intel_ringbuffer.c 89.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50 51 52 53 54 55 56 57 58 59 60
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
{
	if (ringbuf->last_retired_head != -1) {
		ringbuf->head = ringbuf->last_retired_head;
		ringbuf->last_retired_head = -1;
	}

	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
					    ringbuf->tail, ringbuf->size);
}

61
bool intel_engine_stopped(struct intel_engine_cs *engine)
62
{
63
	struct drm_i915_private *dev_priv = engine->i915;
64
	return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
65
}
66

67
static void __intel_ring_advance(struct intel_engine_cs *engine)
68
{
69
	struct intel_ringbuffer *ringbuf = engine->buffer;
70
	ringbuf->tail &= ringbuf->size - 1;
71
	if (intel_engine_stopped(engine))
72
		return;
73
	engine->write_tail(engine, ringbuf->tail);
74 75
}

76
static int
77
gen2_render_ring_flush(struct drm_i915_gem_request *req,
78 79 80
		       u32	invalidate_domains,
		       u32	flush_domains)
{
81
	struct intel_engine_cs *engine = req->engine;
82 83 84 85
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;
86
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
87 88 89 90 91
		cmd |= MI_NO_WRITE_FLUSH;

	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
		cmd |= MI_READ_FLUSH;

92
	ret = intel_ring_begin(req, 2);
93 94 95
	if (ret)
		return ret;

96 97 98
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
99 100 101 102 103

	return 0;
}

static int
104
gen4_render_ring_flush(struct drm_i915_gem_request *req,
105 106
		       u32	invalidate_domains,
		       u32	flush_domains)
107
{
108
	struct intel_engine_cs *engine = req->engine;
109
	u32 cmd;
110
	int ret;
111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
141
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
142 143 144
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
145

146
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
147
	    (IS_G4X(req->i915) || IS_GEN5(req->i915)))
148
		cmd |= MI_INVALIDATE_ISP;
149

150
	ret = intel_ring_begin(req, 2);
151 152
	if (ret)
		return ret;
153

154 155 156
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
157 158

	return 0;
159 160
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
199
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
200
{
201
	struct intel_engine_cs *engine = req->engine;
202
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
203 204
	int ret;

205
	ret = intel_ring_begin(req, 6);
206 207 208
	if (ret)
		return ret;

209 210
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
211
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
212 213 214 215 216
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0); /* low dword */
	intel_ring_emit(engine, 0); /* high dword */
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
217

218
	ret = intel_ring_begin(req, 6);
219 220 221
	if (ret)
		return ret;

222 223 224 225 226 227 228
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
229 230 231 232 233

	return 0;
}

static int
234 235
gen6_render_ring_flush(struct drm_i915_gem_request *req,
		       u32 invalidate_domains, u32 flush_domains)
236
{
237
	struct intel_engine_cs *engine = req->engine;
238
	u32 flags = 0;
239
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
240 241
	int ret;

242
	/* Force SNB workarounds for PIPE_CONTROL flushes */
243
	ret = intel_emit_post_sync_nonzero_flush(req);
244 245 246
	if (ret)
		return ret;

247 248 249 250
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
251 252 253 254 255 256 257
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
258
		flags |= PIPE_CONTROL_CS_STALL;
259 260 261 262 263 264 265 266 267 268 269
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
270
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
271
	}
272

273
	ret = intel_ring_begin(req, 4);
274 275 276
	if (ret)
		return ret;

277 278 279 280 281
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
282 283 284 285

	return 0;
}

286
static int
287
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
288
{
289
	struct intel_engine_cs *engine = req->engine;
290 291
	int ret;

292
	ret = intel_ring_begin(req, 4);
293 294 295
	if (ret)
		return ret;

296 297
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
298
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
299 300 301
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
302 303 304 305

	return 0;
}

306
static int
307
gen7_render_ring_flush(struct drm_i915_gem_request *req,
308 309
		       u32 invalidate_domains, u32 flush_domains)
{
310
	struct intel_engine_cs *engine = req->engine;
311
	u32 flags = 0;
312
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
313 314
	int ret;

315 316 317 318 319 320 321 322 323 324
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

325 326 327 328 329 330 331
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
332
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
333
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
334 335 336 337 338 339 340 341
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
342
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
343 344 345 346
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
347
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
348

349 350
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

351 352 353
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
354
		gen7_render_ring_cs_stall_wa(req);
355 356
	}

357
	ret = intel_ring_begin(req, 4);
358 359 360
	if (ret)
		return ret;

361 362 363 364 365
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
366 367 368 369

	return 0;
}

370
static int
371
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
372 373
		       u32 flags, u32 scratch_addr)
{
374
	struct intel_engine_cs *engine = req->engine;
375 376
	int ret;

377
	ret = intel_ring_begin(req, 6);
378 379 380
	if (ret)
		return ret;

381 382 383 384 385 386 387
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
388 389 390 391

	return 0;
}

B
Ben Widawsky 已提交
392
static int
393
gen8_render_ring_flush(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
394 395 396
		       u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
397
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
398
	int ret;
B
Ben Widawsky 已提交
399 400 401 402 403 404

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
405
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
406
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
407 408 409 410 411 412 413 414 415 416
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
417 418

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
419
		ret = gen8_emit_pipe_control(req,
420 421 422 423 424
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
425 426
	}

427
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
428 429
}

430
static void ring_write_tail(struct intel_engine_cs *engine,
431
			    u32 value)
432
{
433
	struct drm_i915_private *dev_priv = engine->i915;
434
	I915_WRITE_TAIL(engine, value);
435 436
}

437
u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
438
{
439
	struct drm_i915_private *dev_priv = engine->i915;
440
	u64 acthd;
441

442
	if (INTEL_GEN(dev_priv) >= 8)
443 444
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
445
	else if (INTEL_GEN(dev_priv) >= 4)
446
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
447 448 449 450
	else
		acthd = I915_READ(ACTHD);

	return acthd;
451 452
}

453
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
454
{
455
	struct drm_i915_private *dev_priv = engine->i915;
456 457 458
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
459
	if (INTEL_GEN(dev_priv) >= 4)
460 461 462 463
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

464
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
465
{
466
	struct drm_i915_private *dev_priv = engine->i915;
467
	i915_reg_t mmio;
468 469 470 471

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
472
	if (IS_GEN7(dev_priv)) {
473
		switch (engine->id) {
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
492
	} else if (IS_GEN6(dev_priv)) {
493
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
494 495
	} else {
		/* XXX: gen8 returns to sanity */
496
		mmio = RING_HWS_PGA(engine->mmio_base);
497 498
	}

499
	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
500 501 502 503 504 505 506 507 508
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
509
	if (IS_GEN(dev_priv, 6, 7)) {
510
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
511 512

		/* ring should be idle before issuing a sync flush*/
513
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
514 515 516 517

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
518 519 520
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
521
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
522
				  engine->name);
523 524 525
	}
}

526
static bool stop_ring(struct intel_engine_cs *engine)
527
{
528
	struct drm_i915_private *dev_priv = engine->i915;
529

530
	if (!IS_GEN2(dev_priv)) {
531
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
532 533 534 535 536
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
537 538
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
539 540 541 542
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
543
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
544
				return false;
545 546
		}
	}
547

548 549 550
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
	engine->write_tail(engine, 0);
551

552
	if (!IS_GEN2(dev_priv)) {
553 554
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
555
	}
556

557
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
558
}
559

560 561 562 563 564
void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
{
	memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
}

565
static int init_ring_common(struct intel_engine_cs *engine)
566
{
567
	struct drm_i915_private *dev_priv = engine->i915;
568
	struct intel_ringbuffer *ringbuf = engine->buffer;
569
	struct drm_i915_gem_object *obj = ringbuf->obj;
570 571
	int ret = 0;

572
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
573

574
	if (!stop_ring(engine)) {
575
		/* G45 ring initialization often fails to reset head to zero */
576 577
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
578 579 580 581 582
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
583

584
		if (!stop_ring(engine)) {
585 586
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
587 588 589 590 591
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
592 593
			ret = -EIO;
			goto out;
594
		}
595 596
	}

597
	if (I915_NEED_GFX_HWS(dev_priv))
598
		intel_ring_setup_status_page(engine);
599
	else
600
		ring_setup_phys_status_page(engine);
601

602
	/* Enforce ordering by reading HEAD register back */
603
	I915_READ_HEAD(engine);
604

605 606 607 608
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
609
	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
610 611

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
612
	if (I915_READ_HEAD(engine))
613
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
614 615 616
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
617

618
	I915_WRITE_CTL(engine,
619
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
620
			| RING_VALID);
621 622

	/* If the head is still not zero, the ring is dead */
623 624 625
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
626
		DRM_ERROR("%s initialization failed "
627
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
628 629 630 631 632 633
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
634 635
		ret = -EIO;
		goto out;
636 637
	}

638
	ringbuf->last_retired_head = -1;
639 640
	ringbuf->head = I915_READ_HEAD(engine);
	ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
641
	intel_ring_update_space(ringbuf);
642

643
	intel_engine_init_hangcheck(engine);
644

645
out:
646
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
647 648

	return ret;
649 650
}

651
void
652
intel_fini_pipe_control(struct intel_engine_cs *engine)
653
{
654
	if (engine->scratch.obj == NULL)
655 656
		return;

657
	if (INTEL_GEN(engine->i915) >= 5) {
658 659
		kunmap(sg_page(engine->scratch.obj->pages->sgl));
		i915_gem_object_ggtt_unpin(engine->scratch.obj);
660 661
	}

662 663
	drm_gem_object_unreference(&engine->scratch.obj->base);
	engine->scratch.obj = NULL;
664 665 666
}

int
667
intel_init_pipe_control(struct intel_engine_cs *engine)
668 669 670
{
	int ret;

671
	WARN_ON(engine->scratch.obj);
672

673
	engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
674
	if (IS_ERR(engine->scratch.obj)) {
675
		DRM_ERROR("Failed to allocate seqno page\n");
676 677
		ret = PTR_ERR(engine->scratch.obj);
		engine->scratch.obj = NULL;
678 679
		goto err;
	}
680

681 682
	ret = i915_gem_object_set_cache_level(engine->scratch.obj,
					      I915_CACHE_LLC);
683 684
	if (ret)
		goto err_unref;
685

686
	ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
687 688 689
	if (ret)
		goto err_unref;

690 691 692
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
	engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
	if (engine->scratch.cpu_page == NULL) {
693
		ret = -ENOMEM;
694
		goto err_unpin;
695
	}
696

697
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
698
			 engine->name, engine->scratch.gtt_offset);
699 700 701
	return 0;

err_unpin:
702
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
703
err_unref:
704
	drm_gem_object_unreference(&engine->scratch.obj->base);
705 706 707 708
err:
	return ret;
}

709
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
710
{
711
	struct intel_engine_cs *engine = req->engine;
712 713
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
714

715
	if (w->count == 0)
716
		return 0;
717

718
	engine->gpu_caches_dirty = true;
719
	ret = intel_ring_flush_all_caches(req);
720 721
	if (ret)
		return ret;
722

723
	ret = intel_ring_begin(req, (w->count * 2 + 2));
724 725 726
	if (ret)
		return ret;

727
	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
728
	for (i = 0; i < w->count; i++) {
729 730
		intel_ring_emit_reg(engine, w->reg[i].addr);
		intel_ring_emit(engine, w->reg[i].value);
731
	}
732
	intel_ring_emit(engine, MI_NOOP);
733

734
	intel_ring_advance(engine);
735

736
	engine->gpu_caches_dirty = true;
737
	ret = intel_ring_flush_all_caches(req);
738 739
	if (ret)
		return ret;
740

741
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
742

743
	return 0;
744 745
}

746
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
747 748 749
{
	int ret;

750
	ret = intel_ring_workarounds_emit(req);
751 752 753
	if (ret != 0)
		return ret;

754
	ret = i915_gem_render_state_init(req);
755
	if (ret)
756
		return ret;
757

758
	return 0;
759 760
}

761
static int wa_add(struct drm_i915_private *dev_priv,
762 763
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
764 765 766 767 768 769 770 771 772 773 774 775 776
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
777 778
}

779
#define WA_REG(addr, mask, val) do { \
780
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
781 782
		if (r) \
			return r; \
783
	} while (0)
784 785

#define WA_SET_BIT_MASKED(addr, mask) \
786
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
787 788

#define WA_CLR_BIT_MASKED(addr, mask) \
789
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
790

791
#define WA_SET_FIELD_MASKED(addr, mask, value) \
792
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
793

794 795
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
796

797
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
798

799 800
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
801
{
802
	struct drm_i915_private *dev_priv = engine->i915;
803
	struct i915_workarounds *wa = &dev_priv->workarounds;
804
	const uint32_t index = wa->hw_whitelist_count[engine->id];
805 806 807 808

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

809
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
810
		 i915_mmio_reg_offset(reg));
811
	wa->hw_whitelist_count[engine->id]++;
812 813 814 815

	return 0;
}

816
static int gen8_init_workarounds(struct intel_engine_cs *engine)
817
{
818
	struct drm_i915_private *dev_priv = engine->i915;
819 820

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
821

822 823 824
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

825 826 827 828
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

829 830 831 832 833
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
834
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
835
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
836
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
837 838
			  HDC_FORCE_NON_COHERENT);

839 840 841 842 843 844 845 846 847 848
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

849 850 851
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

852 853 854 855 856 857 858 859 860 861 862 863
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

864 865 866
	return 0;
}

867
static int bdw_init_workarounds(struct intel_engine_cs *engine)
868
{
869
	struct drm_i915_private *dev_priv = engine->i915;
870
	int ret;
871

872
	ret = gen8_init_workarounds(engine);
873 874 875
	if (ret)
		return ret;

876
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
877
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
878

879
	/* WaDisableDopClockGating:bdw */
880 881
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
882

883 884
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
885

886
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
887 888 889
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
890
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
891 892 893 894

	return 0;
}

895
static int chv_init_workarounds(struct intel_engine_cs *engine)
896
{
897
	struct drm_i915_private *dev_priv = engine->i915;
898
	int ret;
899

900
	ret = gen8_init_workarounds(engine);
901 902 903
	if (ret)
		return ret;

904
	/* WaDisableThreadStallDopClockGating:chv */
905
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
906

907 908 909
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

910 911 912
	return 0;
}

913
static int gen9_init_workarounds(struct intel_engine_cs *engine)
914
{
915
	struct drm_i915_private *dev_priv = engine->i915;
916
	int ret;
917

918 919 920
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

921
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
922 923 924
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

925
	/* WaDisableKillLogic:bxt,skl,kbl */
926 927 928
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

929 930
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
931
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
932
			  FLOW_CONTROL_ENABLE |
933 934
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

935
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
936 937 938
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

939
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
940 941
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
942 943
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
944

945
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
946 947
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
948 949
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
950 951 952 953 954
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
955 956
	}

957 958
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
959 960 961
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
962

963 964
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
965 966
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
967

968
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
969 970 971
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

972
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
973 974
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
975 976 977
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

978 979 980 981
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

1004 1005 1006 1007
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1008 1009 1010
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

1011
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
1012 1013
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

1014
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
1015 1016 1017
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

1018 1019 1020 1021 1022
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

1023
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1024
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1025 1026 1027
	if (ret)
		return ret;

1028
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1029
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1030 1031 1032
	if (ret)
		return ret;

1033 1034 1035
	return 0;
}

1036
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1037
{
1038
	struct drm_i915_private *dev_priv = engine->i915;
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
1049
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1077
static int skl_init_workarounds(struct intel_engine_cs *engine)
1078
{
1079
	struct drm_i915_private *dev_priv = engine->i915;
1080
	int ret;
1081

1082
	ret = gen9_init_workarounds(engine);
1083 1084
	if (ret)
		return ret;
1085

1086 1087 1088 1089 1090
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
1091
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1092 1093 1094 1095
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1096
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1097 1098 1099 1100 1101 1102 1103 1104
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1105
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1106 1107 1108 1109 1110
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1111
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1112 1113 1114 1115
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1116
	/* WaDisablePowerCompilerClockGating:skl */
1117
	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1118 1119 1120
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1121
	/* WaBarrierPerformanceFixDisable:skl */
1122
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1123 1124 1125 1126
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1127
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1128
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1129 1130 1131 1132
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1133 1134 1135
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1136
	/* WaDisableLSQCROPERFforOCL:skl */
1137
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1138 1139 1140
	if (ret)
		return ret;

1141
	return skl_tune_iz_hashing(engine);
1142 1143
}

1144
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1145
{
1146
	struct drm_i915_private *dev_priv = engine->i915;
1147
	int ret;
1148

1149
	ret = gen9_init_workarounds(engine);
1150 1151
	if (ret)
		return ret;
1152

1153 1154
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1155
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1156 1157 1158
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1159
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1160 1161 1162 1163
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1164 1165 1166 1167
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1168 1169 1170 1171 1172 1173
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1174
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1175
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1176 1177 1178 1179 1180
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1181 1182 1183
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1184
	/* WaDisableLSQCROPERFforOCL:bxt */
1185
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1186
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1187 1188
		if (ret)
			return ret;
1189

1190
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1191 1192
		if (ret)
			return ret;
1193 1194
	}

1195
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1196
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1197 1198
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1199

1200 1201 1202 1203 1204
	/* WaInsertDummyPushConstPs:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1205 1206 1207
	return 0;
}

1208 1209
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1210
	struct drm_i915_private *dev_priv = engine->i915;
1211 1212 1213 1214 1215 1216
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1217 1218 1219 1220
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1221 1222 1223 1224 1225
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1226 1227 1228 1229 1230
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1231 1232 1233 1234 1235 1236 1237 1238
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1239 1240 1241 1242 1243
	/* WaInsertDummyPushConstPs:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1244 1245 1246
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1247 1248 1249 1250 1251
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1252 1253 1254 1255 1256
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1257 1258 1259
	return 0;
}

1260
int init_workarounds_ring(struct intel_engine_cs *engine)
1261
{
1262
	struct drm_i915_private *dev_priv = engine->i915;
1263

1264
	WARN_ON(engine->id != RCS);
1265 1266

	dev_priv->workarounds.count = 0;
1267
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1268

1269
	if (IS_BROADWELL(dev_priv))
1270
		return bdw_init_workarounds(engine);
1271

1272
	if (IS_CHERRYVIEW(dev_priv))
1273
		return chv_init_workarounds(engine);
1274

1275
	if (IS_SKYLAKE(dev_priv))
1276
		return skl_init_workarounds(engine);
1277

1278
	if (IS_BROXTON(dev_priv))
1279
		return bxt_init_workarounds(engine);
1280

1281 1282 1283
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1284 1285 1286
	return 0;
}

1287
static int init_render_ring(struct intel_engine_cs *engine)
1288
{
1289
	struct drm_i915_private *dev_priv = engine->i915;
1290
	int ret = init_ring_common(engine);
1291 1292
	if (ret)
		return ret;
1293

1294
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1295
	if (IS_GEN(dev_priv, 4, 6))
1296
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1297 1298 1299 1300

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1301
	 *
1302
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1303
	 */
1304
	if (IS_GEN(dev_priv, 6, 7))
1305 1306
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1307
	/* Required for the hardware to program scanline values for waiting */
1308
	/* WaEnableFlushTlbInvalidationMode:snb */
1309
	if (IS_GEN6(dev_priv))
1310
		I915_WRITE(GFX_MODE,
1311
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1312

1313
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1314
	if (IS_GEN7(dev_priv))
1315
		I915_WRITE(GFX_MODE_GEN7,
1316
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1317
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1318

1319
	if (IS_GEN6(dev_priv)) {
1320 1321 1322 1323 1324 1325
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1326
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1327 1328
	}

1329
	if (IS_GEN(dev_priv, 6, 7))
1330
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1331

1332 1333
	if (HAS_L3_DPF(dev_priv))
		I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1334

1335
	return init_workarounds_ring(engine);
1336 1337
}

1338
static void render_ring_cleanup(struct intel_engine_cs *engine)
1339
{
1340
	struct drm_i915_private *dev_priv = engine->i915;
1341 1342 1343 1344 1345 1346

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
		dev_priv->semaphore_obj = NULL;
	}
1347

1348
	intel_fini_pipe_control(engine);
1349 1350
}

1351
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1352 1353 1354
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 8
1355
	struct intel_engine_cs *signaller = signaller_req->engine;
1356
	struct drm_i915_private *dev_priv = signaller_req->i915;
1357
	struct intel_engine_cs *waiter;
1358 1359
	enum intel_engine_id id;
	int ret, num_rings;
1360

1361
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1362 1363 1364
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1365
	ret = intel_ring_begin(signaller_req, num_dwords);
1366 1367 1368
	if (ret)
		return ret;

1369
	for_each_engine_id(waiter, dev_priv, id) {
1370
		u32 seqno;
1371
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1372 1373 1374
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1375
		seqno = i915_gem_request_get_seqno(signaller_req);
1376 1377 1378
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_QW_WRITE |
1379
					   PIPE_CONTROL_CS_STALL);
1380 1381
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1382
		intel_ring_emit(signaller, seqno);
1383 1384
		intel_ring_emit(signaller, 0);
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1385
					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1386 1387 1388 1389 1390 1391
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1392
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1393 1394 1395
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 6
1396
	struct intel_engine_cs *signaller = signaller_req->engine;
1397
	struct drm_i915_private *dev_priv = signaller_req->i915;
1398
	struct intel_engine_cs *waiter;
1399 1400
	enum intel_engine_id id;
	int ret, num_rings;
1401

1402
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1403 1404 1405
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1406
	ret = intel_ring_begin(signaller_req, num_dwords);
1407 1408 1409
	if (ret)
		return ret;

1410
	for_each_engine_id(waiter, dev_priv, id) {
1411
		u32 seqno;
1412
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1413 1414 1415
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1416
		seqno = i915_gem_request_get_seqno(signaller_req);
1417 1418 1419 1420 1421
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
					   MI_FLUSH_DW_OP_STOREDW);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
					   MI_FLUSH_DW_USE_GTT);
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1422
		intel_ring_emit(signaller, seqno);
1423
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1424
					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1425 1426 1427 1428 1429 1430
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1431
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1432
		       unsigned int num_dwords)
1433
{
1434
	struct intel_engine_cs *signaller = signaller_req->engine;
1435
	struct drm_i915_private *dev_priv = signaller_req->i915;
1436
	struct intel_engine_cs *useless;
1437 1438
	enum intel_engine_id id;
	int ret, num_rings;
1439

1440
#define MBOX_UPDATE_DWORDS 3
1441
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1442 1443
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
#undef MBOX_UPDATE_DWORDS
1444

1445
	ret = intel_ring_begin(signaller_req, num_dwords);
1446 1447 1448
	if (ret)
		return ret;

1449 1450
	for_each_engine_id(useless, dev_priv, id) {
		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1451 1452

		if (i915_mmio_reg_valid(mbox_reg)) {
1453
			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1454

1455
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1456
			intel_ring_emit_reg(signaller, mbox_reg);
1457
			intel_ring_emit(signaller, seqno);
1458 1459
		}
	}
1460

1461 1462 1463 1464
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
		intel_ring_emit(signaller, MI_NOOP);

1465
	return 0;
1466 1467
}

1468 1469
/**
 * gen6_add_request - Update the semaphore mailbox registers
1470 1471
 *
 * @request - request to write to the ring
1472 1473 1474 1475
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1476
static int
1477
gen6_add_request(struct drm_i915_gem_request *req)
1478
{
1479
	struct intel_engine_cs *engine = req->engine;
1480
	int ret;
1481

1482 1483
	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 4);
B
Ben Widawsky 已提交
1484
	else
1485
		ret = intel_ring_begin(req, 4);
B
Ben Widawsky 已提交
1486

1487 1488 1489
	if (ret)
		return ret;

1490 1491 1492 1493 1494 1495
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1496 1497 1498 1499

	return 0;
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static int
gen8_render_add_request(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	int ret;

	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 8);
	else
		ret = intel_ring_begin(req, 8);
	if (ret)
		return ret;

	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	/* We're thrashing one dword of HWS. */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	intel_ring_emit(engine, MI_NOOP);
	__intel_ring_advance(engine);

	return 0;
}

1529
static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1530 1531 1532 1533 1534
					      u32 seqno)
{
	return dev_priv->last_seqno < seqno;
}

1535 1536 1537 1538 1539 1540 1541
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1542 1543

static int
1544
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1545 1546 1547
	       struct intel_engine_cs *signaller,
	       u32 seqno)
{
1548
	struct intel_engine_cs *waiter = waiter_req->engine;
1549
	struct drm_i915_private *dev_priv = waiter_req->i915;
1550
	u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
1551
	struct i915_hw_ppgtt *ppgtt;
1552 1553
	int ret;

1554
	ret = intel_ring_begin(waiter_req, 4);
1555 1556 1557 1558 1559 1560 1561
	if (ret)
		return ret;

	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
				MI_SEMAPHORE_GLOBAL_GTT |
				MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(waiter, seqno);
1562 1563
	intel_ring_emit(waiter, lower_32_bits(offset));
	intel_ring_emit(waiter, upper_32_bits(offset));
1564
	intel_ring_advance(waiter);
1565 1566 1567 1568 1569 1570 1571 1572 1573

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
	ppgtt = waiter_req->ctx->ppgtt;
	if (ppgtt && waiter_req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1574 1575 1576
	return 0;
}

1577
static int
1578
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1579
	       struct intel_engine_cs *signaller,
1580
	       u32 seqno)
1581
{
1582
	struct intel_engine_cs *waiter = waiter_req->engine;
1583 1584 1585
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1586 1587
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
	int ret;
1588

1589 1590 1591 1592 1593 1594
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
	seqno -= 1;

1595
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1596

1597
	ret = intel_ring_begin(waiter_req, 4);
1598 1599 1600
	if (ret)
		return ret;

1601
	/* If seqno wrap happened, omit the wait with no-ops */
1602
	if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1603
		intel_ring_emit(waiter, dw1 | wait_mbox);
1604 1605 1606 1607 1608 1609 1610 1611 1612
		intel_ring_emit(waiter, seqno);
		intel_ring_emit(waiter, 0);
		intel_ring_emit(waiter, MI_NOOP);
	} else {
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
	}
1613
	intel_ring_advance(waiter);
1614 1615 1616 1617

	return 0;
}

1618 1619
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
do {									\
1620 1621
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
		 PIPE_CONTROL_DEPTH_STALL);				\
1622 1623 1624 1625 1626 1627
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
	intel_ring_emit(ring__, 0);							\
	intel_ring_emit(ring__, 0);							\
} while (0)

static int
1628
pc_render_add_request(struct drm_i915_gem_request *req)
1629
{
1630
	struct intel_engine_cs *engine = req->engine;
1631
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	int ret;

	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
	 * incoherent with writes to memory, i.e. completely fubar,
	 * so we need to use PIPE_NOTIFY instead.
	 *
	 * However, we also need to workaround the qword write
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
	 * memory before requesting an interrupt.
	 */
1642
	ret = intel_ring_begin(req, 32);
1643 1644 1645
	if (ret)
		return ret;

1646 1647
	intel_ring_emit(engine,
			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1648 1649
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1650 1651 1652 1653 1654
	intel_ring_emit(engine,
			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, 0);
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1655
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1656
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1657
	scratch_addr += 2 * CACHELINE_BYTES;
1658
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1659
	scratch_addr += 2 * CACHELINE_BYTES;
1660
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1661
	scratch_addr += 2 * CACHELINE_BYTES;
1662
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1663
	scratch_addr += 2 * CACHELINE_BYTES;
1664
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1665

1666 1667
	intel_ring_emit(engine,
			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1668 1669
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1670
			PIPE_CONTROL_NOTIFY);
1671 1672 1673 1674 1675
	intel_ring_emit(engine,
			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, 0);
	__intel_ring_advance(engine);
1676 1677 1678 1679

	return 0;
}

1680 1681
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1682
{
1683
	struct drm_i915_private *dev_priv = engine->i915;
1684

1685 1686
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1687 1688 1689 1690 1691 1692 1693 1694 1695
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1696 1697 1698
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1699
	 */
1700
	spin_lock_irq(&dev_priv->uncore.lock);
1701
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1702
	spin_unlock_irq(&dev_priv->uncore.lock);
1703 1704
}

1705
static u32
1706
ring_get_seqno(struct intel_engine_cs *engine)
1707
{
1708
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1709 1710
}

M
Mika Kuoppala 已提交
1711
static void
1712
ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
M
Mika Kuoppala 已提交
1713
{
1714
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
M
Mika Kuoppala 已提交
1715 1716
}

1717
static u32
1718
pc_render_get_seqno(struct intel_engine_cs *engine)
1719
{
1720
	return engine->scratch.cpu_page[0];
1721 1722
}

M
Mika Kuoppala 已提交
1723
static void
1724
pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
M
Mika Kuoppala 已提交
1725
{
1726
	engine->scratch.cpu_page[0] = seqno;
M
Mika Kuoppala 已提交
1727 1728
}

1729
static bool
1730
gen5_ring_get_irq(struct intel_engine_cs *engine)
1731
{
1732
	struct drm_i915_private *dev_priv = engine->i915;
1733
	unsigned long flags;
1734

1735
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1736 1737
		return false;

1738
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1739 1740
	if (engine->irq_refcount++ == 0)
		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1741
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1742 1743 1744 1745 1746

	return true;
}

static void
1747
gen5_ring_put_irq(struct intel_engine_cs *engine)
1748
{
1749
	struct drm_i915_private *dev_priv = engine->i915;
1750
	unsigned long flags;
1751

1752
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1753 1754
	if (--engine->irq_refcount == 0)
		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1755
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1756 1757
}

1758
static bool
1759
i9xx_ring_get_irq(struct intel_engine_cs *engine)
1760
{
1761
	struct drm_i915_private *dev_priv = engine->i915;
1762
	unsigned long flags;
1763

1764
	if (!intel_irqs_enabled(dev_priv))
1765 1766
		return false;

1767
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1768 1769
	if (engine->irq_refcount++ == 0) {
		dev_priv->irq_mask &= ~engine->irq_enable_mask;
1770 1771 1772
		I915_WRITE(IMR, dev_priv->irq_mask);
		POSTING_READ(IMR);
	}
1773
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1774 1775

	return true;
1776 1777
}

1778
static void
1779
i9xx_ring_put_irq(struct intel_engine_cs *engine)
1780
{
1781
	struct drm_i915_private *dev_priv = engine->i915;
1782
	unsigned long flags;
1783

1784
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1785 1786
	if (--engine->irq_refcount == 0) {
		dev_priv->irq_mask |= engine->irq_enable_mask;
1787 1788 1789
		I915_WRITE(IMR, dev_priv->irq_mask);
		POSTING_READ(IMR);
	}
1790
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1791 1792
}

C
Chris Wilson 已提交
1793
static bool
1794
i8xx_ring_get_irq(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1795
{
1796
	struct drm_i915_private *dev_priv = engine->i915;
1797
	unsigned long flags;
C
Chris Wilson 已提交
1798

1799
	if (!intel_irqs_enabled(dev_priv))
C
Chris Wilson 已提交
1800 1801
		return false;

1802
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1803 1804
	if (engine->irq_refcount++ == 0) {
		dev_priv->irq_mask &= ~engine->irq_enable_mask;
C
Chris Wilson 已提交
1805 1806 1807
		I915_WRITE16(IMR, dev_priv->irq_mask);
		POSTING_READ16(IMR);
	}
1808
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
C
Chris Wilson 已提交
1809 1810 1811 1812 1813

	return true;
}

static void
1814
i8xx_ring_put_irq(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1815
{
1816
	struct drm_i915_private *dev_priv = engine->i915;
1817
	unsigned long flags;
C
Chris Wilson 已提交
1818

1819
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1820 1821
	if (--engine->irq_refcount == 0) {
		dev_priv->irq_mask |= engine->irq_enable_mask;
C
Chris Wilson 已提交
1822 1823 1824
		I915_WRITE16(IMR, dev_priv->irq_mask);
		POSTING_READ16(IMR);
	}
1825
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
C
Chris Wilson 已提交
1826 1827
}

1828
static int
1829
bsd_ring_flush(struct drm_i915_gem_request *req,
1830 1831
	       u32     invalidate_domains,
	       u32     flush_domains)
1832
{
1833
	struct intel_engine_cs *engine = req->engine;
1834 1835
	int ret;

1836
	ret = intel_ring_begin(req, 2);
1837 1838 1839
	if (ret)
		return ret;

1840 1841 1842
	intel_ring_emit(engine, MI_FLUSH);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1843
	return 0;
1844 1845
}

1846
static int
1847
i9xx_add_request(struct drm_i915_gem_request *req)
1848
{
1849
	struct intel_engine_cs *engine = req->engine;
1850 1851
	int ret;

1852
	ret = intel_ring_begin(req, 4);
1853 1854
	if (ret)
		return ret;
1855

1856 1857 1858 1859 1860 1861
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1862

1863
	return 0;
1864 1865
}

1866
static bool
1867
gen6_ring_get_irq(struct intel_engine_cs *engine)
1868
{
1869
	struct drm_i915_private *dev_priv = engine->i915;
1870
	unsigned long flags;
1871

1872 1873
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
		return false;
1874

1875
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1876
	if (engine->irq_refcount++ == 0) {
1877
		if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1878 1879
			I915_WRITE_IMR(engine,
				       ~(engine->irq_enable_mask |
1880
					 GT_PARITY_ERROR(dev_priv)));
1881
		else
1882 1883
			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1884
	}
1885
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1886 1887 1888 1889 1890

	return true;
}

static void
1891
gen6_ring_put_irq(struct intel_engine_cs *engine)
1892
{
1893
	struct drm_i915_private *dev_priv = engine->i915;
1894
	unsigned long flags;
1895

1896
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1897
	if (--engine->irq_refcount == 0) {
1898 1899
		if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
			I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1900
		else
1901 1902
			I915_WRITE_IMR(engine, ~0);
		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1903
	}
1904
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1905 1906
}

B
Ben Widawsky 已提交
1907
static bool
1908
hsw_vebox_get_irq(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1909
{
1910
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1911 1912
	unsigned long flags;

1913
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
B
Ben Widawsky 已提交
1914 1915
		return false;

1916
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1917 1918 1919
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
		gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1920
	}
1921
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
B
Ben Widawsky 已提交
1922 1923 1924 1925 1926

	return true;
}

static void
1927
hsw_vebox_put_irq(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1928
{
1929
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1930 1931
	unsigned long flags;

1932
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1933 1934 1935
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~0);
		gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1936
	}
1937
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
B
Ben Widawsky 已提交
1938 1939
}

1940
static bool
1941
gen8_ring_get_irq(struct intel_engine_cs *engine)
1942
{
1943
	struct drm_i915_private *dev_priv = engine->i915;
1944 1945
	unsigned long flags;

1946
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1947 1948 1949
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1950
	if (engine->irq_refcount++ == 0) {
1951
		if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1952 1953
			I915_WRITE_IMR(engine,
				       ~(engine->irq_enable_mask |
1954 1955
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
		} else {
1956
			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1957
		}
1958
		POSTING_READ(RING_IMR(engine->mmio_base));
1959 1960 1961 1962 1963 1964 1965
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void
1966
gen8_ring_put_irq(struct intel_engine_cs *engine)
1967
{
1968
	struct drm_i915_private *dev_priv = engine->i915;
1969 1970 1971
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1972
	if (--engine->irq_refcount == 0) {
1973
		if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1974
			I915_WRITE_IMR(engine,
1975 1976
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
		} else {
1977
			I915_WRITE_IMR(engine, ~0);
1978
		}
1979
		POSTING_READ(RING_IMR(engine->mmio_base));
1980 1981 1982 1983
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1984
static int
1985
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1986
			 u64 offset, u32 length,
1987
			 unsigned dispatch_flags)
1988
{
1989
	struct intel_engine_cs *engine = req->engine;
1990
	int ret;
1991

1992
	ret = intel_ring_begin(req, 2);
1993 1994 1995
	if (ret)
		return ret;

1996
	intel_ring_emit(engine,
1997 1998
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1999 2000
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2001 2002
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2003

2004 2005 2006
	return 0;
}

2007 2008
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
2009 2010
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
2011
static int
2012
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
2013 2014
			 u64 offset, u32 len,
			 unsigned dispatch_flags)
2015
{
2016
	struct intel_engine_cs *engine = req->engine;
2017
	u32 cs_offset = engine->scratch.gtt_offset;
2018
	int ret;
2019

2020
	ret = intel_ring_begin(req, 6);
2021 2022
	if (ret)
		return ret;
2023

2024
	/* Evict the invalid PTE TLBs */
2025 2026 2027 2028 2029 2030 2031
	intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(engine, cs_offset);
	intel_ring_emit(engine, 0xdeadbeef);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
2032

2033
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
2034 2035 2036
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

2037
		ret = intel_ring_begin(req, 6 + 2);
2038 2039
		if (ret)
			return ret;
2040 2041 2042 2043 2044

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
		intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(engine,
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
		intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(engine, cs_offset);
		intel_ring_emit(engine, 4096);
		intel_ring_emit(engine, offset);

		intel_ring_emit(engine, MI_FLUSH);
		intel_ring_emit(engine, MI_NOOP);
		intel_ring_advance(engine);
2056 2057

		/* ... and execute it. */
2058
		offset = cs_offset;
2059
	}
2060

2061
	ret = intel_ring_begin(req, 2);
2062 2063 2064
	if (ret)
		return ret;

2065 2066 2067 2068
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
2069

2070 2071 2072 2073
	return 0;
}

static int
2074
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2075
			 u64 offset, u32 len,
2076
			 unsigned dispatch_flags)
2077
{
2078
	struct intel_engine_cs *engine = req->engine;
2079 2080
	int ret;

2081
	ret = intel_ring_begin(req, 2);
2082 2083 2084
	if (ret)
		return ret;

2085 2086 2087 2088
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
2089 2090 2091 2092

	return 0;
}

2093
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
2094
{
2095
	struct drm_i915_private *dev_priv = engine->i915;
2096 2097 2098 2099

	if (!dev_priv->status_page_dmah)
		return;

2100
	drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
2101
	engine->status_page.page_addr = NULL;
2102 2103
}

2104
static void cleanup_status_page(struct intel_engine_cs *engine)
2105
{
2106
	struct drm_i915_gem_object *obj;
2107

2108
	obj = engine->status_page.obj;
2109
	if (obj == NULL)
2110 2111
		return;

2112
	kunmap(sg_page(obj->pages->sgl));
B
Ben Widawsky 已提交
2113
	i915_gem_object_ggtt_unpin(obj);
2114
	drm_gem_object_unreference(&obj->base);
2115
	engine->status_page.obj = NULL;
2116 2117
}

2118
static int init_status_page(struct intel_engine_cs *engine)
2119
{
2120
	struct drm_i915_gem_object *obj = engine->status_page.obj;
2121

2122
	if (obj == NULL) {
2123
		unsigned flags;
2124
		int ret;
2125

2126
		obj = i915_gem_object_create(engine->i915->dev, 4096);
2127
		if (IS_ERR(obj)) {
2128
			DRM_ERROR("Failed to allocate status page\n");
2129
			return PTR_ERR(obj);
2130
		}
2131

2132 2133 2134 2135
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
		if (ret)
			goto err_unref;

2136
		flags = 0;
2137
		if (!HAS_LLC(engine->i915))
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
			/* On g33, we cannot place HWS above 256MiB, so
			 * restrict its pinning to the low mappable arena.
			 * Though this restriction is not documented for
			 * gen4, gen5, or byt, they also behave similarly
			 * and hang if the HWS is placed at the top of the
			 * GTT. To generalise, it appears that all !llc
			 * platforms have issues with us placing the HWS
			 * above the mappable region (even though we never
			 * actualy map it).
			 */
			flags |= PIN_MAPPABLE;
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2150 2151 2152 2153 2154 2155
		if (ret) {
err_unref:
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

2156
		engine->status_page.obj = obj;
2157
	}
2158

2159 2160 2161
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2162

2163
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2164
			engine->name, engine->status_page.gfx_addr);
2165 2166 2167 2168

	return 0;
}

2169
static int init_phys_status_page(struct intel_engine_cs *engine)
2170
{
2171
	struct drm_i915_private *dev_priv = engine->i915;
2172 2173 2174

	if (!dev_priv->status_page_dmah) {
		dev_priv->status_page_dmah =
2175
			drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
2176 2177 2178 2179
		if (!dev_priv->status_page_dmah)
			return -ENOMEM;
	}

2180 2181
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2182 2183 2184 2185

	return 0;
}

2186
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2187
{
2188 2189 2190
	GEM_BUG_ON(ringbuf->vma == NULL);
	GEM_BUG_ON(ringbuf->virtual_start == NULL);

2191
	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2192
		i915_gem_object_unpin_map(ringbuf->obj);
2193
	else
2194
		i915_vma_unpin_iomap(ringbuf->vma);
2195
	ringbuf->virtual_start = NULL;
2196

2197
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2198
	ringbuf->vma = NULL;
2199 2200
}

2201
int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
2202 2203 2204
				     struct intel_ringbuffer *ringbuf)
{
	struct drm_i915_gem_object *obj = ringbuf->obj;
2205 2206
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	unsigned flags = PIN_OFFSET_BIAS | 4096;
2207
	void *addr;
2208 2209
	int ret;

2210
	if (HAS_LLC(dev_priv) && !obj->stolen) {
2211
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2212 2213
		if (ret)
			return ret;
2214

2215
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2216 2217
		if (ret)
			goto err_unpin;
2218

2219 2220 2221
		addr = i915_gem_object_pin_map(obj);
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2222
			goto err_unpin;
2223 2224
		}
	} else {
2225 2226
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
					    flags | PIN_MAPPABLE);
2227 2228
		if (ret)
			return ret;
2229

2230
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2231 2232
		if (ret)
			goto err_unpin;
2233

2234 2235 2236
		/* Access through the GTT requires the device to be awake. */
		assert_rpm_wakelock_held(dev_priv);

2237 2238 2239
		addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2240
			goto err_unpin;
2241
		}
2242 2243
	}

2244
	ringbuf->virtual_start = addr;
2245
	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2246
	return 0;
2247 2248 2249 2250

err_unpin:
	i915_gem_object_ggtt_unpin(obj);
	return ret;
2251 2252
}

2253
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2254
{
2255 2256 2257 2258
	drm_gem_object_unreference(&ringbuf->obj->base);
	ringbuf->obj = NULL;
}

2259 2260
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
				      struct intel_ringbuffer *ringbuf)
2261
{
2262
	struct drm_i915_gem_object *obj;
2263

2264 2265
	obj = NULL;
	if (!HAS_LLC(dev))
2266
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2267
	if (obj == NULL)
2268
		obj = i915_gem_object_create(dev, ringbuf->size);
2269 2270
	if (IS_ERR(obj))
		return PTR_ERR(obj);
2271

2272 2273 2274
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2275
	ringbuf->obj = obj;
2276

2277
	return 0;
2278 2279
}

2280 2281 2282 2283 2284 2285 2286
struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
{
	struct intel_ringbuffer *ring;
	int ret;

	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2287 2288 2289
	if (ring == NULL) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				 engine->name);
2290
		return ERR_PTR(-ENOMEM);
2291
	}
2292

2293
	ring->engine = engine;
2294
	list_add(&ring->link, &engine->buffers);
2295 2296 2297 2298 2299 2300 2301

	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
2302
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
2303 2304 2305 2306 2307
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2308
	ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
2309
	if (ret) {
2310 2311 2312
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
				 engine->name, ret);
		list_del(&ring->link);
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
		kfree(ring);
		return ERR_PTR(ret);
	}

	return ring;
}

void
intel_ringbuffer_free(struct intel_ringbuffer *ring)
{
	intel_destroy_ringbuffer_obj(ring);
2324
	list_del(&ring->link);
2325 2326 2327
	kfree(ring);
}

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

	lockdep_assert_held(&ctx->i915->dev->struct_mutex);

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
		ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
		if (ret)
			goto error;
	}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	i915_gem_context_reference(ctx);
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

	lockdep_assert_held(&ctx->i915->dev->struct_mutex);

	if (--ce->pin_count)
		return;

	if (ce->state)
		i915_gem_object_ggtt_unpin(ce->state);

	i915_gem_context_unreference(ctx);
}

2379
static int intel_init_ring_buffer(struct drm_device *dev,
2380
				  struct intel_engine_cs *engine)
2381
{
2382
	struct drm_i915_private *dev_priv = to_i915(dev);
2383
	struct intel_ringbuffer *ringbuf;
2384 2385
	int ret;

2386
	WARN_ON(engine->buffer);
2387

2388
	engine->i915 = dev_priv;
2389 2390 2391 2392 2393 2394 2395
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->buffers);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2396

2397
	init_waitqueue_head(&engine->irq_queue);
2398

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2410
	ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2411 2412 2413 2414
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
		goto error;
	}
2415
	engine->buffer = ringbuf;
2416

2417
	if (I915_NEED_GFX_HWS(dev_priv)) {
2418
		ret = init_status_page(engine);
2419
		if (ret)
2420
			goto error;
2421
	} else {
2422 2423
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2424
		if (ret)
2425
			goto error;
2426 2427
	}

2428
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2429 2430
	if (ret) {
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2431
				engine->name, ret);
2432 2433
		intel_destroy_ringbuffer_obj(ringbuf);
		goto error;
2434
	}
2435

2436
	ret = i915_cmd_parser_init_ring(engine);
2437
	if (ret)
2438 2439 2440
		goto error;

	return 0;
2441

2442
error:
2443
	intel_cleanup_engine(engine);
2444
	return ret;
2445 2446
}

2447
void intel_cleanup_engine(struct intel_engine_cs *engine)
2448
{
2449
	struct drm_i915_private *dev_priv;
2450

2451
	if (!intel_engine_initialized(engine))
2452 2453
		return;

2454
	dev_priv = engine->i915;
2455

2456
	if (engine->buffer) {
2457
		intel_stop_engine(engine);
2458
		WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2459

2460 2461 2462
		intel_unpin_ringbuffer_obj(engine->buffer);
		intel_ringbuffer_free(engine->buffer);
		engine->buffer = NULL;
2463
	}
2464

2465 2466
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2467

2468
	if (I915_NEED_GFX_HWS(dev_priv)) {
2469
		cleanup_status_page(engine);
2470
	} else {
2471 2472
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2473
	}
2474

2475 2476
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
2477 2478 2479

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2480
	engine->i915 = NULL;
2481 2482
}

2483
int intel_engine_idle(struct intel_engine_cs *engine)
2484
{
2485
	struct drm_i915_gem_request *req;
2486 2487

	/* Wait upon the last request to be completed */
2488
	if (list_empty(&engine->request_list))
2489 2490
		return 0;

2491 2492 2493
	req = list_entry(engine->request_list.prev,
			 struct drm_i915_gem_request,
			 list);
2494 2495 2496

	/* Make sure we do not trigger any retires */
	return __i915_wait_request(req,
2497
				   req->i915->mm.interruptible,
2498
				   NULL, NULL);
2499 2500
}

2501
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2502
{
2503 2504 2505 2506 2507 2508
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2509
	request->reserved_space += LEGACY_REQUEST_SIZE;
2510

2511
	request->ringbuf = request->engine->buffer;
2512 2513 2514 2515 2516

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2517
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2518
	return 0;
2519 2520
}

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *target;

	intel_ring_update_space(ringbuf);
	if (ringbuf->space >= bytes)
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2540
	GEM_BUG_ON(!req->reserved_space);
2541 2542 2543 2544

	list_for_each_entry(target, &engine->request_list, list) {
		unsigned space;

2545
		/*
2546 2547 2548
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
2549
		 */
2550 2551 2552 2553 2554 2555 2556 2557
		if (target->ringbuf != ringbuf)
			continue;

		/* Would completion of this request free enough space? */
		space = __intel_ring_space(target->postfix, ringbuf->tail,
					   ringbuf->size);
		if (space >= bytes)
			break;
2558
	}
2559

2560 2561 2562 2563
	if (WARN_ON(&target->list == &engine->request_list))
		return -ENOSPC;

	return i915_wait_request(target);
2564 2565
}

2566
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2567
{
2568
	struct intel_ringbuffer *ringbuf = req->ringbuf;
2569
	int remain_actual = ringbuf->size - ringbuf->tail;
2570 2571 2572
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2573
	bool need_wrap = false;
2574

2575
	total_bytes = bytes + req->reserved_space;
2576

2577 2578 2579 2580 2581 2582 2583
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2584 2585 2586 2587 2588 2589 2590
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2591
		wait_bytes = remain_actual + req->reserved_space;
2592
	} else {
2593 2594
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2595 2596
	}

2597 2598
	if (wait_bytes > ringbuf->space) {
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2599 2600
		if (unlikely(ret))
			return ret;
2601

2602
		intel_ring_update_space(ringbuf);
2603 2604
		if (unlikely(ringbuf->space < wait_bytes))
			return -EAGAIN;
M
Mika Kuoppala 已提交
2605 2606
	}

2607 2608 2609
	if (unlikely(need_wrap)) {
		GEM_BUG_ON(remain_actual > ringbuf->space);
		GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2610

2611 2612 2613 2614 2615 2616
		/* Fill the tail with MI_NOOP */
		memset(ringbuf->virtual_start + ringbuf->tail,
		       0, remain_actual);
		ringbuf->tail = 0;
		ringbuf->space -= remain_actual;
	}
2617

2618 2619
	ringbuf->space -= bytes;
	GEM_BUG_ON(ringbuf->space < 0);
2620
	return 0;
2621
}
2622

2623
/* Align the ring tail to a cacheline boundary */
2624
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2625
{
2626
	struct intel_engine_cs *engine = req->engine;
2627
	int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2628 2629 2630 2631 2632
	int ret;

	if (num_dwords == 0)
		return 0;

2633
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2634
	ret = intel_ring_begin(req, num_dwords);
2635 2636 2637 2638
	if (ret)
		return ret;

	while (num_dwords--)
2639
		intel_ring_emit(engine, MI_NOOP);
2640

2641
	intel_ring_advance(engine);
2642 2643 2644 2645

	return 0;
}

2646
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2647
{
2648
	struct drm_i915_private *dev_priv = engine->i915;
2649

2650 2651 2652 2653 2654 2655 2656 2657
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2658
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2659 2660
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2661
		if (HAS_VEBOX(dev_priv))
2662
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2663
	}
2664 2665 2666 2667 2668 2669 2670 2671
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2672 2673
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2674

2675
	engine->set_seqno(engine, seqno);
2676
	engine->last_submitted_seqno = seqno;
2677

2678
	engine->hangcheck.seqno = seqno;
2679
}
2680

2681
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2682
				     u32 value)
2683
{
2684
	struct drm_i915_private *dev_priv = engine->i915;
2685

2686 2687
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2688
       /* Every tail move must follow the sequence below */
2689 2690 2691 2692

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2693 2694
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2695 2696

	/* Clear the context id. Here be magic! */
2697
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2698

2699
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2700 2701 2702 2703 2704
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2705
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2706

2707
	/* Now that the ring is fully powered up, update the tail */
2708 2709
	I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
	POSTING_READ_FW(RING_TAIL(engine->mmio_base));
2710 2711 2712 2713

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2714 2715 2716 2717
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2718 2719
}

2720
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2721
			       u32 invalidate, u32 flush)
2722
{
2723
	struct intel_engine_cs *engine = req->engine;
2724
	uint32_t cmd;
2725 2726
	int ret;

2727
	ret = intel_ring_begin(req, 4);
2728 2729 2730
	if (ret)
		return ret;

2731
	cmd = MI_FLUSH_DW;
2732
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2733
		cmd += 1;
2734 2735 2736 2737 2738 2739 2740 2741

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2742 2743 2744 2745 2746 2747
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2748
	if (invalidate & I915_GEM_GPU_DOMAINS)
2749 2750
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2751 2752 2753
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2754
	if (INTEL_GEN(req->i915) >= 8) {
2755 2756
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2757
	} else  {
2758 2759
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2760
	}
2761
	intel_ring_advance(engine);
2762
	return 0;
2763 2764
}

2765
static int
2766
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2767
			      u64 offset, u32 len,
2768
			      unsigned dispatch_flags)
2769
{
2770
	struct intel_engine_cs *engine = req->engine;
2771
	bool ppgtt = USES_PPGTT(engine->dev) &&
2772
			!(dispatch_flags & I915_DISPATCH_SECURE);
2773 2774
	int ret;

2775
	ret = intel_ring_begin(req, 4);
2776 2777 2778 2779
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2780
	intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2781 2782
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2783 2784 2785 2786
	intel_ring_emit(engine, lower_32_bits(offset));
	intel_ring_emit(engine, upper_32_bits(offset));
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
2787 2788 2789 2790

	return 0;
}

2791
static int
2792
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2793 2794
			     u64 offset, u32 len,
			     unsigned dispatch_flags)
2795
{
2796
	struct intel_engine_cs *engine = req->engine;
2797 2798
	int ret;

2799
	ret = intel_ring_begin(req, 2);
2800 2801 2802
	if (ret)
		return ret;

2803
	intel_ring_emit(engine,
2804
			MI_BATCH_BUFFER_START |
2805
			(dispatch_flags & I915_DISPATCH_SECURE ?
2806 2807 2808
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2809
	/* bit0-7 is the length on GEN6+ */
2810 2811
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2812 2813 2814 2815

	return 0;
}

2816
static int
2817
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2818
			      u64 offset, u32 len,
2819
			      unsigned dispatch_flags)
2820
{
2821
	struct intel_engine_cs *engine = req->engine;
2822
	int ret;
2823

2824
	ret = intel_ring_begin(req, 2);
2825 2826
	if (ret)
		return ret;
2827

2828
	intel_ring_emit(engine,
2829
			MI_BATCH_BUFFER_START |
2830 2831
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2832
	/* bit0-7 is the length on GEN6+ */
2833 2834
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2835

2836
	return 0;
2837 2838
}

2839 2840
/* Blitter support (SandyBridge+) */

2841
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2842
			   u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
2843
{
2844
	struct intel_engine_cs *engine = req->engine;
2845
	uint32_t cmd;
2846 2847
	int ret;

2848
	ret = intel_ring_begin(req, 4);
2849 2850 2851
	if (ret)
		return ret;

2852
	cmd = MI_FLUSH_DW;
2853
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2854
		cmd += 1;
2855 2856 2857 2858 2859 2860 2861 2862

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2863 2864 2865 2866 2867 2868
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2869
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2870
		cmd |= MI_INVALIDATE_TLB;
2871 2872 2873
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2874
	if (INTEL_GEN(req->i915) >= 8) {
2875 2876
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2877
	} else  {
2878 2879
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2880
	}
2881
	intel_ring_advance(engine);
R
Rodrigo Vivi 已提交
2882

2883
	return 0;
Z
Zou Nan hai 已提交
2884 2885
}

2886 2887 2888
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2889
	struct drm_i915_gem_object *obj;
2890
	int ret, i;
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912

	if (!i915_semaphore_is_enabled(dev_priv))
		return;

	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
		obj = i915_gem_object_create(dev_priv->dev, 4096);
		if (IS_ERR(obj)) {
			DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
			i915.semaphores = 0;
		} else {
			i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
			ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
			if (ret != 0) {
				drm_gem_object_unreference(&obj->base);
				DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				dev_priv->semaphore_obj = obj;
			}
		}
	}

2913 2914 2915 2916
	if (!i915_semaphore_is_enabled(dev_priv))
		return;

	if (INTEL_GEN(dev_priv) >= 8) {
2917 2918
		u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);

2919 2920
		engine->semaphore.sync_to = gen8_ring_sync;
		engine->semaphore.signal = gen8_xcs_signal;
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931

		for (i = 0; i < I915_NUM_ENGINES; i++) {
			u64 ring_offset;

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2932 2933 2934
	} else if (INTEL_GEN(dev_priv) >= 6) {
		engine->semaphore.sync_to = gen6_ring_sync;
		engine->semaphore.signal = gen6_signal;
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
		for (i = 0; i < I915_NUM_ENGINES; i++) {
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
			} sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
				[RCS] = {
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
				},
				[VCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
				},
				[BCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
				},
				[VECS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

			if (i == engine->id || i == VCS2) {
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
				wait_mbox = sem_data[engine->id][i].wait_mbox;
				mbox_reg = sem_data[engine->id][i].mbox_reg;
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2983 2984 2985
	}
}

2986 2987 2988
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2989
	engine->init_hw = init_ring_common;
2990
	engine->write_tail = ring_write_tail;
2991 2992
	engine->get_seqno = ring_get_seqno;
	engine->set_seqno = ring_set_seqno;
2993

2994 2995 2996 2997 2998 2999
	if (INTEL_GEN(dev_priv) >= 8) {
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
		engine->add_request = gen6_add_request;
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3000
		engine->add_request = gen6_add_request;
3001 3002
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else {
3003
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3004
		engine->add_request = i9xx_add_request;
3005
	}
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022

	if (INTEL_GEN(dev_priv) >= 8) {
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
	} else if (INTEL_GEN(dev_priv) >= 6) {
		engine->irq_get = gen6_ring_get_irq;
		engine->irq_put = gen6_ring_put_irq;
	} else if (INTEL_GEN(dev_priv) >= 5) {
		engine->irq_get = gen5_ring_get_irq;
		engine->irq_put = gen5_ring_put_irq;
	} else if (INTEL_GEN(dev_priv) >= 3) {
		engine->irq_get = i9xx_ring_get_irq;
		engine->irq_put = i9xx_ring_put_irq;
	} else {
		engine->irq_get = i8xx_ring_get_irq;
		engine->irq_put = i8xx_ring_put_irq;
	}
3023 3024

	intel_ring_init_semaphores(dev_priv, engine);
3025 3026
}

3027 3028
int intel_init_render_ring_buffer(struct drm_device *dev)
{
3029
	struct drm_i915_private *dev_priv = dev->dev_private;
3030
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
3031 3032
	struct drm_i915_gem_object *obj;
	int ret;
3033

3034 3035 3036
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
3037
	engine->hw_id = 0;
3038
	engine->mmio_base = RENDER_RING_BASE;
3039

3040 3041
	intel_ring_default_vfuncs(dev_priv, engine);

3042
	if (INTEL_GEN(dev_priv) >= 8) {
3043
		engine->init_context = intel_rcs_ctx_init;
3044
		engine->add_request = gen8_render_add_request;
3045 3046
		engine->flush = gen8_render_ring_flush;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
3047
		if (i915_semaphore_is_enabled(dev_priv))
3048
			engine->semaphore.signal = gen8_rcs_signal;
3049
	} else if (INTEL_GEN(dev_priv) >= 6) {
3050 3051
		engine->init_context = intel_rcs_ctx_init;
		engine->flush = gen7_render_ring_flush;
3052
		if (IS_GEN6(dev_priv))
3053 3054
			engine->flush = gen6_render_ring_flush;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
3055
	} else if (IS_GEN5(dev_priv)) {
3056 3057 3058 3059 3060
		engine->add_request = pc_render_add_request;
		engine->flush = gen4_render_ring_flush;
		engine->get_seqno = pc_render_get_seqno;
		engine->set_seqno = pc_render_set_seqno;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
3061
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
3062
	} else {
3063
		if (INTEL_GEN(dev_priv) < 4)
3064
			engine->flush = gen2_render_ring_flush;
3065
		else
3066 3067
			engine->flush = gen4_render_ring_flush;
		engine->irq_enable_mask = I915_USER_INTERRUPT;
3068
	}
B
Ben Widawsky 已提交
3069

3070
	if (IS_HASWELL(dev_priv))
3071
		engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
3072
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
3073
		engine->dispatch_execbuffer = i830_dispatch_execbuffer;
3074
	else if (INTEL_GEN(dev_priv) <= 3)
3075 3076 3077
		engine->dispatch_execbuffer = i915_dispatch_execbuffer;
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
3078

3079
	/* Workaround batchbuffer to combat CS tlb bug. */
3080
	if (HAS_BROKEN_CS_TLB(dev_priv)) {
3081
		obj = i915_gem_object_create(dev, I830_WA_SIZE);
3082
		if (IS_ERR(obj)) {
3083
			DRM_ERROR("Failed to allocate batch bo\n");
3084
			return PTR_ERR(obj);
3085 3086
		}

3087
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
3088 3089 3090 3091 3092 3093
		if (ret != 0) {
			drm_gem_object_unreference(&obj->base);
			DRM_ERROR("Failed to ping batch bo\n");
			return ret;
		}

3094 3095
		engine->scratch.obj = obj;
		engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
3096 3097
	}

3098
	ret = intel_init_ring_buffer(dev, engine);
3099 3100 3101
	if (ret)
		return ret;

3102
	if (INTEL_GEN(dev_priv) >= 5) {
3103
		ret = intel_init_pipe_control(engine);
3104 3105 3106 3107 3108
		if (ret)
			return ret;
	}

	return 0;
3109 3110 3111 3112
}

int intel_init_bsd_ring_buffer(struct drm_device *dev)
{
3113
	struct drm_i915_private *dev_priv = dev->dev_private;
3114
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
3115

3116 3117 3118
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
3119
	engine->hw_id = 1;
3120

3121 3122
	intel_ring_default_vfuncs(dev_priv, engine);

3123
	if (INTEL_GEN(dev_priv) >= 6) {
3124
		engine->mmio_base = GEN6_BSD_RING_BASE;
3125
		/* gen6 bsd needs a special wa for tail updates */
3126
		if (IS_GEN6(dev_priv))
3127 3128
			engine->write_tail = gen6_bsd_ring_write_tail;
		engine->flush = gen6_bsd_ring_flush;
3129
		if (INTEL_GEN(dev_priv) >= 8) {
3130
			engine->irq_enable_mask =
3131 3132
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
		} else {
3133
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
3134
		}
3135
	} else {
3136 3137
		engine->mmio_base = BSD_RING_BASE;
		engine->flush = bsd_ring_flush;
3138
		if (IS_GEN5(dev_priv)) {
3139
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3140
		} else {
3141
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
3142
		}
3143 3144
	}

3145
	return intel_init_ring_buffer(dev, engine);
3146
}
3147

3148
/**
3149
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3150 3151 3152 3153
 */
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3154
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3155 3156 3157 3158

	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;
3159
	engine->hw_id = 4;
3160
	engine->mmio_base = GEN8_BSD2_RING_BASE;
3161 3162 3163

	intel_ring_default_vfuncs(dev_priv, engine);

3164 3165
	engine->flush = gen6_bsd_ring_flush;
	engine->irq_enable_mask =
3166 3167
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;

3168
	return intel_init_ring_buffer(dev, engine);
3169 3170
}

3171 3172
int intel_init_blt_ring_buffer(struct drm_device *dev)
{
3173
	struct drm_i915_private *dev_priv = dev->dev_private;
3174
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3175 3176 3177 3178

	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;
3179
	engine->hw_id = 2;
3180
	engine->mmio_base = BLT_RING_BASE;
3181 3182 3183

	intel_ring_default_vfuncs(dev_priv, engine);

3184
	engine->flush = gen6_ring_flush;
3185
	if (INTEL_GEN(dev_priv) >= 8) {
3186
		engine->irq_enable_mask =
3187 3188
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
	} else {
3189
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3190
	}
3191

3192
	return intel_init_ring_buffer(dev, engine);
3193
}
3194

B
Ben Widawsky 已提交
3195 3196
int intel_init_vebox_ring_buffer(struct drm_device *dev)
{
3197
	struct drm_i915_private *dev_priv = dev->dev_private;
3198
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
B
Ben Widawsky 已提交
3199

3200 3201 3202
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
3203
	engine->hw_id = 3;
3204
	engine->mmio_base = VEBOX_RING_BASE;
3205 3206 3207

	intel_ring_default_vfuncs(dev_priv, engine);

3208
	engine->flush = gen6_ring_flush;
3209

3210
	if (INTEL_GEN(dev_priv) >= 8) {
3211
		engine->irq_enable_mask =
3212
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3213
	} else {
3214 3215 3216
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
		engine->irq_get = hsw_vebox_get_irq;
		engine->irq_put = hsw_vebox_put_irq;
3217
	}
B
Ben Widawsky 已提交
3218

3219
	return intel_init_ring_buffer(dev, engine);
B
Ben Widawsky 已提交
3220 3221
}

3222
int
3223
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3224
{
3225
	struct intel_engine_cs *engine = req->engine;
3226 3227
	int ret;

3228
	if (!engine->gpu_caches_dirty)
3229 3230
		return 0;

3231
	ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3232 3233 3234
	if (ret)
		return ret;

3235
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3236

3237
	engine->gpu_caches_dirty = false;
3238 3239 3240 3241
	return 0;
}

int
3242
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3243
{
3244
	struct intel_engine_cs *engine = req->engine;
3245 3246 3247 3248
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
3249
	if (engine->gpu_caches_dirty)
3250 3251
		flush_domains = I915_GEM_GPU_DOMAINS;

3252
	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3253 3254 3255
	if (ret)
		return ret;

3256
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3257

3258
	engine->gpu_caches_dirty = false;
3259 3260
	return 0;
}
3261 3262

void
3263
intel_stop_engine(struct intel_engine_cs *engine)
3264 3265 3266
{
	int ret;

3267
	if (!intel_engine_initialized(engine))
3268 3269
		return;

3270
	ret = intel_engine_idle(engine);
3271
	if (ret)
3272
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3273
			  engine->name, ret);
3274

3275
	stop_ring(engine);
3276
}