intel_ringbuffer.c 74.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178
	u32 scratch_addr =
179
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214
	u32 scratch_addr =
215
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288
	u32 scratch_addr =
289
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373
	u32 scratch_addr =
374
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375
	u32 flags = 0;
376
	int ret;
B
Ben Widawsky 已提交
377 378 379

	flags |= PIPE_CONTROL_CS_STALL;

380
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
381 382
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
385
	}
386
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
387 388 389 390 391 392 393 394
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395 396

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397
		ret = gen8_emit_pipe_control(req,
398 399 400 401 402
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
403 404
	}

405
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
406 407
}

408
u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
409
{
410
	struct drm_i915_private *dev_priv = engine->i915;
411
	u64 acthd;
412

413
	if (INTEL_GEN(dev_priv) >= 8)
414 415
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
416
	else if (INTEL_GEN(dev_priv) >= 4)
417
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
418 419 420 421
	else
		acthd = I915_READ(ACTHD);

	return acthd;
422 423
}

424
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
425
{
426
	struct drm_i915_private *dev_priv = engine->i915;
427 428 429
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
430
	if (INTEL_GEN(dev_priv) >= 4)
431 432 433 434
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

435
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
436
{
437
	struct drm_i915_private *dev_priv = engine->i915;
438
	i915_reg_t mmio;
439 440 441 442

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
443
	if (IS_GEN7(dev_priv)) {
444
		switch (engine->id) {
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
463
	} else if (IS_GEN6(dev_priv)) {
464
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
465 466
	} else {
		/* XXX: gen8 returns to sanity */
467
		mmio = RING_HWS_PGA(engine->mmio_base);
468 469
	}

470
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
471 472 473 474 475 476 477 478 479
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
480
	if (IS_GEN(dev_priv, 6, 7)) {
481
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
482 483

		/* ring should be idle before issuing a sync flush*/
484
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
485 486 487 488

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
489 490 491
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
492
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
493
				  engine->name);
494 495 496
	}
}

497
static bool stop_ring(struct intel_engine_cs *engine)
498
{
499
	struct drm_i915_private *dev_priv = engine->i915;
500

501
	if (INTEL_GEN(dev_priv) > 2) {
502
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
503 504 505 506 507
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
508 509
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
510 511 512 513
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
514
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
515
				return false;
516 517
		}
	}
518

519 520
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
521
	I915_WRITE_TAIL(engine, 0);
522

523
	if (INTEL_GEN(dev_priv) > 2) {
524 525
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
526
	}
527

528
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
529
}
530

531
static int init_ring_common(struct intel_engine_cs *engine)
532
{
533
	struct drm_i915_private *dev_priv = engine->i915;
534
	struct intel_ring *ring = engine->buffer;
535 536
	int ret = 0;

537
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
538

539
	if (!stop_ring(engine)) {
540
		/* G45 ring initialization often fails to reset head to zero */
541 542
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
543 544 545 546 547
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
548

549
		if (!stop_ring(engine)) {
550 551
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
552 553 554 555 556
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
557 558
			ret = -EIO;
			goto out;
559
		}
560 561
	}

562
	if (HWS_NEEDS_PHYSICAL(dev_priv))
563
		ring_setup_phys_status_page(engine);
564 565
	else
		intel_ring_setup_status_page(engine);
566

567 568
	intel_engine_reset_irq(engine);

569
	/* Enforce ordering by reading HEAD register back */
570
	I915_READ_HEAD(engine);
571

572 573 574 575
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
576
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
577 578

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
579
	if (I915_READ_HEAD(engine))
580
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
581
			  engine->name, I915_READ_HEAD(engine));
582 583 584 585 586

	intel_ring_update_space(ring);
	I915_WRITE_HEAD(engine, ring->head);
	I915_WRITE_TAIL(engine, ring->tail);
	(void)I915_READ_TAIL(engine);
587

588
	I915_WRITE_CTL(engine,
589
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
590
			| RING_VALID);
591 592

	/* If the head is still not zero, the ring is dead */
593 594 595
	if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
				       RING_VALID, RING_VALID,
				       50)) {
596
		DRM_ERROR("%s initialization failed "
597
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
598 599 600
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
601 602
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
603
			  I915_READ_START(engine),
604
			  i915_ggtt_offset(ring->vma));
605 606
		ret = -EIO;
		goto out;
607 608
	}

609
	intel_engine_init_hangcheck(engine);
610

611
out:
612
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
613 614

	return ret;
615 616
}

617 618 619 620 621 622 623 624 625
static void reset_ring_common(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct intel_ring *ring = request->ring;

	ring->head = request->postfix;
	ring->last_retired_head = -1;
}

626
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
627
{
628
	struct intel_ring *ring = req->ring;
629 630
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
631

632
	if (w->count == 0)
633
		return 0;
634

635
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
636 637
	if (ret)
		return ret;
638

639
	ret = intel_ring_begin(req, (w->count * 2 + 2));
640 641 642
	if (ret)
		return ret;

643
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
644
	for (i = 0; i < w->count; i++) {
645 646
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
647
	}
648
	intel_ring_emit(ring, MI_NOOP);
649

650
	intel_ring_advance(ring);
651

652
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
653 654
	if (ret)
		return ret;
655

656
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
657

658
	return 0;
659 660
}

661
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
662 663 664
{
	int ret;

665
	ret = intel_ring_workarounds_emit(req);
666 667 668
	if (ret != 0)
		return ret;

669
	ret = i915_gem_render_state_init(req);
670
	if (ret)
671
		return ret;
672

673
	return 0;
674 675
}

676
static int wa_add(struct drm_i915_private *dev_priv,
677 678
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
679 680 681 682 683 684 685 686 687 688 689 690 691
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
692 693
}

694
#define WA_REG(addr, mask, val) do { \
695
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
696 697
		if (r) \
			return r; \
698
	} while (0)
699 700

#define WA_SET_BIT_MASKED(addr, mask) \
701
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
702 703

#define WA_CLR_BIT_MASKED(addr, mask) \
704
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
705

706
#define WA_SET_FIELD_MASKED(addr, mask, value) \
707
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
708

709 710
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
711

712
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
713

714 715
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
716
{
717
	struct drm_i915_private *dev_priv = engine->i915;
718
	struct i915_workarounds *wa = &dev_priv->workarounds;
719
	const uint32_t index = wa->hw_whitelist_count[engine->id];
720 721 722 723

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

724
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
725
		 i915_mmio_reg_offset(reg));
726
	wa->hw_whitelist_count[engine->id]++;
727 728 729 730

	return 0;
}

731
static int gen8_init_workarounds(struct intel_engine_cs *engine)
732
{
733
	struct drm_i915_private *dev_priv = engine->i915;
734 735

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
736

737 738 739
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

740 741 742 743
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

744 745 746 747 748
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
749
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
750
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
751
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
752 753
			  HDC_FORCE_NON_COHERENT);

754 755 756 757 758 759 760 761 762 763
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

764 765 766
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

767 768 769 770 771 772 773 774 775 776 777 778
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

779 780 781
	return 0;
}

782
static int bdw_init_workarounds(struct intel_engine_cs *engine)
783
{
784
	struct drm_i915_private *dev_priv = engine->i915;
785
	int ret;
786

787
	ret = gen8_init_workarounds(engine);
788 789 790
	if (ret)
		return ret;

791
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
792
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
793

794
	/* WaDisableDopClockGating:bdw */
795 796
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
797

798 799
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
800

801
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
802 803 804
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
805
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
806 807 808 809

	return 0;
}

810
static int chv_init_workarounds(struct intel_engine_cs *engine)
811
{
812
	struct drm_i915_private *dev_priv = engine->i915;
813
	int ret;
814

815
	ret = gen8_init_workarounds(engine);
816 817 818
	if (ret)
		return ret;

819
	/* WaDisableThreadStallDopClockGating:chv */
820
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
821

822 823 824
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

825 826 827
	return 0;
}

828
static int gen9_init_workarounds(struct intel_engine_cs *engine)
829
{
830
	struct drm_i915_private *dev_priv = engine->i915;
831
	int ret;
832

833 834 835
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

836
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
837 838 839
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

840
	/* WaDisableKillLogic:bxt,skl,kbl */
841 842 843
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

844 845
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
846
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
847
			  FLOW_CONTROL_ENABLE |
848 849
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

850
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
851 852 853
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

854 855
	/* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
856 857
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
858

859 860
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
861 862
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
863 864 865 866 867
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
868 869
	}

870 871
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
872 873 874
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
875

876 877
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
878 879
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
880

881
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
882 883 884
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

885 886
	/* WaDisableMaskBasedCammingInRCC:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
887 888 889
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

890 891 892 893
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
894

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

916 917 918 919
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
920 921 922
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

923
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
924 925
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

926
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
927 928 929
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

930 931 932 933 934
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

935
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
936
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
937 938 939
	if (ret)
		return ret;

940
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
941
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
942 943 944
	if (ret)
		return ret;

945 946 947
	return 0;
}

948
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
949
{
950
	struct drm_i915_private *dev_priv = engine->i915;
951 952 953 954 955 956 957 958 959 960
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
961
		if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
962 963 964 965 966 967 968 969
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
970
		ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

989
static int skl_init_workarounds(struct intel_engine_cs *engine)
990
{
991
	struct drm_i915_private *dev_priv = engine->i915;
992
	int ret;
993

994
	ret = gen9_init_workarounds(engine);
995 996
	if (ret)
		return ret;
997

998 999 1000 1001 1002
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
1003
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1004 1005 1006 1007
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1008
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1009 1010 1011 1012 1013 1014 1015 1016
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1017
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1018 1019 1020 1021 1022
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1023 1024
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));
1025

1026
	/* WaBarrierPerformanceFixDisable:skl */
1027
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1028 1029 1030 1031
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1032
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1033
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1034 1035 1036 1037
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1038 1039 1040
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1041 1042 1043 1044 1045
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1046
	/* WaDisableLSQCROPERFforOCL:skl */
1047
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1048 1049 1050
	if (ret)
		return ret;

1051
	return skl_tune_iz_hashing(engine);
1052 1053
}

1054
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1055
{
1056
	struct drm_i915_private *dev_priv = engine->i915;
1057
	int ret;
1058

1059
	ret = gen9_init_workarounds(engine);
1060 1061
	if (ret)
		return ret;
1062

1063 1064
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1065
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1066 1067 1068
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1069
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1070 1071 1072 1073
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1074 1075 1076 1077
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1078 1079 1080 1081 1082 1083
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1084
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1085
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1086 1087 1088 1089 1090
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1091 1092 1093
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1094
	/* WaDisableLSQCROPERFforOCL:bxt */
1095
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1096
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1097 1098
		if (ret)
			return ret;
1099

1100
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1101 1102
		if (ret)
			return ret;
1103 1104
	}

1105
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1106
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1107 1108
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1109

1110 1111
	/* WaToEnableHwFixForPushConstHWBug:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1112 1113 1114
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1115 1116 1117 1118 1119
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1120 1121 1122
	return 0;
}

1123 1124
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1125
	struct drm_i915_private *dev_priv = engine->i915;
1126 1127 1128 1129 1130 1131
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1132 1133 1134 1135
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1136 1137 1138 1139 1140
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1141 1142 1143 1144 1145
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1146 1147 1148 1149 1150 1151 1152 1153
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1154 1155
	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1156 1157 1158
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1159 1160 1161
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1162 1163 1164 1165 1166
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1167 1168 1169 1170
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1171 1172 1173 1174 1175
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1176 1177 1178
	return 0;
}

1179
int init_workarounds_ring(struct intel_engine_cs *engine)
1180
{
1181
	struct drm_i915_private *dev_priv = engine->i915;
1182

1183
	WARN_ON(engine->id != RCS);
1184 1185

	dev_priv->workarounds.count = 0;
1186
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1187

1188
	if (IS_BROADWELL(dev_priv))
1189
		return bdw_init_workarounds(engine);
1190

1191
	if (IS_CHERRYVIEW(dev_priv))
1192
		return chv_init_workarounds(engine);
1193

1194
	if (IS_SKYLAKE(dev_priv))
1195
		return skl_init_workarounds(engine);
1196

1197
	if (IS_BROXTON(dev_priv))
1198
		return bxt_init_workarounds(engine);
1199

1200 1201 1202
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1203 1204 1205
	return 0;
}

1206
static int init_render_ring(struct intel_engine_cs *engine)
1207
{
1208
	struct drm_i915_private *dev_priv = engine->i915;
1209
	int ret = init_ring_common(engine);
1210 1211
	if (ret)
		return ret;
1212

1213
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1214
	if (IS_GEN(dev_priv, 4, 6))
1215
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1216 1217 1218 1219

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1220
	 *
1221
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1222
	 */
1223
	if (IS_GEN(dev_priv, 6, 7))
1224 1225
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1226
	/* Required for the hardware to program scanline values for waiting */
1227
	/* WaEnableFlushTlbInvalidationMode:snb */
1228
	if (IS_GEN6(dev_priv))
1229
		I915_WRITE(GFX_MODE,
1230
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1231

1232
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1233
	if (IS_GEN7(dev_priv))
1234
		I915_WRITE(GFX_MODE_GEN7,
1235
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1236
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1237

1238
	if (IS_GEN6(dev_priv)) {
1239 1240 1241 1242 1243 1244
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1245
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1246 1247
	}

1248
	if (IS_GEN(dev_priv, 6, 7))
1249
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1250

1251 1252
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1253

1254
	return init_workarounds_ring(engine);
1255 1256
}

1257
static void render_ring_cleanup(struct intel_engine_cs *engine)
1258
{
1259
	struct drm_i915_private *dev_priv = engine->i915;
1260

1261
	i915_vma_unpin_and_release(&dev_priv->semaphore);
1262 1263
}

1264
static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1265
{
1266 1267
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1268
	struct intel_engine_cs *waiter;
1269 1270
	enum intel_engine_id id;
	int ret, num_rings;
1271

1272
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1273
	ret = intel_ring_begin(req, (num_rings-1) * 8);
1274 1275 1276
	if (ret)
		return ret;

1277
	for_each_engine_id(waiter, dev_priv, id) {
1278
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1279 1280 1281
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1282 1283
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring,
1284 1285 1286
				PIPE_CONTROL_GLOBAL_GTT_IVB |
				PIPE_CONTROL_QW_WRITE |
				PIPE_CONTROL_CS_STALL);
1287 1288 1289 1290 1291
		intel_ring_emit(ring, lower_32_bits(gtt_offset));
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring,
1292 1293
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1294
		intel_ring_emit(ring, 0);
1295
	}
1296
	intel_ring_advance(ring);
1297 1298 1299 1300

	return 0;
}

1301
static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1302
{
1303 1304
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1305
	struct intel_engine_cs *waiter;
1306 1307
	enum intel_engine_id id;
	int ret, num_rings;
1308

1309
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1310
	ret = intel_ring_begin(req, (num_rings-1) * 6);
1311 1312 1313
	if (ret)
		return ret;

1314
	for_each_engine_id(waiter, dev_priv, id) {
1315
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1316 1317 1318
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1319
		intel_ring_emit(ring,
1320
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1321
		intel_ring_emit(ring,
1322 1323
				lower_32_bits(gtt_offset) |
				MI_FLUSH_DW_USE_GTT);
1324 1325 1326
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring,
1327 1328
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1329
		intel_ring_emit(ring, 0);
1330
	}
1331
	intel_ring_advance(ring);
1332 1333 1334 1335

	return 0;
}

1336
static int gen6_signal(struct drm_i915_gem_request *req)
1337
{
1338 1339
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1340
	struct intel_engine_cs *engine;
1341
	int ret, num_rings;
1342

1343
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1344
	ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1345 1346 1347
	if (ret)
		return ret;

1348 1349 1350 1351 1352
	for_each_engine(engine, dev_priv) {
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
1353

1354
		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1355
		if (i915_mmio_reg_valid(mbox_reg)) {
1356 1357 1358
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit_reg(ring, mbox_reg);
			intel_ring_emit(ring, req->fence.seqno);
1359 1360
		}
	}
1361

1362 1363
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
1364 1365
		intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1366

1367
	return 0;
1368 1369
}

1370 1371 1372 1373 1374 1375 1376 1377 1378
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

	I915_WRITE_TAIL(request->engine,
			intel_ring_offset(request->ring, request->tail));
}

static int i9xx_emit_request(struct drm_i915_gem_request *req)
1379
{
1380
	struct intel_ring *ring = req->ring;
1381
	int ret;
1382

1383
	ret = intel_ring_begin(req, 4);
1384 1385 1386
	if (ret)
		return ret;

1387 1388 1389 1390
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1391 1392 1393
	intel_ring_advance(ring);

	req->tail = ring->tail;
1394 1395 1396 1397

	return 0;
}

1398
/**
1399
 * gen6_sema_emit_request - Update the semaphore mailbox registers
1400 1401 1402 1403 1404 1405
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1406
static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1407
{
1408
	int ret;
1409

1410 1411 1412
	ret = req->engine->semaphore.signal(req);
	if (ret)
		return ret;
1413 1414 1415 1416

	return i9xx_emit_request(req);
}

1417
static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1418 1419
{
	struct intel_engine_cs *engine = req->engine;
1420
	struct intel_ring *ring = req->ring;
1421 1422
	int ret;

1423 1424 1425 1426 1427 1428 1429
	if (engine->semaphore.signal) {
		ret = engine->semaphore.signal(req);
		if (ret)
			return ret;
	}

	ret = intel_ring_begin(req, 8);
1430 1431 1432
	if (ret)
		return ret;

1433 1434 1435 1436 1437 1438 1439
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
			       PIPE_CONTROL_CS_STALL |
			       PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1440
	/* We're thrashing one dword of HWS. */
1441 1442 1443
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1444
	intel_ring_advance(ring);
1445 1446

	req->tail = ring->tail;
1447 1448 1449 1450

	return 0;
}

1451 1452 1453 1454 1455 1456 1457
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1458 1459

static int
1460 1461
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1462
{
1463 1464 1465
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1466
	struct i915_hw_ppgtt *ppgtt;
1467 1468
	int ret;

1469
	ret = intel_ring_begin(req, 4);
1470 1471 1472
	if (ret)
		return ret;

1473 1474 1475 1476 1477 1478 1479 1480
	intel_ring_emit(ring,
			MI_SEMAPHORE_WAIT |
			MI_SEMAPHORE_GLOBAL_GTT |
			MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(ring, signal->fence.seqno);
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_advance(ring);
1481 1482 1483 1484 1485 1486

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
1487 1488 1489
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1490 1491 1492
	return 0;
}

1493
static int
1494 1495
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1496
{
1497
	struct intel_ring *ring = req->ring;
1498 1499 1500
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1501
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1502
	int ret;
1503

1504
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1505

1506
	ret = intel_ring_begin(req, 4);
1507 1508 1509
	if (ret)
		return ret;

1510
	intel_ring_emit(ring, dw1 | wait_mbox);
1511 1512 1513 1514
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
1515 1516 1517 1518
	intel_ring_emit(ring, signal->fence.seqno - 1);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1519 1520 1521 1522

	return 0;
}

1523
static void
1524
gen5_seqno_barrier(struct intel_engine_cs *engine)
1525
{
1526 1527 1528
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1529
	 *
1530 1531 1532 1533 1534 1535 1536
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1537
	 */
1538
	usleep_range(125, 250);
1539 1540
}

1541 1542
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1543
{
1544
	struct drm_i915_private *dev_priv = engine->i915;
1545

1546 1547
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1548 1549 1550 1551 1552 1553 1554 1555 1556
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1557 1558 1559
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1560
	 */
1561
	spin_lock_irq(&dev_priv->uncore.lock);
1562
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1563
	spin_unlock_irq(&dev_priv->uncore.lock);
1564 1565
}

1566 1567
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1568
{
1569
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1570 1571 1572
}

static void
1573
gen5_irq_disable(struct intel_engine_cs *engine)
1574
{
1575
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1576 1577
}

1578 1579
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1580
{
1581
	struct drm_i915_private *dev_priv = engine->i915;
1582

1583 1584 1585
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1586 1587
}

1588
static void
1589
i9xx_irq_disable(struct intel_engine_cs *engine)
1590
{
1591
	struct drm_i915_private *dev_priv = engine->i915;
1592

1593 1594
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1595 1596
}

1597 1598
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1599
{
1600
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1601

1602 1603 1604
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1605 1606 1607
}

static void
1608
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1609
{
1610
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1611

1612 1613
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1614 1615
}

1616
static int
1617
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1618
{
1619
	struct intel_ring *ring = req->ring;
1620 1621
	int ret;

1622
	ret = intel_ring_begin(req, 2);
1623 1624 1625
	if (ret)
		return ret;

1626 1627 1628
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1629
	return 0;
1630 1631
}

1632 1633
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1634
{
1635
	struct drm_i915_private *dev_priv = engine->i915;
1636

1637 1638 1639
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1640
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1641 1642 1643
}

static void
1644
gen6_irq_disable(struct intel_engine_cs *engine)
1645
{
1646
	struct drm_i915_private *dev_priv = engine->i915;
1647

1648
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1649
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1650 1651
}

1652 1653
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1654
{
1655
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1656

1657 1658
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1659 1660 1661
}

static void
1662
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1663
{
1664
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1665

1666 1667
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1668 1669
}

1670 1671
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1672
{
1673
	struct drm_i915_private *dev_priv = engine->i915;
1674

1675 1676 1677
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1678
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1679 1680 1681
}

static void
1682
gen8_irq_disable(struct intel_engine_cs *engine)
1683
{
1684
	struct drm_i915_private *dev_priv = engine->i915;
1685

1686
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1687 1688
}

1689
static int
1690 1691 1692
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1693
{
1694
	struct intel_ring *ring = req->ring;
1695
	int ret;
1696

1697
	ret = intel_ring_begin(req, 2);
1698 1699 1700
	if (ret)
		return ret;

1701
	intel_ring_emit(ring,
1702 1703
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1704 1705
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1706 1707
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1708

1709 1710 1711
	return 0;
}

1712 1713
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1714 1715
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1716
static int
1717 1718 1719
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1720
{
1721
	struct intel_ring *ring = req->ring;
1722
	u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1723
	int ret;
1724

1725
	ret = intel_ring_begin(req, 6);
1726 1727
	if (ret)
		return ret;
1728

1729
	/* Evict the invalid PTE TLBs */
1730 1731 1732 1733 1734 1735 1736
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1737

1738
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1739 1740 1741
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1742
		ret = intel_ring_begin(req, 6 + 2);
1743 1744
		if (ret)
			return ret;
1745 1746 1747 1748 1749

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1750 1751
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1752
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1753 1754 1755 1756
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1757

1758 1759 1760
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1761 1762

		/* ... and execute it. */
1763
		offset = cs_offset;
1764
	}
1765

1766
	ret = intel_ring_begin(req, 2);
1767 1768 1769
	if (ret)
		return ret;

1770 1771 1772 1773
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1774

1775 1776 1777 1778
	return 0;
}

static int
1779 1780 1781
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1782
{
1783
	struct intel_ring *ring = req->ring;
1784 1785
	int ret;

1786
	ret = intel_ring_begin(req, 2);
1787 1788 1789
	if (ret)
		return ret;

1790 1791 1792 1793
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1794 1795 1796 1797

	return 0;
}

1798
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1799
{
1800
	struct drm_i915_private *dev_priv = engine->i915;
1801 1802 1803 1804

	if (!dev_priv->status_page_dmah)
		return;

1805
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1806
	engine->status_page.page_addr = NULL;
1807 1808
}

1809
static void cleanup_status_page(struct intel_engine_cs *engine)
1810
{
1811
	struct i915_vma *vma;
1812

1813 1814
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1815 1816
		return;

1817 1818 1819
	i915_vma_unpin(vma);
	i915_gem_object_unpin_map(vma->obj);
	i915_vma_put(vma);
1820 1821
}

1822
static int init_status_page(struct intel_engine_cs *engine)
1823
{
1824 1825 1826 1827
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	int ret;
1828

1829 1830 1831 1832 1833
	obj = i915_gem_object_create(&engine->i915->drm, 4096);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1834

1835 1836 1837
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1838

1839 1840 1841 1842
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1843
	}
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1861

1862
	engine->status_page.vma = vma;
1863
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1864 1865
	engine->status_page.page_addr =
		i915_gem_object_pin_map(obj, I915_MAP_WB);
1866

1867 1868
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
1869
	return 0;
1870 1871 1872 1873

err:
	i915_gem_object_put(obj);
	return ret;
1874 1875
}

1876
static int init_phys_status_page(struct intel_engine_cs *engine)
1877
{
1878
	struct drm_i915_private *dev_priv = engine->i915;
1879

1880 1881 1882 1883
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1884

1885 1886
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1887 1888 1889 1890

	return 0;
}

1891
int intel_ring_pin(struct intel_ring *ring)
1892
{
1893
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1894
	unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1895
	enum i915_map_type map;
1896
	struct i915_vma *vma = ring->vma;
1897
	void *addr;
1898 1899
	int ret;

1900
	GEM_BUG_ON(ring->vaddr);
1901

1902 1903 1904
	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;

	if (vma->obj->stolen)
1905
		flags |= PIN_MAPPABLE;
1906

1907
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1908
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1909 1910 1911 1912
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1913
			return ret;
1914
	}
1915

1916 1917 1918
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1919

1920
	if (i915_vma_is_map_and_fenceable(vma))
1921 1922
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1923
		addr = i915_gem_object_pin_map(vma->obj, map);
1924 1925
	if (IS_ERR(addr))
		goto err;
1926

1927
	ring->vaddr = addr;
1928
	return 0;
1929

1930 1931 1932
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1933 1934
}

1935 1936 1937 1938 1939
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1940
	if (i915_vma_is_map_and_fenceable(ring->vma))
1941
		i915_vma_unpin_iomap(ring->vma);
1942 1943
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1944 1945
	ring->vaddr = NULL;

1946
	i915_vma_unpin(ring->vma);
1947 1948
}

1949 1950
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1951
{
1952
	struct drm_i915_gem_object *obj;
1953
	struct i915_vma *vma;
1954

1955 1956
	obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
	if (!obj)
1957 1958 1959
		obj = i915_gem_object_create(&dev_priv->drm, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1960

1961 1962 1963
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1964 1965 1966 1967 1968
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;

	return vma;
1969

1970 1971 1972
err:
	i915_gem_object_put(obj);
	return vma;
1973 1974
}

1975 1976
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1977
{
1978
	struct intel_ring *ring;
1979
	struct i915_vma *vma;
1980

1981 1982
	GEM_BUG_ON(!is_power_of_2(size));

1983
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1984
	if (!ring)
1985 1986
		return ERR_PTR(-ENOMEM);

1987
	ring->engine = engine;
1988

1989 1990
	INIT_LIST_HEAD(&ring->request_list);

1991 1992 1993 1994 1995 1996
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1997
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
1998 1999 2000 2001 2002
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2003 2004
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
2005
		kfree(ring);
2006
		return ERR_CAST(vma);
2007
	}
2008
	ring->vma = vma;
2009 2010 2011 2012 2013

	return ring;
}

void
2014
intel_ring_free(struct intel_ring *ring)
2015
{
2016
	i915_vma_put(ring->vma);
2017 2018 2019
	kfree(ring);
}

2020 2021 2022 2023 2024 2025
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

2026
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2027 2028 2029 2030 2031

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
2032 2033 2034 2035
		ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
		if (ret)
			goto error;

2036 2037
		ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
				   PIN_GLOBAL | PIN_HIGH);
2038 2039 2040 2041
		if (ret)
			goto error;
	}

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2052
	i915_gem_context_get(ctx);
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2065
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2066 2067 2068 2069 2070

	if (--ce->pin_count)
		return;

	if (ce->state)
2071
		i915_vma_unpin(ce->state);
2072

2073
	i915_gem_context_put(ctx);
2074 2075
}

2076
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2077
{
2078
	struct drm_i915_private *dev_priv = engine->i915;
2079
	struct intel_ring *ring;
2080 2081
	int ret;

2082
	WARN_ON(engine->buffer);
2083

2084 2085
	intel_engine_setup_common(engine);

2086 2087
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2088

2089
	ret = intel_engine_init_common(engine);
2090 2091
	if (ret)
		goto error;
2092

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2104 2105 2106
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2107 2108
		goto error;
	}
2109

2110 2111 2112
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2113
		if (ret)
2114
			goto error;
2115
	} else {
2116
		ret = init_status_page(engine);
2117
		if (ret)
2118
			goto error;
2119 2120
	}

2121
	ret = intel_ring_pin(ring);
2122
	if (ret) {
2123
		intel_ring_free(ring);
2124
		goto error;
2125
	}
2126
	engine->buffer = ring;
2127

2128
	return 0;
2129

2130
error:
2131
	intel_engine_cleanup(engine);
2132
	return ret;
2133 2134
}

2135
void intel_engine_cleanup(struct intel_engine_cs *engine)
2136
{
2137
	struct drm_i915_private *dev_priv;
2138

2139
	if (!intel_engine_initialized(engine))
2140 2141
		return;

2142
	dev_priv = engine->i915;
2143

2144
	if (engine->buffer) {
2145 2146
		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
2147

2148
		intel_ring_unpin(engine->buffer);
2149
		intel_ring_free(engine->buffer);
2150
		engine->buffer = NULL;
2151
	}
2152

2153 2154
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2155

2156
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2157 2158
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2159 2160
	} else {
		cleanup_status_page(engine);
2161
	}
2162

2163
	intel_engine_cleanup_common(engine);
2164 2165 2166

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2167
	engine->i915 = NULL;
2168 2169
}

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;

	for_each_engine(engine, dev_priv) {
		engine->buffer->head = engine->buffer->tail;
		engine->buffer->last_retired_head = -1;
	}
}

2180
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2181
{
2182 2183 2184 2185 2186 2187
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2188
	request->reserved_space += LEGACY_REQUEST_SIZE;
2189

2190
	request->ring = request->engine->buffer;
2191 2192 2193 2194 2195

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2196
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2197
	return 0;
2198 2199
}

2200 2201
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2202
	struct intel_ring *ring = req->ring;
2203
	struct drm_i915_gem_request *target;
2204
	int ret;
2205

2206 2207
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2219
	GEM_BUG_ON(!req->reserved_space);
2220

2221
	list_for_each_entry(target, &ring->request_list, ring_link) {
2222 2223 2224
		unsigned space;

		/* Would completion of this request free enough space? */
2225 2226
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2227 2228
		if (space >= bytes)
			break;
2229
	}
2230

2231
	if (WARN_ON(&target->ring_link == &ring->request_list))
2232 2233
		return -ENOSPC;

2234 2235
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
2236
				NULL, NO_WAITBOOST);
2237 2238 2239 2240 2241 2242 2243 2244
	if (ret)
		return ret;

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
2245 2246
}

2247
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2248
{
2249
	struct intel_ring *ring = req->ring;
2250 2251
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2252 2253
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2254
	bool need_wrap = false;
2255

2256
	total_bytes = bytes + req->reserved_space;
2257

2258 2259 2260 2261 2262 2263 2264
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2265 2266 2267 2268 2269 2270 2271
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2272
		wait_bytes = remain_actual + req->reserved_space;
2273
	} else {
2274 2275
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2276 2277
	}

2278
	if (wait_bytes > ring->space) {
2279
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2280 2281 2282 2283
		if (unlikely(ret))
			return ret;
	}

2284
	if (unlikely(need_wrap)) {
2285 2286
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2287

2288
		/* Fill the tail with MI_NOOP */
2289 2290 2291
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2292
	}
2293

2294 2295
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2296
	return 0;
2297
}
2298

2299
/* Align the ring tail to a cacheline boundary */
2300
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2301
{
2302
	struct intel_ring *ring = req->ring;
2303 2304
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2305 2306 2307 2308 2309
	int ret;

	if (num_dwords == 0)
		return 0;

2310
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2311
	ret = intel_ring_begin(req, num_dwords);
2312 2313 2314 2315
	if (ret)
		return ret;

	while (num_dwords--)
2316
		intel_ring_emit(ring, MI_NOOP);
2317

2318
	intel_ring_advance(ring);
2319 2320 2321 2322

	return 0;
}

2323
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2324
{
2325
	struct drm_i915_private *dev_priv = request->i915;
2326

2327 2328
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2329
       /* Every tail move must follow the sequence below */
2330 2331 2332 2333

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2334 2335
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2336 2337

	/* Clear the context id. Here be magic! */
2338
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2339

2340
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2341 2342 2343 2344 2345
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2346
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2347

2348
	/* Now that the ring is fully powered up, update the tail */
2349
	i9xx_submit_request(request);
2350 2351 2352 2353

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2354 2355 2356 2357
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2358 2359
}

2360
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2361
{
2362
	struct intel_ring *ring = req->ring;
2363
	uint32_t cmd;
2364 2365
	int ret;

2366
	ret = intel_ring_begin(req, 4);
2367 2368 2369
	if (ret)
		return ret;

2370
	cmd = MI_FLUSH_DW;
2371
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2372
		cmd += 1;
2373 2374 2375 2376 2377 2378 2379 2380

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2381 2382 2383 2384 2385 2386
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2387
	if (mode & EMIT_INVALIDATE)
2388 2389
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2390 2391
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2392
	if (INTEL_GEN(req->i915) >= 8) {
2393 2394
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2395
	} else  {
2396 2397
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2398
	}
2399
	intel_ring_advance(ring);
2400
	return 0;
2401 2402
}

2403
static int
2404 2405 2406
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2407
{
2408
	struct intel_ring *ring = req->ring;
2409
	bool ppgtt = USES_PPGTT(req->i915) &&
2410
			!(dispatch_flags & I915_DISPATCH_SECURE);
2411 2412
	int ret;

2413
	ret = intel_ring_begin(req, 4);
2414 2415 2416 2417
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2418
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2419 2420
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2421 2422 2423 2424
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2425 2426 2427 2428

	return 0;
}

2429
static int
2430 2431 2432
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2433
{
2434
	struct intel_ring *ring = req->ring;
2435 2436
	int ret;

2437
	ret = intel_ring_begin(req, 2);
2438 2439 2440
	if (ret)
		return ret;

2441
	intel_ring_emit(ring,
2442
			MI_BATCH_BUFFER_START |
2443
			(dispatch_flags & I915_DISPATCH_SECURE ?
2444 2445 2446
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2447
	/* bit0-7 is the length on GEN6+ */
2448 2449
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2450 2451 2452 2453

	return 0;
}

2454
static int
2455 2456 2457
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2458
{
2459
	struct intel_ring *ring = req->ring;
2460
	int ret;
2461

2462
	ret = intel_ring_begin(req, 2);
2463 2464
	if (ret)
		return ret;
2465

2466
	intel_ring_emit(ring,
2467
			MI_BATCH_BUFFER_START |
2468 2469
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2470
	/* bit0-7 is the length on GEN6+ */
2471 2472
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2473

2474
	return 0;
2475 2476
}

2477 2478
/* Blitter support (SandyBridge+) */

2479
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2480
{
2481
	struct intel_ring *ring = req->ring;
2482
	uint32_t cmd;
2483 2484
	int ret;

2485
	ret = intel_ring_begin(req, 4);
2486 2487 2488
	if (ret)
		return ret;

2489
	cmd = MI_FLUSH_DW;
2490
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2491
		cmd += 1;
2492 2493 2494 2495 2496 2497 2498 2499

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2500 2501 2502 2503 2504 2505
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2506
	if (mode & EMIT_INVALIDATE)
2507
		cmd |= MI_INVALIDATE_TLB;
2508 2509
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2510
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2511
	if (INTEL_GEN(req->i915) >= 8) {
2512 2513
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2514
	} else  {
2515 2516
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2517
	}
2518
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2519

2520
	return 0;
Z
Zou Nan hai 已提交
2521 2522
}

2523 2524 2525
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2526
	struct drm_i915_gem_object *obj;
2527
	int ret, i;
2528

2529
	if (!i915.semaphores)
2530 2531
		return;

2532 2533 2534
	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
		struct i915_vma *vma;

2535
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2536 2537
		if (IS_ERR(obj))
			goto err;
2538

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
		vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
		if (IS_ERR(vma))
			goto err_obj;

		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			goto err_obj;

		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
		if (ret)
			goto err_obj;

		dev_priv->semaphore = vma;
	}
2553 2554

	if (INTEL_GEN(dev_priv) >= 8) {
2555
		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2556

2557
		engine->semaphore.sync_to = gen8_ring_sync_to;
2558
		engine->semaphore.signal = gen8_xcs_signal;
2559 2560

		for (i = 0; i < I915_NUM_ENGINES; i++) {
2561
			u32 ring_offset;
2562 2563 2564 2565 2566 2567 2568 2569

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2570
	} else if (INTEL_GEN(dev_priv) >= 6) {
2571
		engine->semaphore.sync_to = gen6_ring_sync_to;
2572
		engine->semaphore.signal = gen6_signal;
2573 2574 2575 2576 2577 2578 2579 2580

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
2581
		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2582 2583 2584
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
2585 2586 2587 2588 2589
			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
				[RCS_HW] = {
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2590
				},
2591 2592 2593 2594
				[VCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2595
				},
2596 2597 2598 2599
				[BCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2600
				},
2601 2602 2603 2604
				[VECS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2605 2606 2607 2608 2609
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

2610
			if (i == engine->hw_id) {
2611 2612 2613
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
2614 2615
				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2616 2617 2618 2619 2620
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2621
	}
2622 2623 2624 2625 2626 2627 2628 2629

	return;

err_obj:
	i915_gem_object_put(obj);
err:
	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
	i915.semaphores = 0;
2630 2631
}

2632 2633 2634
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2635 2636
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2637
	if (INTEL_GEN(dev_priv) >= 8) {
2638 2639
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2640 2641
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2642 2643
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2644 2645
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2646 2647
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2648
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2649
	} else if (INTEL_GEN(dev_priv) >= 3) {
2650 2651
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2652
	} else {
2653 2654
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2655 2656 2657
	}
}

2658 2659 2660
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2661 2662 2663
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2664
	engine->init_hw = init_ring_common;
2665
	engine->reset_hw = reset_ring_common;
2666

2667
	engine->emit_request = i9xx_emit_request;
2668 2669
	if (i915.semaphores)
		engine->emit_request = gen6_sema_emit_request;
2670
	engine->submit_request = i9xx_submit_request;
2671 2672

	if (INTEL_GEN(dev_priv) >= 8)
2673
		engine->emit_bb_start = gen8_emit_bb_start;
2674
	else if (INTEL_GEN(dev_priv) >= 6)
2675
		engine->emit_bb_start = gen6_emit_bb_start;
2676
	else if (INTEL_GEN(dev_priv) >= 4)
2677
		engine->emit_bb_start = i965_emit_bb_start;
2678
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2679
		engine->emit_bb_start = i830_emit_bb_start;
2680
	else
2681
		engine->emit_bb_start = i915_emit_bb_start;
2682 2683
}

2684
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2685
{
2686
	struct drm_i915_private *dev_priv = engine->i915;
2687
	int ret;
2688

2689 2690
	intel_ring_default_vfuncs(dev_priv, engine);

2691 2692
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2693

2694
	if (INTEL_GEN(dev_priv) >= 8) {
2695
		engine->init_context = intel_rcs_ctx_init;
2696
		engine->emit_request = gen8_render_emit_request;
2697
		engine->emit_flush = gen8_render_ring_flush;
2698
		if (i915.semaphores)
2699
			engine->semaphore.signal = gen8_rcs_signal;
2700
	} else if (INTEL_GEN(dev_priv) >= 6) {
2701
		engine->init_context = intel_rcs_ctx_init;
2702
		engine->emit_flush = gen7_render_ring_flush;
2703
		if (IS_GEN6(dev_priv))
2704
			engine->emit_flush = gen6_render_ring_flush;
2705
	} else if (IS_GEN5(dev_priv)) {
2706
		engine->emit_flush = gen4_render_ring_flush;
2707
	} else {
2708
		if (INTEL_GEN(dev_priv) < 4)
2709
			engine->emit_flush = gen2_render_ring_flush;
2710
		else
2711
			engine->emit_flush = gen4_render_ring_flush;
2712
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2713
	}
B
Ben Widawsky 已提交
2714

2715
	if (IS_HASWELL(dev_priv))
2716
		engine->emit_bb_start = hsw_emit_bb_start;
2717

2718 2719
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2720

2721
	ret = intel_init_ring_buffer(engine);
2722 2723 2724
	if (ret)
		return ret;

2725
	if (INTEL_GEN(dev_priv) >= 6) {
2726
		ret = intel_engine_create_scratch(engine, 4096);
2727 2728 2729
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2730
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2731 2732 2733 2734 2735
		if (ret)
			return ret;
	}

	return 0;
2736 2737
}

2738
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2739
{
2740
	struct drm_i915_private *dev_priv = engine->i915;
2741

2742 2743
	intel_ring_default_vfuncs(dev_priv, engine);

2744
	if (INTEL_GEN(dev_priv) >= 6) {
2745
		/* gen6 bsd needs a special wa for tail updates */
2746
		if (IS_GEN6(dev_priv))
2747
			engine->submit_request = gen6_bsd_submit_request;
2748
		engine->emit_flush = gen6_bsd_ring_flush;
2749
		if (INTEL_GEN(dev_priv) < 8)
2750
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2751
	} else {
2752
		engine->mmio_base = BSD_RING_BASE;
2753
		engine->emit_flush = bsd_ring_flush;
2754
		if (IS_GEN5(dev_priv))
2755
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2756
		else
2757
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2758 2759
	}

2760
	return intel_init_ring_buffer(engine);
2761
}
2762

2763
/**
2764
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2765
 */
2766
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2767
{
2768
	struct drm_i915_private *dev_priv = engine->i915;
2769 2770 2771

	intel_ring_default_vfuncs(dev_priv, engine);

2772
	engine->emit_flush = gen6_bsd_ring_flush;
2773

2774
	return intel_init_ring_buffer(engine);
2775 2776
}

2777
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2778
{
2779
	struct drm_i915_private *dev_priv = engine->i915;
2780 2781 2782

	intel_ring_default_vfuncs(dev_priv, engine);

2783
	engine->emit_flush = gen6_ring_flush;
2784
	if (INTEL_GEN(dev_priv) < 8)
2785
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2786

2787
	return intel_init_ring_buffer(engine);
2788
}
2789

2790
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2791
{
2792
	struct drm_i915_private *dev_priv = engine->i915;
2793 2794 2795

	intel_ring_default_vfuncs(dev_priv, engine);

2796
	engine->emit_flush = gen6_ring_flush;
2797

2798
	if (INTEL_GEN(dev_priv) < 8) {
2799
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2800 2801
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2802
	}
B
Ben Widawsky 已提交
2803

2804
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2805
}