692 3693
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3694
{
B
Ben Widawsky 已提交
3695
	struct drm_i915_gem_caching *args = data;
3696 3697 3698
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3699 3700
	if (&obj->base == NULL)
		return -ENOENT;
3701

3702 3703 3704 3705 3706 3707
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3708 3709 3710 3711
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3712 3713 3714 3715
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3716

3717 3718
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3719 3720
}

B
Ben Widawsky 已提交
3721 3722
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3723
{
B
Ben Widawsky 已提交
3724
	struct drm_i915_gem_caching *args = data;
3725 3726 3727 3728
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3729 3730
	switch (args->caching) {
	case I915_CACHING_NONE:
3731 3732
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3733
	case I915_CACHING_CACHED:
3734 3735
		level = I915_CACHE_LLC;
		break;
3736 3737 3738
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3739 3740 3741 3742
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3743 3744 3745 3746
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3761
/*
3762 3763 3764
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3765 3766
 */
int
3767 3768
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3769
				     struct intel_engine_cs *pipelined,
3770
				     struct drm_i915_gem_request **pipelined_request,
3771
				     const struct i915_ggtt_view *view)
3772
{
3773
	u32 old_read_domains, old_write_domain;
3774 3775
	int ret;

3776
	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3777 3778
	if (ret)
		return ret;
3779

3780 3781 3782
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3783
	obj->pin_display++;
3784

3785 3786 3787 3788 3789 3790 3791 3792 3793
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3794 3795
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3796
	if (ret)
3797
		goto err_unpin_display;
3798

3799 3800 3801 3802
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3803 3804 3805
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3806
	if (ret)
3807
		goto err_unpin_display;
3808

3809
	i915_gem_object_flush_cpu_write_domain(obj);
3810

3811
	old_write_domain = obj->base.write_domain;
3812
	old_read_domains = obj->base.read_domains;
3813 3814 3815 3816

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3817
	obj->base.write_domain = 0;
3818
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3819 3820 3821

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3822
					    old_write_domain);
3823 3824

	return 0;
3825 3826

err_unpin_display:
3827
	obj->pin_display--;
3828 3829 3830 3831
	return ret;
}

void
3832 3833
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3834
{
3835 3836 3837
	if (WARN_ON(obj->pin_display == 0))
		return;

3838 3839
	i915_gem_object_ggtt_unpin_view(obj, view);

3840
	obj->pin_display--;
3841 3842
}

3843 3844 3845 3846 3847 3848
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3849
int
3850
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3851
{
C
Chris Wilson 已提交
3852
	uint32_t old_write_domain, old_read_domains;
3853 3854
	int ret;

3855 3856 3857
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3858
	ret = i915_gem_object_wait_rendering(obj, !write);
3859 3860 3861
	if (ret)
		return ret;

3862
	i915_gem_object_flush_gtt_write_domain(obj);
3863

3864 3865
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3866

3867
	/* Flush the CPU cache if it's still invalid. */
3868
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3869
		i915_gem_clflush_object(obj, false);
3870

3871
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3872 3873 3874 3875 3876
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3877
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3878 3879 3880 3881 3882

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3883 3884
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3885
	}
3886

C
Chris Wilson 已提交
3887 3888 3889 3890
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3891 3892 3893
	return 0;
}

3894 3895 3896
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3897 3898 3899 3900
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3901 3902 3903
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3904
static int
3905
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3906
{
3907 3908
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3909
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3910
	struct drm_i915_gem_request *request, *target = NULL;
3911
	unsigned reset_counter;
3912
	int ret;
3913

3914 3915 3916 3917 3918 3919 3920
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
3921

3922
	spin_lock(&file_priv->mm.lock);
3923
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3924 3925
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3926

3927 3928 3929 3930 3931 3932 3933
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3934
		target = request;
3935
	}
3936
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3937 3938
	if (target)
		i915_gem_request_reference(target);
3939
	spin_unlock(&file_priv->mm.lock);
3940

3941
	if (target == NULL)
3942
		return 0;
3943

3944
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
3945 3946
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3947

3948
	i915_gem_request_unreference__unlocked(target);
3949

3950 3951 3952
	return ret;
}

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

3972 3973 3974 3975 3976 3977
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
3978
{
3979
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3980
	struct i915_vma *vma;
3981
	unsigned bound;
3982 3983
	int ret;

3984 3985 3986
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

3987
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3988
		return -EINVAL;
3989

3990 3991 3992
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

3993 3994 3995 3996 3997 3998 3999 4000 4001
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4002
	if (vma) {
B
Ben Widawsky 已提交
4003 4004 4005
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4006
		if (i915_vma_misplaced(vma, alignment, flags)) {
4007
			unsigned long offset;
4008
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4009
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4010
			WARN(vma->pin_count,
4011
			     "bo is already pinned in %s with incorrect alignment:"
4012
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4013
			     " obj->map_and_fenceable=%d\n",
4014 4015
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4016
			     alignment,
4017
			     !!(flags & PIN_MAPPABLE),
4018
			     obj->map_and_fenceable);
4019
			ret = i915_vma_unbind(vma);
4020 4021
			if (ret)
				return ret;
4022 4023

			vma = NULL;
4024 4025 4026
		}
	}

4027
	bound = vma ? vma->bound : 0;
4028
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4029 4030
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4031 4032
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4033 4034
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4035 4036 4037
		if (ret)
			return ret;
	}
4038

4039 4040
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4055
		mappable = (vma->node.start + fence_size <=
4056 4057 4058 4059
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;

4060 4061
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4062

4063
	vma->pin_count++;
4064 4065 4066
	return 0;
}

4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4088
				      alignment, flags | PIN_GLOBAL);
4089 4090
}

4091
void
4092 4093
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4094
{
4095
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4096

B
Ben Widawsky 已提交
4097
	BUG_ON(!vma);
4098
	WARN_ON(vma->pin_count == 0);
4099
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4100

4101
	--vma->pin_count;
4102 4103 4104 4105
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4106
		    struct drm_file *file)
4107 4108
{
	struct drm_i915_gem_busy *args = data;
4109
	struct drm_i915_gem_object *obj;
4110 4111
	int ret;

4112
	ret = i915_mutex_lock_interruptible(dev);
4113
	if (ret)
4114
		return ret;
4115

4116
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4117
	if (&obj->base == NULL) {
4118 4119
		ret = -ENOENT;
		goto unlock;
4120
	}
4121

4122 4123 4124 4125
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4126
	 */
4127
	ret = i915_gem_object_flush_active(obj);
4128 4129
	if (ret)
		goto unref;
4130

4131 4132 4133 4134
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4135

4136
unref:
4137
	drm_gem_object_unreference(&obj->base);
4138
unlock:
4139
	mutex_unlock(&dev->struct_mutex);
4140
	return ret;
4141 4142 4143 4144 4145 4146
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4147
	return i915_gem_ring_throttle(dev, file_priv);
4148 4149
}

4150 4151 4152 4153
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4154
	struct drm_i915_private *dev_priv = dev->dev_private;
4155
	struct drm_i915_gem_madvise *args = data;
4156
	struct drm_i915_gem_object *obj;
4157
	int ret;
4158 4159 4160 4161 4162 4163 4164 4165 4166

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4167 4168 4169 4170
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4171
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4172
	if (&obj->base == NULL) {
4173 4174
		ret = -ENOENT;
		goto unlock;
4175 4176
	}

B
Ben Widawsky 已提交
4177
	if (i915_gem_obj_is_pinned(obj)) {
4178 4179
		ret = -EINVAL;
		goto out;
4180 4181
	}

4182 4183 4184 4185 4186 4187 4188 4189 4190
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4191 4192
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4193

C
Chris Wilson 已提交
4194
	/* if the object is no longer attached, discard its backing storage */
4195
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4196 4197
		i915_gem_object_truncate(obj);

4198
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4199

4200
out:
4201
	drm_gem_object_unreference(&obj->base);
4202
unlock:
4203
	mutex_unlock(&dev->struct_mutex);
4204
	return ret;
4205 4206
}

4207 4208
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4209
{
4210 4211
	int i;

4212
	INIT_LIST_HEAD(&obj->global_list);
4213 4214
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4215
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4216
	INIT_LIST_HEAD(&obj->vma_list);
4217
	INIT_LIST_HEAD(&obj->batch_pool_link);
4218

4219 4220
	obj->ops = ops;

4221 4222 4223 4224 4225 4226
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4227 4228 4229 4230 4231
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4232 4233
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4234
{
4235
	struct drm_i915_gem_object *obj;
4236
	struct address_space *mapping;
D
Daniel Vetter 已提交
4237
	gfp_t mask;
4238

4239
	obj = i915_gem_object_alloc(dev);
4240 4241
	if (obj == NULL)
		return NULL;
4242

4243
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4244
		i915_gem_object_free(obj);
4245 4246
		return NULL;
	}
4247

4248 4249 4250 4251 4252 4253 4254
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4255
	mapping = file_inode(obj->base.filp)->i_mapping;
4256
	mapping_set_gfp_mask(mapping, mask);
4257

4258
	i915_gem_object_init(obj, &i915_gem_object_ops);
4259

4260 4261
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4262

4263 4264
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4280 4281
	trace_i915_gem_object_create(obj);

4282
	return obj;
4283 4284
}

4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4309
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4310
{
4311
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4312
	struct drm_device *dev = obj->base.dev;
4313
	struct drm_i915_private *dev_priv = dev->dev_private;
4314
	struct i915_vma *vma, *next;
4315

4316 4317
	intel_runtime_pm_get(dev_priv);

4318 4319
	trace_i915_gem_object_destroy(obj);

4320
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4321 4322 4323 4324
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4325 4326
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4327

4328 4329
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4330

4331
			WARN_ON(i915_vma_unbind(vma));
4332

4333 4334
			dev_priv->mm.interruptible = was_interruptible;
		}
4335 4336
	}

B
Ben Widawsky 已提交
4337 4338 4339 4340 4341
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4342 4343
	WARN_ON(obj->frontbuffer_bits);

4344 4345 4346 4347 4348
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4349 4350
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4351
	if (discard_backing_storage(obj))
4352
		obj->madv = I915_MADV_DONTNEED;
4353
	i915_gem_object_put_pages(obj);
4354
	i915_gem_object_free_mmap_offset(obj);
4355

4356 4357
	BUG_ON(obj->pages);

4358 4359
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4360

4361 4362 4363
	if (obj->ops->release)
		obj->ops->release(obj);

4364 4365
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4366

4367
	kfree(obj->bit_17);
4368
	i915_gem_object_free(obj);
4369 4370

	intel_runtime_pm_put(dev_priv);
4371 4372
}

4373 4374
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4375 4376
{
	struct i915_vma *vma;
4377 4378 4379 4380 4381
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4382
			return vma;
4383 4384 4385 4386 4387 4388 4389 4390 4391
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4392

4393 4394 4395 4396
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4397 4398
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4399
			return vma;
4400 4401 4402
	return NULL;
}

B
Ben Widawsky 已提交
4403 4404
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4405
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4406
	WARN_ON(vma->node.allocated);
4407 4408 4409 4410 4411

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4412 4413
	vm = vma->vm;

4414 4415
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4416

4417
	list_del(&vma->vma_link);
4418

4419
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4420 4421
}

4422 4423 4424 4425
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4426
	struct intel_engine_cs *ring;
4427 4428 4429
	int i;

	for_each_ring(ring, dev_priv, i)
4430
		dev_priv->gt.stop_ring(ring);
4431 4432
}

4433
int
4434
i915_gem_suspend(struct drm_device *dev)
4435
{
4436
	struct drm_i915_private *dev_priv = dev->dev_private;
4437
	int ret = 0;
4438

4439
	mutex_lock(&dev->struct_mutex);
4440
	ret = i915_gpu_idle(dev);
4441
	if (ret)
4442
		goto err;
4443

4444
	i915_gem_retire_requests(dev);
4445

4446
	i915_gem_stop_ringbuffers(dev);
4447 4448
	mutex_unlock(&dev->struct_mutex);

4449
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4450
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4451
	flush_delayed_work(&dev_priv->mm.idle_work);
4452

4453 4454 4455 4456 4457
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4458
	return 0;
4459 4460 4461 4462

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4463 4464
}

4465
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4466
{
4467
	struct intel_engine_cs *ring = req->ring;
4468
	struct drm_device *dev = ring->dev;
4469
	struct drm_i915_private *dev_priv = dev->dev_private;
4470 4471
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4472
	int i, ret;
B
Ben Widawsky 已提交
4473

4474
	if (!HAS_L3_DPF(dev) || !remap_info)
4475
		return 0;
B
Ben Widawsky 已提交
4476

4477
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4478 4479
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4480

4481 4482 4483 4484 4485
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4486
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4487 4488 4489
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4490 4491
	}

4492
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4493

4494
	return ret;
B
Ben Widawsky 已提交
4495 4496
}

4497 4498
void i915_gem_init_swizzling(struct drm_device *dev)
{
4499
	struct drm_i915_private *dev_priv = dev->dev_private;
4500

4501
	if (INTEL_INFO(dev)->gen < 5 ||
4502 4503 4504 4505 4506 4507
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4508 4509 4510
	if (IS_GEN5(dev))
		return;

4511 4512
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4513
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4514
	else if (IS_GEN7(dev))
4515
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4516 4517
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4518 4519
	else
		BUG();
4520
}
D
Daniel Vetter 已提交
4521

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4565
int i915_gem_init_rings(struct drm_device *dev)
4566
{
4567
	struct drm_i915_private *dev_priv = dev->dev_private;
4568
	int ret;
4569

4570
	ret = intel_init_render_ring_buffer(dev);
4571
	if (ret)
4572
		return ret;
4573 4574

	if (HAS_BSD(dev)) {
4575
		ret = intel_init_bsd_ring_buffer(dev);
4576 4577
		if (ret)
			goto cleanup_render_ring;
4578
	}
4579

4580
	if (intel_enable_blt(dev)) {
4581 4582 4583 4584 4585
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4586 4587 4588 4589 4590 4591
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4592 4593 4594 4595 4596
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4597

4598
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4599
	if (ret)
4600
		goto cleanup_bsd2_ring;
4601 4602 4603

	return 0;

4604 4605
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4606 4607
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4621
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4622
	struct intel_engine_cs *ring;
4623
	int ret, i, j;
4624 4625 4626 4627

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4628 4629 4630
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4631
	if (dev_priv->ellc_size)
4632
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4633

4634 4635 4636
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4637

4638
	if (HAS_PCH_NOP(dev)) {
4639 4640 4641 4642 4643 4644 4645 4646 4647
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4648 4649
	}

4650 4651
	i915_gem_init_swizzling(dev);

4652 4653 4654 4655 4656 4657 4658 4659
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4660 4661
	BUG_ON(!dev_priv->ring[RCS].default_context);

4662 4663 4664 4665 4666 4667 4668
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
D
Daniel Vetter 已提交
4669 4670 4671
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4672
			goto out;
D
Daniel Vetter 已提交
4673
	}
4674

4675 4676
	/* Now it is safe to go back round and do everything else: */
	for_each_ring(ring, dev_priv, i) {
4677 4678
		struct drm_i915_gem_request *req;

4679 4680
		WARN_ON(!ring->default_context);

4681 4682 4683 4684 4685 4686
		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
		if (ret) {
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}

4687 4688
		if (ring->id == RCS) {
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4689
				i915_gem_l3_remap(req, j);
4690
		}
4691

4692
		ret = i915_ppgtt_init_ring(req);
4693 4694
		if (ret && ret != -EIO) {
			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4695
			i915_gem_request_cancel(req);
4696 4697 4698
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
4699

4700
		ret = i915_gem_context_enable(req);
4701 4702
		if (ret && ret != -EIO) {
			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4703
			i915_gem_request_cancel(req);
4704 4705 4706
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
4707

4708
		i915_add_request_no_flush(req);
4709
	}
D
Daniel Vetter 已提交
4710

4711 4712
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4713
	return ret;
4714 4715
}

4716 4717 4718 4719 4720
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4721 4722 4723
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4724
	mutex_lock(&dev->struct_mutex);
4725 4726 4727

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4728 4729 4730
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4731 4732 4733
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4734
	if (!i915.enable_execlists) {
4735
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4736 4737 4738
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4739
	} else {
4740
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4741 4742 4743
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4744 4745
	}

4746 4747 4748 4749 4750 4751 4752 4753
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4754
	ret = i915_gem_init_userptr(dev);
4755 4756
	if (ret)
		goto out_unlock;
4757

4758
	i915_gem_init_global_gtt(dev);
4759

4760
	ret = i915_gem_context_init(dev);
4761 4762
	if (ret)
		goto out_unlock;
4763

D
Daniel Vetter 已提交
4764 4765
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4766
		goto out_unlock;
4767

4768
	ret = i915_gem_init_hw(dev);
4769 4770 4771 4772 4773 4774 4775 4776
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4777
	}
4778 4779

out_unlock:
4780
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4781
	mutex_unlock(&dev->struct_mutex);
4782

4783
	return ret;
4784 4785
}

4786 4787 4788
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4789
	struct drm_i915_private *dev_priv = dev->dev_private;
4790
	struct intel_engine_cs *ring;
4791
	int i;
4792

4793
	for_each_ring(ring, dev_priv, i)
4794
		dev_priv->gt.cleanup_ring(ring);
4795 4796 4797 4798 4799 4800 4801 4802

    if (i915.enable_execlists)
            /*
             * Neither the BIOS, ourselves or any other kernel
             * expects the system to be in execlists mode on startup,
             * so we need to reset the GPU back to legacy mode.
             */
            intel_gpu_reset(dev);
4803 4804
}

4805
static void
4806
init_ring_lists(struct intel_engine_cs *ring)
4807 4808 4809 4810 4811
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4812 4813
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4814
{
4815 4816
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4817 4818 4819 4820
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4821
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4822 4823
}

4824 4825 4826
void
i915_gem_load(struct drm_device *dev)
{
4827
	struct drm_i915_private *dev_priv = dev->dev_private;
4828 4829
	int i;

4830
	dev_priv->objects =
4831 4832 4833 4834
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4835 4836 4837 4838 4839
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4840 4841 4842 4843 4844
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4845

B
Ben Widawsky 已提交
4846 4847 4848
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4849
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4850 4851
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4852
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4853 4854
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4855
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4856
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4857 4858
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4859 4860
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4861
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4862

4863 4864
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4865 4866 4867
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4868 4869 4870 4871
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4872 4873 4874 4875
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

4876
	/* Initialize fence registers to zero */
4877 4878
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
4879

4880
	i915_gem_detect_bit_6_swizzle(dev);
4881
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4882

4883 4884
	dev_priv->mm.interruptible = true;

4885
	i915_gem_shrinker_init(dev_priv);
4886 4887

	mutex_init(&dev_priv->fb_tracking.lock);
4888
}
4889

4890
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4891
{
4892
	struct drm_i915_file_private *file_priv = file->driver_priv;
4893 4894 4895 4896 4897

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4898
	spin_lock(&file_priv->mm.lock);
4899 4900 4901 4902 4903 4904 4905 4906 4907
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4908
	spin_unlock(&file_priv->mm.lock);
4909

4910
	if (!list_empty(&file_priv->rps.link)) {
4911
		spin_lock(&to_i915(dev)->rps.client_lock);
4912
		list_del(&file_priv->rps.link);
4913
		spin_unlock(&to_i915(dev)->rps.client_lock);
4914
	}
4915 4916 4917 4918 4919
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4920
	int ret;
4921 4922 4923 4924 4925 4926 4927 4928 4929

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
4930
	file_priv->file = file;
4931
	INIT_LIST_HEAD(&file_priv->rps.link);
4932 4933 4934 4935

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4936 4937 4938
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4939

4940
	return ret;
4941 4942
}

4943 4944 4945 4946 4947 4948 4949 4950 4951
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

4969
/* All the new VM stuff */
4970 4971 4972
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
4973 4974 4975 4976
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

4977
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4978 4979

	list_for_each_entry(vma, &o->vma_list, vma_link) {
4980 4981 4982 4983
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4984 4985
			return vma->node.start;
	}
4986

4987 4988
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4989 4990 4991
	return -1;
}

4992 4993
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
4994
			      const struct i915_ggtt_view *view)
4995
{
4996
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
4997 4998 4999
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5000 5001
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5002 5003
			return vma->node.start;

5004
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5025
				  const struct i915_ggtt_view *view)
5026 5027 5028 5029 5030 5031
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5032
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5033
		    drm_mm_node_allocated(&vma->node))
5034 5035 5036 5037 5038 5039 5040
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5041
	struct i915_vma *vma;
5042

5043 5044
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5056
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5057 5058 5059

	BUG_ON(list_empty(&o->vma_list));

5060 5061 5062 5063
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5064 5065
		if (vma->vm == vm)
			return vma->node.size;
5066
	}
5067 5068 5069
	return 0;
}

5070
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5071 5072
{
	struct i915_vma *vma;
5073
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5074 5075
		if (vma->pin_count > 0)
			return true;
5076

5077
	return false;
5078
}
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118

/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
	if (IS_ERR_OR_NULL(obj))
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}