i915_gem.c 136.0 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56 57 58 59 60 61 62
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

63 64 65 66
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
67
	spin_lock(&dev_priv->mm.object_stat_lock);
68 69
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
70
	spin_unlock(&dev_priv->mm.object_stat_lock);
71 72 73 74 75
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
76
	spin_lock(&dev_priv->mm.object_stat_lock);
77 78
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
79
	spin_unlock(&dev_priv->mm.object_stat_lock);
80 81
}

82
static int
83
i915_gem_wait_for_error(struct i915_gpu_error *error)
84 85 86
{
	int ret;

87
	if (!i915_reset_in_progress(error))
88 89
		return 0;

90 91 92 93 94
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
95
	ret = wait_event_interruptible_timeout(error->reset_queue,
96
					       !i915_reset_in_progress(error),
97
					       10*HZ);
98 99 100 101
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
102
		return ret;
103 104
	} else {
		return 0;
105
	}
106 107
}

108
int i915_mutex_lock_interruptible(struct drm_device *dev)
109
{
110
	struct drm_i915_private *dev_priv = dev->dev_private;
111 112
	int ret;

113
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114 115 116 117 118 119 120
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

121
	WARN_ON(i915_verify_lists(dev));
122 123
	return 0;
}
124

125 126
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127
			    struct drm_file *file)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
131
	struct drm_i915_gem_get_aperture *args = data;
132
	struct i915_vma *vma;
133
	size_t pinned;
134

135
	pinned = 0;
136
	mutex_lock(&dev->struct_mutex);
137
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138 139
		if (vma->pin_count)
			pinned += vma->node.size;
140
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141 142
		if (vma->pin_count)
			pinned += vma->node.size;
143
	mutex_unlock(&dev->struct_mutex);
144

145
	args->aper_size = ggtt->base.total;
146
	args->aper_available_size = args->aper_size - pinned;
147

148 149 150
	return 0;
}

151 152
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153
{
154 155 156 157 158
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

176
		put_page(page);
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
194

195 196 197 198 199 200 201 202 203 204 205 206 207
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
208

209
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
210
	if (WARN_ON(ret)) {
211 212 213 214 215 216 217 218 219 220
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
221
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222
		char *vaddr = obj->phys_handle->vaddr;
223 224 225
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226 227 228 229 230 231 232 233 234 235 236 237 238 239
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
240
				mark_page_accessed(page);
241
			put_page(page);
242 243
			vaddr += PAGE_SIZE;
		}
244
		obj->dirty = 0;
245 246
	}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
270
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271 272 273 274 275 276 277
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
278 279 280 281 282 283 284
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
285
	int ret;
286 287 288 289 290 291 292 293 294 295 296 297 298 299

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

300 301 302 303
	ret = drop_pages(obj);
	if (ret)
		return ret;

304 305 306 307 308 309
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
310 311 312
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
313 314 315 316 317 318 319 320 321 322
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
323
	int ret = 0;
324 325 326 327 328 329 330

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
331

332
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333 334 335 336 337 338 339 340 341 342
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
343 344 345 346
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
347 348
	}

349
	drm_clflush_virt_range(vaddr, args->size);
350
	i915_gem_chipset_flush(dev);
351 352

out:
353
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354
	return ret;
355 356
}

357 358 359
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
360
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 362 363 364 365
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366
	kmem_cache_free(dev_priv->objects, obj);
367 368
}

369 370 371 372 373
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
374
{
375
	struct drm_i915_gem_object *obj;
376 377
	int ret;
	u32 handle;
378

379
	size = roundup(size, PAGE_SIZE);
380 381
	if (size == 0)
		return -EINVAL;
382 383

	/* Allocate the new object */
384
	obj = i915_gem_object_create(dev, size);
385 386
	if (IS_ERR(obj))
		return PTR_ERR(obj);
387

388
	ret = drm_gem_handle_create(file, &obj->base, &handle);
389
	/* drop reference from allocate - handle holds it now */
390 391 392
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
393

394
	*handle_p = handle;
395 396 397
	return 0;
}

398 399 400 401 402 403
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
404
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405 406
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
407
			       args->size, &args->handle);
408 409 410 411 412 413 414 415 416 417
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
418

419
	return i915_gem_create(file, dev,
420
			       args->size, &args->handle);
421 422
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

449
static inline int
450 451
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

475 476 477 478 479 480 481 482 483 484 485 486
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

487
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

511 512 513
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
514
static int
515 516 517 518 519 520 521
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

522
	if (unlikely(page_do_bit17_swizzling))
523 524 525 526 527 528 529 530 531 532 533
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

534
	return ret ? -EFAULT : 0;
535 536
}

537 538 539 540
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
541
	if (unlikely(swizzled)) {
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

559 560 561 562 563 564 565 566 567 568 569 570
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
571 572 573
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
574 575 576 577 578 579 580 581 582 583 584

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

585
	return ret ? - EFAULT : 0;
586 587
}

588
static int
589 590 591 592
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
593
{
594
	char __user *user_data;
595
	ssize_t remain;
596
	loff_t offset;
597
	int shmem_page_offset, page_length, ret = 0;
598
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599
	int prefaulted = 0;
600
	int needs_clflush = 0;
601
	struct sg_page_iter sg_iter;
602

V
Ville Syrjälä 已提交
603
	user_data = to_user_ptr(args->data_ptr);
604 605
	remain = args->size;

606
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607

608
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609 610 611
	if (ret)
		return ret;

612
	offset = args->offset;
613

614 615
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
616
		struct page *page = sg_page_iter_page(&sg_iter);
617 618 619 620

		if (remain <= 0)
			break;

621 622 623 624 625
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
626
		shmem_page_offset = offset_in_page(offset);
627 628 629 630
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

631 632 633
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

634 635 636 637 638
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
639 640 641

		mutex_unlock(&dev->struct_mutex);

642
		if (likely(!i915.prefault_disable) && !prefaulted) {
643
			ret = fault_in_multipages_writeable(user_data, remain);
644 645 646 647 648 649 650
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
651

652 653 654
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
655

656
		mutex_lock(&dev->struct_mutex);
657 658

		if (ret)
659 660
			goto out;

661
next_page:
662
		remain -= page_length;
663
		user_data += page_length;
664 665 666
		offset += page_length;
	}

667
out:
668 669
	i915_gem_object_unpin_pages(obj);

670 671 672
	return ret;
}

673 674 675 676 677 678 679
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680
		     struct drm_file *file)
681 682
{
	struct drm_i915_gem_pread *args = data;
683
	struct drm_i915_gem_object *obj;
684
	int ret = 0;
685

686 687 688 689
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
690
		       to_user_ptr(args->data_ptr),
691 692 693
		       args->size))
		return -EFAULT;

694
	ret = i915_mutex_lock_interruptible(dev);
695
	if (ret)
696
		return ret;
697

698
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
699
	if (&obj->base == NULL) {
700 701
		ret = -ENOENT;
		goto unlock;
702
	}
703

704
	/* Bounds check source.  */
705 706
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
707
		ret = -EINVAL;
708
		goto out;
C
Chris Wilson 已提交
709 710
	}

711 712 713 714 715 716 717 718
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
719 720
	trace_i915_gem_object_pread(obj, args->offset, args->size);

721
	ret = i915_gem_shmem_pread(dev, obj, args, file);
722

723
out:
724
	drm_gem_object_unreference(&obj->base);
725
unlock:
726
	mutex_unlock(&dev->struct_mutex);
727
	return ret;
728 729
}

730 731
/* This is the fast write path which cannot handle
 * page faults in the source data
732
 */
733 734 735 736 737 738

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
739
{
740 741
	void __iomem *vaddr_atomic;
	void *vaddr;
742
	unsigned long unwritten;
743

P
Peter Zijlstra 已提交
744
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745 746 747
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
748
						      user_data, length);
P
Peter Zijlstra 已提交
749
	io_mapping_unmap_atomic(vaddr_atomic);
750
	return unwritten;
751 752
}

753 754 755 756
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
757
static int
758 759
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
760
			 struct drm_i915_gem_pwrite *args,
761
			 struct drm_file *file)
762
{
763 764
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
765
	ssize_t remain;
766
	loff_t offset, page_base;
767
	char __user *user_data;
D
Daniel Vetter 已提交
768 769
	int page_offset, page_length, ret;

770
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
771 772 773 774 775 776 777 778 779 780
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
781

V
Ville Syrjälä 已提交
782
	user_data = to_user_ptr(args->data_ptr);
783 784
	remain = args->size;

785
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786

787
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788

789 790 791
	while (remain > 0) {
		/* Operation in this page
		 *
792 793 794
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
795
		 */
796 797
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
798 799 800 801 802
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
803 804
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
805
		 */
806
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
807 808
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
809
			goto out_flush;
D
Daniel Vetter 已提交
810
		}
811

812 813 814
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
815 816
	}

817
out_flush:
818
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
819
out_unpin:
B
Ben Widawsky 已提交
820
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
821
out:
822
	return ret;
823 824
}

825 826 827 828
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
829
static int
830 831 832 833 834
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
835
{
836
	char *vaddr;
837
	int ret;
838

839
	if (unlikely(page_do_bit17_swizzling))
840
		return -EINVAL;
841

842 843 844 845
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
846 847
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
848 849 850 851
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
852

853
	return ret ? -EFAULT : 0;
854 855
}

856 857
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
858
static int
859 860 861 862 863
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
864
{
865 866
	char *vaddr;
	int ret;
867

868
	vaddr = kmap(page);
869
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870 871 872
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
873 874
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875 876
						user_data,
						page_length);
877 878 879 880 881
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
882 883 884
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
885
	kunmap(page);
886

887
	return ret ? -EFAULT : 0;
888 889 890
}

static int
891 892 893 894
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
895 896
{
	ssize_t remain;
897 898
	loff_t offset;
	char __user *user_data;
899
	int shmem_page_offset, page_length, ret = 0;
900
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901
	int hit_slowpath = 0;
902 903
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
904
	struct sg_page_iter sg_iter;
905

V
Ville Syrjälä 已提交
906
	user_data = to_user_ptr(args->data_ptr);
907 908
	remain = args->size;

909
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910

911 912 913 914 915
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
916
		needs_clflush_after = cpu_write_needs_clflush(obj);
917 918 919
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
920
	}
921 922 923 924 925
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
926

927 928 929 930
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

931
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932

933 934
	i915_gem_object_pin_pages(obj);

935
	offset = args->offset;
936
	obj->dirty = 1;
937

938 939
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
940
		struct page *page = sg_page_iter_page(&sg_iter);
941
		int partial_cacheline_write;
942

943 944 945
		if (remain <= 0)
			break;

946 947 948 949 950
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
951
		shmem_page_offset = offset_in_page(offset);
952 953 954 955 956

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

957 958 959 960 961 962 963
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

964 965 966
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

967 968 969 970 971 972
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
973 974 975

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
976 977 978 979
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
980

981
		mutex_lock(&dev->struct_mutex);
982 983

		if (ret)
984 985
			goto out;

986
next_page:
987
		remain -= page_length;
988
		user_data += page_length;
989
		offset += page_length;
990 991
	}

992
out:
993 994
	i915_gem_object_unpin_pages(obj);

995
	if (hit_slowpath) {
996 997 998 999 1000 1001 1002
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003
			if (i915_gem_clflush_object(obj, obj->pin_display))
1004
				needs_clflush_after = true;
1005
		}
1006
	}
1007

1008
	if (needs_clflush_after)
1009
		i915_gem_chipset_flush(dev);
1010 1011
	else
		obj->cache_dirty = true;
1012

1013
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014
	return ret;
1015 1016 1017 1018 1019 1020 1021 1022 1023
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024
		      struct drm_file *file)
1025
{
1026
	struct drm_i915_private *dev_priv = dev->dev_private;
1027
	struct drm_i915_gem_pwrite *args = data;
1028
	struct drm_i915_gem_object *obj;
1029 1030 1031 1032 1033 1034
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1035
		       to_user_ptr(args->data_ptr),
1036 1037 1038
		       args->size))
		return -EFAULT;

1039
	if (likely(!i915.prefault_disable)) {
1040 1041 1042 1043 1044
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1045

1046 1047
	intel_runtime_pm_get(dev_priv);

1048
	ret = i915_mutex_lock_interruptible(dev);
1049
	if (ret)
1050
		goto put_rpm;
1051

1052
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1053
	if (&obj->base == NULL) {
1054 1055
		ret = -ENOENT;
		goto unlock;
1056
	}
1057

1058
	/* Bounds check destination. */
1059 1060
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1061
		ret = -EINVAL;
1062
		goto out;
C
Chris Wilson 已提交
1063 1064
	}

1065 1066 1067 1068 1069 1070 1071 1072
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1073 1074
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1075
	ret = -EFAULT;
1076 1077 1078 1079 1080 1081
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1082 1083 1084
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1085
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1086 1087 1088
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1089
	}
1090

1091 1092 1093 1094 1095 1096
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1097

1098
out:
1099
	drm_gem_object_unreference(&obj->base);
1100
unlock:
1101
	mutex_unlock(&dev->struct_mutex);
1102 1103 1104
put_rpm:
	intel_runtime_pm_put(dev_priv);

1105 1106 1107
	return ret;
}

1108 1109
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110
{
1111 1112
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1113

1114
	if (__i915_reset_in_progress(reset_counter)) {
1115 1116 1117 1118 1119
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1120
		return -EAGAIN;
1121 1122 1123 1124 1125
	}

	return 0;
}

1126 1127 1128 1129 1130 1131
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1132
		       struct intel_engine_cs *engine)
1133
{
1134
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1169
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170
{
1171
	unsigned long timeout;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1183

1184
	if (req->engine->irq_refcount)
1185 1186
		return -EBUSY;

1187 1188 1189 1190
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1191
	timeout = local_clock_us(&cpu) + 5;
1192
	while (!need_resched()) {
D
Daniel Vetter 已提交
1193
		if (i915_gem_request_completed(req, true))
1194 1195
			return 0;

1196 1197 1198
		if (signal_pending_state(state, current))
			break;

1199
		if (busywait_stop(timeout, cpu))
1200
			break;
1201

1202 1203
		cpu_relax_lowlatency();
	}
1204

D
Daniel Vetter 已提交
1205
	if (i915_gem_request_completed(req, false))
1206 1207 1208
		return 0;

	return -EAGAIN;
1209 1210
}

1211
/**
1212 1213
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1214 1215 1216
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1217 1218 1219 1220 1221 1222 1223
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1224
 * Returns 0 if the request was found within the alloted time. Else returns the
1225 1226
 * errno with remaining time filled in timeout argument.
 */
1227
int __i915_wait_request(struct drm_i915_gem_request *req,
1228
			bool interruptible,
1229
			s64 *timeout,
1230
			struct intel_rps_client *rps)
1231
{
1232
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233
	struct drm_device *dev = engine->dev;
1234
	struct drm_i915_private *dev_priv = dev->dev_private;
1235
	const bool irq_test_in_progress =
1236
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1237
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1238
	DEFINE_WAIT(wait);
1239
	unsigned long timeout_expire;
1240
	s64 before = 0; /* Only to silence a compiler warning. */
1241 1242
	int ret;

1243
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1244

1245 1246 1247
	if (list_empty(&req->list))
		return 0;

1248
	if (i915_gem_request_completed(req, true))
1249 1250
		return 0;

1251 1252 1253 1254 1255 1256 1257 1258 1259
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1260 1261 1262 1263 1264

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1265
	}
1266

1267
	if (INTEL_INFO(dev_priv)->gen >= 6)
1268
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1269

1270
	trace_i915_gem_request_wait_begin(req);
1271 1272

	/* Optimistic spin for the next jiffie before touching IRQs */
1273
	ret = __i915_spin_request(req, state);
1274 1275 1276
	if (ret == 0)
		goto out;

1277
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1278 1279 1280 1281
		ret = -ENODEV;
		goto out;
	}

1282 1283
	for (;;) {
		struct timer_list timer;
1284

1285
		prepare_to_wait(&engine->irq_queue, &wait, state);
1286

1287
		/* We need to check whether any gpu reset happened in between
1288 1289 1290 1291 1292 1293
		 * the request being submitted and now. If a reset has occurred,
		 * the request is effectively complete (we either are in the
		 * process of or have discarded the rendering and completely
		 * reset the GPU. The results of the request are lost and we
		 * are free to continue on with the original operation.
		 */
1294
		if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1295
			ret = 0;
1296 1297
			break;
		}
1298

1299
		if (i915_gem_request_completed(req, false)) {
1300 1301 1302
			ret = 0;
			break;
		}
1303

1304
		if (signal_pending_state(state, current)) {
1305 1306 1307 1308
			ret = -ERESTARTSYS;
			break;
		}

1309
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1310 1311 1312 1313 1314
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1315
		if (timeout || missed_irq(dev_priv, engine)) {
1316 1317
			unsigned long expire;

1318
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1319
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1320 1321 1322
			mod_timer(&timer, expire);
		}

1323
		io_schedule();
1324 1325 1326 1327 1328 1329

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1330
	if (!irq_test_in_progress)
1331
		engine->irq_put(engine);
1332

1333
	finish_wait(&engine->irq_queue, &wait);
1334

1335 1336 1337
out:
	trace_i915_gem_request_wait_end(req);

1338
	if (timeout) {
1339
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1340 1341

		*timeout = tres < 0 ? 0 : tres;
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1352 1353
	}

1354
	return ret;
1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1394 1395 1396

	put_pid(request->pid);
	request->pid = NULL;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1416
	if (request->previous_context) {
1417
		if (i915.enable_execlists)
1418 1419
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1420 1421
	}

1422
	i915_gem_context_unreference(request->ctx);
1423 1424 1425 1426 1427 1428
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1429
	struct intel_engine_cs *engine = req->engine;
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1447
/**
1448
 * Waits for a request to be signaled, and cleans up the
1449 1450 1451
 * request and object lists appropriately for that event.
 */
int
1452
i915_wait_request(struct drm_i915_gem_request *req)
1453
{
1454
	struct drm_i915_private *dev_priv = req->i915;
1455
	bool interruptible;
1456 1457
	int ret;

1458 1459
	interruptible = dev_priv->mm.interruptible;

1460
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1461

1462
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1463 1464
	if (ret)
		return ret;
1465

1466
	__i915_gem_request_retire__upto(req);
1467 1468 1469
	return 0;
}

1470 1471 1472 1473
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1474
int
1475 1476 1477
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1478
	int ret, i;
1479

1480
	if (!obj->active)
1481 1482
		return 0;

1483 1484 1485 1486 1487
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1488

1489
			i = obj->last_write_req->engine->id;
1490 1491 1492 1493 1494 1495
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1496
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1497 1498 1499 1500 1501 1502 1503 1504 1505
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1506
		GEM_BUG_ON(obj->active);
1507 1508 1509 1510 1511 1512 1513 1514 1515
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1516
	int ring = req->engine->id;
1517 1518 1519 1520 1521 1522 1523

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1524 1525
}

1526 1527 1528 1529 1530
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1531
					    struct intel_rps_client *rps,
1532 1533 1534 1535
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1536
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1537
	int ret, i, n = 0;
1538 1539 1540 1541

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1542
	if (!obj->active)
1543 1544
		return 0;

1545 1546 1547 1548 1549 1550 1551 1552 1553
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1554
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1565
	mutex_unlock(&dev->struct_mutex);
1566
	ret = 0;
1567
	for (i = 0; ret == 0 && i < n; i++)
1568
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1569 1570
	mutex_lock(&dev->struct_mutex);

1571 1572 1573 1574 1575 1576 1577
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1578 1579
}

1580 1581 1582 1583 1584 1585
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1586
/**
1587 1588
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1589 1590 1591
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1592
			  struct drm_file *file)
1593 1594
{
	struct drm_i915_gem_set_domain *args = data;
1595
	struct drm_i915_gem_object *obj;
1596 1597
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1598 1599
	int ret;

1600
	/* Only handle setting domains to types used by the CPU. */
1601
	if (write_domain & I915_GEM_GPU_DOMAINS)
1602 1603
		return -EINVAL;

1604
	if (read_domains & I915_GEM_GPU_DOMAINS)
1605 1606 1607 1608 1609 1610 1611 1612
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1613
	ret = i915_mutex_lock_interruptible(dev);
1614
	if (ret)
1615
		return ret;
1616

1617
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1618
	if (&obj->base == NULL) {
1619 1620
		ret = -ENOENT;
		goto unlock;
1621
	}
1622

1623 1624 1625 1626
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1627
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1628
							  to_rps_client(file),
1629
							  !write_domain);
1630 1631 1632
	if (ret)
		goto unref;

1633
	if (read_domains & I915_GEM_DOMAIN_GTT)
1634
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1635
	else
1636
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1637

1638 1639 1640 1641 1642
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1643
unref:
1644
	drm_gem_object_unreference(&obj->base);
1645
unlock:
1646 1647 1648 1649 1650 1651 1652 1653 1654
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1655
			 struct drm_file *file)
1656 1657
{
	struct drm_i915_gem_sw_finish *args = data;
1658
	struct drm_i915_gem_object *obj;
1659 1660
	int ret = 0;

1661
	ret = i915_mutex_lock_interruptible(dev);
1662
	if (ret)
1663
		return ret;
1664

1665
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1666
	if (&obj->base == NULL) {
1667 1668
		ret = -ENOENT;
		goto unlock;
1669 1670 1671
	}

	/* Pinned buffers may be scanout, so flush the cache */
1672
	if (obj->pin_display)
1673
		i915_gem_object_flush_cpu_write_domain(obj);
1674

1675
	drm_gem_object_unreference(&obj->base);
1676
unlock:
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1697 1698 1699
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1700
		    struct drm_file *file)
1701 1702 1703 1704 1705
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1706 1707 1708 1709 1710 1711
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1712
	obj = drm_gem_object_lookup(dev, file, args->handle);
1713
	if (obj == NULL)
1714
		return -ENOENT;
1715

1716 1717 1718 1719 1720 1721 1722 1723
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1724
	addr = vm_mmap(obj->filp, 0, args->size,
1725 1726
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1740
	drm_gem_object_unreference_unlocked(obj);
1741 1742 1743 1744 1745 1746 1747 1748
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1749 1750
/**
 * i915_gem_fault - fault a page into the GTT
1751 1752
 * @vma: VMA in question
 * @vmf: fault info
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1767 1768
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1769 1770
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1771
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1772 1773 1774
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1775
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1776

1777 1778
	intel_runtime_pm_get(dev_priv);

1779 1780 1781 1782
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1783 1784 1785
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1786

C
Chris Wilson 已提交
1787 1788
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1789 1790 1791 1792 1793 1794 1795 1796 1797
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1798 1799
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1800
		ret = -EFAULT;
1801 1802 1803
		goto unlock;
	}

1804
	/* Use a partial view if the object is bigger than the aperture. */
1805
	if (obj->base.size >= ggtt->mappable_end &&
1806
	    obj->tiling_mode == I915_TILING_NONE) {
1807
		static const unsigned int chunk_size = 256; // 1 MiB
1808

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1821 1822
	if (ret)
		goto unlock;
1823

1824 1825 1826
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1827

1828
	ret = i915_gem_object_get_fence(obj);
1829
	if (ret)
1830
		goto unpin;
1831

1832
	/* Finally, remap it using the new GTT offset */
1833
	pfn = ggtt->mappable_base +
1834
		i915_gem_obj_ggtt_offset_view(obj, &view);
1835
	pfn >>= PAGE_SHIFT;
1836

1837 1838 1839 1840 1841 1842 1843 1844 1845
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1846

1847 1848
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1849 1850 1851 1852 1853
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1875
unpin:
1876
	i915_gem_object_ggtt_unpin_view(obj, &view);
1877
unlock:
1878
	mutex_unlock(&dev->struct_mutex);
1879
out:
1880
	switch (ret) {
1881
	case -EIO:
1882 1883 1884 1885 1886 1887 1888
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1889 1890 1891
			ret = VM_FAULT_SIGBUS;
			break;
		}
1892
	case -EAGAIN:
D
Daniel Vetter 已提交
1893 1894 1895 1896
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1897
		 */
1898 1899
	case 0:
	case -ERESTARTSYS:
1900
	case -EINTR:
1901 1902 1903 1904 1905
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1906 1907
		ret = VM_FAULT_NOPAGE;
		break;
1908
	case -ENOMEM:
1909 1910
		ret = VM_FAULT_OOM;
		break;
1911
	case -ENOSPC:
1912
	case -EFAULT:
1913 1914
		ret = VM_FAULT_SIGBUS;
		break;
1915
	default:
1916
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1917 1918
		ret = VM_FAULT_SIGBUS;
		break;
1919
	}
1920 1921 1922

	intel_runtime_pm_put(dev_priv);
	return ret;
1923 1924
}

1925 1926 1927 1928
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1929
 * Preserve the reservation of the mmapping with the DRM core code, but
1930 1931 1932 1933 1934 1935 1936 1937 1938
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1939
void
1940
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1941
{
1942 1943 1944 1945 1946 1947
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1948 1949
	if (!obj->fault_mappable)
		return;
1950

1951 1952
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1963
	obj->fault_mappable = false;
1964 1965
}

1966 1967 1968 1969 1970 1971 1972 1973 1974
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1975
uint32_t
1976
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1977
{
1978
	uint32_t gtt_size;
1979 1980

	if (INTEL_INFO(dev)->gen >= 4 ||
1981 1982
	    tiling_mode == I915_TILING_NONE)
		return size;
1983 1984 1985

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1986
		gtt_size = 1024*1024;
1987
	else
1988
		gtt_size = 512*1024;
1989

1990 1991
	while (gtt_size < size)
		gtt_size <<= 1;
1992

1993
	return gtt_size;
1994 1995
}

1996 1997 1998 1999 2000
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
2001
 * potential fence register mapping.
2002
 */
2003 2004 2005
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2006 2007 2008 2009 2010
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2011
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2012
	    tiling_mode == I915_TILING_NONE)
2013 2014
		return 4096;

2015 2016 2017 2018
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2019
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2020 2021
}

2022 2023 2024 2025 2026
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2027
	if (drm_vma_node_has_offset(&obj->base.vma_node))
2028 2029
		return 0;

2030 2031
	dev_priv->mm.shrinker_no_lock_stealing = true;

2032 2033
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2034
		goto out;
2035 2036 2037 2038 2039 2040 2041 2042

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2043 2044 2045 2046 2047
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2048 2049
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2050
		goto out;
2051 2052

	i915_gem_shrink_all(dev_priv);
2053 2054 2055 2056 2057
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2058 2059 2060 2061 2062 2063 2064
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2065
int
2066 2067
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2068
		  uint32_t handle,
2069
		  uint64_t *offset)
2070
{
2071
	struct drm_i915_gem_object *obj;
2072 2073
	int ret;

2074
	ret = i915_mutex_lock_interruptible(dev);
2075
	if (ret)
2076
		return ret;
2077

2078
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2079
	if (&obj->base == NULL) {
2080 2081 2082
		ret = -ENOENT;
		goto unlock;
	}
2083

2084
	if (obj->madv != I915_MADV_WILLNEED) {
2085
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2086
		ret = -EFAULT;
2087
		goto out;
2088 2089
	}

2090 2091 2092
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2093

2094
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2095

2096
out:
2097
	drm_gem_object_unreference(&obj->base);
2098
unlock:
2099
	mutex_unlock(&dev->struct_mutex);
2100
	return ret;
2101 2102
}

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2124
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2125 2126
}

D
Daniel Vetter 已提交
2127 2128 2129
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2130
{
2131
	i915_gem_object_free_mmap_offset(obj);
2132

2133 2134
	if (obj->base.filp == NULL)
		return;
2135

D
Daniel Vetter 已提交
2136 2137 2138 2139 2140
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2141
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2142 2143
	obj->madv = __I915_MADV_PURGED;
}
2144

2145 2146 2147
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2148
{
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2163 2164
}

2165
static void
2166
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2167
{
2168 2169
	struct sg_page_iter sg_iter;
	int ret;
2170

2171
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2172

C
Chris Wilson 已提交
2173
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2174
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2175 2176 2177
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2178
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2179 2180 2181
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2182 2183
	i915_gem_gtt_finish_object(obj);

2184
	if (i915_gem_object_needs_bit17_swizzle(obj))
2185 2186
		i915_gem_object_save_bit_17_swizzle(obj);

2187 2188
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2189

2190
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2191
		struct page *page = sg_page_iter_page(&sg_iter);
2192

2193
		if (obj->dirty)
2194
			set_page_dirty(page);
2195

2196
		if (obj->madv == I915_MADV_WILLNEED)
2197
			mark_page_accessed(page);
2198

2199
		put_page(page);
2200
	}
2201
	obj->dirty = 0;
2202

2203 2204
	sg_free_table(obj->pages);
	kfree(obj->pages);
2205
}
C
Chris Wilson 已提交
2206

2207
int
2208 2209 2210 2211
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2212
	if (obj->pages == NULL)
2213 2214
		return 0;

2215 2216 2217
	if (obj->pages_pin_count)
		return -EBUSY;

2218
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2219

2220 2221 2222
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2223
	list_del(&obj->global_list);
2224

2225
	if (obj->mapping) {
2226 2227 2228 2229
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2230 2231 2232
		obj->mapping = NULL;
	}

2233
	ops->put_pages(obj);
2234
	obj->pages = NULL;
2235

2236
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2237 2238 2239 2240

	return 0;
}

2241
static int
C
Chris Wilson 已提交
2242
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2243
{
C
Chris Wilson 已提交
2244
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245 2246
	int page_count, i;
	struct address_space *mapping;
2247 2248
	struct sg_table *st;
	struct scatterlist *sg;
2249
	struct sg_page_iter sg_iter;
2250
	struct page *page;
2251
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2252
	int ret;
C
Chris Wilson 已提交
2253
	gfp_t gfp;
2254

C
Chris Wilson 已提交
2255 2256 2257 2258 2259 2260 2261
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2262 2263 2264 2265
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2266
	page_count = obj->base.size / PAGE_SIZE;
2267 2268
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2269
		return -ENOMEM;
2270
	}
2271

2272 2273 2274 2275 2276
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2277
	mapping = file_inode(obj->base.filp)->i_mapping;
2278
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2279
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2280 2281 2282
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2283 2284
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2285 2286 2287 2288 2289
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2290 2291 2292 2293 2294 2295 2296 2297
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2298
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2299 2300
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2301
				goto err_pages;
I
Imre Deak 已提交
2302
			}
C
Chris Wilson 已提交
2303
		}
2304 2305 2306 2307 2308 2309 2310 2311
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2312 2313 2314 2315 2316 2317 2318 2319 2320
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2321 2322 2323

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2324
	}
2325 2326 2327 2328
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2329 2330
	obj->pages = st;

I
Imre Deak 已提交
2331 2332 2333 2334
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2335
	if (i915_gem_object_needs_bit17_swizzle(obj))
2336 2337
		i915_gem_object_do_bit_17_swizzle(obj);

2338 2339 2340 2341
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2342 2343 2344
	return 0;

err_pages:
2345 2346
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2347
		put_page(sg_page_iter_page(&sg_iter));
2348 2349
	sg_free_table(st);
	kfree(st);
2350 2351 2352 2353 2354 2355 2356 2357 2358

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2359 2360 2361 2362
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2363 2364
}

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2379
	if (obj->pages)
2380 2381
		return 0;

2382
	if (obj->madv != I915_MADV_WILLNEED) {
2383
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2384
		return -EFAULT;
2385 2386
	}

2387 2388
	BUG_ON(obj->pages_pin_count);

2389 2390 2391 2392
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2393
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2394 2395 2396 2397

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2398
	return 0;
2399 2400
}

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

	if (obj->mapping == NULL) {
		struct page **pages;

2416 2417 2418 2419 2420 2421 2422
		pages = NULL;
		if (obj->base.size == PAGE_SIZE)
			obj->mapping = kmap(sg_page(obj->pages->sgl));
		else
			pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
					       sizeof(*pages),
					       GFP_TEMPORARY);
2423
		if (pages != NULL) {
2424 2425 2426
			struct sg_page_iter sg_iter;
			int n;

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
			n = 0;
			for_each_sg_page(obj->pages->sgl, &sg_iter,
					 obj->pages->nents, 0)
				pages[n++] = sg_page_iter_page(&sg_iter);

			obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
			drm_free_large(pages);
		}
		if (obj->mapping == NULL) {
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2444
void i915_vma_move_to_active(struct i915_vma *vma,
2445
			     struct drm_i915_gem_request *req)
2446
{
2447
	struct drm_i915_gem_object *obj = vma->obj;
2448
	struct intel_engine_cs *engine;
2449

2450
	engine = i915_gem_request_get_engine(req);
2451 2452

	/* Add a reference if we're newly entering the active list. */
2453
	if (obj->active == 0)
2454
		drm_gem_object_reference(&obj->base);
2455
	obj->active |= intel_engine_flag(engine);
2456

2457
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2458
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2459

2460
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2461 2462
}

2463 2464
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2465
{
2466 2467
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2468 2469

	i915_gem_request_assign(&obj->last_write_req, NULL);
2470
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2471 2472
}

2473
static void
2474
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2475
{
2476
	struct i915_vma *vma;
2477

2478 2479
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2480

2481
	list_del_init(&obj->engine_list[ring]);
2482 2483
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2484
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2485 2486 2487 2488 2489
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2490

2491 2492 2493 2494 2495 2496 2497
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2498 2499 2500
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2501
	}
2502

2503
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2504
	drm_gem_object_unreference(&obj->base);
2505 2506
}

2507
static int
2508
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2509
{
2510
	struct drm_i915_private *dev_priv = dev->dev_private;
2511
	struct intel_engine_cs *engine;
2512
	int ret;
2513

2514
	/* Carefully retire all requests without writing to the rings */
2515
	for_each_engine(engine, dev_priv) {
2516
		ret = intel_engine_idle(engine);
2517 2518
		if (ret)
			return ret;
2519 2520
	}
	i915_gem_retire_requests(dev);
2521 2522

	/* Finally reset hw state */
2523
	for_each_engine(engine, dev_priv)
2524
		intel_ring_init_seqno(engine, seqno);
2525

2526
	return 0;
2527 2528
}

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2555 2556
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2557
{
2558 2559 2560 2561
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2562
		int ret = i915_gem_init_seqno(dev, 0);
2563 2564
		if (ret)
			return ret;
2565

2566 2567
		dev_priv->next_seqno = 1;
	}
2568

2569
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2570
	return 0;
2571 2572
}

2573 2574 2575 2576 2577
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2578
void __i915_add_request(struct drm_i915_gem_request *request,
2579 2580
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2581
{
2582
	struct intel_engine_cs *engine;
2583
	struct drm_i915_private *dev_priv;
2584
	struct intel_ringbuffer *ringbuf;
2585
	u32 request_start;
2586
	u32 reserved_tail;
2587 2588
	int ret;

2589
	if (WARN_ON(request == NULL))
2590
		return;
2591

2592
	engine = request->engine;
2593
	dev_priv = request->i915;
2594 2595
	ringbuf = request->ringbuf;

2596 2597 2598 2599 2600
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2601
	request_start = intel_ring_get_tail(ringbuf);
2602 2603 2604
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2605 2606 2607 2608 2609 2610 2611
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2612 2613
	if (flush_caches) {
		if (i915.enable_execlists)
2614
			ret = logical_ring_flush_all_caches(request);
2615
		else
2616
			ret = intel_ring_flush_all_caches(request);
2617 2618 2619
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2620

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2643 2644 2645 2646 2647
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2648
	request->postfix = intel_ring_get_tail(ringbuf);
2649

2650
	if (i915.enable_execlists)
2651
		ret = engine->emit_request(request);
2652
	else {
2653
		ret = engine->add_request(request);
2654 2655

		request->tail = intel_ring_get_tail(ringbuf);
2656
	}
2657 2658
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2659

2660
	i915_queue_hangcheck(engine->dev);
2661

2662 2663 2664 2665
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2666

2667
	/* Sanity check that the reserved size was large enough. */
2668 2669 2670 2671 2672 2673 2674
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2675 2676
}

2677
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2678
				   const struct intel_context *ctx)
2679
{
2680
	unsigned long elapsed;
2681

2682 2683 2684
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2685 2686
		return true;

2687 2688
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2689
		if (!i915_gem_context_is_default(ctx)) {
2690
			DRM_DEBUG("context hanging too fast, banning!\n");
2691
			return true;
2692 2693 2694
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2695
			return true;
2696
		}
2697 2698 2699 2700 2701
	}

	return false;
}

2702
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2703
				  struct intel_context *ctx,
2704
				  const bool guilty)
2705
{
2706 2707 2708 2709
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2710

2711 2712 2713
	hs = &ctx->hang_stats;

	if (guilty) {
2714
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2715 2716 2717 2718
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2719 2720 2721
	}
}

2722 2723 2724 2725
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2726
	kmem_cache_free(req->i915->requests, req);
2727 2728
}

2729
static inline int
2730
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2731 2732
			 struct intel_context *ctx,
			 struct drm_i915_gem_request **req_out)
2733
{
2734
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2735
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2736
	struct drm_i915_gem_request *req;
2737 2738
	int ret;

2739 2740 2741
	if (!req_out)
		return -EINVAL;

2742
	*req_out = NULL;
2743

2744 2745 2746 2747 2748
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2749 2750 2751
	if (ret)
		return ret;

D
Daniel Vetter 已提交
2752 2753
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2754 2755
		return -ENOMEM;

2756
	ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2757 2758
	if (ret)
		goto err;
2759

2760 2761
	kref_init(&req->ref);
	req->i915 = dev_priv;
2762
	req->engine = engine;
2763
	req->reset_counter = reset_counter;
2764 2765
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2766

2767 2768 2769 2770 2771 2772 2773
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2774
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
2775 2776 2777 2778 2779 2780 2781

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
2782

2783
	*req_out = req;
2784
	return 0;
2785

2786 2787
err_ctx:
	i915_gem_context_unreference(ctx);
2788 2789 2790
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2791 2792
}

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct intel_context *ctx)
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
2813
		ctx = to_i915(engine->dev)->kernel_context;
2814 2815 2816 2817
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

2818
struct drm_i915_gem_request *
2819
i915_gem_find_active_request(struct intel_engine_cs *engine)
2820
{
2821 2822
	struct drm_i915_gem_request *request;

2823
	list_for_each_entry(request, &engine->request_list, list) {
2824
		if (i915_gem_request_completed(request, false))
2825
			continue;
2826

2827
		return request;
2828
	}
2829 2830 2831 2832

	return NULL;
}

2833
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2834
				       struct intel_engine_cs *engine)
2835 2836 2837 2838
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2839
	request = i915_gem_find_active_request(engine);
2840 2841 2842 2843

	if (request == NULL)
		return;

2844
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2845

2846
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2847

2848
	list_for_each_entry_continue(request, &engine->request_list, list)
2849
		i915_set_reset_status(dev_priv, request->ctx, false);
2850
}
2851

2852
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2853
					struct intel_engine_cs *engine)
2854
{
2855 2856
	struct intel_ringbuffer *buffer;

2857
	while (!list_empty(&engine->active_list)) {
2858
		struct drm_i915_gem_object *obj;
2859

2860
		obj = list_first_entry(&engine->active_list,
2861
				       struct drm_i915_gem_object,
2862
				       engine_list[engine->id]);
2863

2864
		i915_gem_object_retire__read(obj, engine->id);
2865
	}
2866

2867 2868 2869 2870 2871 2872
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2873
	if (i915.enable_execlists) {
2874 2875
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2876

2877
		intel_execlists_cancel_requests(engine);
2878 2879
	}

2880 2881 2882 2883 2884 2885 2886
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2887
	while (!list_empty(&engine->request_list)) {
2888 2889
		struct drm_i915_gem_request *request;

2890
		request = list_first_entry(&engine->request_list,
2891 2892 2893
					   struct drm_i915_gem_request,
					   list);

2894
		i915_gem_request_retire(request);
2895
	}
2896 2897 2898 2899 2900 2901 2902 2903

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2904
	list_for_each_entry(buffer, &engine->buffers, link) {
2905 2906 2907
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2908 2909

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2910 2911
}

2912
void i915_gem_reset(struct drm_device *dev)
2913
{
2914
	struct drm_i915_private *dev_priv = dev->dev_private;
2915
	struct intel_engine_cs *engine;
2916

2917 2918 2919 2920 2921
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2922
	for_each_engine(engine, dev_priv)
2923
		i915_gem_reset_engine_status(dev_priv, engine);
2924

2925
	for_each_engine(engine, dev_priv)
2926
		i915_gem_reset_engine_cleanup(dev_priv, engine);
2927

2928 2929
	i915_gem_context_reset(dev);

2930
	i915_gem_restore_fences(dev);
2931 2932

	WARN_ON(i915_verify_lists(dev));
2933 2934 2935 2936 2937
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2938
void
2939
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2940
{
2941
	WARN_ON(i915_verify_lists(engine->dev));
2942

2943 2944 2945 2946
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2947
	 */
2948
	while (!list_empty(&engine->request_list)) {
2949 2950
		struct drm_i915_gem_request *request;

2951
		request = list_first_entry(&engine->request_list,
2952 2953 2954
					   struct drm_i915_gem_request,
					   list);

2955
		if (!i915_gem_request_completed(request, true))
2956 2957
			break;

2958
		i915_gem_request_retire(request);
2959
	}
2960

2961 2962 2963 2964
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2965
	while (!list_empty(&engine->active_list)) {
2966 2967
		struct drm_i915_gem_object *obj;

2968 2969
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2970
				       engine_list[engine->id]);
2971

2972
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2973 2974
			break;

2975
		i915_gem_object_retire__read(obj, engine->id);
2976 2977
	}

2978 2979 2980 2981
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
2982
	}
2983

2984
	WARN_ON(i915_verify_lists(engine->dev));
2985 2986
}

2987
bool
2988 2989
i915_gem_retire_requests(struct drm_device *dev)
{
2990
	struct drm_i915_private *dev_priv = dev->dev_private;
2991
	struct intel_engine_cs *engine;
2992
	bool idle = true;
2993

2994
	for_each_engine(engine, dev_priv) {
2995 2996
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
2997
		if (i915.enable_execlists) {
2998
			spin_lock_bh(&engine->execlist_lock);
2999
			idle &= list_empty(&engine->execlist_queue);
3000
			spin_unlock_bh(&engine->execlist_lock);
3001
		}
3002 3003 3004 3005 3006 3007 3008 3009
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3010 3011
}

3012
static void
3013 3014
i915_gem_retire_work_handler(struct work_struct *work)
{
3015 3016 3017
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3018
	bool idle;
3019

3020
	/* Come back later if the device is busy... */
3021 3022 3023 3024
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
3025
	}
3026
	if (!idle)
3027 3028
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3029
}
3030

3031 3032 3033 3034 3035
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3036
	struct drm_device *dev = dev_priv->dev;
3037
	struct intel_engine_cs *engine;
3038

3039 3040
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3041
			return;
3042

3043
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3044
	 * Also locking seems to be fubar here, engine->request_list is protected
3045 3046
	 * by dev->struct_mutex. */

3047 3048 3049
	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
3050
		for_each_engine(engine, dev_priv)
3051
			i915_gem_batch_pool_fini(&engine->batch_pool);
3052

3053 3054
		mutex_unlock(&dev->struct_mutex);
	}
3055 3056
}

3057 3058 3059 3060 3061 3062 3063 3064
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3065
	int i;
3066 3067 3068

	if (!obj->active)
		return 0;
3069

3070
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3071
		struct drm_i915_gem_request *req;
3072

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3085 3086 3087 3088 3089
	}

	return 0;
}

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3117
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3118 3119
	int i, n = 0;
	int ret;
3120

3121 3122 3123
	if (args->flags != 0)
		return -EINVAL;

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3134 3135
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3136 3137 3138
	if (ret)
		goto out;

3139
	if (!obj->active)
3140
		goto out;
3141 3142

	/* Do this after OLR check to make sure we make forward progress polling
3143
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3144
	 */
3145
	if (args->timeout_ns == 0) {
3146 3147 3148 3149 3150
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3151

3152
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3153 3154 3155 3156 3157 3158
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3159 3160
	mutex_unlock(&dev->struct_mutex);

3161 3162
	for (i = 0; i < n; i++) {
		if (ret == 0)
3163
			ret = __i915_wait_request(req[i], true,
3164
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3165
						  to_rps_client(file));
3166
		i915_gem_request_unreference(req[i]);
3167
	}
3168
	return ret;
3169 3170 3171 3172 3173 3174 3175

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3176 3177 3178
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3179 3180
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3181 3182 3183 3184
{
	struct intel_engine_cs *from;
	int ret;

3185
	from = i915_gem_request_get_engine(from_req);
3186 3187 3188
	if (to == from)
		return 0;

3189
	if (i915_gem_request_completed(from_req, true))
3190 3191 3192
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3193
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3194
		ret = __i915_wait_request(from_req,
3195 3196 3197
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3198 3199 3200
		if (ret)
			return ret;

3201
		i915_gem_object_retire_request(obj, from_req);
3202 3203
	} else {
		int idx = intel_ring_sync_index(from, to);
3204 3205 3206
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3207 3208 3209 3210

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3211
		if (*to_req == NULL) {
3212 3213 3214 3215 3216 3217 3218
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3219 3220
		}

3221 3222
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3237 3238 3239 3240 3241
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3242 3243 3244
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3245 3246 3247
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3248
 * rather than a particular GPU ring. Conceptually we serialise writes
3249
 * between engines inside the GPU. We only allow one engine to write
3250 3251 3252 3253 3254 3255 3256 3257 3258
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3259
 *
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3270 3271
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3272 3273
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3274 3275
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3276
{
3277
	const bool readonly = obj->base.pending_write_domain == 0;
3278
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3279
	int ret, i, n;
3280

3281
	if (!obj->active)
3282 3283
		return 0;

3284 3285
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3286

3287 3288 3289 3290 3291
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3292
		for (i = 0; i < I915_NUM_ENGINES; i++)
3293 3294 3295 3296
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3297
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3298 3299 3300
		if (ret)
			return ret;
	}
3301

3302
	return 0;
3303 3304
}

3305 3306 3307 3308 3309 3310 3311
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3312 3313 3314
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3337
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3338
{
3339
	struct drm_i915_gem_object *obj = vma->obj;
3340
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3341
	int ret;
3342

3343
	if (list_empty(&vma->obj_link))
3344 3345
		return 0;

3346 3347 3348 3349
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3350

B
Ben Widawsky 已提交
3351
	if (vma->pin_count)
3352
		return -EBUSY;
3353

3354 3355
	BUG_ON(obj->pages == NULL);

3356 3357 3358 3359 3360
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3361

3362
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3363
		i915_gem_object_finish_gtt(obj);
3364

3365 3366 3367 3368
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3369 3370

		__i915_vma_iounmap(vma);
3371
	}
3372

3373
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3374

3375
	vma->vm->unbind_vma(vma);
3376
	vma->bound = 0;
3377

3378
	list_del_init(&vma->vm_link);
3379
	if (vma->is_ggtt) {
3380 3381 3382 3383 3384 3385
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3386
		vma->ggtt_view.pages = NULL;
3387
	}
3388

B
Ben Widawsky 已提交
3389 3390 3391 3392
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3393
	 * no more VMAs exist. */
I
Imre Deak 已提交
3394
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3395
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3396

3397 3398 3399 3400 3401 3402
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3403
	return 0;
3404 3405
}

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3416
int i915_gpu_idle(struct drm_device *dev)
3417
{
3418
	struct drm_i915_private *dev_priv = dev->dev_private;
3419
	struct intel_engine_cs *engine;
3420
	int ret;
3421 3422

	/* Flush everything onto the inactive list. */
3423
	for_each_engine(engine, dev_priv) {
3424
		if (!i915.enable_execlists) {
3425 3426
			struct drm_i915_gem_request *req;

3427
			req = i915_gem_request_alloc(engine, NULL);
3428 3429
			if (IS_ERR(req))
				return PTR_ERR(req);
3430

3431
			ret = i915_switch_context(req);
3432
			i915_add_request_no_flush(req);
3433 3434
			if (ret)
				return ret;
3435
		}
3436

3437
		ret = intel_engine_idle(engine);
3438 3439 3440
		if (ret)
			return ret;
	}
3441

3442
	WARN_ON(i915_verify_lists(dev));
3443
	return 0;
3444 3445
}

3446
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3447 3448
				     unsigned long cache_level)
{
3449
	struct drm_mm_node *gtt_space = &vma->node;
3450 3451
	struct drm_mm_node *other;

3452 3453 3454 3455 3456 3457
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3458
	 */
3459
	if (vma->vm->mm.color_adjust == NULL)
3460 3461
		return true;

3462
	if (!drm_mm_node_allocated(gtt_space))
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3479
/**
3480 3481
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3482
 */
3483
static struct i915_vma *
3484 3485
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3486
			   const struct i915_ggtt_view *ggtt_view,
3487
			   unsigned alignment,
3488
			   uint64_t flags)
3489
{
3490
	struct drm_device *dev = obj->base.dev;
3491 3492
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3493
	u32 fence_alignment, unfenced_alignment;
3494 3495
	u32 search_flag, alloc_flag;
	u64 start, end;
3496
	u64 size, fence_size;
B
Ben Widawsky 已提交
3497
	struct i915_vma *vma;
3498
	int ret;
3499

3500 3501 3502 3503 3504
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3505

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3535

3536 3537 3538
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3539
		end = min_t(u64, end, ggtt->mappable_end);
3540
	if (flags & PIN_ZONE_4G)
3541
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3542

3543
	if (alignment == 0)
3544
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3545
						unfenced_alignment;
3546
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3547 3548 3549
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3550
		return ERR_PTR(-EINVAL);
3551 3552
	}

3553 3554 3555
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3556
	 */
3557
	if (size > end) {
3558
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3559 3560
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3561
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3562
			  end);
3563
		return ERR_PTR(-E2BIG);
3564 3565
	}

3566
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3567
	if (ret)
3568
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3569

3570 3571
	i915_gem_object_pin_pages(obj);

3572 3573 3574
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3575
	if (IS_ERR(vma))
3576
		goto err_unpin;
B
Ben Widawsky 已提交
3577

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3596
	} else {
3597 3598 3599 3600 3601 3602 3603
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3604

3605
search_free:
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3619

3620 3621
			goto err_free_vma;
		}
3622
	}
3623
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3624
		ret = -EINVAL;
3625
		goto err_remove_node;
3626 3627
	}

3628
	trace_i915_vma_bind(vma, flags);
3629
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3630
	if (ret)
I
Imre Deak 已提交
3631
		goto err_remove_node;
3632

3633
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3634
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3635

3636
	return vma;
B
Ben Widawsky 已提交
3637

3638
err_remove_node:
3639
	drm_mm_remove_node(&vma->node);
3640
err_free_vma:
B
Ben Widawsky 已提交
3641
	i915_gem_vma_destroy(vma);
3642
	vma = ERR_PTR(ret);
3643
err_unpin:
B
Ben Widawsky 已提交
3644
	i915_gem_object_unpin_pages(obj);
3645
	return vma;
3646 3647
}

3648
bool
3649 3650
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3651 3652 3653 3654 3655
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3656
	if (obj->pages == NULL)
3657
		return false;
3658

3659 3660 3661 3662
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3663
	if (obj->stolen || obj->phys_handle)
3664
		return false;
3665

3666 3667 3668 3669 3670 3671 3672 3673
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3674 3675
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3676
		return false;
3677
	}
3678

C
Chris Wilson 已提交
3679
	trace_i915_gem_object_clflush(obj);
3680
	drm_clflush_sg(obj->pages);
3681
	obj->cache_dirty = false;
3682 3683

	return true;
3684 3685 3686 3687
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3688
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3689
{
C
Chris Wilson 已提交
3690 3691
	uint32_t old_write_domain;

3692
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3693 3694
		return;

3695
	/* No actual flushing is required for the GTT write domain.  Writes
3696 3697
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3698 3699 3700 3701
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3702
	 */
3703 3704
	wmb();

3705 3706
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3707

3708
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3709

C
Chris Wilson 已提交
3710
	trace_i915_gem_object_change_domain(obj,
3711
					    obj->base.read_domains,
C
Chris Wilson 已提交
3712
					    old_write_domain);
3713 3714 3715 3716
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3717
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3718
{
C
Chris Wilson 已提交
3719
	uint32_t old_write_domain;
3720

3721
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3722 3723
		return;

3724
	if (i915_gem_clflush_object(obj, obj->pin_display))
3725 3726
		i915_gem_chipset_flush(obj->base.dev);

3727 3728
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3729

3730
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3731

C
Chris Wilson 已提交
3732
	trace_i915_gem_object_change_domain(obj,
3733
					    obj->base.read_domains,
C
Chris Wilson 已提交
3734
					    old_write_domain);
3735 3736
}

3737 3738 3739 3740 3741 3742
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3743
int
3744
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3745
{
3746 3747 3748
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3749
	uint32_t old_write_domain, old_read_domains;
3750
	struct i915_vma *vma;
3751
	int ret;
3752

3753 3754 3755
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3756
	ret = i915_gem_object_wait_rendering(obj, !write);
3757 3758 3759
	if (ret)
		return ret;

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3772
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3773

3774 3775 3776 3777 3778 3779 3780
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3781 3782
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3783

3784 3785 3786
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3787 3788
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3789
	if (write) {
3790 3791 3792
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3793 3794
	}

C
Chris Wilson 已提交
3795 3796 3797 3798
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3799
	/* And bump the LRU for this access */
3800 3801
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3802
		list_move_tail(&vma->vm_link,
3803
			       &ggtt->base.inactive_list);
3804

3805 3806 3807
	return 0;
}

3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3821 3822 3823
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3824
	struct drm_device *dev = obj->base.dev;
3825
	struct i915_vma *vma, *next;
3826
	bool bound = false;
3827
	int ret = 0;
3828 3829

	if (obj->cache_level == cache_level)
3830
		goto out;
3831

3832 3833 3834 3835 3836
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3837
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3838 3839 3840 3841 3842 3843 3844 3845
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3846
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3847
			ret = i915_vma_unbind(vma);
3848 3849
			if (ret)
				return ret;
3850 3851
		} else
			bound = true;
3852 3853
	}

3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3866
		ret = i915_gem_object_wait_rendering(obj, false);
3867 3868 3869
		if (ret)
			return ret;

3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3887 3888 3889
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3890 3891 3892 3893 3894 3895 3896 3897
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3898 3899
		}

3900
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3901 3902 3903 3904 3905 3906 3907
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3908 3909
	}

3910
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3911 3912 3913
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3914
out:
3915 3916 3917 3918
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3919 3920 3921 3922 3923
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3924 3925 3926 3927 3928
	}

	return 0;
}

B
Ben Widawsky 已提交
3929 3930
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3931
{
B
Ben Widawsky 已提交
3932
	struct drm_i915_gem_caching *args = data;
3933 3934 3935
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3936 3937
	if (&obj->base == NULL)
		return -ENOENT;
3938

3939 3940 3941 3942 3943 3944
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3945 3946 3947 3948
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3949 3950 3951 3952
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3953

3954 3955
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3956 3957
}

B
Ben Widawsky 已提交
3958 3959
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3960
{
3961
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3962
	struct drm_i915_gem_caching *args = data;
3963 3964 3965 3966
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3967 3968
	switch (args->caching) {
	case I915_CACHING_NONE:
3969 3970
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3971
	case I915_CACHING_CACHED:
3972 3973 3974 3975 3976 3977
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3978
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3979 3980
			return -ENODEV;

3981 3982
		level = I915_CACHE_LLC;
		break;
3983 3984 3985
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3986 3987 3988 3989
	default:
		return -EINVAL;
	}

3990 3991
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3992 3993
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3994
		goto rpm_put;
B
Ben Widawsky 已提交
3995

3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4007 4008 4009
rpm_put:
	intel_runtime_pm_put(dev_priv);

4010 4011 4012
	return ret;
}

4013
/*
4014 4015 4016
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4017 4018
 */
int
4019 4020
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4021
				     const struct i915_ggtt_view *view)
4022
{
4023
	u32 old_read_domains, old_write_domain;
4024 4025
	int ret;

4026 4027 4028
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4029
	obj->pin_display++;
4030

4031 4032 4033 4034 4035 4036 4037 4038 4039
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4040 4041
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4042
	if (ret)
4043
		goto err_unpin_display;
4044

4045 4046 4047 4048
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4049 4050 4051
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4052
	if (ret)
4053
		goto err_unpin_display;
4054

4055
	i915_gem_object_flush_cpu_write_domain(obj);
4056

4057
	old_write_domain = obj->base.write_domain;
4058
	old_read_domains = obj->base.read_domains;
4059 4060 4061 4062

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4063
	obj->base.write_domain = 0;
4064
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4065 4066 4067

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4068
					    old_write_domain);
4069 4070

	return 0;
4071 4072

err_unpin_display:
4073
	obj->pin_display--;
4074 4075 4076 4077
	return ret;
}

void
4078 4079
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4080
{
4081 4082 4083
	if (WARN_ON(obj->pin_display == 0))
		return;

4084 4085
	i915_gem_object_ggtt_unpin_view(obj, view);

4086
	obj->pin_display--;
4087 4088
}

4089 4090 4091 4092 4093 4094
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4095
int
4096
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4097
{
C
Chris Wilson 已提交
4098
	uint32_t old_write_domain, old_read_domains;
4099 4100
	int ret;

4101 4102 4103
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4104
	ret = i915_gem_object_wait_rendering(obj, !write);
4105 4106 4107
	if (ret)
		return ret;

4108
	i915_gem_object_flush_gtt_write_domain(obj);
4109

4110 4111
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4112

4113
	/* Flush the CPU cache if it's still invalid. */
4114
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4115
		i915_gem_clflush_object(obj, false);
4116

4117
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4118 4119 4120 4121 4122
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4123
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4124 4125 4126 4127 4128

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4129 4130
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4131
	}
4132

C
Chris Wilson 已提交
4133 4134 4135 4136
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4137 4138 4139
	return 0;
}

4140 4141 4142
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4143 4144 4145 4146
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4147 4148 4149
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4150
static int
4151
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4152
{
4153 4154
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4155
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4156
	struct drm_i915_gem_request *request, *target = NULL;
4157
	int ret;
4158

4159 4160 4161 4162
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4163 4164 4165
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4166

4167
	spin_lock(&file_priv->mm.lock);
4168
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4169 4170
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4171

4172 4173 4174 4175 4176 4177 4178
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4179
		target = request;
4180
	}
4181 4182
	if (target)
		i915_gem_request_reference(target);
4183
	spin_unlock(&file_priv->mm.lock);
4184

4185
	if (target == NULL)
4186
		return 0;
4187

4188
	ret = __i915_wait_request(target, true, NULL, NULL);
4189 4190
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4191

4192
	i915_gem_request_unreference(target);
4193

4194 4195 4196
	return ret;
}

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4213 4214 4215 4216
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4217 4218 4219
	return false;
}

4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4238
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4239 4240 4241 4242

	obj->map_and_fenceable = mappable && fenceable;
}

4243 4244 4245 4246 4247 4248
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4249
{
4250
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4251
	struct i915_vma *vma;
4252
	unsigned bound;
4253 4254
	int ret;

4255 4256 4257
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4258
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4259
		return -EINVAL;
4260

4261 4262 4263
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4264 4265 4266 4267 4268 4269
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4270
	if (vma) {
B
Ben Widawsky 已提交
4271 4272 4273
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4274
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4275
			WARN(vma->pin_count,
4276
			     "bo is already pinned in %s with incorrect alignment:"
4277
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4278
			     " obj->map_and_fenceable=%d\n",
4279
			     ggtt_view ? "ggtt" : "ppgtt",
4280 4281
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4282
			     alignment,
4283
			     !!(flags & PIN_MAPPABLE),
4284
			     obj->map_and_fenceable);
4285
			ret = i915_vma_unbind(vma);
4286 4287
			if (ret)
				return ret;
4288 4289

			vma = NULL;
4290 4291 4292
		}
	}

4293
	bound = vma ? vma->bound : 0;
4294
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4295 4296
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4297 4298
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4299 4300
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4301 4302 4303
		if (ret)
			return ret;
	}
4304

4305 4306
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4307
		__i915_vma_set_map_and_fenceable(vma);
4308 4309
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4310

4311
	vma->pin_count++;
4312 4313 4314
	return 0;
}

4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4332 4333 4334 4335
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4336
	BUG_ON(!view);
4337

4338
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4339
				      alignment, flags | PIN_GLOBAL);
4340 4341
}

4342
void
4343 4344
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4345
{
4346
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4347

4348
	WARN_ON(vma->pin_count == 0);
4349
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4350

4351
	--vma->pin_count;
4352 4353 4354 4355
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4356
		    struct drm_file *file)
4357 4358
{
	struct drm_i915_gem_busy *args = data;
4359
	struct drm_i915_gem_object *obj;
4360 4361
	int ret;

4362
	ret = i915_mutex_lock_interruptible(dev);
4363
	if (ret)
4364
		return ret;
4365

4366
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4367
	if (&obj->base == NULL) {
4368 4369
		ret = -ENOENT;
		goto unlock;
4370
	}
4371

4372 4373 4374 4375
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4376
	 */
4377
	ret = i915_gem_object_flush_active(obj);
4378 4379
	if (ret)
		goto unref;
4380

4381 4382 4383 4384
	args->busy = 0;
	if (obj->active) {
		int i;

4385
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4386 4387 4388 4389
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4390
				args->busy |= 1 << (16 + req->engine->exec_id);
4391 4392
		}
		if (obj->last_write_req)
4393
			args->busy |= obj->last_write_req->engine->exec_id;
4394
	}
4395

4396
unref:
4397
	drm_gem_object_unreference(&obj->base);
4398
unlock:
4399
	mutex_unlock(&dev->struct_mutex);
4400
	return ret;
4401 4402 4403 4404 4405 4406
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4407
	return i915_gem_ring_throttle(dev, file_priv);
4408 4409
}

4410 4411 4412 4413
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4414
	struct drm_i915_private *dev_priv = dev->dev_private;
4415
	struct drm_i915_gem_madvise *args = data;
4416
	struct drm_i915_gem_object *obj;
4417
	int ret;
4418 4419 4420 4421 4422 4423 4424 4425 4426

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4427 4428 4429 4430
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4431
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4432
	if (&obj->base == NULL) {
4433 4434
		ret = -ENOENT;
		goto unlock;
4435 4436
	}

B
Ben Widawsky 已提交
4437
	if (i915_gem_obj_is_pinned(obj)) {
4438 4439
		ret = -EINVAL;
		goto out;
4440 4441
	}

4442 4443 4444 4445 4446 4447 4448 4449 4450
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4451 4452
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4453

C
Chris Wilson 已提交
4454
	/* if the object is no longer attached, discard its backing storage */
4455
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4456 4457
		i915_gem_object_truncate(obj);

4458
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4459

4460
out:
4461
	drm_gem_object_unreference(&obj->base);
4462
unlock:
4463
	mutex_unlock(&dev->struct_mutex);
4464
	return ret;
4465 4466
}

4467 4468
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4469
{
4470 4471
	int i;

4472
	INIT_LIST_HEAD(&obj->global_list);
4473
	for (i = 0; i < I915_NUM_ENGINES; i++)
4474
		INIT_LIST_HEAD(&obj->engine_list[i]);
4475
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4476
	INIT_LIST_HEAD(&obj->vma_list);
4477
	INIT_LIST_HEAD(&obj->batch_pool_link);
4478

4479 4480
	obj->ops = ops;

4481 4482 4483 4484 4485 4486
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4487
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4488
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4489 4490 4491 4492
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4493
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4494
						  size_t size)
4495
{
4496
	struct drm_i915_gem_object *obj;
4497
	struct address_space *mapping;
D
Daniel Vetter 已提交
4498
	gfp_t mask;
4499
	int ret;
4500

4501
	obj = i915_gem_object_alloc(dev);
4502
	if (obj == NULL)
4503
		return ERR_PTR(-ENOMEM);
4504

4505 4506 4507
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4508

4509 4510 4511 4512 4513 4514 4515
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4516
	mapping = file_inode(obj->base.filp)->i_mapping;
4517
	mapping_set_gfp_mask(mapping, mask);
4518

4519
	i915_gem_object_init(obj, &i915_gem_object_ops);
4520

4521 4522
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4523

4524 4525
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4541 4542
	trace_i915_gem_object_create(obj);

4543
	return obj;
4544 4545 4546 4547 4548

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4549 4550
}

4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4575
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4576
{
4577
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4578
	struct drm_device *dev = obj->base.dev;
4579
	struct drm_i915_private *dev_priv = dev->dev_private;
4580
	struct i915_vma *vma, *next;
4581

4582 4583
	intel_runtime_pm_get(dev_priv);

4584 4585
	trace_i915_gem_object_destroy(obj);

4586
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4587 4588 4589 4590
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4591 4592
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4593

4594 4595
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4596

4597
			WARN_ON(i915_vma_unbind(vma));
4598

4599 4600
			dev_priv->mm.interruptible = was_interruptible;
		}
4601 4602
	}

B
Ben Widawsky 已提交
4603 4604 4605 4606 4607
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4608 4609
	WARN_ON(obj->frontbuffer_bits);

4610 4611 4612 4613 4614
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4615 4616
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4617
	if (discard_backing_storage(obj))
4618
		obj->madv = I915_MADV_DONTNEED;
4619
	i915_gem_object_put_pages(obj);
4620
	i915_gem_object_free_mmap_offset(obj);
4621

4622 4623
	BUG_ON(obj->pages);

4624 4625
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4626

4627 4628 4629
	if (obj->ops->release)
		obj->ops->release(obj);

4630 4631
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4632

4633
	kfree(obj->bit_17);
4634
	i915_gem_object_free(obj);
4635 4636

	intel_runtime_pm_put(dev_priv);
4637 4638
}

4639 4640
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4641 4642
{
	struct i915_vma *vma;
4643
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4644 4645
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4646
			return vma;
4647 4648 4649 4650 4651 4652 4653 4654
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4655

4656
	GEM_BUG_ON(!view);
4657

4658
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4659
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4660
			return vma;
4661 4662 4663
	return NULL;
}

B
Ben Widawsky 已提交
4664 4665 4666
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4667 4668 4669 4670 4671

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4672 4673
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4674

4675
	list_del(&vma->obj_link);
4676

4677
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4678 4679
}

4680
static void
4681
i915_gem_stop_engines(struct drm_device *dev)
4682 4683
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4684
	struct intel_engine_cs *engine;
4685

4686
	for_each_engine(engine, dev_priv)
4687
		dev_priv->gt.stop_engine(engine);
4688 4689
}

4690
int
4691
i915_gem_suspend(struct drm_device *dev)
4692
{
4693
	struct drm_i915_private *dev_priv = dev->dev_private;
4694
	int ret = 0;
4695

4696
	mutex_lock(&dev->struct_mutex);
4697
	ret = i915_gpu_idle(dev);
4698
	if (ret)
4699
		goto err;
4700

4701
	i915_gem_retire_requests(dev);
4702

4703
	i915_gem_stop_engines(dev);
4704
	i915_gem_context_lost(dev_priv);
4705 4706
	mutex_unlock(&dev->struct_mutex);

4707
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4708
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4709
	flush_delayed_work(&dev_priv->mm.idle_work);
4710

4711 4712 4713 4714 4715
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4716
	return 0;
4717 4718 4719 4720

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4721 4722
}

4723 4724
void i915_gem_init_swizzling(struct drm_device *dev)
{
4725
	struct drm_i915_private *dev_priv = dev->dev_private;
4726

4727
	if (INTEL_INFO(dev)->gen < 5 ||
4728 4729 4730 4731 4732 4733
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4734 4735 4736
	if (IS_GEN5(dev))
		return;

4737 4738
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4739
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4740
	else if (IS_GEN7(dev))
4741
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4742 4743
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4744 4745
	else
		BUG();
4746
}
D
Daniel Vetter 已提交
4747

4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4775
int i915_gem_init_engines(struct drm_device *dev)
4776
{
4777
	struct drm_i915_private *dev_priv = dev->dev_private;
4778
	int ret;
4779

4780
	ret = intel_init_render_ring_buffer(dev);
4781
	if (ret)
4782
		return ret;
4783 4784

	if (HAS_BSD(dev)) {
4785
		ret = intel_init_bsd_ring_buffer(dev);
4786 4787
		if (ret)
			goto cleanup_render_ring;
4788
	}
4789

4790
	if (HAS_BLT(dev)) {
4791 4792 4793 4794 4795
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4796 4797 4798 4799 4800 4801
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4802 4803 4804 4805 4806
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4807

4808 4809
	return 0;

B
Ben Widawsky 已提交
4810
cleanup_vebox_ring:
4811
	intel_cleanup_engine(&dev_priv->engine[VECS]);
4812
cleanup_blt_ring:
4813
	intel_cleanup_engine(&dev_priv->engine[BCS]);
4814
cleanup_bsd_ring:
4815
	intel_cleanup_engine(&dev_priv->engine[VCS]);
4816
cleanup_render_ring:
4817
	intel_cleanup_engine(&dev_priv->engine[RCS]);
4818 4819 4820 4821 4822 4823 4824

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4825
	struct drm_i915_private *dev_priv = dev->dev_private;
4826
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4827
	int ret;
4828 4829 4830 4831

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4832 4833 4834
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4835
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4836
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4837

4838 4839 4840
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4841

4842
	if (HAS_PCH_NOP(dev)) {
4843 4844 4845 4846 4847 4848 4849 4850 4851
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4852 4853
	}

4854 4855
	i915_gem_init_swizzling(dev);

4856 4857 4858 4859 4860 4861 4862 4863
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4864
	BUG_ON(!dev_priv->kernel_context);
4865

4866 4867 4868 4869 4870 4871 4872
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4873
	for_each_engine(engine, dev_priv) {
4874
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4875
		if (ret)
4876
			goto out;
D
Daniel Vetter 已提交
4877
	}
4878

4879 4880
	intel_mocs_init_l3cc_table(dev);

4881
	/* We can't enable contexts until all firmware is loaded */
4882 4883 4884
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4885 4886 4887
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4888
		}
4889 4890
	}

4891 4892 4893 4894 4895
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
D
Daniel Vetter 已提交
4896

4897 4898
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4899
	return ret;
4900 4901
}

4902 4903 4904 4905 4906
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4907 4908 4909
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4910
	mutex_lock(&dev->struct_mutex);
4911

4912
	if (!i915.enable_execlists) {
4913
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4914 4915 4916
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
4917
	} else {
4918
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4919 4920 4921
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4922 4923
	}

4924 4925 4926 4927 4928 4929 4930 4931
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4932
	ret = i915_gem_init_userptr(dev);
4933 4934
	if (ret)
		goto out_unlock;
4935

4936
	i915_gem_init_ggtt(dev);
4937

4938
	ret = i915_gem_context_init(dev);
4939 4940
	if (ret)
		goto out_unlock;
4941

4942
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
4943
	if (ret)
4944
		goto out_unlock;
4945

4946
	ret = i915_gem_init_hw(dev);
4947 4948 4949 4950 4951 4952
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4953
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4954
		ret = 0;
4955
	}
4956 4957

out_unlock:
4958
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4959
	mutex_unlock(&dev->struct_mutex);
4960

4961
	return ret;
4962 4963
}

4964
void
4965
i915_gem_cleanup_engines(struct drm_device *dev)
4966
{
4967
	struct drm_i915_private *dev_priv = dev->dev_private;
4968
	struct intel_engine_cs *engine;
4969

4970
	for_each_engine(engine, dev_priv)
4971
		dev_priv->gt.cleanup_engine(engine);
4972

4973 4974 4975 4976 4977 4978 4979
	if (i915.enable_execlists)
		/*
		 * Neither the BIOS, ourselves or any other kernel
		 * expects the system to be in execlists mode on startup,
		 * so we need to reset the GPU back to legacy mode.
		 */
		intel_gpu_reset(dev, ALL_ENGINES);
4980 4981
}

4982
static void
4983
init_engine_lists(struct intel_engine_cs *engine)
4984
{
4985 4986
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
4987 4988
}

4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5013
void
5014
i915_gem_load_init(struct drm_device *dev)
5015
{
5016
	struct drm_i915_private *dev_priv = dev->dev_private;
5017 5018
	int i;

5019
	dev_priv->objects =
5020 5021 5022 5023
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5024 5025 5026 5027 5028
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5029 5030 5031 5032 5033
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5034

B
Ben Widawsky 已提交
5035
	INIT_LIST_HEAD(&dev_priv->vm_list);
5036
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5037 5038
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5039
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5040 5041
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5042
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5043
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5044 5045
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5046 5047
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5048
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5049

5050 5051
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5052 5053 5054 5055 5056 5057 5058 5059
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5060
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5061

5062
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5063

5064 5065
	dev_priv->mm.interruptible = true;

5066
	mutex_init(&dev_priv->fb_tracking.lock);
5067
}
5068

5069 5070 5071 5072 5073 5074 5075 5076 5077
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5078
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5079
{
5080
	struct drm_i915_file_private *file_priv = file->driver_priv;
5081 5082 5083 5084 5085

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5086
	spin_lock(&file_priv->mm.lock);
5087 5088 5089 5090 5091 5092 5093 5094 5095
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5096
	spin_unlock(&file_priv->mm.lock);
5097

5098
	if (!list_empty(&file_priv->rps.link)) {
5099
		spin_lock(&to_i915(dev)->rps.client_lock);
5100
		list_del(&file_priv->rps.link);
5101
		spin_unlock(&to_i915(dev)->rps.client_lock);
5102
	}
5103 5104 5105 5106 5107
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5108
	int ret;
5109 5110 5111 5112 5113 5114 5115 5116 5117

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5118
	file_priv->file = file;
5119
	INIT_LIST_HEAD(&file_priv->rps.link);
5120 5121 5122 5123

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5124 5125
	file_priv->bsd_ring = -1;

5126 5127 5128
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5129

5130
	return ret;
5131 5132
}

5133 5134
/**
 * i915_gem_track_fb - update frontbuffer tracking
5135 5136 5137
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5138 5139 5140 5141
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5159
/* All the new VM stuff */
5160 5161
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5162 5163 5164 5165
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5166
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5167

5168
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5169
		if (vma->is_ggtt &&
5170 5171 5172
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5173 5174
			return vma->node.start;
	}
5175

5176 5177
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5178 5179 5180
	return -1;
}

5181 5182
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5183 5184 5185
{
	struct i915_vma *vma;

5186
	list_for_each_entry(vma, &o->vma_list, obj_link)
5187
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5188 5189
			return vma->node.start;

5190
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5191 5192 5193 5194 5195 5196 5197 5198
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5199
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5200
		if (vma->is_ggtt &&
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5211
				  const struct i915_ggtt_view *view)
5212 5213 5214
{
	struct i915_vma *vma;

5215
	list_for_each_entry(vma, &o->vma_list, obj_link)
5216
		if (vma->is_ggtt &&
5217
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5218
		    drm_mm_node_allocated(&vma->node))
5219 5220 5221 5222 5223 5224 5225
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5226
	struct i915_vma *vma;
5227

5228
	list_for_each_entry(vma, &o->vma_list, obj_link)
5229
		if (drm_mm_node_allocated(&vma->node))
5230 5231 5232 5233 5234
			return true;

	return false;
}

5235
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5236 5237 5238
{
	struct i915_vma *vma;

5239
	GEM_BUG_ON(list_empty(&o->vma_list));
5240

5241
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5242
		if (vma->is_ggtt &&
5243
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5244
			return vma->node.size;
5245
	}
5246

5247 5248 5249
	return 0;
}

5250
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5251 5252
{
	struct i915_vma *vma;
5253
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5254 5255
		if (vma->pin_count > 0)
			return true;
5256

5257
	return false;
5258
}
5259

5260 5261 5262 5263 5264 5265 5266
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5267
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5268 5269 5270 5271 5272 5273 5274
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5285
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5286
	if (IS_ERR(obj))
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5300
	obj->dirty = 1;		/* Backing store is now out of date */
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}