mmu.c 162.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

56 57
#include "paging.h"

P
Paolo Bonzini 已提交
58 59
extern bool itlb_multihit_kvm_mitigation;

60
int __read_mostly nx_huge_pages = -1;
61 62 63 64
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
65
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66
#endif
P
Paolo Bonzini 已提交
67 68

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
70

71
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
72 73 74 75
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

76
static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77 78 79 80
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
81 82
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 84 85
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
86

87 88 89
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

90 91 92 93 94 95 96
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
97
bool tdp_enabled = false;
98

99
static int max_huge_page_level __read_mostly;
100
static int max_tdp_level __read_mostly;
101

102 103 104 105
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
106 107 108
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
109
};
110 111

#ifdef MMU_DEBUG
112
bool dbg = 0;
113
module_param(dbg, bool, 0644);
114
#endif
A
Avi Kivity 已提交
115

116 117
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
118 119 120
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
121
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
122

123 124 125
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
126 127 128 129 130 131 132 133

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
134 135 136
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
137

138 139
#include <trace/events/kvm.h>

140 141 142
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

143 144 145
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
146 147
};

148 149 150 151
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
152
	int level;
153 154 155
	unsigned index;
};

156 157 158 159 160 161 162
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
163 164 165 166
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

167 168 169 170 171 172
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

173
static struct kmem_cache *pte_list_desc_cache;
174
struct kmem_cache *mmu_page_header_cache;
175
static struct percpu_counter kvm_total_used_mmu_pages;
176

177
static void mmu_spte_set(u64 *sptep, u64 spte);
178 179
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
180

181 182 183 184 185 186
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

187 188 189
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 * reading from the role_regs.  Once the mmu_role is constructed, it becomes
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
static inline bool is_##reg##_##name(struct kvm_mmu *mmu)	\
{								\
	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
}
BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);

232 233 234 235 236 237 238 239 240 241
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
242

243 244 245 246 247 248 249 250 251 252 253 254
static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
{
	if (!____is_cr0_pg(regs))
		return 0;
	else if (____is_efer_lma(regs))
		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
					       PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		return PT32E_ROOT_LEVEL;
	else
		return PT32_ROOT_LEVEL;
}
255 256 257

static inline bool kvm_available_flush_tlb_with_range(void)
{
258
	return kvm_x86_ops.tlb_remote_flush_with_range;
259 260 261 262 263 264 265
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

266
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
267
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
268 269 270 271 272

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

273
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
274 275 276 277 278 279 280 281 282 283
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

284 285 286
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
287
	u64 spte = make_mmio_spte(vcpu, gfn, access);
288

289 290
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
291 292 293 294
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
295
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
296

297
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
298 299 300
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
301 302 303 304
}

static unsigned get_mmio_spte_access(u64 spte)
{
305
	return spte & shadow_mmio_access_mask;
306 307
}

308
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
309
{
310
	u64 kvm_gen, spte_gen, gen;
311

312 313 314
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
315

316
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
317 318 319 320
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
321 322
}

323 324 325
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
326
	/* Check if guest physical address doesn't exceed guest maximum */
327
	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
328 329 330 331
		exception->error_code |= PFERR_RSVD_MASK;
		return UNMAPPED_GVA;
	}

332 333 334
        return gpa;
}

A
Avi Kivity 已提交
335 336 337 338 339
static int is_cpuid_PSE36(void)
{
	return 1;
}

340 341 342 343 344 345 346
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

347
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
348
static void __set_spte(u64 *sptep, u64 spte)
349
{
350
	WRITE_ONCE(*sptep, spte);
351 352
}

353
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
354
{
355
	WRITE_ONCE(*sptep, spte);
356 357 358 359 360 361
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
362 363 364

static u64 __get_spte_lockless(u64 *sptep)
{
365
	return READ_ONCE(*sptep);
366
}
367
#else
368 369 370 371 372 373 374
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
375

376 377
static void count_spte_clear(u64 *sptep, u64 spte)
{
378
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
379 380 381 382 383 384 385 386 387

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

388 389 390
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
391

392 393 394 395 396 397 398 399 400 401 402 403
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

404
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
405 406
}

407 408 409 410 411 412 413
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

414
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
415 416 417 418 419 420 421 422

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
423
	count_spte_clear(sptep, spte);
424 425 426 427 428 429 430 431 432 433 434
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
435 436
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
437
	count_spte_clear(sptep, spte);
438 439 440

	return orig.spte;
}
441 442 443

/*
 * The idea using the light way get the spte on x86_32 guest is from
444
 * gup_get_pte (mm/gup.c).
445 446 447 448 449 450 451 452 453 454 455 456 457 458
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
459 460 461
 */
static u64 __get_spte_lockless(u64 *sptep)
{
462
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
482 483
#endif

484 485
static bool spte_has_volatile_bits(u64 spte)
{
486 487 488
	if (!is_shadow_present_pte(spte))
		return false;

489
	/*
490
	 * Always atomically update spte if it can be updated
491 492 493 494
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
495 496
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
497 498
		return true;

499
	if (spte_ad_enabled(spte)) {
500 501 502 503
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
504

505
	return false;
506 507
}

508 509 510 511 512 513 514 515 516 517 518 519
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

520 521 522
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
523
 */
524
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
525
{
526
	u64 old_spte = *sptep;
527

528
	WARN_ON(!is_shadow_present_pte(new_spte));
529

530 531
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
532
		return old_spte;
533
	}
534

535
	if (!spte_has_volatile_bits(old_spte))
536
		__update_clear_spte_fast(sptep, new_spte);
537
	else
538
		old_spte = __update_clear_spte_slow(sptep, new_spte);
539

540 541
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

564 565
	/*
	 * For the spte updated out of mmu-lock is safe, since
566
	 * we always atomically update it, see the comments in
567 568
	 * spte_has_volatile_bits().
	 */
569
	if (spte_can_locklessly_be_made_writable(old_spte) &&
570
	      !is_writable_pte(new_spte))
571
		flush = true;
572

573
	/*
574
	 * Flush TLB when accessed/dirty states are changed in the page tables,
575 576 577
	 * to guarantee consistency between TLB and page tables.
	 */

578 579
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
580
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
581 582 583 584
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
585
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
586
	}
587

588
	return flush;
589 590
}

591 592 593 594
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
595
 * Returns the old PTE.
596
 */
597
static u64 mmu_spte_clear_track_bits(u64 *sptep)
598
{
D
Dan Williams 已提交
599
	kvm_pfn_t pfn;
600 601 602
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
603
		__update_clear_spte_fast(sptep, 0ull);
604
	else
605
		old_spte = __update_clear_spte_slow(sptep, 0ull);
606

607
	if (!is_shadow_present_pte(old_spte))
608
		return old_spte;
609 610

	pfn = spte_to_pfn(old_spte);
611 612 613 614 615 616

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
617
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
618

619
	if (is_accessed_spte(old_spte))
620
		kvm_set_pfn_accessed(pfn);
621 622

	if (is_dirty_spte(old_spte))
623
		kvm_set_pfn_dirty(pfn);
624

625
	return old_spte;
626 627 628 629 630 631 632 633 634
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
635
	__update_clear_spte_fast(sptep, 0ull);
636 637
}

638 639 640 641 642
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

643 644 645 646
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
647 648
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
649

650
	WARN_ON_ONCE(spte_ad_enabled(spte));
651 652 653
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
654 655
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
656 657 658 659 660
	new_spte |= saved_bits;

	return new_spte;
}

661 662 663 664 665 666 667 668
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

669
	if (spte_ad_enabled(spte)) {
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

687 688
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
689 690 691 692 693
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
694

695 696 697 698
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
699
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
700 701 702 703
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
704 705
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
706
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
707 708
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
709
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
710
	local_irq_enable();
711 712
}

713
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714
{
715 716
	int r;

717
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
718 719
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
720
	if (r)
721
		return r;
722 723
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
724
	if (r)
725
		return r;
726
	if (maybe_indirect) {
727 728
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
729 730 731
		if (r)
			return r;
	}
732 733
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
734 735 736 737
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
738 739 740 741
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
742 743
}

744
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745
{
746
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 748
}

749
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750
{
751
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 753
}

754 755 756 757 758 759 760 761 762 763
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
764
	if (!sp->role.direct) {
765
		sp->gfns[index] = gfn;
766 767 768 769 770 771 772 773
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
774 775
}

M
Marcelo Tosatti 已提交
776
/*
777 778
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
779
 */
780
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
781
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
782 783 784
{
	unsigned long idx;

785
	idx = gfn_to_index(gfn, slot->base_gfn, level);
786
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
787 788
}

789 790 791 792 793 794
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

795
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

812
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
813
{
814
	struct kvm_memslots *slots;
815
	struct kvm_memory_slot *slot;
816
	gfn_t gfn;
M
Marcelo Tosatti 已提交
817

818
	kvm->arch.indirect_shadow_pages++;
819
	gfn = sp->gfn;
820 821
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
822 823

	/* the non-leaf shadow pages are keeping readonly. */
824
	if (sp->role.level > PG_LEVEL_4K)
825 826 827
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

828
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
829 830
}

831
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
832 833 834 835 836
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
837 838
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
839 840 841
	sp->lpage_disallowed = true;
}

842
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
843
{
844
	struct kvm_memslots *slots;
845
	struct kvm_memory_slot *slot;
846
	gfn_t gfn;
M
Marcelo Tosatti 已提交
847

848
	kvm->arch.indirect_shadow_pages--;
849
	gfn = sp->gfn;
850 851
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
852
	if (sp->role.level > PG_LEVEL_4K)
853 854 855
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

856
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
857 858
}

859
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
860 861 862
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
863
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
864 865
}

866 867 868
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
869 870
{
	struct kvm_memory_slot *slot;
871

872
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
873 874
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
875
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
876
		return NULL;
877 878 879 880

	return slot;
}

881
/*
882
 * About rmap_head encoding:
883
 *
884 885
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
886
 * pte_list_desc containing more mappings.
887 888 889 890
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
891
 */
892
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
893
			struct kvm_rmap_head *rmap_head)
894
{
895
	struct pte_list_desc *desc;
896
	int i, count = 0;
897

898
	if (!rmap_head->val) {
899
		rmap_printk("%p %llx 0->1\n", spte, *spte);
900 901
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
902
		rmap_printk("%p %llx 1->many\n", spte, *spte);
903
		desc = mmu_alloc_pte_list_desc(vcpu);
904
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
905
		desc->sptes[1] = spte;
906
		rmap_head->val = (unsigned long)desc | 1;
907
		++count;
908
	} else {
909
		rmap_printk("%p %llx many->many\n", spte, *spte);
910
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
911
		while (desc->sptes[PTE_LIST_EXT-1]) {
912
			count += PTE_LIST_EXT;
913 914 915 916 917 918

			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
				break;
			}
919 920
			desc = desc->more;
		}
A
Avi Kivity 已提交
921
		for (i = 0; desc->sptes[i]; ++i)
922
			++count;
A
Avi Kivity 已提交
923
		desc->sptes[i] = spte;
924
	}
925
	return count;
926 927
}

928
static void
929 930 931
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
932 933 934
{
	int j;

935
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
936
		;
A
Avi Kivity 已提交
937 938
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
939 940 941
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
942
		rmap_head->val = 0;
943 944 945 946
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
947
			rmap_head->val = (unsigned long)desc->more | 1;
948
	mmu_free_pte_list_desc(desc);
949 950
}

951
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
952
{
953 954
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
955 956
	int i;

957
	if (!rmap_head->val) {
958
		pr_err("%s: %p 0->BUG\n", __func__, spte);
959
		BUG();
960
	} else if (!(rmap_head->val & 1)) {
961
		rmap_printk("%p 1->0\n", spte);
962
		if ((u64 *)rmap_head->val != spte) {
963
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
964 965
			BUG();
		}
966
		rmap_head->val = 0;
967
	} else {
968
		rmap_printk("%p many->many\n", spte);
969
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
970 971
		prev_desc = NULL;
		while (desc) {
972
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
973
				if (desc->sptes[i] == spte) {
974 975
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
976 977
					return;
				}
978
			}
979 980 981
			prev_desc = desc;
			desc = desc->more;
		}
982
		pr_err("%s: %p many->many\n", __func__, spte);
983 984 985 986
		BUG();
	}
}

987 988 989 990 991 992
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

993 994
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
995
{
996
	unsigned long idx;
997

998
	idx = gfn_to_index(gfn, slot->base_gfn, level);
999
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1000 1001
}

1002 1003
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1004
{
1005
	struct kvm_memslots *slots;
1006 1007
	struct kvm_memory_slot *slot;

1008 1009
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1010
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1011 1012
}

1013 1014
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1015
	struct kvm_mmu_memory_cache *mc;
1016

1017
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1018
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1019 1020
}

1021 1022 1023
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1024
	struct kvm_rmap_head *rmap_head;
1025

1026
	sp = sptep_to_sp(spte);
1027
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1028 1029
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1030 1031 1032 1033 1034 1035
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1036
	struct kvm_rmap_head *rmap_head;
1037

1038
	sp = sptep_to_sp(spte);
1039
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1040
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1041
	__pte_list_remove(spte, rmap_head);
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1057
 * information in the iterator may not be valid.
1058 1059 1060
 *
 * Returns sptep if found, NULL otherwise.
 */
1061 1062
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1063
{
1064 1065
	u64 *sptep;

1066
	if (!rmap_head->val)
1067 1068
		return NULL;

1069
	if (!(rmap_head->val & 1)) {
1070
		iter->desc = NULL;
1071 1072
		sptep = (u64 *)rmap_head->val;
		goto out;
1073 1074
	}

1075
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1076
	iter->pos = 0;
1077 1078 1079 1080
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1081 1082 1083 1084 1085 1086 1087 1088 1089
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1090 1091
	u64 *sptep;

1092 1093 1094 1095 1096
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1097
				goto out;
1098 1099 1100 1101 1102 1103 1104
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1105 1106
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1107 1108 1109 1110
		}
	}

	return NULL;
1111 1112 1113
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1114 1115
}

1116 1117
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1118
	     _spte_; _spte_ = rmap_get_next(_iter_))
1119

1120
static void drop_spte(struct kvm *kvm, u64 *sptep)
1121
{
1122 1123 1124
	u64 old_spte = mmu_spte_clear_track_bits(sptep);

	if (is_shadow_present_pte(old_spte))
1125
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1126 1127
}

1128 1129 1130 1131

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1132
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1143
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1144
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1145 1146 1147 1148

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1149 1150 1151
}

/*
1152
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1153
 * spte write-protection is caused by protecting shadow page table.
1154
 *
T
Tiejun Chen 已提交
1155
 * Note: write protection is difference between dirty logging and spte
1156 1157 1158 1159 1160
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1161
 *
1162
 * Return true if tlb need be flushed.
1163
 */
1164
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1165 1166 1167
{
	u64 spte = *sptep;

1168
	if (!is_writable_pte(spte) &&
1169
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1170 1171
		return false;

1172
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1173

1174
	if (pt_protect)
1175
		spte &= ~shadow_mmu_writable_mask;
1176
	spte = spte & ~PT_WRITABLE_MASK;
1177

1178
	return mmu_spte_update(sptep, spte);
1179 1180
}

1181 1182
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1183
				 bool pt_protect)
1184
{
1185 1186
	u64 *sptep;
	struct rmap_iterator iter;
1187
	bool flush = false;
1188

1189
	for_each_rmap_spte(rmap_head, &iter, sptep)
1190
		flush |= spte_write_protect(sptep, pt_protect);
1191

1192
	return flush;
1193 1194
}

1195
static bool spte_clear_dirty(u64 *sptep)
1196 1197 1198
{
	u64 spte = *sptep;

1199
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1200

1201
	MMU_WARN_ON(!spte_ad_enabled(spte));
1202 1203 1204 1205
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1206
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1207 1208 1209
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1210
	if (was_writable && !spte_ad_enabled(*sptep))
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1222 1223
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot)
1224 1225 1226 1227 1228
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1229
	for_each_rmap_spte(rmap_head, &iter, sptep)
1230 1231
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1232
		else
1233
			flush |= spte_clear_dirty(sptep);
1234 1235 1236 1237

	return flush;
}

1238
/**
1239
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1240 1241 1242 1243 1244
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1245
 * Used when we do not need to care about huge page mappings.
1246
 */
1247
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1248 1249
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1250
{
1251
	struct kvm_rmap_head *rmap_head;
1252

1253
	if (is_tdp_mmu_enabled(kvm))
1254 1255
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1256 1257 1258 1259

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1260
	while (mask) {
1261
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1262
					  PG_LEVEL_4K, slot);
1263
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1264

1265 1266 1267
		/* clear the first set bit */
		mask &= mask - 1;
	}
1268 1269
}

1270
/**
1271 1272
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1273 1274 1275 1276 1277 1278 1279
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1280 1281 1282
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1283
{
1284
	struct kvm_rmap_head *rmap_head;
1285

1286
	if (is_tdp_mmu_enabled(kvm))
1287 1288
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1289 1290 1291 1292

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1293
	while (mask) {
1294
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1295
					  PG_LEVEL_4K, slot);
1296
		__rmap_clear_dirty(kvm, rmap_head, slot);
1297 1298 1299 1300 1301 1302

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1303 1304 1305 1306 1307 1308 1309
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1310 1311
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1312 1313 1314 1315 1316
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1340 1341
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1342 1343
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1344 1345
}

1346 1347
int kvm_cpu_dirty_log_size(void)
{
1348
	return kvm_x86_ops.cpu_dirty_log_size;
1349 1350
}

1351
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1352 1353
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1354
{
1355
	struct kvm_rmap_head *rmap_head;
1356
	int i;
1357
	bool write_protected = false;
1358

1359 1360 1361 1362 1363
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
			rmap_head = __gfn_to_rmap(gfn, i, slot);
			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
		}
1364 1365
	}

1366
	if (is_tdp_mmu_enabled(kvm))
1367
		write_protected |=
1368
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1369

1370
	return write_protected;
1371 1372
}

1373 1374 1375 1376 1377
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1378
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1379 1380
}

1381 1382
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot)
1383
{
1384 1385
	u64 *sptep;
	struct rmap_iterator iter;
1386
	bool flush = false;
1387

1388
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1389
		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1390

1391
		pte_list_remove(rmap_head, sptep);
1392
		flush = true;
1393
	}
1394

1395 1396 1397
	return flush;
}

1398 1399 1400
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1401
{
1402
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1403 1404
}

1405 1406 1407
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1408
{
1409 1410
	u64 *sptep;
	struct rmap_iterator iter;
1411
	int need_flush = 0;
1412
	u64 new_spte;
D
Dan Williams 已提交
1413
	kvm_pfn_t new_pfn;
1414

1415 1416
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1417

1418
restart:
1419
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1420
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1421
			    sptep, *sptep, gfn, level);
1422

1423
		need_flush = 1;
1424

1425
		if (pte_write(pte)) {
1426
			pte_list_remove(rmap_head, sptep);
1427
			goto restart;
1428
		} else {
1429 1430
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1431 1432 1433

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1434 1435
		}
	}
1436

1437 1438 1439 1440 1441
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1442
	return need_flush;
1443 1444
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1455
	struct kvm_rmap_head *rmap;
1456 1457 1458
	int level;

	/* private field. */
1459
	struct kvm_rmap_head *end_rmap;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1513 1514 1515
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1516

1517 1518 1519
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1520
{
1521
	struct slot_rmap_walk_iterator iterator;
1522
	bool ret = false;
1523

1524 1525 1526 1527
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1528

1529
	return ret;
1530 1531
}

1532
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1533
{
1534
	bool flush = false;
1535

1536 1537
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1538

1539
	if (is_tdp_mmu_enabled(kvm))
1540
		flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1541

1542
	return flush;
1543 1544
}

1545
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1546
{
1547
	bool flush = false;
1548

1549 1550
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1551

1552
	if (is_tdp_mmu_enabled(kvm))
1553
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1554

1555
	return flush;
1556 1557
}

1558 1559 1560
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1561
{
1562
	u64 *sptep;
1563
	struct rmap_iterator iter;
1564 1565
	int young = 0;

1566 1567
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1568

1569 1570 1571
	return young;
}

1572 1573 1574
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1575
{
1576 1577
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1578

1579 1580 1581 1582
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1583 1584
}

1585 1586
#define RMAP_RECYCLE_THRESHOLD 1000

1587
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1588
{
1589
	struct kvm_rmap_head *rmap_head;
1590 1591
	struct kvm_mmu_page *sp;

1592
	sp = sptep_to_sp(spte);
1593

1594
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1595

1596
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1597 1598
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1599 1600
}

1601
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1602
{
1603
	bool young = false;
1604

1605 1606
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1607

1608
	if (is_tdp_mmu_enabled(kvm))
1609
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1610 1611

	return young;
1612 1613
}

1614
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1615
{
1616
	bool young = false;
1617

1618 1619
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1620

1621
	if (is_tdp_mmu_enabled(kvm))
1622
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1623 1624

	return young;
A
Andrea Arcangeli 已提交
1625 1626
}

1627
#ifdef MMU_DEBUG
1628
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1629
{
1630 1631 1632
	u64 *pos;
	u64 *end;

1633
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1634
		if (is_shadow_present_pte(*pos)) {
1635
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1636
			       pos, *pos);
A
Avi Kivity 已提交
1637
			return 0;
1638
		}
A
Avi Kivity 已提交
1639 1640
	return 1;
}
1641
#endif
A
Avi Kivity 已提交
1642

1643 1644 1645 1646 1647 1648
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1649
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1650 1651 1652 1653 1654
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1655
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1656
{
1657
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1658
	hlist_del(&sp->hash_link);
1659 1660
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1661 1662
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1663
	kmem_cache_free(mmu_page_header_cache, sp);
1664 1665
}

1666 1667
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1668
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1669 1670
}

1671
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1672
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1673 1674 1675 1676
{
	if (!parent_pte)
		return;

1677
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1678 1679
}

1680
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1681 1682
				       u64 *parent_pte)
{
1683
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1684 1685
}

1686 1687 1688 1689
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1690
	mmu_spte_clear_no_track(parent_pte);
1691 1692
}

1693
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1694
{
1695
	struct kvm_mmu_page *sp;
1696

1697 1698
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1699
	if (!direct)
1700
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1701
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1702 1703 1704 1705 1706 1707

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1708
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1709 1710 1711
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1712 1713
}

1714
static void mark_unsync(u64 *spte);
1715
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1716
{
1717 1718 1719 1720 1721 1722
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1723 1724
}

1725
static void mark_unsync(u64 *spte)
1726
{
1727
	struct kvm_mmu_page *sp;
1728
	unsigned int index;
1729

1730
	sp = sptep_to_sp(spte);
1731 1732
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1733
		return;
1734
	if (sp->unsync_children++)
1735
		return;
1736
	kvm_mmu_mark_parents_unsync(sp);
1737 1738
}

1739
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1740
			       struct kvm_mmu_page *sp)
1741
{
1742
	return 0;
1743 1744
}

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1755 1756
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1757
{
1758
	int i;
1759

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1771 1772 1773 1774 1775 1776 1777
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1778 1779 1780 1781
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1782

1783
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1784
		struct kvm_mmu_page *child;
1785 1786
		u64 ent = sp->spt[i];

1787 1788 1789 1790
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1791

1792
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1793 1794 1795 1796 1797 1798

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1799 1800 1801 1802
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1803
				nr_unsync_leaf += ret;
1804
			} else
1805 1806 1807 1808 1809 1810
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1811
			clear_unsync_child_bit(sp, i);
1812 1813
	}

1814 1815 1816
	return nr_unsync_leaf;
}

1817 1818
#define INVALID_INDEX (-1)

1819 1820 1821
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1822
	pvec->nr = 0;
1823 1824 1825
	if (!sp->unsync_children)
		return 0;

1826
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1827
	return __mmu_unsync_walk(sp, pvec);
1828 1829 1830 1831 1832
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1833
	trace_kvm_mmu_sync_page(sp);
1834 1835 1836 1837
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1838 1839
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1840 1841
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1842

1843 1844
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1845
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1846
		} else
1847 1848

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1849 1850
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1851
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1852

1853 1854
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1855
{
1856
	if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1857
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1858
		return false;
1859 1860
	}

1861
	return true;
1862 1863
}

1864 1865 1866 1867
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1868
	if (!remote_flush && list_empty(invalid_list))
1869 1870 1871 1872 1873 1874 1875 1876 1877
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1878 1879 1880
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1881
{
1882
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1883
		return;
1884

1885
	if (local_flush)
1886
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1887 1888
}

1889 1890 1891 1892 1893 1894 1895
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1896 1897
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1898 1899
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1900 1901
}

1902
struct mmu_page_path {
1903 1904
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1905 1906
};

1907
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1908
		for (i = mmu_pages_first(&pvec, &parents);	\
1909 1910 1911
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1912 1913 1914
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1915 1916 1917 1918 1919
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1920 1921
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1922

P
Paolo Bonzini 已提交
1923
		parents->idx[level-1] = idx;
1924
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1925
			break;
1926

P
Paolo Bonzini 已提交
1927
		parents->parent[level-2] = sp;
1928 1929 1930 1931 1932
	}

	return n;
}

P
Paolo Bonzini 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1942 1943
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1944 1945
	sp = pvec->page[0].sp;
	level = sp->role.level;
1946
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1957
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1958
{
1959 1960 1961 1962 1963 1964 1965 1966 1967
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1968
		WARN_ON(idx == INVALID_INDEX);
1969
		clear_unsync_child_bit(sp, idx);
1970
		level++;
P
Paolo Bonzini 已提交
1971
	} while (!sp->unsync_children);
1972
}
1973

1974 1975 1976 1977 1978 1979 1980
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1981
	LIST_HEAD(invalid_list);
1982
	bool flush = false;
1983 1984

	while (mmu_unsync_walk(parent, &pages)) {
1985
		bool protected = false;
1986 1987

		for_each_sp(pages, sp, parents, i)
1988
			protected |= rmap_write_protect(vcpu, sp->gfn);
1989

1990
		if (protected) {
1991
			kvm_flush_remote_tlbs(vcpu->kvm);
1992 1993
			flush = false;
		}
1994

1995
		for_each_sp(pages, sp, parents, i) {
1996
			kvm_unlink_unsync_page(vcpu->kvm, sp);
1997
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1998 1999
			mmu_pages_clear_parents(&parents);
		}
2000
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2001
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2002
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2003 2004
			flush = false;
		}
2005
	}
2006 2007

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2008 2009
}

2010 2011
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2012
	atomic_set(&sp->write_flooding_count,  0);
2013 2014 2015 2016
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2017
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2018 2019
}

2020 2021 2022 2023
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2024
					     int direct,
2025
					     unsigned int access)
2026
{
2027
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2028
	union kvm_mmu_page_role role;
2029
	struct hlist_head *sp_list;
2030
	unsigned quadrant;
2031
	struct kvm_mmu_page *sp;
2032
	int collisions = 0;
2033
	LIST_HEAD(invalid_list);
2034

2035
	role = vcpu->arch.mmu->mmu_role.base;
2036
	role.level = level;
2037
	role.direct = direct;
2038
	if (role.direct)
2039
		role.gpte_is_8_bytes = true;
2040
	role.access = access;
2041
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2042 2043 2044 2045
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2046 2047 2048

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2049 2050 2051 2052 2053
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2067
			continue;
2068
		}
2069

2070 2071 2072
		if (direct_mmu)
			goto trace_get_page;

2073
		if (sp->unsync) {
2074
			/*
2075
			 * The page is good, but is stale.  kvm_sync_page does
2076 2077 2078 2079 2080 2081 2082 2083 2084
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2085
			 */
2086
			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2087 2088 2089
				break;

			WARN_ON(!list_empty(&invalid_list));
2090
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2091
		}
2092

2093
		if (sp->unsync_children)
2094
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2095

2096
		__clear_sp_write_flooding_count(sp);
2097 2098

trace_get_page:
2099
		trace_kvm_mmu_get_page(sp, false);
2100
		goto out;
2101
	}
2102

A
Avi Kivity 已提交
2103
	++vcpu->kvm->stat.mmu_cache_miss;
2104 2105 2106

	sp = kvm_mmu_alloc_page(vcpu, direct);

2107 2108
	sp->gfn = gfn;
	sp->role = role;
2109
	hlist_add_head(&sp->hash_link, sp_list);
2110
	if (!direct) {
2111
		account_shadowed(vcpu->kvm, sp);
2112
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2113
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2114
	}
A
Avi Kivity 已提交
2115
	trace_kvm_mmu_get_page(sp, true);
2116
out:
2117 2118
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2119 2120
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2121
	return sp;
2122 2123
}

2124 2125 2126
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2127 2128
{
	iterator->addr = addr;
2129
	iterator->shadow_addr = root;
2130
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2131

2132
	if (iterator->level == PT64_ROOT_4LEVEL &&
2133 2134
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2135 2136
		--iterator->level;

2137
	if (iterator->level == PT32E_ROOT_LEVEL) {
2138 2139 2140 2141
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2142
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2143

2144
		iterator->shadow_addr
2145
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2146 2147 2148 2149 2150 2151 2152
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2153 2154 2155
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2156
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2157 2158 2159
				    addr);
}

2160 2161
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2162
	if (iterator->level < PG_LEVEL_4K)
2163
		return false;
2164

2165 2166 2167 2168 2169
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2170 2171
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2172
{
2173
	if (is_last_spte(spte, iterator->level)) {
2174 2175 2176 2177
		iterator->level = 0;
		return;
	}

2178
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2179 2180 2181
	--iterator->level;
}

2182 2183
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2184
	__shadow_walk_next(iterator, *iterator->sptep);
2185 2186
}

2187 2188 2189 2190 2191 2192 2193 2194 2195
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2196
	mmu_spte_set(sptep, spte);
2197 2198 2199 2200 2201

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2202 2203
}

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2217
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2218 2219 2220
		if (child->role.access == direct_access)
			return;

2221
		drop_parent_pte(child, sptep);
2222
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2223 2224 2225
	}
}

2226 2227 2228
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2229 2230 2231 2232 2233 2234
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2235
		if (is_last_spte(pte, sp->role.level)) {
2236
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2237 2238 2239
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2240
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2241
			drop_parent_pte(child, spte);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2252
		}
2253
	} else if (is_mmio_spte(pte)) {
2254
		mmu_spte_clear_no_track(spte);
2255
	}
2256
	return 0;
2257 2258
}

2259 2260 2261
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2262
{
2263
	int zapped = 0;
2264 2265
	unsigned i;

2266
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2267 2268 2269
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2270 2271
}

2272
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2273
{
2274 2275
	u64 *sptep;
	struct rmap_iterator iter;
2276

2277
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2278
		drop_parent_pte(sp, sptep);
2279 2280
}

2281
static int mmu_zap_unsync_children(struct kvm *kvm,
2282 2283
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2284
{
2285 2286 2287
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2288

2289
	if (parent->role.level == PG_LEVEL_4K)
2290
		return 0;
2291 2292 2293 2294 2295

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2296
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2297
			mmu_pages_clear_parents(&parents);
2298
			zapped++;
2299 2300 2301 2302
		}
	}

	return zapped;
2303 2304
}

2305 2306 2307 2308
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2309
{
2310
	bool list_unstable;
A
Avi Kivity 已提交
2311

2312
	trace_kvm_mmu_prepare_zap_page(sp);
2313
	++kvm->stat.mmu_shadow_zapped;
2314
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2315
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2316
	kvm_mmu_unlink_parents(kvm, sp);
2317

2318 2319 2320
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2321
	if (!sp->role.invalid && !sp->role.direct)
2322
		unaccount_shadowed(kvm, sp);
2323

2324 2325
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2326
	if (!sp->root_count) {
2327
		/* Count self */
2328
		(*nr_zapped)++;
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2339
		kvm_mod_used_mmu_pages(kvm, -1);
2340
	} else {
2341 2342 2343 2344 2345
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2346

2347 2348 2349 2350 2351 2352
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2353
			kvm_reload_remote_mmus(kvm);
2354
	}
2355

P
Paolo Bonzini 已提交
2356 2357 2358
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2359
	sp->role.invalid = 1;
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2370 2371
}

2372 2373 2374
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2375
	struct kvm_mmu_page *sp, *nsp;
2376 2377 2378 2379

	if (list_empty(invalid_list))
		return;

2380
	/*
2381 2382 2383 2384 2385 2386 2387
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2388 2389
	 */
	kvm_flush_remote_tlbs(kvm);
2390

2391
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2392
		WARN_ON(!sp->role.invalid || sp->root_count);
2393
		kvm_mmu_free_page(sp);
2394
	}
2395 2396
}

2397 2398
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2399
{
2400 2401
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2402
	LIST_HEAD(invalid_list);
2403 2404
	bool unstable;
	int nr_zapped;
2405 2406

	if (list_empty(&kvm->arch.active_mmu_pages))
2407 2408
		return 0;

2409
restart:
2410
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2422 2423
			break;

2424 2425
		if (unstable)
			goto restart;
2426
	}
2427

2428 2429 2430 2431 2432 2433
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2434 2435 2436 2437 2438 2439 2440
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2441 2442
}

2443 2444
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2445
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2446

2447
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2448 2449
		return 0;

2450
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2451

2452 2453 2454 2455 2456
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2457
	 * being too aggressive may unnecessarily kill the guest, and getting an
2458 2459 2460
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2461 2462 2463 2464 2465
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2466 2467
/*
 * Changing the number of mmu pages allocated to the vm
2468
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2469
 */
2470
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2471
{
2472
	write_lock(&kvm->mmu_lock);
2473

2474
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2475 2476
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2477

2478
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2479 2480
	}

2481
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2482

2483
	write_unlock(&kvm->mmu_lock);
2484 2485
}

2486
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2487
{
2488
	struct kvm_mmu_page *sp;
2489
	LIST_HEAD(invalid_list);
2490 2491
	int r;

2492
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2493
	r = 0;
2494
	write_lock(&kvm->mmu_lock);
2495
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2496
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2497 2498
			 sp->role.word);
		r = 1;
2499
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2500
	}
2501
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2502
	write_unlock(&kvm->mmu_lock);
2503

2504
	return r;
2505
}
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2521

2522
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2523 2524 2525 2526 2527 2528 2529 2530
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2531 2532 2533 2534 2535 2536 2537
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2538
{
2539
	struct kvm_mmu_page *sp;
2540

2541 2542 2543 2544 2545
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2546
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2547
		return -EPERM;
2548

2549 2550 2551 2552 2553 2554
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
2555
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2556
		if (!can_unsync)
2557
			return -EPERM;
2558

2559 2560
		if (sp->unsync)
			continue;
2561

2562
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2563
		kvm_unsync_page(vcpu, sp);
2564
	}
2565

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2588 2589
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2605
	return 0;
2606 2607
}

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
		    unsigned int pte_access, int level,
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
		    bool can_unsync, bool host_writable)
{
	u64 spte;
	struct kvm_mmu_page *sp;
	int ret;

	sp = sptep_to_sp(sptep);

	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
			can_unsync, host_writable, sp_ad_disabled(sp), &spte);

	if (spte & PT_WRITABLE_MASK)
		kvm_vcpu_mark_page_dirty(vcpu, gfn);

2625 2626 2627
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
2628
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
2629 2630 2631
	return ret;
}

2632
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2633
			unsigned int pte_access, bool write_fault, int level,
2634 2635
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
2636 2637
{
	int was_rmapped = 0;
2638
	int rmap_count;
2639
	int set_spte_ret;
2640
	int ret = RET_PF_FIXED;
2641
	bool flush = false;
M
Marcelo Tosatti 已提交
2642

2643 2644
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2645

2646 2647 2648 2649 2650
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2651
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2652 2653 2654 2655
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2656
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2657
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2658
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2659

2660
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2661
			drop_parent_pte(child, sptep);
2662
			flush = true;
A
Avi Kivity 已提交
2663
		} else if (pfn != spte_to_pfn(*sptep)) {
2664
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2665
				 spte_to_pfn(*sptep), pfn);
2666
			drop_spte(vcpu->kvm, sptep);
2667
			flush = true;
2668 2669
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2670
	}
2671

2672 2673 2674
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2675
		if (write_fault)
2676
			ret = RET_PF_EMULATE;
2677
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2678
	}
2679

2680
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2681 2682
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2683

2684 2685 2686 2687 2688 2689 2690 2691 2692
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
2693
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2694
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
2695
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2696 2697
		++vcpu->kvm->stat.lpages;

2698 2699 2700 2701 2702 2703
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2704
	}
2705

2706
	return ret;
2707 2708
}

D
Dan Williams 已提交
2709
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2710 2711 2712 2713
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2714
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2715
	if (!slot)
2716
		return KVM_PFN_ERR_FAULT;
2717

2718
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2719 2720 2721 2722 2723 2724 2725
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2726
	struct kvm_memory_slot *slot;
2727
	unsigned int access = sp->role.access;
2728 2729 2730 2731
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2732 2733
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2734 2735
		return -1;

2736
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2737 2738 2739
	if (ret <= 0)
		return -1;

2740
	for (i = 0; i < ret; i++, gfn++, start++) {
2741
		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2742
			     page_to_pfn(pages[i]), true, true);
2743 2744
		put_page(pages[i]);
	}
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2761
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2776
	sp = sptep_to_sp(sptep);
2777

2778
	/*
2779 2780 2781
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2782
	 */
2783
	if (sp_ad_disabled(sp))
2784 2785
		return;

2786
	if (sp->role.level > PG_LEVEL_4K)
2787 2788
		return;

2789 2790 2791 2792 2793 2794 2795
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2796 2797 2798
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2799
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2800
				  const struct kvm_memory_slot *slot)
2801 2802 2803 2804 2805
{
	unsigned long hva;
	pte_t *pte;
	int level;

2806
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2807
		return PG_LEVEL_4K;
2808

2809 2810 2811 2812 2813 2814 2815 2816
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2817 2818
	hva = __gfn_to_hva_memslot(slot, gfn);

2819
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2820
	if (unlikely(!pte))
2821
		return PG_LEVEL_4K;
2822 2823 2824 2825

	return level;
}

2826 2827 2828
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
{
	struct kvm_lpage_info *linfo;

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

	return host_pfn_mapping_level(kvm, gfn, pfn, slot);
}

B
Ben Gardon 已提交
2845 2846 2847
int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
			    int max_level, kvm_pfn_t *pfnp,
			    bool huge_page_disallowed, int *req_level)
2848
{
2849
	struct kvm_memory_slot *slot;
2850
	kvm_pfn_t pfn = *pfnp;
2851
	kvm_pfn_t mask;
2852
	int level;
2853

2854 2855
	*req_level = PG_LEVEL_4K;

2856 2857
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
2858

2859
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2860
		return PG_LEVEL_4K;
2861

2862 2863
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
2864
		return PG_LEVEL_4K;
2865

2866
	level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2867
	if (level == PG_LEVEL_4K)
2868
		return level;
2869

2870 2871 2872 2873 2874 2875 2876 2877
	*req_level = level = min(level, max_level);

	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
	if (huge_page_disallowed)
		return PG_LEVEL_4K;
2878 2879

	/*
2880 2881
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2882
	 */
2883 2884 2885
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
2886 2887

	return level;
2888 2889
}

B
Ben Gardon 已提交
2890 2891
void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
				kvm_pfn_t *pfnp, int *goal_levelp)
P
Paolo Bonzini 已提交
2892
{
B
Ben Gardon 已提交
2893
	int level = *goal_levelp;
P
Paolo Bonzini 已提交
2894

2895
	if (cur_level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
2896 2897 2898 2899 2900 2901 2902 2903 2904
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2905 2906
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
				KVM_PAGES_PER_HPAGE(level - 1);
P
Paolo Bonzini 已提交
2907
		*pfnp |= gfn & page_mask;
B
Ben Gardon 已提交
2908
		(*goal_levelp)--;
P
Paolo Bonzini 已提交
2909 2910 2911
	}
}

2912
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2913
			int map_writable, int max_level, kvm_pfn_t pfn,
2914
			bool prefault, bool is_tdp)
2915
{
2916 2917 2918 2919
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2920
	struct kvm_shadow_walk_iterator it;
2921
	struct kvm_mmu_page *sp;
2922
	int level, req_level, ret;
2923 2924
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
2925

2926 2927
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);
2928

2929
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2930
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
2931 2932 2933 2934
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2935
		if (nx_huge_page_workaround_enabled)
2936 2937
			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
						   &pfn, &level);
P
Paolo Bonzini 已提交
2938

2939 2940
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
2941
			break;
A
Avi Kivity 已提交
2942

2943
		drop_large_spte(vcpu, it.sptep);
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
		if (is_shadow_present_pte(*it.sptep))
			continue;

		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
				      it.level - 1, true, ACC_ALL);

		link_shadow_page(vcpu, it.sptep, sp);
		if (is_tdp && huge_page_disallowed &&
		    req_level >= it.level)
			account_huge_nx_page(vcpu->kvm, sp);
2954
	}
2955 2956 2957 2958

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
2959 2960 2961
	if (ret == RET_PF_SPURIOUS)
		return ret;

2962 2963 2964
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2965 2966
}

H
Huang Ying 已提交
2967
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2968
{
2969
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2970 2971
}

D
Dan Williams 已提交
2972
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2973
{
X
Xiao Guangrong 已提交
2974 2975 2976 2977 2978 2979
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2980
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2981

2982
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2983
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2984
		return RET_PF_RETRY;
2985
	}
2986

2987
	return -EFAULT;
2988 2989
}

2990
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2991 2992
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
2993 2994
{
	/* The pfn is invalid, report the error! */
2995
	if (unlikely(is_error_pfn(pfn))) {
2996
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2997
		return true;
2998 2999
	}

3000
	if (unlikely(is_noslot_pfn(pfn))) {
3001 3002
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
3013

3014
	return false;
3015 3016
}

3017
static bool page_fault_can_be_fast(u32 error_code)
3018
{
3019 3020 3021 3022 3023 3024 3025
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3026 3027 3028 3029 3030
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3031
	/*
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3043 3044
	 */

3045 3046 3047
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3048 3049
}

3050 3051 3052 3053
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3054
static bool
3055
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3056
			u64 *sptep, u64 old_spte, u64 new_spte)
3057 3058 3059 3060 3061
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3074
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3075 3076
		return false;

3077
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3078 3079 3080 3081 3082 3083 3084
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3085 3086 3087 3088

	return true;
}

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3101
/*
3102
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3103
 */
3104 3105
static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
			   u32 error_code)
3106 3107
{
	struct kvm_shadow_walk_iterator iterator;
3108
	struct kvm_mmu_page *sp;
3109
	int ret = RET_PF_INVALID;
3110
	u64 spte = 0ull;
3111
	uint retry_count = 0;
3112

3113
	if (!page_fault_can_be_fast(error_code))
3114
		return ret;
3115 3116 3117

	walk_shadow_page_lockless_begin(vcpu);

3118
	do {
3119
		u64 new_spte;
3120

3121
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3122
			if (!is_shadow_present_pte(spte))
3123 3124
				break;

3125 3126 3127
		if (!is_shadow_present_pte(spte))
			break;

3128
		sp = sptep_to_sp(iterator.sptep);
3129 3130
		if (!is_last_spte(spte, sp->role.level))
			break;
3131

3132
		/*
3133 3134 3135 3136 3137
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3138 3139 3140 3141
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3142
		if (is_access_allowed(error_code, spte)) {
3143
			ret = RET_PF_SPURIOUS;
3144 3145
			break;
		}
3146

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3158
		    spte_can_locklessly_be_made_writable(spte)) {
3159
			new_spte |= PT_WRITABLE_MASK;
3160 3161

			/*
3162 3163 3164 3165 3166 3167 3168 3169 3170
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3171
			 */
3172
			if (sp->role.level > PG_LEVEL_4K)
3173
				break;
3174
		}
3175

3176
		/* Verify that the fault can be handled in the fast path */
3177 3178
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3179 3180 3181 3182 3183
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3184
		 * Documentation/virt/kvm/locking.rst to get more detail.
3185
		 */
3186 3187 3188
		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
					    new_spte)) {
			ret = RET_PF_FIXED;
3189
			break;
3190
		}
3191 3192 3193 3194 3195 3196 3197 3198

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3199

3200
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3201
			      spte, ret);
3202 3203
	walk_shadow_page_lockless_end(vcpu);

3204
	return ret;
3205 3206
}

3207 3208
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3209
{
3210
	struct kvm_mmu_page *sp;
3211

3212
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3213
		return;
3214

3215
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3216

3217
	if (is_tdp_mmu_page(sp))
3218
		kvm_tdp_mmu_put_root(kvm, sp, false);
3219 3220
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3221

3222 3223 3224
	*root_hpa = INVALID_PAGE;
}

3225
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3226 3227
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3228
{
3229
	struct kvm *kvm = vcpu->kvm;
3230 3231
	int i;
	LIST_HEAD(invalid_list);
3232
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3233

3234
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3235

3236
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3237 3238 3239 3240 3241 3242 3243 3244 3245
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3246

3247
	write_lock(&kvm->mmu_lock);
3248

3249 3250
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3251
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3252
					   &invalid_list);
3253

3254 3255 3256
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3257
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3258
		} else if (mmu->pae_root) {
3259 3260 3261 3262 3263 3264 3265 3266
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3267
		}
3268
		mmu->root_hpa = INVALID_PAGE;
3269
		mmu->root_pgd = 0;
3270
	}
3271

3272
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3273
	write_unlock(&kvm->mmu_lock);
3274
}
3275
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3276

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3304 3305 3306 3307
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3308
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3309
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3310 3311 3312 3313 3314 3315
		ret = 1;
	}

	return ret;
}

3316 3317
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3318 3319
{
	struct kvm_mmu_page *sp;
3320 3321 3322 3323 3324 3325 3326 3327 3328

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3329 3330
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3331
	hpa_t root;
3332
	unsigned i;
3333 3334 3335 3336 3337 3338
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3339

3340
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3341
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3342
		mmu->root_hpa = root;
3343
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3344
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3345
		mmu->root_hpa = root;
3346
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3347 3348 3349 3350
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3351

3352
		for (i = 0; i < 4; ++i) {
3353
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3354

3355 3356
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3357 3358
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3359
		}
3360
		mmu->root_hpa = __pa(mmu->pae_root);
3361 3362
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3363 3364
		r = -EIO;
		goto out_unlock;
3365
	}
3366

3367
	/* root_pgd is ignored for direct MMUs. */
3368
	mmu->root_pgd = 0;
3369 3370 3371
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3372 3373 3374
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3375
{
3376
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3377
	u64 pdptrs[4], pm_mask;
3378
	gfn_t root_gfn, root_pgd;
3379
	hpa_t root;
3380 3381
	unsigned i;
	int r;
3382

3383
	root_pgd = mmu->get_guest_pgd(vcpu);
3384
	root_gfn = root_pgd >> PAGE_SHIFT;
3385

3386 3387 3388
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3389 3390 3391 3392
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3404 3405 3406 3407
	r = alloc_all_memslots_rmaps(vcpu->kvm);
	if (r)
		return r;

3408 3409 3410 3411 3412
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3413 3414 3415 3416
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3417
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3418
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3419 3420
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3421
		goto set_root_pgd;
3422
	}
3423

3424 3425 3426 3427
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3428

3429 3430
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3431 3432
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3433
	 */
3434
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3435
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3436 3437
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3438
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3439 3440 3441
			r = -EIO;
			goto out_unlock;
		}
3442

3443
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3444 3445
	}

3446
	for (i = 0; i < 4; ++i) {
3447
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3448

3449
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3450
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3451
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3452 3453
				continue;
			}
3454
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3455
		}
3456

3457 3458
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3459
		mmu->pae_root[i] = root | pm_mask;
3460
	}
3461

3462
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3463
		mmu->root_hpa = __pa(mmu->pml4_root);
3464 3465
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3466

3467
set_root_pgd:
3468
	mmu->root_pgd = root_pgd;
3469 3470
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3471

3472
	return 0;
3473 3474
}

3475 3476 3477
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3478
	u64 *pml4_root, *pae_root;
3479 3480

	/*
3481 3482 3483 3484
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3485
	 */
3486 3487 3488
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;
3489

3490 3491 3492 3493 3494 3495
	/*
	 * This mess only works with 4-level paging and needs to be updated to
	 * work with 5-level paging.
	 */
	if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
		return -EIO;
3496

3497
	if (mmu->pae_root && mmu->pml4_root)
3498
		return 0;
3499

3500 3501 3502 3503
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3504
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3505
		return -EIO;
3506

3507 3508 3509 3510
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3511 3512 3513
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3514

3515 3516
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pml4_root) {
3517 3518
		free_page((unsigned long)pae_root);
		return -ENOMEM;
3519 3520
	}

3521
	mmu->pae_root = pae_root;
3522
	mmu->pml4_root = pml4_root;
3523

3524
	return 0;
3525 3526
}

3527
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3528 3529 3530 3531
{
	int i;
	struct kvm_mmu_page *sp;

3532
	if (vcpu->arch.mmu->direct_map)
3533 3534
		return;

3535
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3536
		return;
3537

3538
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3539

3540 3541
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3542
		sp = to_shadow_page(root);
3543 3544 3545 3546 3547 3548 3549 3550

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
3551 3552
		 * mmu_try_to_unsync_pages() describe what could go wrong if
		 * this requirement isn't satisfied.
3553 3554 3555 3556 3557
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

3558
		write_lock(&vcpu->kvm->mmu_lock);
3559 3560
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3561
		mmu_sync_children(vcpu, sp);
3562

3563
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3564
		write_unlock(&vcpu->kvm->mmu_lock);
3565 3566
		return;
	}
3567

3568
	write_lock(&vcpu->kvm->mmu_lock);
3569 3570
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3571
	for (i = 0; i < 4; ++i) {
3572
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3573

3574
		if (IS_VALID_PAE_ROOT(root)) {
3575
			root &= PT64_BASE_ADDR_MASK;
3576
			sp = to_shadow_page(root);
3577 3578 3579 3580
			mmu_sync_children(vcpu, sp);
		}
	}

3581
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3582
	write_unlock(&vcpu->kvm->mmu_lock);
3583 3584
}

3585
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3586
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3587
{
3588 3589
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3590 3591 3592
	return vaddr;
}

3593
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3594 3595
					 u32 access,
					 struct x86_exception *exception)
3596
{
3597 3598
	if (exception)
		exception->error_code = 0;
3599
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3600 3601
}

3602
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3603
{
3604 3605 3606 3607 3608 3609 3610
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3611 3612 3613 3614 3615 3616
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3617 3618 3619 3620
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
 */
3621
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3622 3623
{
	struct kvm_shadow_walk_iterator iterator;
3624
	int leaf = -1;
3625
	u64 spte;
3626 3627

	walk_shadow_page_lockless_begin(vcpu);
3628

3629 3630
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3631 3632
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3633
		leaf = iterator.level;
3634 3635
		spte = mmu_spte_get_lockless(iterator.sptep);

3636
		sptes[leaf] = spte;
3637

3638 3639
		if (!is_shadow_present_pte(spte))
			break;
3640 3641 3642 3643 3644 3645 3646
	}

	walk_shadow_page_lockless_end(vcpu);

	return leaf;
}

3647
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3648 3649
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3650
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3651
	struct rsvd_bits_validate *rsvd_check;
3652
	int root, leaf, level;
3653 3654
	bool reserved = false;

3655
	if (is_tdp_mmu(vcpu->arch.mmu))
3656
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3657
	else
3658
		leaf = get_walk(vcpu, addr, sptes, &root);
3659

3660 3661 3662 3663 3664
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3675 3676 3677

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3678
	for (level = root; level >= leaf; level--)
3679
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3680 3681

	if (reserved) {
3682
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3683
		       __func__, addr);
3684
		for (level = root; level >= leaf; level--)
3685 3686
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3687
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3688
	}
3689

3690
	return reserved;
3691 3692
}

P
Paolo Bonzini 已提交
3693
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3694 3695
{
	u64 spte;
3696
	bool reserved;
3697

3698
	if (mmio_info_in_cache(vcpu, addr, direct))
3699
		return RET_PF_EMULATE;
3700

3701
	reserved = get_mmio_spte(vcpu, addr, &spte);
3702
	if (WARN_ON(reserved))
3703
		return -EINVAL;
3704 3705 3706

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3707
		unsigned int access = get_mmio_spte_access(spte);
3708

3709
		if (!check_mmio_spte(vcpu, spte))
3710
			return RET_PF_INVALID;
3711

3712 3713
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3714 3715

		trace_handle_mmio_page_fault(addr, gfn, access);
3716
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3717
		return RET_PF_EMULATE;
3718 3719 3720 3721 3722 3723
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3724
	return RET_PF_RETRY;
3725 3726
}

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

3761 3762
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3763 3764
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3765

3766
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3767
	arch.gfn = gfn;
3768
	arch.direct_map = vcpu->arch.mmu->direct_map;
3769
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3770

3771 3772
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3773 3774
}

3775
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3776 3777
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
			 bool write, bool *writable)
3778
{
3779
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3780 3781
	bool async;

3782 3783 3784 3785 3786 3787 3788 3789
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
		return true;

3790 3791
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3792
		*pfn = KVM_PFN_NOSLOT;
3793
		*writable = false;
3794 3795 3796
		return false;
	}

3797
	async = false;
3798 3799
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
				    write, writable, hva);
3800 3801 3802
	if (!async)
		return false; /* *pfn has correct page already */

3803
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3804
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3805
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3806
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3807 3808
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
3809
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3810 3811 3812
			return true;
	}

3813 3814
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
				    write, writable, hva);
3815 3816 3817
	return false;
}

3818 3819
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
3820
{
3821
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3822
	bool write = error_code & PFERR_WRITE_MASK;
3823
	bool map_writable;
A
Avi Kivity 已提交
3824

3825 3826 3827
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
3828
	hva_t hva;
3829
	int r;
3830

3831
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3832
		return RET_PF_EMULATE;
3833

3834
	if (!is_tdp_mmu_fault) {
B
Ben Gardon 已提交
3835 3836 3837 3838
		r = fast_page_fault(vcpu, gpa, error_code);
		if (r != RET_PF_INVALID)
			return r;
	}
3839

3840
	r = mmu_topup_memory_caches(vcpu, false);
3841 3842
	if (r)
		return r;
3843

3844 3845 3846
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

3847 3848
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
			 write, &map_writable))
3849 3850
		return RET_PF_RETRY;

3851
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3852
		return r;
A
Avi Kivity 已提交
3853

3854
	r = RET_PF_RETRY;
3855

3856
	if (is_tdp_mmu_fault)
3857 3858 3859 3860
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

3861
	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3862
		goto out_unlock;
3863 3864
	r = make_mmu_pages_available(vcpu);
	if (r)
3865
		goto out_unlock;
B
Ben Gardon 已提交
3866

3867
	if (is_tdp_mmu_fault)
B
Ben Gardon 已提交
3868 3869 3870 3871 3872
		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
				    pfn, prefault);
	else
		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
				 prefault, is_tdp);
3873

3874
out_unlock:
3875
	if (is_tdp_mmu_fault)
3876 3877 3878
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
3879 3880
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
3881 3882
}

3883 3884 3885 3886 3887 3888 3889
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3890
				 PG_LEVEL_2M, false);
3891 3892
}

3893
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3894
				u64 fault_address, char *insn, int insn_len)
3895 3896
{
	int r = 1;
3897
	u32 flags = vcpu->arch.apf.host_apf_flags;
3898

3899 3900 3901 3902 3903 3904
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
3905
	vcpu->arch.l1tf_flush_l1d = true;
3906
	if (!flags) {
3907 3908
		trace_kvm_page_fault(fault_address, error_code);

3909
		if (kvm_event_needs_reinjection(vcpu))
3910 3911 3912
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
3913
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3914
		vcpu->arch.apf.host_apf_flags = 0;
3915
		local_irq_disable();
3916
		kvm_async_pf_task_wait_schedule(fault_address);
3917
		local_irq_enable();
3918 3919
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3920
	}
3921

3922 3923 3924 3925
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3926 3927
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
3928
{
3929
	int max_level;
3930

3931
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3932
	     max_level > PG_LEVEL_4K;
3933 3934
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3935
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3936

3937 3938
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
3939
	}
3940

3941 3942
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
3943 3944
}

3945
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
3946 3947 3948
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3949
	context->sync_page = nonpaging_sync_page;
3950
	context->invlpg = NULL;
3951
	context->direct_map = true;
A
Avi Kivity 已提交
3952 3953
}

3954
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3955 3956
				  union kvm_mmu_page_role role)
{
3957
	return (role.direct || pgd == root->pgd) &&
3958 3959
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
3960 3961
}

3962
/*
3963
 * Find out if a previously cached root matching the new pgd/role is available.
3964 3965 3966 3967 3968 3969
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
3970
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3971 3972 3973 3974
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
3975
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3976

3977
	root.pgd = mmu->root_pgd;
3978 3979
	root.hpa = mmu->root_hpa;

3980
	if (is_root_usable(&root, new_pgd, new_role))
3981 3982
		return true;

3983 3984 3985
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

3986
		if (is_root_usable(&root, new_pgd, new_role))
3987 3988 3989 3990
			break;
	}

	mmu->root_hpa = root.hpa;
3991
	mmu->root_pgd = root.pgd;
3992 3993 3994 3995

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

3996
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3997
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
3998
{
3999
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4000 4001 4002 4003 4004 4005 4006

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4007
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4008
		return cached_root_available(vcpu, new_pgd, new_role);
4009 4010

	return false;
A
Avi Kivity 已提交
4011 4012
}

4013
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4014
			      union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4015
{
4016
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4029
	if (force_flush_and_sync_on_reuse) {
4030 4031
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4032
	}
4033 4034 4035 4036 4037 4038 4039 4040 4041

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4042 4043 4044 4045 4046 4047 4048
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4049 4050
}

4051
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4052
{
4053
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4054
}
4055
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4056

4057 4058
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4059
	return kvm_read_cr3(vcpu);
4060 4061
}

4062
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4063
			   unsigned int access, int *nr_present)
4064 4065 4066 4067 4068 4069 4070 4071
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4072
		mark_mmio_spte(vcpu, sptep, gfn, access);
4073 4074 4075 4076 4077 4078
		return true;
	}

	return false;
}

4079 4080 4081 4082 4083
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4084 4085 4086 4087 4088 4089 4090 4091
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4092
static void
4093
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4094
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4095
			bool pse, bool amd)
4096
{
4097
	u64 gbpages_bit_rsvd = 0;
4098
	u64 nonleaf_bit8_rsvd = 0;
4099
	u64 high_bits_rsvd;
4100

4101
	rsvd_check->bad_mt_xwr = 0;
4102

4103
	if (!gbpages)
4104
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4105

4106 4107 4108 4109 4110 4111 4112 4113 4114
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4115 4116 4117 4118
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4119
	if (amd)
4120 4121
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4122
	switch (level) {
4123 4124
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4125 4126 4127 4128
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4129

4130
		if (!pse) {
4131
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4132 4133 4134
			break;
		}

4135 4136
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4137
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4138 4139
		else
			/* 32 bits PSE 4MB page */
4140
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4141 4142
		break;
	case PT32E_ROOT_LEVEL:
4143 4144 4145 4146 4147 4148 4149 4150
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4151 4152
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4153
		break;
4154
	case PT64_ROOT_5LEVEL:
4155 4156 4157
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4158 4159
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4160
		fallthrough;
4161
	case PT64_ROOT_4LEVEL:
4162 4163 4164 4165 4166 4167 4168
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4169 4170
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4171 4172 4173 4174 4175
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4176 4177
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4178 4179 4180 4181
		break;
	}
}

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4197 4198 4199
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4200
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4201
				vcpu->arch.reserved_gpa_bits,
4202
				context->root_level, is_efer_nx(context),
4203
				guest_can_use_gbpages(vcpu),
4204
				is_cr4_pse(context),
4205
				guest_cpuid_is_amd_or_hygon(vcpu));
4206 4207
}

4208 4209
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4210
			    u64 pa_bits_rsvd, bool execonly)
4211
{
4212
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4213
	u64 bad_mt_xwr;
4214

4215 4216 4217 4218 4219
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4220 4221

	/* large page */
4222
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4223
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4224 4225
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4226
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4227

4228 4229 4230 4231 4232 4233 4234 4235
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4236
	}
4237
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4238 4239
}

4240 4241 4242 4243
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4244
				    vcpu->arch.reserved_gpa_bits, execonly);
4245 4246
}

4247 4248 4249 4250 4251
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4252 4253 4254 4255 4256
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4257 4258
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4259
{
4260 4261 4262 4263 4264 4265 4266 4267
	/*
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
	 */
4268
	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4269 4270 4271 4272 4273

	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4274 4275
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4276

4277 4278
	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);

4279
	shadow_zero_check = &context->shadow_zero_check;
4280
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4281
				context->shadow_root_level, uses_nx,
4282
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4283 4284 4285 4286 4287 4288 4289 4290 4291

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4292 4293
}

4294 4295 4296 4297 4298 4299
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4300 4301 4302 4303 4304 4305 4306 4307
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4308 4309 4310 4311 4312
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4313
	if (boot_cpu_is_amd())
4314
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4315
					context->shadow_root_level, false,
4316
					boot_cpu_has(X86_FEATURE_GBPAGES),
4317
					false, true);
4318
	else
4319
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4320
					    reserved_hpa_bits(), false);
4321

4322 4323 4324 4325 4326 4327 4328
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4340
				    reserved_hpa_bits(), execonly);
4341 4342
}

4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4353
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4354
{
4355 4356 4357 4358 4359 4360
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4361 4362 4363
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4364
	bool efer_nx = is_efer_nx(mmu);
4365 4366

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4367 4368
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4369
		/*
4370 4371
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4372
		 */
4373

4374
		/* Faults from writes to non-writable pages */
4375
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4376
		/* Faults from user mode accesses to supervisor pages */
4377
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4378
		/* Faults from fetches of non-executable pages*/
4379
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4390
			if (!efer_nx)
4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4405
			 * conditions are true:
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4419
		}
4420 4421

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4422 4423 4424
	}
}

4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4449
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4450 4451 4452 4453
{
	unsigned bit;
	bool wp;

4454
	if (!is_cr4_pke(mmu)) {
4455 4456 4457 4458
		mmu->pkru_mask = 0;
		return;
	}

4459
	wp = is_cr0_wp(mmu);
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4493 4494
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4495
{
4496 4497
	if (!is_cr0_pg(mmu))
		return;
4498

4499 4500 4501
	reset_rsvds_bits_mask(vcpu, mmu);
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4502 4503
}

4504
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4505 4506 4507
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4508
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4509
	context->invlpg = paging64_invlpg;
4510
	context->direct_map = false;
A
Avi Kivity 已提交
4511 4512
}

4513
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4514 4515 4516
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4517
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4518
	context->invlpg = paging32_invlpg;
4519
	context->direct_map = false;
A
Avi Kivity 已提交
4520 4521
}

4522 4523
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
							 struct kvm_mmu_role_regs *regs)
4524 4525 4526
{
	union kvm_mmu_extended_role ext = {0};

4527 4528 4529 4530 4531 4532
	if (____is_cr0_pg(regs)) {
		ext.cr0_pg = 1;
		ext.cr4_pae = ____is_cr4_pae(regs);
		ext.cr4_smep = ____is_cr4_smep(regs);
		ext.cr4_smap = ____is_cr4_smap(regs);
		ext.cr4_pse = ____is_cr4_pse(regs);
4533 4534 4535 4536

		/* PKEY and LA57 are active iff long mode is active. */
		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4537
	}
4538 4539 4540 4541 4542 4543

	ext.valid = 1;

	return ext;
}

4544
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4545
						   struct kvm_mmu_role_regs *regs,
4546 4547 4548 4549 4550
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
4551 4552 4553 4554
	if (____is_cr0_pg(regs)) {
		role.base.efer_nx = ____is_efer_nx(regs);
		role.base.cr0_wp = ____is_cr0_wp(regs);
	}
4555 4556 4557 4558 4559 4560
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

4561
	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4562 4563 4564 4565

	return role;
}

4566 4567 4568
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
	/* Use 5-level TDP if and only if it's useful/necessary. */
4569
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4570 4571
		return 4;

4572
	return max_tdp_level;
4573 4574
}

4575
static union kvm_mmu_role
4576 4577
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs, bool base_only)
4578
{
4579
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4580

4581
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4582
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4583
	role.base.direct = true;
4584
	role.base.gpte_is_8_bytes = true;
4585 4586 4587 4588

	return role;
}

4589
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4590
{
4591
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4592
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4593
	union kvm_mmu_role new_role =
4594
		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4595

4596 4597 4598 4599
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4600
	context->page_fault = kvm_tdp_page_fault;
4601
	context->sync_page = nonpaging_sync_page;
4602
	context->invlpg = NULL;
4603
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4604
	context->direct_map = true;
4605
	context->get_guest_pgd = get_cr3;
4606
	context->get_pdptr = kvm_pdptr_read;
4607
	context->inject_page_fault = kvm_inject_page_fault;
4608
	context->root_level = role_regs_to_root_level(&regs);
4609

4610
	if (!is_cr0_pg(context))
4611
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4612
	else if (is_cr4_pae(context))
4613
		context->gva_to_gpa = paging64_gva_to_gpa;
4614
	else
4615
		context->gva_to_gpa = paging32_gva_to_gpa;
4616

4617
	reset_guest_paging_metadata(vcpu, context);
4618
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4619 4620
}

4621
static union kvm_mmu_role
4622 4623
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
				      struct kvm_mmu_role_regs *regs, bool base_only)
4624
{
4625
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4626

4627 4628
	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4629
	role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4630

4631 4632 4633 4634
	return role;
}

static union kvm_mmu_role
4635 4636
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs, bool base_only)
4637 4638
{
	union kvm_mmu_role role =
4639
		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4640

4641
	role.base.direct = !____is_cr0_pg(regs);
4642

4643
	if (!____is_efer_lma(regs))
4644
		role.base.level = PT32E_ROOT_LEVEL;
4645
	else if (____is_cr4_la57(regs))
4646
		role.base.level = PT64_ROOT_5LEVEL;
4647
	else
4648
		role.base.level = PT64_ROOT_4LEVEL;
4649 4650 4651 4652

	return role;
}

4653
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4654
				    struct kvm_mmu_role_regs *regs,
4655
				    union kvm_mmu_role new_role)
4656
{
4657 4658
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4659

4660
	context->mmu_role.as_u64 = new_role.as_u64;
4661

4662
	if (!is_cr0_pg(context))
4663
		nonpaging_init_context(context);
4664
	else if (is_cr4_pae(context))
4665
		paging64_init_context(context);
A
Avi Kivity 已提交
4666
	else
4667
		paging32_init_context(context);
4668
	context->root_level = role_regs_to_root_level(regs);
4669

4670
	reset_guest_paging_metadata(vcpu, context);
4671 4672
	context->shadow_root_level = new_role.base.level;

4673
	reset_shadow_zero_bits_mask(vcpu, context);
4674
}
4675

4676 4677
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs)
4678
{
4679
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4680
	union kvm_mmu_role new_role =
4681
		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4682

4683
	shadow_mmu_init_context(vcpu, context, regs, new_role);
4684 4685
}

4686
static union kvm_mmu_role
4687 4688
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs)
4689 4690
{
	union kvm_mmu_role role =
4691
		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4692 4693

	role.base.direct = false;
4694
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4695 4696 4697 4698

	return role;
}

4699 4700
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4701
{
4702
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4703 4704 4705 4706 4707
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
		.cr4 = cr4,
		.efer = efer,
	};
4708
	union kvm_mmu_role new_role;
4709

4710
	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4711

4712
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4713

4714
	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4715 4716
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4717

4718 4719
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4720
				   bool execonly, u8 level)
4721
{
4722
	union kvm_mmu_role role = {0};
4723

4724 4725
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4726

4727
	role.base.level = level;
4728
	role.base.gpte_is_8_bytes = true;
4729 4730 4731 4732
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4733

4734 4735
	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
	role.ext.word = 0;
4736
	role.ext.execonly = execonly;
4737
	role.ext.valid = 1;
4738 4739 4740 4741

	return role;
}

4742
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4743
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4744
{
4745
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4746
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4747 4748
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4749
						   execonly, level);
4750

4751
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4752 4753 4754

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4755

4756 4757
	context->mmu_role.as_u64 = new_role.as_u64;

4758
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4759

4760
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4761 4762 4763 4764
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4765
	context->root_level = level;
N
Nadav Har'El 已提交
4766
	context->direct_map = false;
4767

4768
	update_permission_bitmask(context, true);
4769
	update_pkru_bitmask(context);
N
Nadav Har'El 已提交
4770
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4771
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4772 4773 4774
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4775
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4776
{
4777
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4778
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4779

4780
	kvm_init_shadow_mmu(vcpu, &regs);
4781

4782
	context->get_guest_pgd     = get_cr3;
4783 4784
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4785 4786
}

4787 4788
static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4789
{
4790 4791 4792
	union kvm_mmu_role role;

	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4793 4794 4795 4796 4797 4798 4799

	/*
	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
	 * shadow pages of their own and so "direct" has no meaning.   Set it
	 * to "true" to try to detect bogus usage of the nested MMU.
	 */
	role.base.direct = true;
4800
	role.base.level = role_regs_to_root_level(regs);
4801 4802 4803
	return role;
}

4804
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4805
{
4806 4807
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4808 4809
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4810 4811 4812 4813
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4814
	g_context->get_guest_pgd     = get_cr3;
4815
	g_context->get_pdptr         = kvm_pdptr_read;
4816
	g_context->inject_page_fault = kvm_inject_page_fault;
4817
	g_context->root_level        = new_role.base.level;
4818

4819 4820 4821 4822 4823 4824
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4825
	/*
4826
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4827 4828 4829 4830 4831
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4832
	 */
4833
	if (!is_paging(vcpu))
4834
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4835
	else if (is_long_mode(vcpu))
4836
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4837
	else if (is_pae(vcpu))
4838
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4839
	else
4840 4841
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;

4842
	reset_guest_paging_metadata(vcpu, g_context);
4843 4844
}

4845
void kvm_init_mmu(struct kvm_vcpu *vcpu)
4846
{
4847
	if (mmu_is_nested(vcpu))
4848
		init_kvm_nested_mmu(vcpu);
4849
	else if (tdp_enabled)
4850
		init_kvm_tdp_mmu(vcpu);
4851
	else
4852
		init_kvm_softmmu(vcpu);
4853
}
4854
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4855

4856 4857 4858
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
4859
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4860 4861
	union kvm_mmu_role role;

4862
	if (tdp_enabled)
4863
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
4864
	else
4865
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
4866 4867

	return role.base;
4868
}
4869

4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
	 */
	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
	kvm_mmu_reset_context(vcpu);
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899

	/*
	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
	 * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
	 * sweep the problem under the rug.
	 *
	 * KVM's horrific CPUID ABI makes the problem all but impossible to
	 * solve, as correctly handling multiple vCPU models (with respect to
	 * paging and physical address properties) in a single VM would require
	 * tracking all relevant CPUID information in kvm_mmu_page_role.  That
	 * is very undesirable as it would double the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
	 * no sane VMM mucks with the core vCPU model on the fly.
	 */
	if (vcpu->arch.last_vmentry_cpu != -1) {
		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
	}
4900 4901
}

4902
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4903
{
4904
	kvm_mmu_unload(vcpu);
4905
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
4906
}
4907
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4908 4909

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4910
{
4911 4912
	int r;

4913
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
4914 4915
	if (r)
		goto out;
4916
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
4917 4918
	if (r)
		goto out;
4919
	if (vcpu->arch.mmu->direct_map)
4920 4921 4922
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
4923 4924
	if (r)
		goto out;
4925 4926 4927

	kvm_mmu_sync_roots(vcpu);

4928
	kvm_mmu_load_pgd(vcpu);
4929
	static_call(kvm_x86_tlb_flush_current)(vcpu);
4930 4931
out:
	return r;
A
Avi Kivity 已提交
4932
}
A
Avi Kivity 已提交
4933 4934 4935

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
4936 4937 4938 4939
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
4940
}
A
Avi Kivity 已提交
4941

4942 4943 4944 4945 4946 4947 4948 4949
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4950 4951
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4952 4953 4954
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4955
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4956
				    int *bytes)
4957
{
4958
	u64 gentry = 0;
4959
	int r;
4960 4961 4962

	/*
	 * Assume that the pte write on a page table of the same type
4963 4964
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4965
	 */
4966
	if (is_pae(vcpu) && *bytes == 4) {
4967
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4968 4969
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4970 4971
	}

4972 4973 4974 4975
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
4976 4977
	}

4978 4979 4980 4981 4982 4983 4984
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4985
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4986
{
4987 4988 4989 4990
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4991
	if (sp->role.level == PG_LEVEL_4K)
4992
		return false;
4993

4994 4995
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5011
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5012 5013 5014 5015 5016 5017 5018 5019

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5035
	if (!sp->role.gpte_is_8_bytes) {
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5057
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5058 5059
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5060 5061 5062 5063 5064 5065
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5066
	bool remote_flush, local_flush;
5067 5068 5069 5070 5071

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5072
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5073 5074
		return;

5075
	remote_flush = local_flush = false;
5076 5077 5078 5079 5080

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5081
	 * or not since pte prefetch is skipped if it does not have
5082 5083
	 * enough objects in the cache.
	 */
5084
	mmu_topup_memory_caches(vcpu, true);
5085

5086
	write_lock(&vcpu->kvm->mmu_lock);
5087 5088 5089

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5090
	++vcpu->kvm->stat.mmu_pte_write;
5091
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5092

5093
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5094
		if (detect_write_misaligned(sp, gpa, bytes) ||
5095
		      detect_write_flooding(sp)) {
5096
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5097
			++vcpu->kvm->stat.mmu_flooded;
5098 5099
			continue;
		}
5100 5101 5102 5103 5104

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5105
		local_flush = true;
5106
		while (npte--) {
5107
			entry = *spte;
5108
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5109 5110
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5111
			if (need_remote_flush(entry, *spte))
5112
				remote_flush = true;
5113
			++spte;
5114 5115
		}
	}
5116
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5117
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5118
	write_unlock(&vcpu->kvm->mmu_lock);
5119 5120
}

5121
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5122
		       void *insn, int insn_len)
5123
{
5124
	int r, emulation_type = EMULTYPE_PF;
5125
	bool direct = vcpu->arch.mmu->direct_map;
5126

5127
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5128 5129
		return RET_PF_RETRY;

5130
	r = RET_PF_INVALID;
5131
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5132
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5133
		if (r == RET_PF_EMULATE)
5134 5135
			goto emulate;
	}
5136

5137
	if (r == RET_PF_INVALID) {
5138 5139
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5140
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5141
			return -EIO;
5142 5143
	}

5144
	if (r < 0)
5145
		return r;
5146 5147
	if (r != RET_PF_EMULATE)
		return 1;
5148

5149 5150 5151 5152 5153 5154 5155
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5156
	if (vcpu->arch.mmu->direct_map &&
5157
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5158
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5159 5160 5161
		return 1;
	}

5162 5163 5164 5165 5166 5167
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5168 5169 5170 5171
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5172
	 */
5173
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5174
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5175
emulate:
5176
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5177
				       insn_len);
5178 5179 5180
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5181 5182
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5183
{
5184
	int i;
5185

5186 5187 5188 5189 5190 5191
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5192
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5193 5194 5195
	}

	if (!mmu->invlpg)
5196 5197
		return;

5198 5199
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5200

5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5219

5220 5221 5222
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5223 5224 5225 5226
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5227

5228 5229
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5230
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5231
	bool tlb_flush = false;
5232
	uint i;
5233 5234

	if (pcid == kvm_get_active_pcid(vcpu)) {
5235
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5236
		tlb_flush = true;
5237 5238
	}

5239 5240
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5241
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5242 5243 5244
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5245
	}
5246

5247
	if (tlb_flush)
5248
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5249

5250 5251 5252
	++vcpu->stat.invlpg;

	/*
5253 5254 5255
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5256 5257 5258
	 */
}

5259 5260
void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
		       int tdp_huge_page_level)
5261
{
5262
	tdp_enabled = enable_tdp;
5263
	max_tdp_level = tdp_max_root_level;
5264 5265

	/*
5266
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5267 5268 5269 5270 5271 5272
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5273
		max_huge_page_level = tdp_huge_page_level;
5274
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5275
		max_huge_page_level = PG_LEVEL_1G;
5276
	else
5277
		max_huge_page_level = PG_LEVEL_2M;
5278
}
5279
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5280 5281

/* The return value indicates if tlb flush on all vcpus is needed. */
5282 5283
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot);
5284 5285 5286 5287 5288

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
5289 5290
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5291 5292 5293 5294 5295 5296
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5297
			flush |= fn(kvm, iterator.rmap, memslot);
5298

5299
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5300
			if (flush && flush_on_yield) {
5301 5302 5303
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5304 5305
				flush = false;
			}
5306
			cond_resched_rwlock_write(&kvm->mmu_lock);
5307 5308 5309 5310 5311 5312 5313 5314 5315
		}
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
5316
		  bool flush_on_yield)
5317 5318 5319 5320
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5321
			flush_on_yield, false);
5322 5323 5324 5325
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5326
		 slot_level_handler fn, bool flush_on_yield)
5327
{
5328
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5329
				 PG_LEVEL_4K, flush_on_yield);
5330 5331
}

5332
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5333
{
5334 5335
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5336
	free_page((unsigned long)mmu->pae_root);
5337
	free_page((unsigned long)mmu->pml4_root);
A
Avi Kivity 已提交
5338 5339
}

5340
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5341
{
5342
	struct page *page;
A
Avi Kivity 已提交
5343 5344
	int i;

5345 5346 5347 5348 5349 5350
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5351
	/*
5352 5353 5354 5355
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5356 5357 5358 5359 5360
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5361
	 */
5362
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5363 5364
		return 0;

5365
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5366
	if (!page)
5367 5368
		return -ENOMEM;

5369
	mmu->pae_root = page_address(page);
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5384
	for (i = 0; i < 4; ++i)
5385
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5386

A
Avi Kivity 已提交
5387 5388 5389
	return 0;
}

5390
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5391
{
5392
	int ret;
5393

5394
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5395 5396
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5397
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5398
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5399

5400 5401
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5402 5403
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5404

5405
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5406

5407
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5408 5409 5410
	if (ret)
		return ret;

5411
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5412 5413 5414 5415 5416 5417 5418
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5419 5420
}

5421
#define BATCH_ZAP_PAGES	10
5422 5423 5424
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5425
	int nr_zapped, batch = 0;
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5438 5439 5440
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5441
		 */
5442
		if (WARN_ON(sp->role.invalid))
5443 5444
			continue;

5445 5446 5447 5448 5449 5450
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5451
		if (batch >= BATCH_ZAP_PAGES &&
5452
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5453
			batch = 0;
5454 5455 5456
			goto restart;
		}

5457 5458
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5459
			batch += nr_zapped;
5460
			goto restart;
5461
		}
5462 5463
	}

5464 5465 5466 5467 5468
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5469
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5483 5484
	lockdep_assert_held(&kvm->slots_lock);

5485
	write_lock(&kvm->mmu_lock);
5486
	trace_kvm_mmu_zap_all_fast(kvm);
5487 5488 5489 5490 5491 5492 5493 5494 5495

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5496

5497 5498 5499 5500 5501 5502 5503 5504 5505
	/* In order to ensure all threads see this change when
	 * handling the MMU reload signal, this must happen in the
	 * same critical section as kvm_reload_remote_mmus, and
	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
	 * could drop the MMU lock and yield.
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5516
	kvm_zap_obsolete_pages(kvm);
5517

5518
	write_unlock(&kvm->mmu_lock);
5519 5520 5521 5522 5523 5524

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
		read_unlock(&kvm->mmu_lock);
	}
5525 5526
}

5527 5528 5529 5530 5531
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5532
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5533 5534
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5535
{
5536
	kvm_mmu_zap_all_fast(kvm);
5537 5538
}

5539
void kvm_mmu_init_vm(struct kvm *kvm)
5540
{
5541
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5542

5543 5544 5545 5546 5547 5548 5549
	if (!kvm_mmu_init_tdp_mmu(kvm))
		/*
		 * No smp_load/store wrappers needed here as we are in
		 * VM init and there cannot be any memslots / other threads
		 * accessing this struct kvm yet.
		 */
		kvm->arch.memslots_have_rmaps = true;
5550

5551
	node->track_write = kvm_mmu_pte_write;
5552
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5553
	kvm_page_track_register_notifier(kvm, node);
5554 5555
}

5556
void kvm_mmu_uninit_vm(struct kvm *kvm)
5557
{
5558
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5559

5560
	kvm_page_track_unregister_notifier(kvm, node);
5561 5562

	kvm_mmu_uninit_tdp_mmu(kvm);
5563 5564
}

X
Xiao Guangrong 已提交
5565 5566 5567 5568
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5569
	int i;
5570
	bool flush = false;
X
Xiao Guangrong 已提交
5571

5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
			slots = __kvm_memslots(kvm, i);
			kvm_for_each_memslot(memslot, slots) {
				gfn_t start, end;

				start = max(gfn_start, memslot->base_gfn);
				end = min(gfn_end, memslot->base_gfn + memslot->npages);
				if (start >= end)
					continue;
X
Xiao Guangrong 已提交
5583

5584 5585 5586 5587 5588
				flush = slot_handle_level_range(kvm, memslot,
						kvm_zap_rmapp, PG_LEVEL_4K,
						KVM_MAX_HUGEPAGE_LEVEL, start,
						end - 1, true, flush);
			}
5589
		}
5590 5591 5592
		if (flush)
			kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
		write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5593 5594
	}

5595
	if (is_tdp_mmu_enabled(kvm)) {
5596 5597 5598 5599 5600 5601
		flush = false;

		read_lock(&kvm->mmu_lock);
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
							  gfn_end, flush, true);
5602
		if (flush)
5603 5604
			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
							   gfn_end);
5605

5606 5607
		read_unlock(&kvm->mmu_lock);
	}
X
Xiao Guangrong 已提交
5608 5609
}

5610
static bool slot_rmap_write_protect(struct kvm *kvm,
5611 5612
				    struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot)
5613
{
5614
	return __rmap_write_protect(kvm, rmap_head, false);
5615 5616
}

5617
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5618 5619
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5620
{
5621
	bool flush = false;
A
Avi Kivity 已提交
5622

5623 5624 5625 5626 5627 5628 5629
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5630

5631 5632 5633 5634 5635 5636
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5637 5638 5639 5640 5641 5642 5643
	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
5644 5645 5646
	 * have checked Host-writable | MMU-writable instead of
	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
	 * anymore.
5647
	 */
5648
	if (flush)
5649
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5650
}
5651

5652
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5653 5654
					 struct kvm_rmap_head *rmap_head,
					 struct kvm_memory_slot *slot)
5655 5656 5657 5658
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5659
	kvm_pfn_t pfn;
5660 5661
	struct kvm_mmu_page *sp;

5662
restart:
5663
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5664
		sp = sptep_to_sp(sptep);
5665 5666 5667
		pfn = spte_to_pfn(*sptep);

		/*
5668 5669 5670 5671 5672
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5673
		 */
5674
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5675 5676
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5677
			pte_list_remove(rmap_head, sptep);
5678 5679 5680 5681 5682 5683 5684

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5685 5686
			goto restart;
		}
5687 5688 5689 5690 5691 5692
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5693
				   const struct kvm_memory_slot *memslot)
5694
{
5695
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5696
	struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5697
	bool flush = false;
5698

5699 5700 5701 5702 5703 5704 5705
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
5706 5707 5708 5709 5710 5711 5712 5713

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		read_unlock(&kvm->mmu_lock);
	}
5714 5715
}

5716
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5717
					const struct kvm_memory_slot *memslot)
5718 5719
{
	/*
5720
	 * All current use cases for flushing the TLBs for a specific memslot
5721
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5722 5723 5724
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5725 5726
	 */
	lockdep_assert_held(&kvm->slots_lock);
5727 5728
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5729 5730
}

5731 5732 5733
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5734
	bool flush = false;
5735

5736 5737 5738 5739 5740 5741
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
					 false);
		write_unlock(&kvm->mmu_lock);
	}
5742

5743 5744 5745 5746 5747 5748
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

5749 5750 5751 5752 5753 5754 5755
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5756
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5757 5758
}

5759
void kvm_mmu_zap_all(struct kvm *kvm)
5760 5761
{
	struct kvm_mmu_page *sp, *node;
5762
	LIST_HEAD(invalid_list);
5763
	int ign;
5764

5765
	write_lock(&kvm->mmu_lock);
5766
restart:
5767
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5768
		if (WARN_ON(sp->role.invalid))
5769
			continue;
5770
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5771
			goto restart;
5772
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5773 5774 5775
			goto restart;
	}

5776
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5777

5778
	if (is_tdp_mmu_enabled(kvm))
5779 5780
		kvm_tdp_mmu_zap_all(kvm);

5781
	write_unlock(&kvm->mmu_lock);
5782 5783
}

5784
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5785
{
5786
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5787

5788
	gen &= MMIO_SPTE_GEN_MASK;
5789

5790
	/*
5791 5792 5793 5794 5795 5796 5797 5798
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5799
	/*
5800
	 * The very rare case: if the MMIO generation number has wrapped,
5801 5802
	 * zap all shadow pages.
	 */
5803
	if (unlikely(gen == 0)) {
5804
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5805
		kvm_mmu_zap_all_fast(kvm);
5806
	}
5807 5808
}

5809 5810
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5811 5812
{
	struct kvm *kvm;
5813
	int nr_to_scan = sc->nr_to_scan;
5814
	unsigned long freed = 0;
5815

J
Junaid Shahid 已提交
5816
	mutex_lock(&kvm_lock);
5817 5818

	list_for_each_entry(kvm, &vm_list, vm_list) {
5819
		int idx;
5820
		LIST_HEAD(invalid_list);
5821

5822 5823 5824 5825 5826 5827 5828 5829
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5830 5831 5832 5833 5834 5835
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5836 5837
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5838 5839
			continue;

5840
		idx = srcu_read_lock(&kvm->srcu);
5841
		write_lock(&kvm->mmu_lock);
5842

5843 5844 5845 5846 5847 5848
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5849
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5850

5851
unlock:
5852
		write_unlock(&kvm->mmu_lock);
5853
		srcu_read_unlock(&kvm->srcu, idx);
5854

5855 5856 5857 5858 5859
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5860 5861
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5862 5863
	}

J
Junaid Shahid 已提交
5864
	mutex_unlock(&kvm_lock);
5865 5866 5867 5868 5869 5870
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5871
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5872 5873 5874
}

static struct shrinker mmu_shrinker = {
5875 5876
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5877 5878 5879
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5880
static void mmu_destroy_caches(void)
5881
{
5882 5883
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5884 5885
}

P
Paolo Bonzini 已提交
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
5920
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
5921
			kvm_mmu_zap_all_fast(kvm);
5922
			mutex_unlock(&kvm->slots_lock);
5923 5924

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
5925 5926 5927 5928 5929 5930 5931
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

5932 5933
int kvm_mmu_module_init(void)
{
5934 5935
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
5936 5937 5938
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

5949
	kvm_mmu_reset_all_pte_masks();
5950

5951 5952
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5953
					    0, SLAB_ACCOUNT, NULL);
5954
	if (!pte_list_desc_cache)
5955
		goto out;
5956

5957 5958
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5959
						  0, SLAB_ACCOUNT, NULL);
5960
	if (!mmu_page_header_cache)
5961
		goto out;
5962

5963
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5964
		goto out;
5965

5966 5967 5968
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
5969

5970 5971
	return 0;

5972
out:
5973
	mmu_destroy_caches();
5974
	return ret;
5975 5976
}

5977
/*
P
Peng Hao 已提交
5978
 * Calculate mmu pages needed for kvm.
5979
 */
5980
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5981
{
5982 5983
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
5984
	struct kvm_memslots *slots;
5985
	struct kvm_memory_slot *memslot;
5986
	int i;
5987

5988 5989
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5990

5991 5992 5993
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5994 5995

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5996
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5997 5998 5999 6000

	return nr_mmu_pages;
}

6001 6002
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6003
	kvm_mmu_unload(vcpu);
6004 6005
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6006
	mmu_free_memory_caches(vcpu);
6007 6008 6009 6010 6011 6012 6013
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6014 6015
	mmu_audit_disable();
}
6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6044
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6045 6046 6047 6048
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6049
	bool flush = false;
6050 6051 6052
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6053
	write_lock(&kvm->mmu_lock);
6054 6055

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6056
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6057 6058 6059 6060
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6061 6062 6063 6064 6065 6066 6067 6068 6069
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6070
		if (is_tdp_mmu_page(sp)) {
6071
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6072
		} else {
6073 6074 6075
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6076

6077
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6078
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6079
			cond_resched_rwlock_write(&kvm->mmu_lock);
6080
			flush = false;
6081 6082
		}
	}
6083
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6084

6085
	write_unlock(&kvm->mmu_lock);
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}