amd_iommu.c 96.2 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35 36 37 38 39
#include <linux/irq.h>
#include <linux/msi.h>
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
40
#include <asm/msidef.h>
41
#include <asm/proto.h>
42
#include <asm/iommu.h>
43
#include <asm/gart.h>
44
#include <asm/dma.h>
45 46 47

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
48
#include "irq_remapping.h"
49 50 51

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

52
#define LOOP_TIMEOUT	100000
53

54 55 56 57 58 59
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
60
 * 512GB Pages are not supported due to a hardware bug
61
 */
J
Joerg Roedel 已提交
62
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
63

64 65
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

66 67 68 69
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

70 71 72 73
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

74 75 76
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

77 78 79 80 81 82
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

83
static const struct iommu_ops amd_iommu_ops;
84

85
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
86
int amd_iommu_max_glx_val = -1;
87

88 89
static struct dma_map_ops amd_iommu_dma_ops;

90 91 92
/*
 * general struct to manage commands send to an IOMMU
 */
93
struct iommu_cmd {
94 95 96
	u32 data[4];
};

97 98
struct kmem_cache *amd_iommu_irq_cache;

99
static void update_domain(struct protection_domain *domain);
100
static int __init alloc_passthrough_domain(void);
101

102 103 104 105 106 107
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

108
static struct iommu_dev_data *alloc_dev_data(u16 devid)
109 110 111 112 113 114 115 116
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

117
	dev_data->devid = devid;
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

169 170 171 172
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

173
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
174 175
}

176 177 178 179 180
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

181 182 183 184
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
185 186
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
187 188 189 190 191 192 193 194 195 196 197 198
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

199 200 201 202 203 204 205 206 207
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

236 237 238 239 240 241 242 243 244 245 246
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

247 248
	/* No PCI device */
	if (!dev_is_pci(dev))
249 250 251 252 253 254 255 256 257 258 259 260 261 262
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

263 264 265 266
static int init_iommu_group(struct device *dev)
{
	struct iommu_group *group;

267
	group = iommu_group_get_for_dev(dev);
268

269 270
	if (IS_ERR(group))
		return PTR_ERR(group);
271

272 273
	iommu_group_put(group);
	return 0;
274 275
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
		pdev->dma_alias_devfn = ivrs_alias & 0xff;
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351
static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;
	int ret;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

352 353
	alias = get_alias(dev);

354 355 356 357 358 359 360 361 362 363 364 365 366 367
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;
	}

	ret = init_iommu_group(dev);
368 369
	if (ret) {
		free_dev_data(dev_data);
370
		return ret;
371
	}
372

373 374 375 376 377 378 379
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

380 381
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
382 383 384
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

385 386 387
	return 0;
}

388 389 390 391 392 393 394 395 396 397 398 399 400 401
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

402 403
static void iommu_uninit_device(struct device *dev)
{
404 405 406 407 408
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
409 410 411
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

412 413
	iommu_group_remove_device(dev);

414 415 416
	/* Unlink from alias, it may change if another device is re-plugged */
	dev_data->alias_data = NULL;

417
	/*
418 419
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
420
	 */
421
}
J
Joerg Roedel 已提交
422 423 424

void __init amd_iommu_uninit_devices(void)
{
425
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
426 427 428 429 430 431 432 433 434
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
435 436 437 438

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
452 453 454
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
455 456 457 458 459 460 461 462 463 464 465
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
466 467 468 469 470 471
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

472
DECLARE_STATS_COUNTER(compl_wait);
473
DECLARE_STATS_COUNTER(cnt_map_single);
474
DECLARE_STATS_COUNTER(cnt_unmap_single);
475
DECLARE_STATS_COUNTER(cnt_map_sg);
476
DECLARE_STATS_COUNTER(cnt_unmap_sg);
477
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
478
DECLARE_STATS_COUNTER(cnt_free_coherent);
479
DECLARE_STATS_COUNTER(cross_page);
480
DECLARE_STATS_COUNTER(domain_flush_single);
481
DECLARE_STATS_COUNTER(domain_flush_all);
482
DECLARE_STATS_COUNTER(alloced_io_mem);
483
DECLARE_STATS_COUNTER(total_map_requests);
484 485 486 487 488
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
508
					 &amd_iommu_unmap_flush);
509 510

	amd_iommu_stats_add(&compl_wait);
511
	amd_iommu_stats_add(&cnt_map_single);
512
	amd_iommu_stats_add(&cnt_unmap_single);
513
	amd_iommu_stats_add(&cnt_map_sg);
514
	amd_iommu_stats_add(&cnt_unmap_sg);
515
	amd_iommu_stats_add(&cnt_alloc_coherent);
516
	amd_iommu_stats_add(&cnt_free_coherent);
517
	amd_iommu_stats_add(&cross_page);
518
	amd_iommu_stats_add(&domain_flush_single);
519
	amd_iommu_stats_add(&domain_flush_all);
520
	amd_iommu_stats_add(&alloced_io_mem);
521
	amd_iommu_stats_add(&total_map_requests);
522 523 524 525
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
526 527 528 529
}

#endif

530 531 532 533 534 535
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

536 537 538 539
static void dump_dte_entry(u16 devid)
{
	int i;

540 541
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
542 543 544
			amd_iommu_dev_table[devid].data[i]);
}

545 546 547 548 549 550 551 552 553
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

554
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
555
{
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
577

578
	printk(KERN_ERR "AMD-Vi: Event logged [");
579 580 581 582 583

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
584
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
585
		       address, flags);
586
		dump_dte_entry(devid);
587 588 589 590
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
591
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
592 593 594 595 596
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
597
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598 599 600 601 602
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
603
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
604 605 606 607
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
608
		dump_command(address);
609 610 611 612 613 614 615 616
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
617
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
618 619 620 621 622
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
623
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
624 625 626 627 628
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
629 630

	memset(__evt, 0, 4 * sizeof(u32));
631 632 633 634 635 636 637 638 639 640
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
641
		iommu_print_event(iommu, iommu->evt_buf + head);
642 643 644 645 646 647
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

648
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
649 650 651
{
	struct amd_iommu_fault fault;

652 653
	INC_STATS_COUNTER(pri_requests);

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
695

696 697 698
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
699

700 701 702 703 704 705 706
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
707 708
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
709 710 711 712 713 714

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
715 716 717 718
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

719
irqreturn_t amd_iommu_int_thread(int irq, void *data)
720
{
721 722
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
723

724 725 726 727
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
728

729 730 731 732
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
733

734 735 736 737
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
738

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
754
	return IRQ_HANDLED;
755 756
}

757 758 759 760 761
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

762 763 764 765 766 767
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
788 789 790
{
	u8 *target;

791
	target = iommu->cmd_buf + tail;
792 793 794 795 796 797
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
798
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
799
}
800

801
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
802
{
803 804
	WARN_ON(address & 0x7ULL);

805
	memset(cmd, 0, sizeof(*cmd));
806 807 808
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
809 810 811
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

812 813 814 815 816 817 818
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
846
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
847 848 849
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

881 882 883 884 885 886 887
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

888
	cmd->data[0]  = pasid;
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
907
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
908 909
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
910
	cmd->data[1] |= (pasid & 0xff) << 16;
911 912 913 914 915 916 917 918
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

919 920 921 922 923 924 925
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
926
		cmd->data[1]  = pasid;
927 928 929 930 931 932 933 934
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

935 936 937 938
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
939 940
}

941 942 943 944 945 946 947
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

948 949
/*
 * Writes the command to the IOMMUs command buffer and informs the
950
 * hardware about the new command.
951
 */
952 953 954
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
955
{
956
	u32 left, tail, head, next_tail;
957 958
	unsigned long flags;

959
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
960 961

again:
962 963
	spin_lock_irqsave(&iommu->lock, flags);

964 965 966 967
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
968

969 970 971 972
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
973

974 975
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
976

977 978 979 980 981 982
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
983 984
	}

985 986 987
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
988
	iommu->need_sync = sync;
989

990
	spin_unlock_irqrestore(&iommu->lock, flags);
991

992
	return 0;
993 994
}

995 996 997 998 999
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1000 1001 1002 1003
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1004
static int iommu_completion_wait(struct amd_iommu *iommu)
1005 1006
{
	struct iommu_cmd cmd;
1007
	volatile u64 sem = 0;
1008
	int ret;
1009

1010
	if (!iommu->need_sync)
1011
		return 0;
1012

1013
	build_completion_wait(&cmd, (u64)&sem);
1014

1015
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1016
	if (ret)
1017
		return ret;
1018

1019
	return wait_on_sem(&sem);
1020 1021
}

1022
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1023
{
1024
	struct iommu_cmd cmd;
1025

1026
	build_inv_dte(&cmd, devid);
1027

1028 1029
	return iommu_queue_command(iommu, &cmd);
}
1030

1031 1032 1033
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1034

1035 1036
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1037

1038 1039
	iommu_completion_wait(iommu);
}
1040

1041 1042 1043 1044 1045 1046 1047
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1048

1049 1050 1051 1052 1053 1054
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1055

1056
	iommu_completion_wait(iommu);
1057 1058
}

1059
static void iommu_flush_all(struct amd_iommu *iommu)
1060
{
1061
	struct iommu_cmd cmd;
1062

1063
	build_inv_all(&cmd);
1064

1065 1066 1067 1068
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1088 1089
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1090 1091 1092 1093
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1094
		iommu_flush_irt_all(iommu);
1095
		iommu_flush_tlb_all(iommu);
1096 1097 1098
	}
}

1099
/*
1100
 * Command send function for flushing on-device TLB
1101
 */
1102 1103
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1104 1105
{
	struct amd_iommu *iommu;
1106
	struct iommu_cmd cmd;
1107
	int qdep;
1108

1109 1110
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1111

1112
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1113 1114

	return iommu_queue_command(iommu, &cmd);
1115 1116
}

1117 1118 1119
/*
 * Command send function for invalidating a device table entry
 */
1120
static int device_flush_dte(struct iommu_dev_data *dev_data)
1121
{
1122
	struct amd_iommu *iommu;
1123
	int ret;
1124

1125
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1126

1127
	ret = iommu_flush_dte(iommu, dev_data->devid);
1128 1129 1130
	if (ret)
		return ret;

1131
	if (dev_data->ats.enabled)
1132
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1133 1134

	return ret;
1135 1136
}

1137 1138 1139 1140 1141
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1142 1143
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1144
{
1145
	struct iommu_dev_data *dev_data;
1146 1147
	struct iommu_cmd cmd;
	int ret = 0, i;
1148

1149
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1150

1151 1152 1153 1154 1155 1156 1157 1158
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1159
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1160 1161
	}

1162 1163
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1164
		if (!dev_data->ats.enabled)
1165 1166
			continue;

1167
		ret |= device_flush_iotlb(dev_data, address, size);
1168 1169
	}

1170
	WARN_ON(ret);
1171 1172
}

1173 1174
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1175
{
1176
	__domain_flush_pages(domain, address, size, 0);
1177
}
1178

1179
/* Flush the whole IO/TLB for a given protection domain */
1180
static void domain_flush_tlb(struct protection_domain *domain)
1181
{
1182
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1183 1184
}

1185
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1186
static void domain_flush_tlb_pde(struct protection_domain *domain)
1187
{
1188
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1189 1190
}

1191
static void domain_flush_complete(struct protection_domain *domain)
1192
{
1193
	int i;
1194

1195 1196 1197
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1198

1199 1200 1201 1202 1203
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1204
	}
1205 1206
}

1207

1208
/*
1209
 * This function flushes the DTEs for all devices in domain
1210
 */
1211
static void domain_flush_devices(struct protection_domain *domain)
1212
{
1213
	struct iommu_dev_data *dev_data;
1214

1215
	list_for_each_entry(dev_data, &domain->dev_list, list)
1216
		device_flush_dte(dev_data);
1217 1218
}

1219 1220 1221 1222 1223 1224 1225
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1255
		      unsigned long page_size,
1256 1257 1258
		      u64 **pte_page,
		      gfp_t gfp)
{
1259
	int level, end_lvl;
1260
	u64 *pte, *page;
1261 1262

	BUG_ON(!is_power_of_2(page_size));
1263 1264 1265 1266

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1267 1268 1269 1270
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1271 1272 1273 1274 1275 1276 1277 1278 1279

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1280 1281 1282 1283
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1301
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1302 1303 1304 1305
{
	int level;
	u64 *pte;

1306 1307 1308 1309 1310
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1311

1312 1313 1314
	while (level > 0) {

		/* Not Present */
1315 1316 1317
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1337 1338
		level -= 1;

1339
		/* Walk to the next level */
1340 1341 1342 1343 1344 1345 1346
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1347 1348 1349 1350 1351 1352 1353
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1354 1355 1356
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1357
			  int prot,
1358
			  unsigned long page_size)
1359
{
1360
	u64 __pte, *pte;
1361
	int i, count;
1362

1363
	if (!(prot & IOMMU_PROT_MASK))
1364 1365
		return -EINVAL;

1366 1367 1368 1369 1370 1371 1372 1373
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1374

1375 1376 1377 1378 1379
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1380 1381 1382 1383 1384 1385

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1386 1387
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1388

1389 1390
	update_domain(dom);

1391 1392 1393
	return 0;
}

1394 1395 1396
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1397
{
1398 1399 1400 1401 1402 1403
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
1424 1425 1426 1427

			/* Only unmap from the first pte in the page */
			if ((unmap_size - 1) & bus_addr)
				break;
1428 1429 1430 1431 1432 1433 1434 1435 1436
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1437
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1438

1439
	return unmapped;
1440 1441
}

1442 1443 1444 1445
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1460 1461 1462 1463
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1464 1465 1466 1467 1468 1469 1470 1471
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1472
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1473
				     PAGE_SIZE);
1474 1475 1476 1477 1478 1479 1480
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1481
			__set_bit(addr >> PAGE_SHIFT,
1482
				  dma_dom->aperture[0]->bitmap);
1483 1484 1485 1486 1487
	}

	return 0;
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1510 1511 1512
/*
 * Inits the unity mappings required for a specific device
 */
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1530 1531 1532 1533 1534 1535 1536 1537 1538
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1539

1540
/*
1541
 * The address allocator core functions.
1542 1543 1544
 *
 * called with domain->lock held
 */
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1566 1567 1568 1569 1570
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1571
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1572 1573 1574
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1575
	struct amd_iommu *iommu;
1576
	unsigned long i, old_size;
1577

1578 1579 1580 1581
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1601
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1612
	old_size                = dma_dom->aperture_size;
1613 1614
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1627
	/* Initialize the exclusion range if necessary */
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1650
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1651 1652 1653
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1654
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1655 1656
	}

1657 1658
	update_domain(&dma_dom->domain);

1659 1660 1661
	return 0;

out_free:
1662 1663
	update_domain(&dma_dom->domain);

1664 1665 1666 1667 1668 1669 1670 1671
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1672 1673 1674 1675 1676 1677 1678
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1679
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1680 1681 1682 1683 1684 1685
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1686 1687
	next_bit >>= PAGE_SHIFT;

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1706
			dom->next_address = address + (pages << PAGE_SHIFT);
1707 1708 1709 1710 1711 1712 1713 1714 1715
			break;
		}

		next_bit = 0;
	}

	return address;
}

1716 1717
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1718
					     unsigned int pages,
1719 1720
					     unsigned long align_mask,
					     u64 dma_mask)
1721 1722 1723
{
	unsigned long address;

1724 1725 1726 1727
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1728

1729
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1730
				     dma_mask, dom->next_address);
1731

1732
	if (address == -1) {
1733
		dom->next_address = 0;
1734 1735
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1736 1737
		dom->need_flush = true;
	}
1738

1739
	if (unlikely(address == -1))
1740
		address = DMA_ERROR_CODE;
1741 1742 1743 1744 1745 1746

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1747 1748 1749 1750 1751
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1752 1753 1754 1755
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1756 1757
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1758

1759 1760
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1761 1762 1763 1764
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1765

1766
	if (address >= dom->next_address)
1767
		dom->need_flush = true;
1768 1769

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1770

A
Akinobu Mita 已提交
1771
	bitmap_clear(range->bitmap, address, pages);
1772

1773 1774
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1862
static void free_pagetable(struct protection_domain *domain)
1863
{
1864
	unsigned long root = (unsigned long)domain->pt_root;
1865

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1889 1890 1891
	}
}

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1922 1923
static void free_gcr3_table(struct protection_domain *domain)
{
1924 1925 1926 1927 1928 1929 1930
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1931 1932 1933
	free_page((unsigned long)domain->gcr3_tbl);
}

1934 1935 1936 1937
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1938 1939
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1940 1941
	int i;

1942 1943 1944
	if (!dom)
		return;

1945 1946
	del_domain_from_list(&dom->domain);

1947
	free_pagetable(&dom->domain);
1948

1949 1950 1951 1952 1953 1954
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1955 1956 1957 1958

	kfree(dom);
}

1959 1960
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1961
 * It also initializes the page table and the address allocator data
1962 1963
 * structures required for the dma_ops interface
 */
1964
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1977
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1978
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1979
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1980
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1981 1982 1983 1984
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1985
	dma_dom->need_flush = false;
1986
	dma_dom->target_dev = 0xffff;
1987

1988 1989
	add_domain_to_list(&dma_dom->domain);

1990
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1991 1992
		goto free_dma_dom;

1993
	/*
1994 1995
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1996
	 */
1997
	dma_dom->aperture[0]->bitmap[0] = 1;
1998
	dma_dom->next_address = 0;
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2009 2010 2011 2012 2013 2014 2015 2016 2017
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2018
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2019
{
2020
	u64 pte_root = 0;
2021
	u64 flags = 0;
2022

2023 2024 2025
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2026 2027 2028
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2029

2030 2031
	flags = amd_iommu_dev_table[devid].data[1];

2032 2033 2034
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2061 2062 2063 2064 2065
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2066 2067 2068 2069 2070 2071 2072 2073 2074
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2075 2076
}

2077 2078
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2079 2080
{
	struct amd_iommu *iommu;
2081
	bool ats;
2082

2083 2084
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2085 2086 2087 2088

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2089
	set_dte_entry(dev_data->devid, domain, ats);
2090 2091 2092 2093 2094 2095

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2096
	device_flush_dte(dev_data);
2097 2098
}

2099
static void do_detach(struct iommu_dev_data *dev_data)
2100 2101 2102
{
	struct amd_iommu *iommu;

2103
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2104 2105

	/* decrease reference counters */
2106 2107 2108 2109 2110 2111
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2112
	clear_dte_entry(dev_data->devid);
2113

2114
	/* Flush the DTE entry */
2115
	device_flush_dte(dev_data);
2116 2117 2118 2119 2120 2121
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2122
static int __attach_device(struct iommu_dev_data *dev_data,
2123
			   struct protection_domain *domain)
2124
{
2125
	int ret;
2126

2127 2128 2129
	/* lock domain */
	spin_lock(&domain->lock);

2130 2131
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2132

2133 2134 2135 2136 2137
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
2138

2139 2140 2141
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
2142

2143
		/* Do real assignment */
2144
		if (alias_data->domain == NULL)
2145
			do_attach(alias_data, domain);
2146 2147

		atomic_inc(&alias_data->bind);
2148
	}
2149

2150
	if (dev_data->domain == NULL)
2151
		do_attach(dev_data, domain);
2152

2153 2154
	atomic_inc(&dev_data->bind);

2155 2156 2157 2158
	ret = 0;

out_unlock:

2159 2160
	/* ready */
	spin_unlock(&domain->lock);
2161

2162
	return ret;
2163
}
2164

2165 2166 2167 2168 2169 2170 2171 2172

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2173 2174 2175 2176 2177 2178
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2179
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2180 2181 2182
	if (!pos)
		return -EINVAL;

2183 2184 2185
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2186 2187 2188 2189

	return 0;
}

2190 2191
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2192 2193 2194 2195 2196 2197 2198 2199
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2211 2212
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2213 2214 2215
	if (ret)
		goto out_err;

2216 2217 2218 2219 2220 2221
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2235
/* FIXME: Move this to PCI code */
2236
#define PCI_PRI_TLP_OFF		(1 << 15)
2237

J
Joerg Roedel 已提交
2238
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2239
{
2240
	u16 status;
2241 2242
	int pos;

2243
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2244 2245 2246
	if (!pos)
		return false;

2247
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2248

2249
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2250 2251
}

2252
/*
F
Frank Arnold 已提交
2253
 * If a device is not yet associated with a domain, this function
2254 2255
 * assigns it visible for the hardware
 */
2256 2257
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2258
{
2259
	struct pci_dev *pdev = to_pci_dev(dev);
2260
	struct iommu_dev_data *dev_data;
2261
	unsigned long flags;
2262
	int ret;
2263

2264 2265
	dev_data = get_dev_data(dev);

2266 2267 2268 2269 2270 2271 2272 2273 2274
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2275
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2276 2277
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2278 2279 2280
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2281

2282
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2283
	ret = __attach_device(dev_data, domain);
2284 2285
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2286 2287 2288 2289 2290
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2291
	domain_flush_tlb_pde(domain);
2292 2293

	return ret;
2294 2295
}

2296 2297 2298
/*
 * Removes a device from a protection domain (unlocked)
 */
2299
static void __detach_device(struct iommu_dev_data *dev_data)
2300
{
2301
	struct protection_domain *domain;
2302
	unsigned long flags;
2303

2304
	BUG_ON(!dev_data->domain);
2305

2306 2307 2308
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2309

2310 2311 2312
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

2313
		if (atomic_dec_and_test(&alias_data->bind))
2314
			do_detach(alias_data);
2315 2316
	}

2317
	if (atomic_dec_and_test(&dev_data->bind))
2318
		do_detach(dev_data);
2319

2320
	spin_unlock_irqrestore(&domain->lock, flags);
2321 2322 2323

	/*
	 * If we run in passthrough mode the device must be assigned to the
2324 2325
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2326
	 */
2327
	if (dev_data->passthrough &&
2328
	    (dev_data->domain == NULL && domain != pt_domain))
2329
		__attach_device(dev_data, pt_domain);
2330 2331 2332 2333 2334
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2335
static void detach_device(struct device *dev)
2336
{
2337
	struct protection_domain *domain;
2338
	struct iommu_dev_data *dev_data;
2339 2340
	unsigned long flags;

2341
	dev_data = get_dev_data(dev);
2342
	domain   = dev_data->domain;
2343

2344 2345
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2346
	__detach_device(dev_data);
2347
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2348

2349 2350 2351
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2352
		pci_disable_ats(to_pci_dev(dev));
2353 2354

	dev_data->ats.enabled = false;
2355
}
2356

2357 2358 2359 2360 2361 2362
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2363
	struct iommu_dev_data *dev_data;
2364
	struct protection_domain *dom = NULL;
2365 2366
	unsigned long flags;

2367
	dev_data   = get_dev_data(dev);
2368

2369 2370
	if (dev_data->domain)
		return dev_data->domain;
2371

2372 2373
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2374 2375 2376 2377 2378 2379 2380 2381

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2382 2383 2384 2385

	return dom;
}

2386 2387 2388 2389
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2390 2391 2392
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2393
	struct amd_iommu *iommu;
2394
	unsigned long flags;
2395
	u16 devid;
2396

2397 2398
	if (!check_device(dev))
		return 0;
2399

2400 2401 2402
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2403 2404

	switch (action) {
2405
	case BUS_NOTIFY_UNBOUND_DRIVER:
2406 2407 2408

		domain = domain_for_device(dev);

2409 2410
		if (!domain)
			goto out;
2411
		if (dev_data->passthrough)
2412
			break;
2413
		detach_device(dev);
2414 2415
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2416 2417 2418

		iommu_init_device(dev);

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2431 2432
		domain = domain_for_device(dev);

2433 2434
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
		if (!dma_domain) {
			dma_domain = dma_ops_domain_alloc();
			if (!dma_domain)
				goto out;
			dma_domain->target_dev = devid;

			spin_lock_irqsave(&iommu_pd_list_lock, flags);
			list_add_tail(&dma_domain->list, &iommu_pd_list);
			spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
		}
2445

2446
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2447

2448
		break;
2449 2450 2451 2452
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2463
static struct notifier_block device_nb = {
2464 2465
	.notifier_call = device_change_notifier,
};
2466

2467 2468 2469 2470 2471
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2485
static struct protection_domain *get_domain(struct device *dev)
2486
{
2487
	struct protection_domain *domain;
2488
	struct dma_ops_domain *dma_dom;
2489
	u16 devid = get_device_id(dev);
2490

2491
	if (!check_device(dev))
2492
		return ERR_PTR(-EINVAL);
2493

2494 2495 2496
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2497

2498 2499
	if (domain != NULL)
		return domain;
2500

F
Frank Arnold 已提交
2501
	/* Device not bound yet - bind it */
2502
	dma_dom = find_protection_domain(devid);
2503
	if (!dma_dom)
2504 2505
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2506
	DUMP_printk("Using protection domain %d for device %s\n",
2507
		    dma_dom->domain.id, dev_name(dev));
2508

2509
	return &dma_dom->domain;
2510 2511
}

2512 2513
static void update_device_table(struct protection_domain *domain)
{
2514
	struct iommu_dev_data *dev_data;
2515

2516 2517
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2518 2519 2520 2521 2522 2523 2524 2525
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2526 2527 2528

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2529 2530 2531 2532

	domain->updated = false;
}

2533 2534 2535 2536 2537 2538
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2539
	struct aperture_range *aperture;
2540 2541
	u64 *pte, *pte_page;

2542 2543 2544 2545 2546
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2547
	if (!pte) {
2548
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2549
				GFP_ATOMIC);
2550 2551
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2552
		pte += PM_LEVEL_INDEX(0, address);
2553

2554
	update_domain(&dom->domain);
2555 2556 2557 2558

	return pte;
}

2559 2560 2561 2562
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2563
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2574
	pte  = dma_ops_get_pte(dom, address);
2575
	if (!pte)
2576
		return DMA_ERROR_CODE;
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2594 2595 2596
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2597
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2598 2599
				 unsigned long address)
{
2600
	struct aperture_range *aperture;
2601 2602 2603 2604 2605
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2606 2607 2608 2609 2610 2611 2612
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2613

2614
	pte += PM_LEVEL_INDEX(0, address);
2615 2616 2617 2618 2619 2620

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2621 2622
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2623 2624
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2625 2626
 * Must be called with the domain lock held.
 */
2627 2628 2629 2630
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2631
			       int dir,
2632 2633
			       bool align,
			       u64 dma_mask)
2634 2635
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2636
	dma_addr_t address, start, ret;
2637
	unsigned int pages;
2638
	unsigned long align_mask = 0;
2639 2640
	int i;

2641
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2642 2643
	paddr &= PAGE_MASK;

2644 2645
	INC_STATS_COUNTER(total_map_requests);

2646 2647 2648
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2649 2650 2651
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2652
retry:
2653 2654
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2655
	if (unlikely(address == DMA_ERROR_CODE)) {
2656 2657 2658 2659 2660 2661 2662
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2663
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2664 2665 2666
			goto out;

		/*
2667
		 * aperture was successfully enlarged by 128 MB, try
2668 2669 2670 2671
		 * allocation again
		 */
		goto retry;
	}
2672 2673 2674

	start = address;
	for (i = 0; i < pages; ++i) {
2675
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2676
		if (ret == DMA_ERROR_CODE)
2677 2678
			goto out_unmap;

2679 2680 2681 2682 2683
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2684 2685
	ADD_STATS_COUNTER(alloced_io_mem, size);

2686
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2687
		domain_flush_tlb(&dma_dom->domain);
2688
		dma_dom->need_flush = false;
2689
	} else if (unlikely(amd_iommu_np_cache))
2690
		domain_flush_pages(&dma_dom->domain, address, size);
2691

2692 2693
out:
	return address;
2694 2695 2696 2697 2698

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2699
		dma_ops_domain_unmap(dma_dom, start);
2700 2701 2702 2703
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2704
	return DMA_ERROR_CODE;
2705 2706
}

2707 2708 2709 2710
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2711
static void __unmap_single(struct dma_ops_domain *dma_dom,
2712 2713 2714 2715
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2716
	dma_addr_t flush_addr;
2717 2718 2719
	dma_addr_t i, start;
	unsigned int pages;

2720
	if ((dma_addr == DMA_ERROR_CODE) ||
2721
	    (dma_addr + size > dma_dom->aperture_size))
2722 2723
		return;

2724
	flush_addr = dma_addr;
2725
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2726 2727 2728 2729
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2730
		dma_ops_domain_unmap(dma_dom, start);
2731 2732 2733
		start += PAGE_SIZE;
	}

2734 2735
	SUB_STATS_COUNTER(alloced_io_mem, size);

2736
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2737

2738
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2739
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2740 2741
		dma_dom->need_flush = false;
	}
2742 2743
}

2744 2745 2746
/*
 * The exported map_single function for dma_ops.
 */
2747 2748 2749 2750
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2751 2752 2753 2754
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2755
	u64 dma_mask;
2756
	phys_addr_t paddr = page_to_phys(page) + offset;
2757

2758 2759
	INC_STATS_COUNTER(cnt_map_single);

2760 2761
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2762
		return (dma_addr_t)paddr;
2763 2764
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2765

2766 2767
	dma_mask = *dev->dma_mask;

2768
	spin_lock_irqsave(&domain->lock, flags);
2769

2770
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2771
			    dma_mask);
2772
	if (addr == DMA_ERROR_CODE)
2773 2774
		goto out;

2775
	domain_flush_complete(domain);
2776 2777 2778 2779 2780 2781 2782

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2783 2784 2785
/*
 * The exported unmap_single function for dma_ops.
 */
2786 2787
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2788 2789 2790 2791
{
	unsigned long flags;
	struct protection_domain *domain;

2792 2793
	INC_STATS_COUNTER(cnt_unmap_single);

2794 2795
	domain = get_domain(dev);
	if (IS_ERR(domain))
2796 2797
		return;

2798 2799
	spin_lock_irqsave(&domain->lock, flags);

2800
	__unmap_single(domain->priv, dma_addr, size, dir);
2801

2802
	domain_flush_complete(domain);
2803 2804 2805 2806

	spin_unlock_irqrestore(&domain->lock, flags);
}

2807 2808 2809 2810
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2811
static int map_sg(struct device *dev, struct scatterlist *sglist,
2812 2813
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2814 2815 2816 2817 2818 2819 2820
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2821
	u64 dma_mask;
2822

2823 2824
	INC_STATS_COUNTER(cnt_map_sg);

2825
	domain = get_domain(dev);
2826
	if (IS_ERR(domain))
2827
		return 0;
2828

2829
	dma_mask = *dev->dma_mask;
2830 2831 2832 2833 2834 2835

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2836
		s->dma_address = __map_single(dev, domain->priv,
2837 2838
					      paddr, s->length, dir, false,
					      dma_mask);
2839 2840 2841 2842 2843 2844 2845 2846

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2847
	domain_flush_complete(domain);
2848 2849 2850 2851 2852 2853 2854 2855

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2856
			__unmap_single(domain->priv, s->dma_address,
2857 2858 2859 2860 2861 2862 2863 2864 2865
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2866 2867 2868 2869
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2870
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2871 2872
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2873 2874 2875 2876 2877 2878
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2879 2880
	INC_STATS_COUNTER(cnt_unmap_sg);

2881 2882
	domain = get_domain(dev);
	if (IS_ERR(domain))
2883 2884
		return;

2885 2886 2887
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2888
		__unmap_single(domain->priv, s->dma_address,
2889 2890 2891 2892
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2893
	domain_flush_complete(domain);
2894 2895 2896 2897

	spin_unlock_irqrestore(&domain->lock, flags);
}

2898 2899 2900
/*
 * The exported alloc_coherent function for dma_ops.
 */
2901
static void *alloc_coherent(struct device *dev, size_t size,
2902 2903
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2904 2905 2906 2907 2908
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2909
	u64 dma_mask = dev->coherent_dma_mask;
2910

2911 2912
	INC_STATS_COUNTER(cnt_alloc_coherent);

2913 2914
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2915 2916 2917
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2918 2919
	} else if (IS_ERR(domain))
		return NULL;
2920

2921 2922 2923
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2924 2925 2926

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2927
		return NULL;
2928 2929 2930

	paddr = virt_to_phys(virt_addr);

2931 2932 2933
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2934 2935
	spin_lock_irqsave(&domain->lock, flags);

2936
	*dma_addr = __map_single(dev, domain->priv, paddr,
2937
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2938

2939
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2940
		spin_unlock_irqrestore(&domain->lock, flags);
2941
		goto out_free;
J
Jiri Slaby 已提交
2942
	}
2943

2944
	domain_flush_complete(domain);
2945 2946 2947 2948

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2949 2950 2951 2952 2953 2954

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2955 2956
}

2957 2958 2959
/*
 * The exported free_coherent function for dma_ops.
 */
2960
static void free_coherent(struct device *dev, size_t size,
2961 2962
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2963 2964 2965 2966
{
	unsigned long flags;
	struct protection_domain *domain;

2967 2968
	INC_STATS_COUNTER(cnt_free_coherent);

2969 2970
	domain = get_domain(dev);
	if (IS_ERR(domain))
2971 2972
		goto free_mem;

2973 2974
	spin_lock_irqsave(&domain->lock, flags);

2975
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2976

2977
	domain_flush_complete(domain);
2978 2979 2980 2981 2982 2983 2984

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2985 2986 2987 2988 2989 2990
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2991
	return check_device(dev);
2992 2993
}

2994
/*
2995 2996
 * The function for pre-allocating protection domains.
 *
2997 2998 2999 3000
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
3001
static void __init prealloc_protection_domains(void)
3002
{
3003
	struct iommu_dev_data *dev_data;
3004
	struct dma_ops_domain *dma_dom;
3005
	struct pci_dev *dev = NULL;
3006
	u16 devid;
3007

3008
	for_each_pci_dev(dev) {
3009 3010 3011

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
3012
			continue;
3013

3014 3015 3016 3017 3018 3019
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
F
Frank Arnold 已提交
3020
			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3021 3022 3023
				dev_name(&dev->dev));
		}

3024
		/* Is there already any domain for it? */
3025
		if (domain_for_device(&dev->dev))
3026
			continue;
3027 3028 3029

		devid = get_device_id(&dev->dev);

3030
		dma_dom = dma_ops_domain_alloc();
3031 3032 3033
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
3034 3035
		dma_dom->target_dev = devid;

3036
		attach_device(&dev->dev, &dma_dom->domain);
3037

3038
		list_add_tail(&dma_dom->list, &iommu_pd_list);
3039 3040 3041
	}
}

3042
static struct dma_map_ops amd_iommu_dma_ops = {
3043 3044
	.alloc = alloc_coherent,
	.free = free_coherent,
3045 3046
	.map_page = map_page,
	.unmap_page = unmap_page,
3047 3048
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
3049
	.dma_supported = amd_iommu_dma_supported,
3050 3051
};

3052 3053
static unsigned device_dma_ops_init(void)
{
3054
	struct iommu_dev_data *dev_data;
3055 3056 3057 3058 3059
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
3060 3061 3062

			iommu_ignore_device(&pdev->dev);

3063 3064 3065 3066
			unhandled += 1;
			continue;
		}

3067 3068 3069 3070 3071 3072
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3073 3074 3075 3076 3077
	}

	return unhandled;
}

3078 3079 3080
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3081 3082 3083

void __init amd_iommu_init_api(void)
{
3084
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3085 3086
}

3087 3088 3089
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3090
	int ret, unhandled;
3091

3092 3093 3094 3095 3096
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3097
	for_each_iommu(iommu) {
3098
		iommu->default_dom = dma_ops_domain_alloc();
3099 3100
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3101
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3102 3103 3104 3105 3106
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3107
	/*
3108
	 * Pre-allocate the protection domains for each device.
3109
	 */
3110
	prealloc_protection_domains();
3111 3112

	iommu_detected = 1;
3113
	swiotlb = 0;
3114

3115
	/* Make the driver finally visible to the drivers */
3116 3117 3118 3119 3120
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3121

3122 3123
	amd_iommu_stats_init();

3124 3125 3126 3127 3128
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3129 3130 3131 3132
	return 0;

free_domains:

3133
	for_each_iommu(iommu) {
3134
		dma_ops_domain_free(iommu->default_dom);
3135 3136 3137 3138
	}

	return ret;
}
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3152
	struct iommu_dev_data *entry;
3153 3154 3155 3156
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3157 3158 3159 3160 3161
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
		atomic_set(&entry->bind, 0);
3162
	}
3163 3164 3165 3166

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3167 3168 3169 3170 3171
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3172 3173
	del_domain_from_list(domain);

3174 3175 3176 3177 3178 3179 3180
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3181 3182 3183 3184 3185
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3186
		return NULL;
3187 3188

	spin_lock_init(&domain->lock);
3189
	mutex_init(&domain->api_lock);
3190 3191
	domain->id = domain_id_alloc();
	if (!domain->id)
3192
		goto out_err;
3193
	INIT_LIST_HEAD(&domain->dev_list);
3194

3195 3196
	add_domain_to_list(domain);

3197 3198 3199 3200 3201 3202 3203 3204
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3219 3220 3221 3222 3223 3224
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3225
		goto out_free;
3226 3227

	domain->mode    = PAGE_MODE_3_LEVEL;
3228 3229 3230 3231
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3232 3233
	domain->iommu_domain = dom;

3234 3235
	dom->priv = domain;

3236 3237 3238 3239
	dom->geometry.aperture_start = 0;
	dom->geometry.aperture_end   = ~0ULL;
	dom->geometry.force_aperture = true;

3240 3241 3242
	return 0;

out_free:
3243
	protection_domain_free(domain);
3244 3245 3246 3247

	return -ENOMEM;
}

3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3260 3261
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3262

3263 3264 3265
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3266
	protection_domain_free(domain);
3267 3268 3269 3270

	dom->priv = NULL;
}

3271 3272 3273
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3274
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3275 3276 3277
	struct amd_iommu *iommu;
	u16 devid;

3278
	if (!check_device(dev))
3279 3280
		return;

3281
	devid = get_device_id(dev);
3282

3283
	if (dev_data->domain != NULL)
3284
		detach_device(dev);
3285 3286 3287 3288 3289 3290 3291 3292

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3293 3294 3295 3296
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3297
	struct iommu_dev_data *dev_data;
3298
	struct amd_iommu *iommu;
3299
	int ret;
3300

3301
	if (!check_device(dev))
3302 3303
		return -EINVAL;

3304 3305
	dev_data = dev->archdata.iommu;

3306
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3307 3308 3309
	if (!iommu)
		return -EINVAL;

3310
	if (dev_data->domain)
3311
		detach_device(dev);
3312

3313
	ret = attach_device(dev, domain);
3314 3315 3316

	iommu_completion_wait(iommu);

3317
	return ret;
3318 3319
}

3320
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3321
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3322 3323 3324 3325 3326
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3327 3328 3329
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3330 3331 3332 3333 3334
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3335
	mutex_lock(&domain->api_lock);
3336
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3337 3338
	mutex_unlock(&domain->api_lock);

3339
	return ret;
3340 3341
}

3342 3343
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3344 3345
{
	struct protection_domain *domain = dom->priv;
3346
	size_t unmap_size;
3347

3348 3349 3350
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3351
	mutex_lock(&domain->api_lock);
3352
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3353
	mutex_unlock(&domain->api_lock);
3354

3355
	domain_flush_tlb_pde(domain);
3356

3357
	return unmap_size;
3358 3359
}

3360
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3361
					  dma_addr_t iova)
3362 3363
{
	struct protection_domain *domain = dom->priv;
3364
	unsigned long offset_mask;
3365
	phys_addr_t paddr;
3366
	u64 *pte, __pte;
3367

3368 3369 3370
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3371
	pte = fetch_pte(domain, iova);
3372

3373
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3374 3375
		return 0;

3376 3377 3378 3379 3380 3381 3382
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3383 3384 3385 3386

	return paddr;
}

S
Sheng Yang 已提交
3387 3388 3389
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3390 3391 3392
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
3393 3394
	case IOMMU_CAP_INTR_REMAP:
		return irq_remapping_enabled;
3395 3396
	}

S
Sheng Yang 已提交
3397 3398 3399
	return 0;
}

3400
static const struct iommu_ops amd_iommu_ops = {
3401 3402 3403 3404
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3405 3406
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3407
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3408
	.domain_has_cap = amd_iommu_domain_has_cap,
3409
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3410 3411
};

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3424
	struct iommu_dev_data *dev_data;
3425
	struct pci_dev *dev = NULL;
3426
	int ret;
3427

3428 3429 3430
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3431

3432
	for_each_pci_dev(dev) {
3433
		if (!check_device(&dev->dev))
3434 3435
			continue;

3436 3437 3438
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3439
		attach_device(&dev->dev, pt_domain);
3440 3441
	}

J
Joerg Roedel 已提交
3442 3443
	amd_iommu_stats_init();

3444 3445 3446 3447
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3589 3590
	INC_STATS_COUNTER(invalidate_iotlb);

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3611 3612
	INC_STATS_COUNTER(invalidate_iotlb_all);

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3724 3725 3726 3727 3728 3729 3730 3731

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3732 3733
	INC_STATS_COUNTER(complete_ppr);

3734 3735 3736 3737 3738 3739 3740 3741 3742
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3890 3891 3892
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3893 3894 3895 3896 3897 3898 3899
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3900
		table = NULL;
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3918
		set_dte_irq_entry(alias, table);
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
3953
			struct irq_2_irte *irte_info;
3954 3955 3956 3957 3958 3959

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

3960
			cfg->remapped	      = 1;
3961 3962 3963
			irte_info             = &cfg->irq_2_irte;
			irte_info->devid      = devid;
			irte_info->index      = index;
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4039 4040 4041 4042 4043
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
4044
	struct irq_2_irte *irte_info;
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

4056
	irte_info = &cfg->irq_2_irte;
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
4070
	cfg->remapped	      = 1;
4071 4072
	irte_info->devid      = devid;
	irte_info->index      = index;
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
4106
	struct irq_2_irte *irte_info;
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

	cfg       = data->chip_data;
	irq       = data->irq;
4117
	irte_info = &cfg->irq_2_irte;
4118 4119 4120 4121

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

4122
	if (get_irte(irte_info->devid, irte_info->index, &irte))
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

4138
	modify_irte(irte_info->devid, irte_info->index, irte);
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
4150
	struct irq_2_irte *irte_info;
4151 4152 4153 4154 4155 4156
	struct irq_cfg *cfg;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

4157
	irte_info = &cfg->irq_2_irte;
4158

4159
	free_irte(irte_info->devid, irte_info->index);
4160 4161 4162 4163

	return 0;
}

4164 4165 4166 4167
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
4168
	struct irq_2_irte *irte_info;
4169 4170 4171 4172 4173 4174 4175
	struct irq_cfg *cfg;
	union irte irte;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return;

4176
	irte_info = &cfg->irq_2_irte;
4177 4178 4179 4180 4181 4182 4183 4184

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

4185
	modify_irte(irte_info->devid, irte_info->index, irte);
4186 4187 4188

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
4189
	msg->data       = irte_info->index;
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
4214
	struct irq_2_irte *irte_info;
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
4229
	irte_info	= &cfg->irq_2_irte;
4230

4231
	cfg->remapped	      = 1;
4232 4233
	irte_info->devid      = devid;
	irte_info->index      = index + offset;
4234 4235 4236 4237

	return 0;
}

4238 4239
static int setup_hpet_msi(unsigned int irq, unsigned int id)
{
4240
	struct irq_2_irte *irte_info;
4241 4242 4243 4244 4245 4246 4247
	struct irq_cfg *cfg;
	int index, devid;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

4248
	irte_info = &cfg->irq_2_irte;
4249 4250 4251 4252 4253 4254 4255 4256
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4257
	cfg->remapped	      = 1;
4258 4259
	irte_info->devid      = devid;
	irte_info->index      = index;
4260 4261 4262 4263

	return 0;
}

4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
struct irq_remap_ops amd_iommu_irq_ops = {
	.supported		= amd_iommu_supported,
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
	.setup_hpet_msi		= setup_hpet_msi,
};
4279
#endif