intel_ringbuffer.c 73.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178
	u32 scratch_addr =
179
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214
	u32 scratch_addr =
215
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288
	u32 scratch_addr =
289
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373
	u32 scratch_addr =
374
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375
	u32 flags = 0;
376
	int ret;
B
Ben Widawsky 已提交
377 378 379

	flags |= PIPE_CONTROL_CS_STALL;

380
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
381 382
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
385
	}
386
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
387 388 389 390 391 392 393 394
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395 396

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397
		ret = gen8_emit_pipe_control(req,
398 399 400 401 402
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
403 404
	}

405
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
406 407
}

408
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
409
{
410
	struct drm_i915_private *dev_priv = engine->i915;
411 412 413
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
414
	if (INTEL_GEN(dev_priv) >= 4)
415 416 417 418
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

419
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
420
{
421
	struct drm_i915_private *dev_priv = engine->i915;
422
	i915_reg_t mmio;
423 424 425 426

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
427
	if (IS_GEN7(dev_priv)) {
428
		switch (engine->id) {
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
447
	} else if (IS_GEN6(dev_priv)) {
448
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
449 450
	} else {
		/* XXX: gen8 returns to sanity */
451
		mmio = RING_HWS_PGA(engine->mmio_base);
452 453
	}

454
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
455 456 457 458 459 460 461 462 463
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
464
	if (IS_GEN(dev_priv, 6, 7)) {
465
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
466 467

		/* ring should be idle before issuing a sync flush*/
468
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
469 470 471 472

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
473 474 475
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
476
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
477
				  engine->name);
478 479 480
	}
}

481
static bool stop_ring(struct intel_engine_cs *engine)
482
{
483
	struct drm_i915_private *dev_priv = engine->i915;
484

485
	if (INTEL_GEN(dev_priv) > 2) {
486
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
487 488 489 490 491
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
492 493
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
494 495 496 497
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
498
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
499
				return false;
500 501
		}
	}
502

503 504
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
505
	I915_WRITE_TAIL(engine, 0);
506

507
	if (INTEL_GEN(dev_priv) > 2) {
508 509
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
510
	}
511

512
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
513
}
514

515
static int init_ring_common(struct intel_engine_cs *engine)
516
{
517
	struct drm_i915_private *dev_priv = engine->i915;
518
	struct intel_ring *ring = engine->buffer;
519 520
	int ret = 0;

521
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
522

523
	if (!stop_ring(engine)) {
524
		/* G45 ring initialization often fails to reset head to zero */
525 526
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
527 528 529 530 531
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
532

533
		if (!stop_ring(engine)) {
534 535
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
536 537 538 539 540
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
541 542
			ret = -EIO;
			goto out;
543
		}
544 545
	}

546
	if (HWS_NEEDS_PHYSICAL(dev_priv))
547
		ring_setup_phys_status_page(engine);
548 549
	else
		intel_ring_setup_status_page(engine);
550

551
	intel_engine_reset_breadcrumbs(engine);
552

553
	/* Enforce ordering by reading HEAD register back */
554
	I915_READ_HEAD(engine);
555

556 557 558 559
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
560
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
561 562

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
563
	if (I915_READ_HEAD(engine))
564
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
565
			  engine->name, I915_READ_HEAD(engine));
566 567 568 569 570

	intel_ring_update_space(ring);
	I915_WRITE_HEAD(engine, ring->head);
	I915_WRITE_TAIL(engine, ring->tail);
	(void)I915_READ_TAIL(engine);
571

572
	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
573 574

	/* If the head is still not zero, the ring is dead */
575 576 577
	if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
				       RING_VALID, RING_VALID,
				       50)) {
578
		DRM_ERROR("%s initialization failed "
579
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
580 581 582
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
583 584
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
585
			  I915_READ_START(engine),
586
			  i915_ggtt_offset(ring->vma));
587 588
		ret = -EIO;
		goto out;
589 590
	}

591
	intel_engine_init_hangcheck(engine);
592

593
out:
594
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
595 596

	return ret;
597 598
}

599 600 601 602 603 604 605 606 607
static void reset_ring_common(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct intel_ring *ring = request->ring;

	ring->head = request->postfix;
	ring->last_retired_head = -1;
}

608
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
609
{
610
	struct intel_ring *ring = req->ring;
611 612
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
613

614
	if (w->count == 0)
615
		return 0;
616

617
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
618 619
	if (ret)
		return ret;
620

621
	ret = intel_ring_begin(req, (w->count * 2 + 2));
622 623 624
	if (ret)
		return ret;

625
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
626
	for (i = 0; i < w->count; i++) {
627 628
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
629
	}
630
	intel_ring_emit(ring, MI_NOOP);
631

632
	intel_ring_advance(ring);
633

634
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
635 636
	if (ret)
		return ret;
637

638
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
639

640
	return 0;
641 642
}

643
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
644 645 646
{
	int ret;

647
	ret = intel_ring_workarounds_emit(req);
648 649 650
	if (ret != 0)
		return ret;

651
	ret = i915_gem_render_state_init(req);
652
	if (ret)
653
		return ret;
654

655
	return 0;
656 657
}

658
static int wa_add(struct drm_i915_private *dev_priv,
659 660
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
661 662 663 664 665 666 667 668 669 670 671 672 673
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
674 675
}

676
#define WA_REG(addr, mask, val) do { \
677
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
678 679
		if (r) \
			return r; \
680
	} while (0)
681 682

#define WA_SET_BIT_MASKED(addr, mask) \
683
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
684 685

#define WA_CLR_BIT_MASKED(addr, mask) \
686
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
687

688
#define WA_SET_FIELD_MASKED(addr, mask, value) \
689
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
690

691 692
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
693

694
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
695

696 697
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
698
{
699
	struct drm_i915_private *dev_priv = engine->i915;
700
	struct i915_workarounds *wa = &dev_priv->workarounds;
701
	const uint32_t index = wa->hw_whitelist_count[engine->id];
702 703 704 705

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

706
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
707
		 i915_mmio_reg_offset(reg));
708
	wa->hw_whitelist_count[engine->id]++;
709 710 711 712

	return 0;
}

713
static int gen8_init_workarounds(struct intel_engine_cs *engine)
714
{
715
	struct drm_i915_private *dev_priv = engine->i915;
716 717

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
718

719 720 721
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

722 723 724 725
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

726 727 728 729 730
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
731
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
732
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
733
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
734 735
			  HDC_FORCE_NON_COHERENT);

736 737 738 739 740 741 742 743 744 745
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

746 747 748
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

749 750 751 752 753 754 755 756 757 758 759 760
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

761 762 763
	return 0;
}

764
static int bdw_init_workarounds(struct intel_engine_cs *engine)
765
{
766
	struct drm_i915_private *dev_priv = engine->i915;
767
	int ret;
768

769
	ret = gen8_init_workarounds(engine);
770 771 772
	if (ret)
		return ret;

773
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
774
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
775

776
	/* WaDisableDopClockGating:bdw */
777 778
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
779

780 781
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
782

783
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
784 785 786
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
787
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
788 789 790 791

	return 0;
}

792
static int chv_init_workarounds(struct intel_engine_cs *engine)
793
{
794
	struct drm_i915_private *dev_priv = engine->i915;
795
	int ret;
796

797
	ret = gen8_init_workarounds(engine);
798 799 800
	if (ret)
		return ret;

801
	/* WaDisableThreadStallDopClockGating:chv */
802
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
803

804 805 806
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

807 808 809
	return 0;
}

810
static int gen9_init_workarounds(struct intel_engine_cs *engine)
811
{
812
	struct drm_i915_private *dev_priv = engine->i915;
813
	int ret;
814

815 816 817
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

818
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
819 820 821
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

822
	/* WaDisableKillLogic:bxt,skl,kbl */
823 824 825
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

826 827
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
828
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
829
			  FLOW_CONTROL_ENABLE |
830 831
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

832
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
833 834 835
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

836 837
	/* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
838 839
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
840

841 842
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
843 844
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
845 846 847 848 849
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
850 851
	}

852
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
853 854
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_GPGPU_PREEMPTION);
855

856 857
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
858 859
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
860

861
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
862 863 864
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

865 866
	/* WaDisableMaskBasedCammingInRCC:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
867 868 869
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

870 871 872 873
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
874

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

896 897 898 899
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
900 901 902
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

903
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
904 905
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

906
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
907 908 909
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

910 911 912 913 914
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

915
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
916
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
917 918 919
	if (ret)
		return ret;

920
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
921
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
922 923 924
	if (ret)
		return ret;

925 926 927
	return 0;
}

928
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
929
{
930
	struct drm_i915_private *dev_priv = engine->i915;
931 932 933 934 935 936 937 938 939 940
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
941
		if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
942 943 944 945 946 947 948 949
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
950
		ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

969
static int skl_init_workarounds(struct intel_engine_cs *engine)
970
{
971
	struct drm_i915_private *dev_priv = engine->i915;
972
	int ret;
973

974
	ret = gen9_init_workarounds(engine);
975 976
	if (ret)
		return ret;
977

978 979 980 981 982
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
983 984
	I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
		   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
985

986
	/* WaEnableGapsTsvCreditFix:skl */
987 988
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));
989

990 991 992
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

993 994 995 996 997
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

998
	/* WaDisableLSQCROPERFforOCL:skl */
999
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1000 1001 1002
	if (ret)
		return ret;

1003
	return skl_tune_iz_hashing(engine);
1004 1005
}

1006
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1007
{
1008
	struct drm_i915_private *dev_priv = engine->i915;
1009
	int ret;
1010

1011
	ret = gen9_init_workarounds(engine);
1012 1013
	if (ret)
		return ret;
1014

1015 1016
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1017
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1018 1019 1020
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1021
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1022 1023 1024 1025
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1026 1027 1028 1029
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1030 1031 1032 1033 1034 1035
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1036
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1037
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1038 1039 1040 1041 1042
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1043 1044 1045
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1046
	/* WaDisableLSQCROPERFforOCL:bxt */
1047
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1048
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1049 1050
		if (ret)
			return ret;
1051

1052
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1053 1054
		if (ret)
			return ret;
1055 1056
	}

1057
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1058
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1059 1060
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1061

1062 1063
	/* WaToEnableHwFixForPushConstHWBug:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1064 1065 1066
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1067 1068 1069 1070 1071
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1072 1073 1074
	return 0;
}

1075 1076
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1077
	struct drm_i915_private *dev_priv = engine->i915;
1078 1079 1080 1081 1082 1083
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1084 1085 1086 1087
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1088 1089 1090 1091 1092
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1093 1094 1095 1096 1097
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1098 1099 1100 1101 1102 1103 1104 1105
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1106 1107
	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1108 1109 1110
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1111 1112 1113
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1114 1115 1116 1117 1118
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1119 1120 1121 1122
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1123 1124 1125 1126 1127
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1128 1129 1130
	return 0;
}

1131
int init_workarounds_ring(struct intel_engine_cs *engine)
1132
{
1133
	struct drm_i915_private *dev_priv = engine->i915;
1134

1135
	WARN_ON(engine->id != RCS);
1136 1137

	dev_priv->workarounds.count = 0;
1138
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1139

1140
	if (IS_BROADWELL(dev_priv))
1141
		return bdw_init_workarounds(engine);
1142

1143
	if (IS_CHERRYVIEW(dev_priv))
1144
		return chv_init_workarounds(engine);
1145

1146
	if (IS_SKYLAKE(dev_priv))
1147
		return skl_init_workarounds(engine);
1148

1149
	if (IS_BROXTON(dev_priv))
1150
		return bxt_init_workarounds(engine);
1151

1152 1153 1154
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1155 1156 1157
	return 0;
}

1158
static int init_render_ring(struct intel_engine_cs *engine)
1159
{
1160
	struct drm_i915_private *dev_priv = engine->i915;
1161
	int ret = init_ring_common(engine);
1162 1163
	if (ret)
		return ret;
1164

1165
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1166
	if (IS_GEN(dev_priv, 4, 6))
1167
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1168 1169 1170 1171

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1172
	 *
1173
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1174
	 */
1175
	if (IS_GEN(dev_priv, 6, 7))
1176 1177
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1178
	/* Required for the hardware to program scanline values for waiting */
1179
	/* WaEnableFlushTlbInvalidationMode:snb */
1180
	if (IS_GEN6(dev_priv))
1181
		I915_WRITE(GFX_MODE,
1182
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1183

1184
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1185
	if (IS_GEN7(dev_priv))
1186
		I915_WRITE(GFX_MODE_GEN7,
1187
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1188
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1189

1190
	if (IS_GEN6(dev_priv)) {
1191 1192 1193 1194 1195 1196
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1197
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1198 1199
	}

1200
	if (IS_GEN(dev_priv, 6, 7))
1201
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1202

1203 1204
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1205

1206
	return init_workarounds_ring(engine);
1207 1208
}

1209
static void render_ring_cleanup(struct intel_engine_cs *engine)
1210
{
1211
	struct drm_i915_private *dev_priv = engine->i915;
1212

1213
	i915_vma_unpin_and_release(&dev_priv->semaphore);
1214 1215
}

1216
static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1217
{
1218 1219
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1220
	struct intel_engine_cs *waiter;
1221 1222
	enum intel_engine_id id;
	int ret, num_rings;
1223

1224
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1225
	ret = intel_ring_begin(req, (num_rings-1) * 8);
1226 1227 1228
	if (ret)
		return ret;

1229
	for_each_engine(waiter, dev_priv, id) {
1230
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1231 1232 1233
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1234 1235
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring,
1236 1237 1238
				PIPE_CONTROL_GLOBAL_GTT_IVB |
				PIPE_CONTROL_QW_WRITE |
				PIPE_CONTROL_CS_STALL);
1239 1240 1241 1242 1243
		intel_ring_emit(ring, lower_32_bits(gtt_offset));
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring,
1244 1245
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1246
		intel_ring_emit(ring, 0);
1247
	}
1248
	intel_ring_advance(ring);
1249 1250 1251 1252

	return 0;
}

1253
static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1254
{
1255 1256
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1257
	struct intel_engine_cs *waiter;
1258 1259
	enum intel_engine_id id;
	int ret, num_rings;
1260

1261
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1262
	ret = intel_ring_begin(req, (num_rings-1) * 6);
1263 1264 1265
	if (ret)
		return ret;

1266
	for_each_engine(waiter, dev_priv, id) {
1267
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1268 1269 1270
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1271
		intel_ring_emit(ring,
1272
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1273
		intel_ring_emit(ring,
1274 1275
				lower_32_bits(gtt_offset) |
				MI_FLUSH_DW_USE_GTT);
1276 1277 1278
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring,
1279 1280
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1281
		intel_ring_emit(ring, 0);
1282
	}
1283
	intel_ring_advance(ring);
1284 1285 1286 1287

	return 0;
}

1288
static int gen6_signal(struct drm_i915_gem_request *req)
1289
{
1290 1291
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1292
	struct intel_engine_cs *engine;
1293
	enum intel_engine_id id;
1294
	int ret, num_rings;
1295

1296
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1297
	ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1298 1299 1300
	if (ret)
		return ret;

1301
	for_each_engine(engine, dev_priv, id) {
1302 1303 1304 1305
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
1306

1307
		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1308
		if (i915_mmio_reg_valid(mbox_reg)) {
1309 1310 1311
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit_reg(ring, mbox_reg);
			intel_ring_emit(ring, req->fence.seqno);
1312 1313
		}
	}
1314

1315 1316
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
1317 1318
		intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1319

1320
	return 0;
1321 1322
}

1323 1324 1325 1326 1327 1328 1329 1330 1331
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

	I915_WRITE_TAIL(request->engine,
			intel_ring_offset(request->ring, request->tail));
}

static int i9xx_emit_request(struct drm_i915_gem_request *req)
1332
{
1333
	struct intel_ring *ring = req->ring;
1334
	int ret;
1335

1336
	ret = intel_ring_begin(req, 4);
1337 1338 1339
	if (ret)
		return ret;

1340 1341 1342 1343
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1344 1345 1346
	intel_ring_advance(ring);

	req->tail = ring->tail;
1347 1348 1349 1350

	return 0;
}

1351
/**
1352
 * gen6_sema_emit_request - Update the semaphore mailbox registers
1353 1354 1355 1356 1357 1358
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1359
static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1360
{
1361
	int ret;
1362

1363 1364 1365
	ret = req->engine->semaphore.signal(req);
	if (ret)
		return ret;
1366 1367 1368 1369

	return i9xx_emit_request(req);
}

1370
static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1371 1372
{
	struct intel_engine_cs *engine = req->engine;
1373
	struct intel_ring *ring = req->ring;
1374 1375
	int ret;

1376 1377 1378 1379 1380 1381 1382
	if (engine->semaphore.signal) {
		ret = engine->semaphore.signal(req);
		if (ret)
			return ret;
	}

	ret = intel_ring_begin(req, 8);
1383 1384 1385
	if (ret)
		return ret;

1386 1387 1388 1389 1390 1391 1392
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
			       PIPE_CONTROL_CS_STALL |
			       PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1393
	/* We're thrashing one dword of HWS. */
1394 1395 1396
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1397
	intel_ring_advance(ring);
1398 1399

	req->tail = ring->tail;
1400 1401 1402 1403

	return 0;
}

1404 1405 1406 1407 1408 1409 1410
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1411 1412

static int
1413 1414
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1415
{
1416 1417 1418
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1419
	struct i915_hw_ppgtt *ppgtt;
1420 1421
	int ret;

1422
	ret = intel_ring_begin(req, 4);
1423 1424 1425
	if (ret)
		return ret;

1426 1427 1428 1429 1430 1431 1432 1433
	intel_ring_emit(ring,
			MI_SEMAPHORE_WAIT |
			MI_SEMAPHORE_GLOBAL_GTT |
			MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(ring, signal->fence.seqno);
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_advance(ring);
1434 1435 1436 1437 1438 1439

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
1440 1441 1442
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1443 1444 1445
	return 0;
}

1446
static int
1447 1448
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1449
{
1450
	struct intel_ring *ring = req->ring;
1451 1452 1453
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1454
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1455
	int ret;
1456

1457
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1458

1459
	ret = intel_ring_begin(req, 4);
1460 1461 1462
	if (ret)
		return ret;

1463
	intel_ring_emit(ring, dw1 | wait_mbox);
1464 1465 1466 1467
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
1468 1469 1470 1471
	intel_ring_emit(ring, signal->fence.seqno - 1);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1472 1473 1474 1475

	return 0;
}

1476
static void
1477
gen5_seqno_barrier(struct intel_engine_cs *engine)
1478
{
1479 1480 1481
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1482
	 *
1483 1484 1485 1486 1487 1488 1489
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1490
	 */
1491
	usleep_range(125, 250);
1492 1493
}

1494 1495
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1496
{
1497
	struct drm_i915_private *dev_priv = engine->i915;
1498

1499 1500
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1501 1502 1503 1504 1505 1506 1507 1508 1509
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1510 1511 1512
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1513
	 */
1514
	spin_lock_irq(&dev_priv->uncore.lock);
1515
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1516
	spin_unlock_irq(&dev_priv->uncore.lock);
1517 1518
}

1519 1520
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1521
{
1522
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1523 1524 1525
}

static void
1526
gen5_irq_disable(struct intel_engine_cs *engine)
1527
{
1528
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1529 1530
}

1531 1532
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1533
{
1534
	struct drm_i915_private *dev_priv = engine->i915;
1535

1536 1537 1538
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1539 1540
}

1541
static void
1542
i9xx_irq_disable(struct intel_engine_cs *engine)
1543
{
1544
	struct drm_i915_private *dev_priv = engine->i915;
1545

1546 1547
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1548 1549
}

1550 1551
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1552
{
1553
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1554

1555 1556 1557
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1558 1559 1560
}

static void
1561
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1562
{
1563
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1564

1565 1566
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1567 1568
}

1569
static int
1570
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1571
{
1572
	struct intel_ring *ring = req->ring;
1573 1574
	int ret;

1575
	ret = intel_ring_begin(req, 2);
1576 1577 1578
	if (ret)
		return ret;

1579 1580 1581
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1582
	return 0;
1583 1584
}

1585 1586
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1587
{
1588
	struct drm_i915_private *dev_priv = engine->i915;
1589

1590 1591 1592
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1593
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1594 1595 1596
}

static void
1597
gen6_irq_disable(struct intel_engine_cs *engine)
1598
{
1599
	struct drm_i915_private *dev_priv = engine->i915;
1600

1601
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1602
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1603 1604
}

1605 1606
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1607
{
1608
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1609

1610
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1611
	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1612 1613 1614
}

static void
1615
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1616
{
1617
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1618

1619
	I915_WRITE_IMR(engine, ~0);
1620
	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1621 1622
}

1623 1624
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1625
{
1626
	struct drm_i915_private *dev_priv = engine->i915;
1627

1628 1629 1630
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1631
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1632 1633 1634
}

static void
1635
gen8_irq_disable(struct intel_engine_cs *engine)
1636
{
1637
	struct drm_i915_private *dev_priv = engine->i915;
1638

1639
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1640 1641
}

1642
static int
1643 1644 1645
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1646
{
1647
	struct intel_ring *ring = req->ring;
1648
	int ret;
1649

1650
	ret = intel_ring_begin(req, 2);
1651 1652 1653
	if (ret)
		return ret;

1654
	intel_ring_emit(ring,
1655 1656
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1657 1658
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1659 1660
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1661

1662 1663 1664
	return 0;
}

1665 1666
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1667 1668
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1669
static int
1670 1671 1672
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1673
{
1674
	struct intel_ring *ring = req->ring;
1675
	u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1676
	int ret;
1677

1678
	ret = intel_ring_begin(req, 6);
1679 1680
	if (ret)
		return ret;
1681

1682
	/* Evict the invalid PTE TLBs */
1683 1684 1685 1686 1687 1688 1689
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1690

1691
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1692 1693 1694
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1695
		ret = intel_ring_begin(req, 6 + 2);
1696 1697
		if (ret)
			return ret;
1698 1699 1700 1701 1702

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1703 1704
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1705
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1706 1707 1708 1709
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1710

1711 1712 1713
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1714 1715

		/* ... and execute it. */
1716
		offset = cs_offset;
1717
	}
1718

1719
	ret = intel_ring_begin(req, 2);
1720 1721 1722
	if (ret)
		return ret;

1723 1724 1725 1726
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1727

1728 1729 1730 1731
	return 0;
}

static int
1732 1733 1734
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1735
{
1736
	struct intel_ring *ring = req->ring;
1737 1738
	int ret;

1739
	ret = intel_ring_begin(req, 2);
1740 1741 1742
	if (ret)
		return ret;

1743 1744 1745 1746
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1747 1748 1749 1750

	return 0;
}

1751
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1752
{
1753
	struct drm_i915_private *dev_priv = engine->i915;
1754 1755 1756 1757

	if (!dev_priv->status_page_dmah)
		return;

1758
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1759
	engine->status_page.page_addr = NULL;
1760 1761
}

1762
static void cleanup_status_page(struct intel_engine_cs *engine)
1763
{
1764
	struct i915_vma *vma;
1765
	struct drm_i915_gem_object *obj;
1766

1767 1768
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1769 1770
		return;

1771 1772
	obj = vma->obj;

1773
	i915_vma_unpin(vma);
1774 1775 1776 1777
	i915_vma_close(vma);

	i915_gem_object_unpin_map(obj);
	__i915_gem_object_release_unless_active(obj);
1778 1779
}

1780
static int init_status_page(struct intel_engine_cs *engine)
1781
{
1782 1783 1784
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
1785
	void *vaddr;
1786
	int ret;
1787

1788
	obj = i915_gem_object_create_internal(engine->i915, 4096);
1789 1790 1791 1792
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1793

1794 1795 1796
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1797

1798 1799 1800 1801
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1802
	}
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1820

1821 1822 1823 1824 1825 1826
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

1827
	engine->status_page.vma = vma;
1828
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1829
	engine->status_page.page_addr = memset(vaddr, 0, 4096);
1830

1831 1832
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
1833
	return 0;
1834

1835 1836
err_unpin:
	i915_vma_unpin(vma);
1837 1838 1839
err:
	i915_gem_object_put(obj);
	return ret;
1840 1841
}

1842
static int init_phys_status_page(struct intel_engine_cs *engine)
1843
{
1844
	struct drm_i915_private *dev_priv = engine->i915;
1845

1846 1847 1848 1849
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1850

1851 1852
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1853 1854 1855 1856

	return 0;
}

1857
int intel_ring_pin(struct intel_ring *ring)
1858
{
1859
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1860
	unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1861
	enum i915_map_type map;
1862
	struct i915_vma *vma = ring->vma;
1863
	void *addr;
1864 1865
	int ret;

1866
	GEM_BUG_ON(ring->vaddr);
1867

1868 1869 1870
	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;

	if (vma->obj->stolen)
1871
		flags |= PIN_MAPPABLE;
1872

1873
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1874
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1875 1876 1877 1878
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1879
			return ret;
1880
	}
1881

1882 1883 1884
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1885

1886
	if (i915_vma_is_map_and_fenceable(vma))
1887 1888
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1889
		addr = i915_gem_object_pin_map(vma->obj, map);
1890 1891
	if (IS_ERR(addr))
		goto err;
1892

1893
	ring->vaddr = addr;
1894
	return 0;
1895

1896 1897 1898
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1899 1900
}

1901 1902 1903 1904 1905
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1906
	if (i915_vma_is_map_and_fenceable(ring->vma))
1907
		i915_vma_unpin_iomap(ring->vma);
1908 1909
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1910 1911
	ring->vaddr = NULL;

1912
	i915_vma_unpin(ring->vma);
1913 1914
}

1915 1916
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1917
{
1918
	struct drm_i915_gem_object *obj;
1919
	struct i915_vma *vma;
1920

1921 1922
	obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
	if (!obj)
1923 1924 1925
		obj = i915_gem_object_create(&dev_priv->drm, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1926

1927 1928 1929
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1930 1931 1932 1933 1934
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;

	return vma;
1935

1936 1937 1938
err:
	i915_gem_object_put(obj);
	return vma;
1939 1940
}

1941 1942
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1943
{
1944
	struct intel_ring *ring;
1945
	struct i915_vma *vma;
1946

1947
	GEM_BUG_ON(!is_power_of_2(size));
1948
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1949

1950
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1951
	if (!ring)
1952 1953
		return ERR_PTR(-ENOMEM);

1954
	ring->engine = engine;
1955

1956 1957
	INIT_LIST_HEAD(&ring->request_list);

1958 1959 1960 1961 1962 1963
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1964
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
1965 1966 1967 1968 1969
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

1970 1971
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
1972
		kfree(ring);
1973
		return ERR_CAST(vma);
1974
	}
1975
	ring->vma = vma;
1976 1977 1978 1979 1980

	return ring;
}

void
1981
intel_ring_free(struct intel_ring *ring)
1982
{
1983 1984 1985 1986 1987
	struct drm_i915_gem_object *obj = ring->vma->obj;

	i915_vma_close(ring->vma);
	__i915_gem_object_release_unless_active(obj);

1988 1989 1990
	kfree(ring);
}

1991 1992 1993 1994 1995 1996
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

1997
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1998 1999 2000 2001 2002

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
2003 2004 2005 2006
		ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
		if (ret)
			goto error;

2007 2008
		ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
				   PIN_GLOBAL | PIN_HIGH);
2009 2010 2011 2012
		if (ret)
			goto error;
	}

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2023
	i915_gem_context_get(ctx);
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2036
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2037 2038 2039 2040 2041

	if (--ce->pin_count)
		return;

	if (ce->state)
2042
		i915_vma_unpin(ce->state);
2043

2044
	i915_gem_context_put(ctx);
2045 2046
}

2047
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2048
{
2049
	struct drm_i915_private *dev_priv = engine->i915;
2050
	struct intel_ring *ring;
2051 2052
	int ret;

2053
	WARN_ON(engine->buffer);
2054

2055 2056
	intel_engine_setup_common(engine);

2057 2058
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2059

2060
	ret = intel_engine_init_common(engine);
2061 2062
	if (ret)
		goto error;
2063

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2075 2076 2077
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2078 2079
		goto error;
	}
2080

2081 2082 2083
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2084
		if (ret)
2085
			goto error;
2086
	} else {
2087
		ret = init_status_page(engine);
2088
		if (ret)
2089
			goto error;
2090 2091
	}

2092
	ret = intel_ring_pin(ring);
2093
	if (ret) {
2094
		intel_ring_free(ring);
2095
		goto error;
2096
	}
2097
	engine->buffer = ring;
2098

2099
	return 0;
2100

2101
error:
2102
	intel_engine_cleanup(engine);
2103
	return ret;
2104 2105
}

2106
void intel_engine_cleanup(struct intel_engine_cs *engine)
2107
{
2108
	struct drm_i915_private *dev_priv;
2109

2110
	dev_priv = engine->i915;
2111

2112
	if (engine->buffer) {
2113 2114
		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
2115

2116
		intel_ring_unpin(engine->buffer);
2117
		intel_ring_free(engine->buffer);
2118
		engine->buffer = NULL;
2119
	}
2120

2121 2122
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2123

2124
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2125 2126
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2127 2128
	} else {
		cleanup_status_page(engine);
2129
	}
2130

2131
	intel_engine_cleanup_common(engine);
2132 2133 2134

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2135
	engine->i915 = NULL;
2136 2137
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2138 2139
}

2140 2141 2142
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
2143
	enum intel_engine_id id;
2144

2145
	for_each_engine(engine, dev_priv, id) {
2146 2147 2148 2149 2150
		engine->buffer->head = engine->buffer->tail;
		engine->buffer->last_retired_head = -1;
	}
}

2151
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2152
{
2153 2154 2155 2156 2157 2158
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2159
	request->reserved_space += LEGACY_REQUEST_SIZE;
2160

2161
	request->ring = request->engine->buffer;
2162 2163 2164 2165 2166

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2167
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2168
	return 0;
2169 2170
}

2171 2172
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2173
	struct intel_ring *ring = req->ring;
2174
	struct drm_i915_gem_request *target;
2175 2176 2177
	long timeout;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
2178

2179 2180
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2192
	GEM_BUG_ON(!req->reserved_space);
2193

2194
	list_for_each_entry(target, &ring->request_list, ring_link) {
2195 2196 2197
		unsigned space;

		/* Would completion of this request free enough space? */
2198 2199
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2200 2201
		if (space >= bytes)
			break;
2202
	}
2203

2204
	if (WARN_ON(&target->ring_link == &ring->request_list))
2205 2206
		return -ENOSPC;

2207 2208 2209 2210 2211
	timeout = i915_wait_request(target,
				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
				    MAX_SCHEDULE_TIMEOUT);
	if (timeout < 0)
		return timeout;
2212 2213 2214 2215 2216 2217

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
2218 2219
}

2220
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2221
{
2222
	struct intel_ring *ring = req->ring;
2223 2224
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2225 2226
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2227
	bool need_wrap = false;
2228

2229
	total_bytes = bytes + req->reserved_space;
2230

2231 2232 2233 2234 2235 2236 2237
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2238 2239 2240 2241 2242 2243 2244
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2245
		wait_bytes = remain_actual + req->reserved_space;
2246
	} else {
2247 2248
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2249 2250
	}

2251
	if (wait_bytes > ring->space) {
2252
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2253 2254 2255 2256
		if (unlikely(ret))
			return ret;
	}

2257
	if (unlikely(need_wrap)) {
2258 2259
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2260

2261
		/* Fill the tail with MI_NOOP */
2262 2263 2264
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2265
	}
2266

2267 2268
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2269
	return 0;
2270
}
2271

2272
/* Align the ring tail to a cacheline boundary */
2273
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2274
{
2275
	struct intel_ring *ring = req->ring;
2276 2277
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2278 2279 2280 2281 2282
	int ret;

	if (num_dwords == 0)
		return 0;

2283
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2284
	ret = intel_ring_begin(req, num_dwords);
2285 2286 2287 2288
	if (ret)
		return ret;

	while (num_dwords--)
2289
		intel_ring_emit(ring, MI_NOOP);
2290

2291
	intel_ring_advance(ring);
2292 2293 2294 2295

	return 0;
}

2296
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2297
{
2298
	struct drm_i915_private *dev_priv = request->i915;
2299

2300 2301
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2302
       /* Every tail move must follow the sequence below */
2303 2304 2305 2306

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2307 2308
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2309 2310

	/* Clear the context id. Here be magic! */
2311
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2312

2313
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2314 2315 2316 2317 2318
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2319
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2320

2321
	/* Now that the ring is fully powered up, update the tail */
2322
	i9xx_submit_request(request);
2323 2324 2325 2326

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2327 2328 2329 2330
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2331 2332
}

2333
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2334
{
2335
	struct intel_ring *ring = req->ring;
2336
	uint32_t cmd;
2337 2338
	int ret;

2339
	ret = intel_ring_begin(req, 4);
2340 2341 2342
	if (ret)
		return ret;

2343
	cmd = MI_FLUSH_DW;
2344
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2345
		cmd += 1;
2346 2347 2348 2349 2350 2351 2352 2353

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2354 2355 2356 2357 2358 2359
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2360
	if (mode & EMIT_INVALIDATE)
2361 2362
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2363 2364
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2365
	if (INTEL_GEN(req->i915) >= 8) {
2366 2367
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2368
	} else  {
2369 2370
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2371
	}
2372
	intel_ring_advance(ring);
2373
	return 0;
2374 2375
}

2376
static int
2377 2378 2379
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2380
{
2381
	struct intel_ring *ring = req->ring;
2382
	bool ppgtt = USES_PPGTT(req->i915) &&
2383
			!(dispatch_flags & I915_DISPATCH_SECURE);
2384 2385
	int ret;

2386
	ret = intel_ring_begin(req, 4);
2387 2388 2389 2390
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2391
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2392 2393
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2394 2395 2396 2397
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2398 2399 2400 2401

	return 0;
}

2402
static int
2403 2404 2405
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2406
{
2407
	struct intel_ring *ring = req->ring;
2408 2409
	int ret;

2410
	ret = intel_ring_begin(req, 2);
2411 2412 2413
	if (ret)
		return ret;

2414
	intel_ring_emit(ring,
2415
			MI_BATCH_BUFFER_START |
2416
			(dispatch_flags & I915_DISPATCH_SECURE ?
2417 2418 2419
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2420
	/* bit0-7 is the length on GEN6+ */
2421 2422
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2423 2424 2425 2426

	return 0;
}

2427
static int
2428 2429 2430
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2431
{
2432
	struct intel_ring *ring = req->ring;
2433
	int ret;
2434

2435
	ret = intel_ring_begin(req, 2);
2436 2437
	if (ret)
		return ret;
2438

2439
	intel_ring_emit(ring,
2440
			MI_BATCH_BUFFER_START |
2441 2442
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2443
	/* bit0-7 is the length on GEN6+ */
2444 2445
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2446

2447
	return 0;
2448 2449
}

2450 2451
/* Blitter support (SandyBridge+) */

2452
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2453
{
2454
	struct intel_ring *ring = req->ring;
2455
	uint32_t cmd;
2456 2457
	int ret;

2458
	ret = intel_ring_begin(req, 4);
2459 2460 2461
	if (ret)
		return ret;

2462
	cmd = MI_FLUSH_DW;
2463
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2464
		cmd += 1;
2465 2466 2467 2468 2469 2470 2471 2472

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2473 2474 2475 2476 2477 2478
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2479
	if (mode & EMIT_INVALIDATE)
2480
		cmd |= MI_INVALIDATE_TLB;
2481 2482
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2483
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2484
	if (INTEL_GEN(req->i915) >= 8) {
2485 2486
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2487
	} else  {
2488 2489
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2490
	}
2491
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2492

2493
	return 0;
Z
Zou Nan hai 已提交
2494 2495
}

2496 2497 2498
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2499
	struct drm_i915_gem_object *obj;
2500
	int ret, i;
2501

2502
	if (!i915.semaphores)
2503 2504
		return;

2505 2506 2507
	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
		struct i915_vma *vma;

2508
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2509 2510
		if (IS_ERR(obj))
			goto err;
2511

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
		vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
		if (IS_ERR(vma))
			goto err_obj;

		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			goto err_obj;

		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
		if (ret)
			goto err_obj;

		dev_priv->semaphore = vma;
	}
2526 2527

	if (INTEL_GEN(dev_priv) >= 8) {
2528
		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2529

2530
		engine->semaphore.sync_to = gen8_ring_sync_to;
2531
		engine->semaphore.signal = gen8_xcs_signal;
2532 2533

		for (i = 0; i < I915_NUM_ENGINES; i++) {
2534
			u32 ring_offset;
2535 2536 2537 2538 2539 2540 2541 2542

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2543
	} else if (INTEL_GEN(dev_priv) >= 6) {
2544
		engine->semaphore.sync_to = gen6_ring_sync_to;
2545
		engine->semaphore.signal = gen6_signal;
2546 2547 2548 2549 2550 2551 2552 2553

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
2554
		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2555 2556 2557
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
2558 2559 2560 2561 2562
			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
				[RCS_HW] = {
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2563
				},
2564 2565 2566 2567
				[VCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2568
				},
2569 2570 2571 2572
				[BCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2573
				},
2574 2575 2576 2577
				[VECS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2578 2579 2580 2581 2582
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

2583
			if (i == engine->hw_id) {
2584 2585 2586
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
2587 2588
				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2589 2590 2591 2592 2593
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2594
	}
2595 2596 2597 2598 2599 2600 2601 2602

	return;

err_obj:
	i915_gem_object_put(obj);
err:
	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
	i915.semaphores = 0;
2603 2604
}

2605 2606 2607
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2608 2609
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2610
	if (INTEL_GEN(dev_priv) >= 8) {
2611 2612
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2613 2614
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2615 2616
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2617 2618
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2619 2620
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2621
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2622
	} else if (INTEL_GEN(dev_priv) >= 3) {
2623 2624
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2625
	} else {
2626 2627
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2628 2629 2630
	}
}

2631 2632 2633
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2634 2635 2636
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2637
	engine->init_hw = init_ring_common;
2638
	engine->reset_hw = reset_ring_common;
2639

2640
	engine->emit_request = i9xx_emit_request;
2641 2642
	if (i915.semaphores)
		engine->emit_request = gen6_sema_emit_request;
2643
	engine->submit_request = i9xx_submit_request;
2644 2645

	if (INTEL_GEN(dev_priv) >= 8)
2646
		engine->emit_bb_start = gen8_emit_bb_start;
2647
	else if (INTEL_GEN(dev_priv) >= 6)
2648
		engine->emit_bb_start = gen6_emit_bb_start;
2649
	else if (INTEL_GEN(dev_priv) >= 4)
2650
		engine->emit_bb_start = i965_emit_bb_start;
2651
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2652
		engine->emit_bb_start = i830_emit_bb_start;
2653
	else
2654
		engine->emit_bb_start = i915_emit_bb_start;
2655 2656
}

2657
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2658
{
2659
	struct drm_i915_private *dev_priv = engine->i915;
2660
	int ret;
2661

2662 2663
	intel_ring_default_vfuncs(dev_priv, engine);

2664 2665
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2666

2667
	if (INTEL_GEN(dev_priv) >= 8) {
2668
		engine->init_context = intel_rcs_ctx_init;
2669
		engine->emit_request = gen8_render_emit_request;
2670
		engine->emit_flush = gen8_render_ring_flush;
2671
		if (i915.semaphores)
2672
			engine->semaphore.signal = gen8_rcs_signal;
2673
	} else if (INTEL_GEN(dev_priv) >= 6) {
2674
		engine->init_context = intel_rcs_ctx_init;
2675
		engine->emit_flush = gen7_render_ring_flush;
2676
		if (IS_GEN6(dev_priv))
2677
			engine->emit_flush = gen6_render_ring_flush;
2678
	} else if (IS_GEN5(dev_priv)) {
2679
		engine->emit_flush = gen4_render_ring_flush;
2680
	} else {
2681
		if (INTEL_GEN(dev_priv) < 4)
2682
			engine->emit_flush = gen2_render_ring_flush;
2683
		else
2684
			engine->emit_flush = gen4_render_ring_flush;
2685
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2686
	}
B
Ben Widawsky 已提交
2687

2688
	if (IS_HASWELL(dev_priv))
2689
		engine->emit_bb_start = hsw_emit_bb_start;
2690

2691 2692
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2693

2694
	ret = intel_init_ring_buffer(engine);
2695 2696 2697
	if (ret)
		return ret;

2698
	if (INTEL_GEN(dev_priv) >= 6) {
2699
		ret = intel_engine_create_scratch(engine, 4096);
2700 2701 2702
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2703
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2704 2705 2706 2707 2708
		if (ret)
			return ret;
	}

	return 0;
2709 2710
}

2711
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2712
{
2713
	struct drm_i915_private *dev_priv = engine->i915;
2714

2715 2716
	intel_ring_default_vfuncs(dev_priv, engine);

2717
	if (INTEL_GEN(dev_priv) >= 6) {
2718
		/* gen6 bsd needs a special wa for tail updates */
2719
		if (IS_GEN6(dev_priv))
2720
			engine->submit_request = gen6_bsd_submit_request;
2721
		engine->emit_flush = gen6_bsd_ring_flush;
2722
		if (INTEL_GEN(dev_priv) < 8)
2723
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2724
	} else {
2725
		engine->mmio_base = BSD_RING_BASE;
2726
		engine->emit_flush = bsd_ring_flush;
2727
		if (IS_GEN5(dev_priv))
2728
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2729
		else
2730
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2731 2732
	}

2733
	return intel_init_ring_buffer(engine);
2734
}
2735

2736
/**
2737
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2738
 */
2739
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2740
{
2741
	struct drm_i915_private *dev_priv = engine->i915;
2742 2743 2744

	intel_ring_default_vfuncs(dev_priv, engine);

2745
	engine->emit_flush = gen6_bsd_ring_flush;
2746

2747
	return intel_init_ring_buffer(engine);
2748 2749
}

2750
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2751
{
2752
	struct drm_i915_private *dev_priv = engine->i915;
2753 2754 2755

	intel_ring_default_vfuncs(dev_priv, engine);

2756
	engine->emit_flush = gen6_ring_flush;
2757
	if (INTEL_GEN(dev_priv) < 8)
2758
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2759

2760
	return intel_init_ring_buffer(engine);
2761
}
2762

2763
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2764
{
2765
	struct drm_i915_private *dev_priv = engine->i915;
2766 2767 2768

	intel_ring_default_vfuncs(dev_priv, engine);

2769
	engine->emit_flush = gen6_ring_flush;
2770

2771
	if (INTEL_GEN(dev_priv) < 8) {
2772
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2773 2774
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2775
	}
B
Ben Widawsky 已提交
2776

2777
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2778
}