intel_ringbuffer.c 79.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178 179
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214 215
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288 289
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
374
	u32 flags = 0;
375
	int ret;
B
Ben Widawsky 已提交
376 377 378

	flags |= PIPE_CONTROL_CS_STALL;

379
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
380 381
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
382
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
383
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
384
	}
385
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
386 387 388 389 390 391 392 393
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
394 395

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
396
		ret = gen8_emit_pipe_control(req,
397 398 399 400 401
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
402 403
	}

404
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
405 406
}

407
u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
408
{
409
	struct drm_i915_private *dev_priv = engine->i915;
410
	u64 acthd;
411

412
	if (INTEL_GEN(dev_priv) >= 8)
413 414
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
415
	else if (INTEL_GEN(dev_priv) >= 4)
416
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
417 418 419 420
	else
		acthd = I915_READ(ACTHD);

	return acthd;
421 422
}

423
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
424
{
425
	struct drm_i915_private *dev_priv = engine->i915;
426 427 428
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
429
	if (INTEL_GEN(dev_priv) >= 4)
430 431 432 433
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

434
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
435
{
436
	struct drm_i915_private *dev_priv = engine->i915;
437
	i915_reg_t mmio;
438 439 440 441

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
442
	if (IS_GEN7(dev_priv)) {
443
		switch (engine->id) {
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
462
	} else if (IS_GEN6(dev_priv)) {
463
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
464 465
	} else {
		/* XXX: gen8 returns to sanity */
466
		mmio = RING_HWS_PGA(engine->mmio_base);
467 468
	}

469
	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
470 471 472 473 474 475 476 477 478
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
479
	if (IS_GEN(dev_priv, 6, 7)) {
480
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
481 482

		/* ring should be idle before issuing a sync flush*/
483
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
484 485 486 487

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
488 489 490
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
491
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
492
				  engine->name);
493 494 495
	}
}

496
static bool stop_ring(struct intel_engine_cs *engine)
497
{
498
	struct drm_i915_private *dev_priv = engine->i915;
499

500
	if (!IS_GEN2(dev_priv)) {
501
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
502 503 504 505 506
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
507 508
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
509 510 511 512
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
513
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
514
				return false;
515 516
		}
	}
517

518 519
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
520
	I915_WRITE_TAIL(engine, 0);
521

522
	if (!IS_GEN2(dev_priv)) {
523 524
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
525
	}
526

527
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
528
}
529

530
static int init_ring_common(struct intel_engine_cs *engine)
531
{
532
	struct drm_i915_private *dev_priv = engine->i915;
533 534
	struct intel_ring *ring = engine->buffer;
	struct drm_i915_gem_object *obj = ring->obj;
535 536
	int ret = 0;

537
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
538

539
	if (!stop_ring(engine)) {
540
		/* G45 ring initialization often fails to reset head to zero */
541 542
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
543 544 545 546 547
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
548

549
		if (!stop_ring(engine)) {
550 551
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
552 553 554 555 556
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
557 558
			ret = -EIO;
			goto out;
559
		}
560 561
	}

562
	if (I915_NEED_GFX_HWS(dev_priv))
563
		intel_ring_setup_status_page(engine);
564
	else
565
		ring_setup_phys_status_page(engine);
566

567
	/* Enforce ordering by reading HEAD register back */
568
	I915_READ_HEAD(engine);
569

570 571 572 573
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
574
	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
575 576

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
577
	if (I915_READ_HEAD(engine))
578
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
579 580 581
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
582

583
	I915_WRITE_CTL(engine,
584
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
585
			| RING_VALID);
586 587

	/* If the head is still not zero, the ring is dead */
588 589 590
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
591
		DRM_ERROR("%s initialization failed "
592
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
593 594 595 596 597 598
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
599 600
		ret = -EIO;
		goto out;
601 602
	}

603 604 605 606
	ring->last_retired_head = -1;
	ring->head = I915_READ_HEAD(engine);
	ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
	intel_ring_update_space(ring);
607

608
	intel_engine_init_hangcheck(engine);
609

610
out:
611
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
612 613

	return ret;
614 615
}

616
void intel_fini_pipe_control(struct intel_engine_cs *engine)
617
{
618
	if (engine->scratch.obj == NULL)
619 620
		return;

621
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
622
	i915_gem_object_put(engine->scratch.obj);
623
	engine->scratch.obj = NULL;
624 625
}

626
int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
627
{
628
	struct drm_i915_gem_object *obj;
629 630
	int ret;

631
	WARN_ON(engine->scratch.obj);
632

633
	obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
634
	if (!obj)
635
		obj = i915_gem_object_create(&engine->i915->drm, size);
636 637 638
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		ret = PTR_ERR(obj);
639 640
		goto err;
	}
641

642
	ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
643 644
	if (ret)
		goto err_unref;
645

646 647
	engine->scratch.obj = obj;
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
648
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
649
			 engine->name, engine->scratch.gtt_offset);
650 651 652
	return 0;

err_unref:
653
	i915_gem_object_put(engine->scratch.obj);
654 655 656 657
err:
	return ret;
}

658
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
659
{
660
	struct intel_ring *ring = req->ring;
661 662
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
663

664
	if (w->count == 0)
665
		return 0;
666

667
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
668 669
	if (ret)
		return ret;
670

671
	ret = intel_ring_begin(req, (w->count * 2 + 2));
672 673 674
	if (ret)
		return ret;

675
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
676
	for (i = 0; i < w->count; i++) {
677 678
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
679
	}
680
	intel_ring_emit(ring, MI_NOOP);
681

682
	intel_ring_advance(ring);
683

684
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
685 686
	if (ret)
		return ret;
687

688
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
689

690
	return 0;
691 692
}

693
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
694 695 696
{
	int ret;

697
	ret = intel_ring_workarounds_emit(req);
698 699 700
	if (ret != 0)
		return ret;

701
	ret = i915_gem_render_state_init(req);
702
	if (ret)
703
		return ret;
704

705
	return 0;
706 707
}

708
static int wa_add(struct drm_i915_private *dev_priv,
709 710
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
711 712 713 714 715 716 717 718 719 720 721 722 723
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
724 725
}

726
#define WA_REG(addr, mask, val) do { \
727
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
728 729
		if (r) \
			return r; \
730
	} while (0)
731 732

#define WA_SET_BIT_MASKED(addr, mask) \
733
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
734 735

#define WA_CLR_BIT_MASKED(addr, mask) \
736
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
737

738
#define WA_SET_FIELD_MASKED(addr, mask, value) \
739
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
740

741 742
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
743

744
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
745

746 747
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
748
{
749
	struct drm_i915_private *dev_priv = engine->i915;
750
	struct i915_workarounds *wa = &dev_priv->workarounds;
751
	const uint32_t index = wa->hw_whitelist_count[engine->id];
752 753 754 755

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

756
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
757
		 i915_mmio_reg_offset(reg));
758
	wa->hw_whitelist_count[engine->id]++;
759 760 761 762

	return 0;
}

763
static int gen8_init_workarounds(struct intel_engine_cs *engine)
764
{
765
	struct drm_i915_private *dev_priv = engine->i915;
766 767

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
768

769 770 771
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

772 773 774 775
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

776 777 778 779 780
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
781
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
782
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
783
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
784 785
			  HDC_FORCE_NON_COHERENT);

786 787 788 789 790 791 792 793 794 795
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

796 797 798
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

799 800 801 802 803 804 805 806 807 808 809 810
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

811 812 813
	return 0;
}

814
static int bdw_init_workarounds(struct intel_engine_cs *engine)
815
{
816
	struct drm_i915_private *dev_priv = engine->i915;
817
	int ret;
818

819
	ret = gen8_init_workarounds(engine);
820 821 822
	if (ret)
		return ret;

823
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
824
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
825

826
	/* WaDisableDopClockGating:bdw */
827 828
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
829

830 831
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
832

833
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
834 835 836
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
837
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
838 839 840 841

	return 0;
}

842
static int chv_init_workarounds(struct intel_engine_cs *engine)
843
{
844
	struct drm_i915_private *dev_priv = engine->i915;
845
	int ret;
846

847
	ret = gen8_init_workarounds(engine);
848 849 850
	if (ret)
		return ret;

851
	/* WaDisableThreadStallDopClockGating:chv */
852
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
853

854 855 856
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

857 858 859
	return 0;
}

860
static int gen9_init_workarounds(struct intel_engine_cs *engine)
861
{
862
	struct drm_i915_private *dev_priv = engine->i915;
863
	int ret;
864

865 866 867
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

868
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
869 870 871
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

872
	/* WaDisableKillLogic:bxt,skl,kbl */
873 874 875
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

876 877
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
878
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
879
			  FLOW_CONTROL_ENABLE |
880 881
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

882
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
883 884 885
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

886
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
887 888
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
889 890
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
891

892
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
893 894
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
895 896
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
897 898 899 900 901
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
902 903
	}

904 905
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
906 907 908
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
909

910 911
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
912 913
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
914

915
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
916 917 918
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

919
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
920 921
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
922 923 924
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

925 926 927 928
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
929

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

951 952 953 954
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
955 956 957
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

958
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
959 960
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

961
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
962 963 964
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

965 966 967 968 969
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

970
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
971
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
972 973 974
	if (ret)
		return ret;

975
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
976
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
977 978 979
	if (ret)
		return ret;

980 981 982
	return 0;
}

983
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
984
{
985
	struct drm_i915_private *dev_priv = engine->i915;
986 987 988 989 990 991 992 993 994 995
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
996
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1024
static int skl_init_workarounds(struct intel_engine_cs *engine)
1025
{
1026
	struct drm_i915_private *dev_priv = engine->i915;
1027
	int ret;
1028

1029
	ret = gen9_init_workarounds(engine);
1030 1031
	if (ret)
		return ret;
1032

1033 1034 1035 1036 1037
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
1038
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1039 1040 1041 1042
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1043
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1044 1045 1046 1047 1048 1049 1050 1051
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1052
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1053 1054 1055 1056 1057
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1058
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1059 1060 1061 1062
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1063
	/* WaDisablePowerCompilerClockGating:skl */
1064
	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1065 1066 1067
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1068
	/* WaBarrierPerformanceFixDisable:skl */
1069
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1070 1071 1072 1073
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1074
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1075
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1076 1077 1078 1079
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1080 1081 1082
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1083 1084 1085 1086 1087
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1088
	/* WaDisableLSQCROPERFforOCL:skl */
1089
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1090 1091 1092
	if (ret)
		return ret;

1093
	return skl_tune_iz_hashing(engine);
1094 1095
}

1096
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1097
{
1098
	struct drm_i915_private *dev_priv = engine->i915;
1099
	int ret;
1100

1101
	ret = gen9_init_workarounds(engine);
1102 1103
	if (ret)
		return ret;
1104

1105 1106
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1107
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1108 1109 1110
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1111
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1112 1113 1114 1115
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1116 1117 1118 1119
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1120 1121 1122 1123 1124 1125
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1126
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1127
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1128 1129 1130 1131 1132
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1133 1134 1135
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1136
	/* WaDisableLSQCROPERFforOCL:bxt */
1137
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1138
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1139 1140
		if (ret)
			return ret;
1141

1142
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1143 1144
		if (ret)
			return ret;
1145 1146
	}

1147
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1148
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1149 1150
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1151

1152 1153 1154 1155 1156
	/* WaInsertDummyPushConstPs:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1157 1158 1159 1160 1161
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1162 1163 1164
	return 0;
}

1165 1166
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1167
	struct drm_i915_private *dev_priv = engine->i915;
1168 1169 1170 1171 1172 1173
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1174 1175 1176 1177
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1178 1179 1180 1181 1182
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1183 1184 1185 1186 1187
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1188 1189 1190 1191 1192 1193 1194 1195
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1196 1197 1198 1199 1200
	/* WaInsertDummyPushConstPs:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1201 1202 1203
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1204 1205 1206 1207 1208
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1209 1210 1211 1212
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1213 1214 1215 1216 1217
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1218 1219 1220
	return 0;
}

1221
int init_workarounds_ring(struct intel_engine_cs *engine)
1222
{
1223
	struct drm_i915_private *dev_priv = engine->i915;
1224

1225
	WARN_ON(engine->id != RCS);
1226 1227

	dev_priv->workarounds.count = 0;
1228
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1229

1230
	if (IS_BROADWELL(dev_priv))
1231
		return bdw_init_workarounds(engine);
1232

1233
	if (IS_CHERRYVIEW(dev_priv))
1234
		return chv_init_workarounds(engine);
1235

1236
	if (IS_SKYLAKE(dev_priv))
1237
		return skl_init_workarounds(engine);
1238

1239
	if (IS_BROXTON(dev_priv))
1240
		return bxt_init_workarounds(engine);
1241

1242 1243 1244
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1245 1246 1247
	return 0;
}

1248
static int init_render_ring(struct intel_engine_cs *engine)
1249
{
1250
	struct drm_i915_private *dev_priv = engine->i915;
1251
	int ret = init_ring_common(engine);
1252 1253
	if (ret)
		return ret;
1254

1255
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1256
	if (IS_GEN(dev_priv, 4, 6))
1257
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1258 1259 1260 1261

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1262
	 *
1263
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1264
	 */
1265
	if (IS_GEN(dev_priv, 6, 7))
1266 1267
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1268
	/* Required for the hardware to program scanline values for waiting */
1269
	/* WaEnableFlushTlbInvalidationMode:snb */
1270
	if (IS_GEN6(dev_priv))
1271
		I915_WRITE(GFX_MODE,
1272
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1273

1274
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1275
	if (IS_GEN7(dev_priv))
1276
		I915_WRITE(GFX_MODE_GEN7,
1277
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1278
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1279

1280
	if (IS_GEN6(dev_priv)) {
1281 1282 1283 1284 1285 1286
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1287
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1288 1289
	}

1290
	if (IS_GEN(dev_priv, 6, 7))
1291
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1292

1293 1294
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1295

1296
	return init_workarounds_ring(engine);
1297 1298
}

1299
static void render_ring_cleanup(struct intel_engine_cs *engine)
1300
{
1301
	struct drm_i915_private *dev_priv = engine->i915;
1302 1303 1304

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1305
		i915_gem_object_put(dev_priv->semaphore_obj);
1306 1307
		dev_priv->semaphore_obj = NULL;
	}
1308

1309
	intel_fini_pipe_control(engine);
1310 1311
}

1312
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req)
1313
{
1314
	struct intel_ring *signaller = signaller_req->ring;
1315
	struct drm_i915_private *dev_priv = signaller_req->i915;
1316
	struct intel_engine_cs *waiter;
1317 1318
	enum intel_engine_id id;
	int ret, num_rings;
1319

1320
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1321
	ret = intel_ring_begin(signaller_req, (num_rings-1) * 8);
1322 1323 1324
	if (ret)
		return ret;

1325
	for_each_engine_id(waiter, dev_priv, id) {
1326 1327
		u64 gtt_offset =
			signaller_req->engine->semaphore.signal_ggtt[id];
1328 1329 1330 1331
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1332 1333 1334 1335
		intel_ring_emit(signaller,
				PIPE_CONTROL_GLOBAL_GTT_IVB |
				PIPE_CONTROL_QW_WRITE |
				PIPE_CONTROL_CS_STALL);
1336 1337
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1338
		intel_ring_emit(signaller, signaller_req->fence.seqno);
1339
		intel_ring_emit(signaller, 0);
1340 1341 1342
		intel_ring_emit(signaller,
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1343 1344
		intel_ring_emit(signaller, 0);
	}
1345
	intel_ring_advance(signaller);
1346 1347 1348 1349

	return 0;
}

1350
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req)
1351
{
1352
	struct intel_ring *signaller = signaller_req->ring;
1353
	struct drm_i915_private *dev_priv = signaller_req->i915;
1354
	struct intel_engine_cs *waiter;
1355 1356
	enum intel_engine_id id;
	int ret, num_rings;
1357

1358
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1359
	ret = intel_ring_begin(signaller_req, (num_rings-1) * 6);
1360 1361 1362
	if (ret)
		return ret;

1363
	for_each_engine_id(waiter, dev_priv, id) {
1364 1365
		u64 gtt_offset =
			signaller_req->engine->semaphore.signal_ggtt[id];
1366 1367 1368
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1369 1370 1371 1372 1373
		intel_ring_emit(signaller,
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
		intel_ring_emit(signaller,
				lower_32_bits(gtt_offset) |
				MI_FLUSH_DW_USE_GTT);
1374
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1375
		intel_ring_emit(signaller, signaller_req->fence.seqno);
1376 1377 1378
		intel_ring_emit(signaller,
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1379 1380
		intel_ring_emit(signaller, 0);
	}
1381
	intel_ring_advance(signaller);
1382 1383 1384 1385

	return 0;
}

1386
static int gen6_signal(struct drm_i915_gem_request *signaller_req)
1387
{
1388
	struct intel_ring *signaller = signaller_req->ring;
1389
	struct drm_i915_private *dev_priv = signaller_req->i915;
1390
	struct intel_engine_cs *useless;
1391 1392
	enum intel_engine_id id;
	int ret, num_rings;
1393

1394
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1395
	ret = intel_ring_begin(signaller_req, round_up((num_rings-1) * 3, 2));
1396 1397 1398
	if (ret)
		return ret;

1399
	for_each_engine_id(useless, dev_priv, id) {
1400 1401
		i915_reg_t mbox_reg =
			signaller_req->engine->semaphore.mbox.signal[id];
1402 1403

		if (i915_mmio_reg_valid(mbox_reg)) {
1404
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1405
			intel_ring_emit_reg(signaller, mbox_reg);
1406
			intel_ring_emit(signaller, signaller_req->fence.seqno);
1407 1408
		}
	}
1409

1410 1411 1412
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
		intel_ring_emit(signaller, MI_NOOP);
1413
	intel_ring_advance(signaller);
1414

1415
	return 0;
1416 1417
}

1418 1419 1420 1421 1422 1423 1424 1425 1426
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

	I915_WRITE_TAIL(request->engine,
			intel_ring_offset(request->ring, request->tail));
}

static int i9xx_emit_request(struct drm_i915_gem_request *req)
1427
{
1428
	struct intel_ring *ring = req->ring;
1429
	int ret;
1430

1431
	ret = intel_ring_begin(req, 4);
1432 1433 1434
	if (ret)
		return ret;

1435 1436 1437 1438
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1439 1440 1441
	intel_ring_advance(ring);

	req->tail = ring->tail;
1442 1443 1444 1445

	return 0;
}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/**
 * gen6_emit_request - Update the semaphore mailbox registers
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
static int gen6_emit_request(struct drm_i915_gem_request *req)
{
	if (req->engine->semaphore.signal) {
		int ret;

		ret = req->engine->semaphore.signal(req);
		if (ret)
			return ret;
	}

	return i9xx_emit_request(req);
}

1467
static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1468 1469
{
	struct intel_engine_cs *engine = req->engine;
1470
	struct intel_ring *ring = req->ring;
1471 1472
	int ret;

1473 1474 1475 1476 1477 1478 1479
	if (engine->semaphore.signal) {
		ret = engine->semaphore.signal(req);
		if (ret)
			return ret;
	}

	ret = intel_ring_begin(req, 8);
1480 1481 1482
	if (ret)
		return ret;

1483 1484 1485 1486 1487 1488 1489
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
			       PIPE_CONTROL_CS_STALL |
			       PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1490
	/* We're thrashing one dword of HWS. */
1491 1492 1493
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1494
	intel_ring_advance(ring);
1495 1496

	req->tail = ring->tail;
1497 1498 1499 1500

	return 0;
}

1501
static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1502 1503 1504 1505 1506
					      u32 seqno)
{
	return dev_priv->last_seqno < seqno;
}

1507 1508 1509 1510 1511 1512 1513
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1514 1515

static int
1516
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1517 1518 1519
	       struct intel_engine_cs *signaller,
	       u32 seqno)
{
1520
	struct intel_ring *waiter = waiter_req->ring;
1521
	struct drm_i915_private *dev_priv = waiter_req->i915;
1522
	u64 offset = GEN8_WAIT_OFFSET(waiter_req->engine, signaller->id);
1523
	struct i915_hw_ppgtt *ppgtt;
1524 1525
	int ret;

1526
	ret = intel_ring_begin(waiter_req, 4);
1527 1528 1529 1530 1531 1532 1533
	if (ret)
		return ret;

	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
				MI_SEMAPHORE_GLOBAL_GTT |
				MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(waiter, seqno);
1534 1535
	intel_ring_emit(waiter, lower_32_bits(offset));
	intel_ring_emit(waiter, upper_32_bits(offset));
1536
	intel_ring_advance(waiter);
1537 1538 1539 1540 1541 1542 1543 1544 1545

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
	ppgtt = waiter_req->ctx->ppgtt;
	if (ppgtt && waiter_req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1546 1547 1548
	return 0;
}

1549
static int
1550
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1551
	       struct intel_engine_cs *signaller,
1552
	       u32 seqno)
1553
{
1554
	struct intel_ring *waiter = waiter_req->ring;
1555 1556 1557
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1558
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter_req->engine->id];
1559
	int ret;
1560

1561 1562 1563 1564 1565 1566
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
	seqno -= 1;

1567
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1568

1569
	ret = intel_ring_begin(waiter_req, 4);
1570 1571 1572
	if (ret)
		return ret;

1573
	/* If seqno wrap happened, omit the wait with no-ops */
1574
	if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1575
		intel_ring_emit(waiter, dw1 | wait_mbox);
1576 1577 1578 1579 1580 1581 1582 1583 1584
		intel_ring_emit(waiter, seqno);
		intel_ring_emit(waiter, 0);
		intel_ring_emit(waiter, MI_NOOP);
	} else {
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
	}
1585
	intel_ring_advance(waiter);
1586 1587 1588 1589

	return 0;
}

1590
static void
1591
gen5_seqno_barrier(struct intel_engine_cs *engine)
1592
{
1593 1594 1595
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1596
	 *
1597 1598 1599 1600 1601 1602 1603
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1604
	 */
1605
	usleep_range(125, 250);
1606 1607
}

1608 1609
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1610
{
1611
	struct drm_i915_private *dev_priv = engine->i915;
1612

1613 1614
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1615 1616 1617 1618 1619 1620 1621 1622 1623
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1624 1625 1626
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1627
	 */
1628
	spin_lock_irq(&dev_priv->uncore.lock);
1629
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1630
	spin_unlock_irq(&dev_priv->uncore.lock);
1631 1632
}

1633 1634
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1635
{
1636
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1637 1638 1639
}

static void
1640
gen5_irq_disable(struct intel_engine_cs *engine)
1641
{
1642
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1643 1644
}

1645 1646
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1647
{
1648
	struct drm_i915_private *dev_priv = engine->i915;
1649

1650 1651 1652
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1653 1654
}

1655
static void
1656
i9xx_irq_disable(struct intel_engine_cs *engine)
1657
{
1658
	struct drm_i915_private *dev_priv = engine->i915;
1659

1660 1661
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1662 1663
}

1664 1665
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1666
{
1667
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1668

1669 1670 1671
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1672 1673 1674
}

static void
1675
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1676
{
1677
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1678

1679 1680
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1681 1682
}

1683
static int
1684
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1685
{
1686
	struct intel_ring *ring = req->ring;
1687 1688
	int ret;

1689
	ret = intel_ring_begin(req, 2);
1690 1691 1692
	if (ret)
		return ret;

1693 1694 1695
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1696
	return 0;
1697 1698
}

1699 1700
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1701
{
1702
	struct drm_i915_private *dev_priv = engine->i915;
1703

1704 1705 1706
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1707
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1708 1709 1710
}

static void
1711
gen6_irq_disable(struct intel_engine_cs *engine)
1712
{
1713
	struct drm_i915_private *dev_priv = engine->i915;
1714

1715
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1716
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1717 1718
}

1719 1720
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1721
{
1722
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1723

1724 1725
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1726 1727 1728
}

static void
1729
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1730
{
1731
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1732

1733 1734
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1735 1736
}

1737 1738
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1739
{
1740
	struct drm_i915_private *dev_priv = engine->i915;
1741

1742 1743 1744
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1745
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1746 1747 1748
}

static void
1749
gen8_irq_disable(struct intel_engine_cs *engine)
1750
{
1751
	struct drm_i915_private *dev_priv = engine->i915;
1752

1753
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1754 1755
}

1756
static int
1757 1758 1759
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1760
{
1761
	struct intel_ring *ring = req->ring;
1762
	int ret;
1763

1764
	ret = intel_ring_begin(req, 2);
1765 1766 1767
	if (ret)
		return ret;

1768
	intel_ring_emit(ring,
1769 1770
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1771 1772
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1773 1774
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1775

1776 1777 1778
	return 0;
}

1779 1780
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1781 1782
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1783
static int
1784 1785 1786
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1787
{
1788
	struct intel_ring *ring = req->ring;
1789
	u32 cs_offset = req->engine->scratch.gtt_offset;
1790
	int ret;
1791

1792
	ret = intel_ring_begin(req, 6);
1793 1794
	if (ret)
		return ret;
1795

1796
	/* Evict the invalid PTE TLBs */
1797 1798 1799 1800 1801 1802 1803
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1804

1805
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1806 1807 1808
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1809
		ret = intel_ring_begin(req, 6 + 2);
1810 1811
		if (ret)
			return ret;
1812 1813 1814 1815 1816

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1817 1818
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1819
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1820 1821 1822 1823
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1824

1825 1826 1827
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1828 1829

		/* ... and execute it. */
1830
		offset = cs_offset;
1831
	}
1832

1833
	ret = intel_ring_begin(req, 2);
1834 1835 1836
	if (ret)
		return ret;

1837 1838 1839 1840
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1841

1842 1843 1844 1845
	return 0;
}

static int
1846 1847 1848
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1849
{
1850
	struct intel_ring *ring = req->ring;
1851 1852
	int ret;

1853
	ret = intel_ring_begin(req, 2);
1854 1855 1856
	if (ret)
		return ret;

1857 1858 1859 1860
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1861 1862 1863 1864

	return 0;
}

1865
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1866
{
1867
	struct drm_i915_private *dev_priv = engine->i915;
1868 1869 1870 1871

	if (!dev_priv->status_page_dmah)
		return;

1872
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1873
	engine->status_page.page_addr = NULL;
1874 1875
}

1876
static void cleanup_status_page(struct intel_engine_cs *engine)
1877
{
1878
	struct drm_i915_gem_object *obj;
1879

1880
	obj = engine->status_page.obj;
1881
	if (obj == NULL)
1882 1883
		return;

1884
	kunmap(sg_page(obj->pages->sgl));
B
Ben Widawsky 已提交
1885
	i915_gem_object_ggtt_unpin(obj);
1886
	i915_gem_object_put(obj);
1887
	engine->status_page.obj = NULL;
1888 1889
}

1890
static int init_status_page(struct intel_engine_cs *engine)
1891
{
1892
	struct drm_i915_gem_object *obj = engine->status_page.obj;
1893

1894
	if (obj == NULL) {
1895
		unsigned flags;
1896
		int ret;
1897

1898
		obj = i915_gem_object_create(&engine->i915->drm, 4096);
1899
		if (IS_ERR(obj)) {
1900
			DRM_ERROR("Failed to allocate status page\n");
1901
			return PTR_ERR(obj);
1902
		}
1903

1904 1905 1906 1907
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
		if (ret)
			goto err_unref;

1908
		flags = 0;
1909
		if (!HAS_LLC(engine->i915))
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
			/* On g33, we cannot place HWS above 256MiB, so
			 * restrict its pinning to the low mappable arena.
			 * Though this restriction is not documented for
			 * gen4, gen5, or byt, they also behave similarly
			 * and hang if the HWS is placed at the top of the
			 * GTT. To generalise, it appears that all !llc
			 * platforms have issues with us placing the HWS
			 * above the mappable region (even though we never
			 * actualy map it).
			 */
			flags |= PIN_MAPPABLE;
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1922 1923
		if (ret) {
err_unref:
1924
			i915_gem_object_put(obj);
1925 1926 1927
			return ret;
		}

1928
		engine->status_page.obj = obj;
1929
	}
1930

1931 1932 1933
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1934

1935
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1936
			engine->name, engine->status_page.gfx_addr);
1937 1938 1939 1940

	return 0;
}

1941
static int init_phys_status_page(struct intel_engine_cs *engine)
1942
{
1943
	struct drm_i915_private *dev_priv = engine->i915;
1944 1945 1946

	if (!dev_priv->status_page_dmah) {
		dev_priv->status_page_dmah =
1947
			drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1948 1949 1950 1951
		if (!dev_priv->status_page_dmah)
			return -ENOMEM;
	}

1952 1953
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1954 1955 1956 1957

	return 0;
}

1958
int intel_ring_pin(struct intel_ring *ring)
1959
{
1960
	struct drm_i915_private *dev_priv = ring->engine->i915;
1961
	struct drm_i915_gem_object *obj = ring->obj;
1962 1963
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	unsigned flags = PIN_OFFSET_BIAS | 4096;
1964
	void *addr;
1965 1966
	int ret;

1967
	if (HAS_LLC(dev_priv) && !obj->stolen) {
1968
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
1969 1970
		if (ret)
			return ret;
1971

1972
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
1973 1974
		if (ret)
			goto err_unpin;
1975

1976 1977 1978
		addr = i915_gem_object_pin_map(obj);
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
1979
			goto err_unpin;
1980 1981
		}
	} else {
1982 1983
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
					    flags | PIN_MAPPABLE);
1984 1985
		if (ret)
			return ret;
1986

1987
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
1988 1989
		if (ret)
			goto err_unpin;
1990

1991 1992 1993
		/* Access through the GTT requires the device to be awake. */
		assert_rpm_wakelock_held(dev_priv);

1994 1995
		addr = (void __force *)
			i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
1996 1997
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
1998
			goto err_unpin;
1999
		}
2000 2001
	}

2002 2003
	ring->vaddr = addr;
	ring->vma = i915_gem_obj_to_ggtt(obj);
2004
	return 0;
2005 2006 2007 2008

err_unpin:
	i915_gem_object_ggtt_unpin(obj);
	return ret;
2009 2010
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

	if (HAS_LLC(ring->engine->i915) && !ring->obj->stolen)
		i915_gem_object_unpin_map(ring->obj);
	else
		i915_vma_unpin_iomap(ring->vma);
	ring->vaddr = NULL;

	i915_gem_object_ggtt_unpin(ring->obj);
	ring->vma = NULL;
}

2026
static void intel_destroy_ringbuffer_obj(struct intel_ring *ring)
2027
{
2028 2029
	i915_gem_object_put(ring->obj);
	ring->obj = NULL;
2030 2031
}

2032
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2033
				      struct intel_ring *ring)
2034
{
2035
	struct drm_i915_gem_object *obj;
2036

2037 2038
	obj = NULL;
	if (!HAS_LLC(dev))
2039
		obj = i915_gem_object_create_stolen(dev, ring->size);
2040
	if (obj == NULL)
2041
		obj = i915_gem_object_create(dev, ring->size);
2042 2043
	if (IS_ERR(obj))
		return PTR_ERR(obj);
2044

2045 2046 2047
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2048
	ring->obj = obj;
2049

2050
	return 0;
2051 2052
}

2053 2054
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
2055
{
2056
	struct intel_ring *ring;
2057 2058
	int ret;

2059 2060
	GEM_BUG_ON(!is_power_of_2(size));

2061
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2062 2063 2064
	if (ring == NULL) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				 engine->name);
2065
		return ERR_PTR(-ENOMEM);
2066
	}
2067

2068
	ring->engine = engine;
2069
	list_add(&ring->link, &engine->buffers);
2070 2071 2072 2073 2074 2075 2076

	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
2077
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
2078 2079 2080 2081 2082
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2083
	ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
2084
	if (ret) {
2085 2086 2087
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
				 engine->name, ret);
		list_del(&ring->link);
2088 2089 2090 2091 2092 2093 2094 2095
		kfree(ring);
		return ERR_PTR(ret);
	}

	return ring;
}

void
2096
intel_ring_free(struct intel_ring *ring)
2097 2098
{
	intel_destroy_ringbuffer_obj(ring);
2099
	list_del(&ring->link);
2100 2101 2102
	kfree(ring);
}

2103 2104 2105 2106 2107 2108
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

2109
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
		ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
		if (ret)
			goto error;
	}

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2130
	i915_gem_context_get(ctx);
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2143
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2144 2145 2146 2147 2148 2149 2150

	if (--ce->pin_count)
		return;

	if (ce->state)
		i915_gem_object_ggtt_unpin(ce->state);

2151
	i915_gem_context_put(ctx);
2152 2153
}

2154
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2155
{
2156
	struct drm_i915_private *dev_priv = engine->i915;
2157
	struct intel_ring *ring;
2158 2159
	int ret;

2160
	WARN_ON(engine->buffer);
2161

2162 2163
	intel_engine_setup_common(engine);

2164 2165
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2166

2167
	ret = intel_engine_init_common(engine);
2168 2169
	if (ret)
		goto error;
2170

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2182 2183 2184
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2185 2186
		goto error;
	}
2187
	engine->buffer = ring;
2188

2189
	if (I915_NEED_GFX_HWS(dev_priv)) {
2190
		ret = init_status_page(engine);
2191
		if (ret)
2192
			goto error;
2193
	} else {
2194 2195
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2196
		if (ret)
2197
			goto error;
2198 2199
	}

2200
	ret = intel_ring_pin(ring);
2201 2202
	if (ret) {
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2203
				engine->name, ret);
2204
		intel_destroy_ringbuffer_obj(ring);
2205
		goto error;
2206
	}
2207

2208
	return 0;
2209

2210
error:
2211
	intel_engine_cleanup(engine);
2212
	return ret;
2213 2214
}

2215
void intel_engine_cleanup(struct intel_engine_cs *engine)
2216
{
2217
	struct drm_i915_private *dev_priv;
2218

2219
	if (!intel_engine_initialized(engine))
2220 2221
		return;

2222
	dev_priv = engine->i915;
2223

2224
	if (engine->buffer) {
2225
		intel_engine_stop(engine);
2226
		WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2227

2228
		intel_ring_unpin(engine->buffer);
2229
		intel_ring_free(engine->buffer);
2230
		engine->buffer = NULL;
2231
	}
2232

2233 2234
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2235

2236
	if (I915_NEED_GFX_HWS(dev_priv)) {
2237
		cleanup_status_page(engine);
2238
	} else {
2239 2240
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2241
	}
2242

2243
	intel_engine_cleanup_cmd_parser(engine);
2244
	i915_gem_batch_pool_fini(&engine->batch_pool);
2245
	intel_engine_fini_breadcrumbs(engine);
2246 2247 2248

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2249
	engine->i915 = NULL;
2250 2251
}

2252
int intel_engine_idle(struct intel_engine_cs *engine)
2253
{
2254
	struct drm_i915_gem_request *req;
2255 2256

	/* Wait upon the last request to be completed */
2257
	if (list_empty(&engine->request_list))
2258 2259
		return 0;

2260 2261 2262
	req = list_entry(engine->request_list.prev,
			 struct drm_i915_gem_request,
			 list);
2263 2264 2265

	/* Make sure we do not trigger any retires */
	return __i915_wait_request(req,
2266
				   req->i915->mm.interruptible,
2267
				   NULL, NULL);
2268 2269
}

2270
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2271
{
2272 2273 2274 2275 2276 2277
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2278
	request->reserved_space += LEGACY_REQUEST_SIZE;
2279

2280
	request->ring = request->engine->buffer;
2281 2282 2283 2284 2285

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2286
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2287
	return 0;
2288 2289
}

2290 2291
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2292
	struct intel_ring *ring = req->ring;
2293 2294 2295
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *target;

2296 2297
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2309
	GEM_BUG_ON(!req->reserved_space);
2310 2311 2312 2313

	list_for_each_entry(target, &engine->request_list, list) {
		unsigned space;

2314
		/*
2315 2316 2317
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
2318
		 */
2319
		if (target->ring != ring)
2320 2321 2322
			continue;

		/* Would completion of this request free enough space? */
2323 2324
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2325 2326
		if (space >= bytes)
			break;
2327
	}
2328

2329 2330 2331 2332
	if (WARN_ON(&target->list == &engine->request_list))
		return -ENOSPC;

	return i915_wait_request(target);
2333 2334
}

2335
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2336
{
2337
	struct intel_ring *ring = req->ring;
2338 2339
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2340 2341
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2342
	bool need_wrap = false;
2343

2344
	total_bytes = bytes + req->reserved_space;
2345

2346 2347 2348 2349 2350 2351 2352
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2353 2354 2355 2356 2357 2358 2359
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2360
		wait_bytes = remain_actual + req->reserved_space;
2361
	} else {
2362 2363
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2364 2365
	}

2366
	if (wait_bytes > ring->space) {
2367
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2368 2369
		if (unlikely(ret))
			return ret;
2370

2371 2372
		intel_ring_update_space(ring);
		if (unlikely(ring->space < wait_bytes))
2373
			return -EAGAIN;
M
Mika Kuoppala 已提交
2374 2375
	}

2376
	if (unlikely(need_wrap)) {
2377 2378
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2379

2380
		/* Fill the tail with MI_NOOP */
2381 2382 2383
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2384
	}
2385

2386 2387
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2388
	return 0;
2389
}
2390

2391
/* Align the ring tail to a cacheline boundary */
2392
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2393
{
2394
	struct intel_ring *ring = req->ring;
2395 2396
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2397 2398 2399 2400 2401
	int ret;

	if (num_dwords == 0)
		return 0;

2402
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2403
	ret = intel_ring_begin(req, num_dwords);
2404 2405 2406 2407
	if (ret)
		return ret;

	while (num_dwords--)
2408
		intel_ring_emit(ring, MI_NOOP);
2409

2410
	intel_ring_advance(ring);
2411 2412 2413 2414

	return 0;
}

2415
void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2416
{
2417
	struct drm_i915_private *dev_priv = engine->i915;
2418

2419 2420 2421 2422 2423 2424 2425 2426
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2427
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2428 2429
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2430
		if (HAS_VEBOX(dev_priv))
2431
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2432
	}
2433 2434 2435 2436 2437 2438 2439 2440
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2441 2442
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2443

2444 2445 2446
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);
2447
	engine->last_submitted_seqno = seqno;
2448

2449
	engine->hangcheck.seqno = seqno;
2450 2451 2452 2453 2454 2455 2456

	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	rcu_read_lock();
	intel_engine_wakeup(engine);
	rcu_read_unlock();
2457
}
2458

2459
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2460
{
2461
	struct drm_i915_private *dev_priv = request->i915;
2462

2463 2464
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2465
       /* Every tail move must follow the sequence below */
2466 2467 2468 2469

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2470 2471
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2472 2473

	/* Clear the context id. Here be magic! */
2474
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2475

2476
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2477 2478 2479 2480 2481
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2482
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2483

2484
	/* Now that the ring is fully powered up, update the tail */
2485
	i9xx_submit_request(request);
2486 2487 2488 2489

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2490 2491 2492 2493
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2494 2495
}

2496
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2497
{
2498
	struct intel_ring *ring = req->ring;
2499
	uint32_t cmd;
2500 2501
	int ret;

2502
	ret = intel_ring_begin(req, 4);
2503 2504 2505
	if (ret)
		return ret;

2506
	cmd = MI_FLUSH_DW;
2507
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2508
		cmd += 1;
2509 2510 2511 2512 2513 2514 2515 2516

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2517 2518 2519 2520 2521 2522
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2523
	if (mode & EMIT_INVALIDATE)
2524 2525
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2526 2527
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2528
	if (INTEL_GEN(req->i915) >= 8) {
2529 2530
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2531
	} else  {
2532 2533
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2534
	}
2535
	intel_ring_advance(ring);
2536
	return 0;
2537 2538
}

2539
static int
2540 2541 2542
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2543
{
2544
	struct intel_ring *ring = req->ring;
2545
	bool ppgtt = USES_PPGTT(req->i915) &&
2546
			!(dispatch_flags & I915_DISPATCH_SECURE);
2547 2548
	int ret;

2549
	ret = intel_ring_begin(req, 4);
2550 2551 2552 2553
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2554
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2555 2556
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2557 2558 2559 2560
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2561 2562 2563 2564

	return 0;
}

2565
static int
2566 2567 2568
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2569
{
2570
	struct intel_ring *ring = req->ring;
2571 2572
	int ret;

2573
	ret = intel_ring_begin(req, 2);
2574 2575 2576
	if (ret)
		return ret;

2577
	intel_ring_emit(ring,
2578
			MI_BATCH_BUFFER_START |
2579
			(dispatch_flags & I915_DISPATCH_SECURE ?
2580 2581 2582
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2583
	/* bit0-7 is the length on GEN6+ */
2584 2585
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2586 2587 2588 2589

	return 0;
}

2590
static int
2591 2592 2593
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2594
{
2595
	struct intel_ring *ring = req->ring;
2596
	int ret;
2597

2598
	ret = intel_ring_begin(req, 2);
2599 2600
	if (ret)
		return ret;
2601

2602
	intel_ring_emit(ring,
2603
			MI_BATCH_BUFFER_START |
2604 2605
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2606
	/* bit0-7 is the length on GEN6+ */
2607 2608
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2609

2610
	return 0;
2611 2612
}

2613 2614
/* Blitter support (SandyBridge+) */

2615
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2616
{
2617
	struct intel_ring *ring = req->ring;
2618
	uint32_t cmd;
2619 2620
	int ret;

2621
	ret = intel_ring_begin(req, 4);
2622 2623 2624
	if (ret)
		return ret;

2625
	cmd = MI_FLUSH_DW;
2626
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2627
		cmd += 1;
2628 2629 2630 2631 2632 2633 2634 2635

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2636 2637 2638 2639 2640 2641
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2642
	if (mode & EMIT_INVALIDATE)
2643
		cmd |= MI_INVALIDATE_TLB;
2644 2645
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2646
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2647
	if (INTEL_GEN(req->i915) >= 8) {
2648 2649
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2650
	} else  {
2651 2652
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2653
	}
2654
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2655

2656
	return 0;
Z
Zou Nan hai 已提交
2657 2658
}

2659 2660 2661
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2662
	struct drm_i915_gem_object *obj;
2663
	int ret, i;
2664

2665
	if (!i915.semaphores)
2666 2667 2668
		return;

	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2669
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2670 2671 2672 2673 2674 2675 2676
		if (IS_ERR(obj)) {
			DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
			i915.semaphores = 0;
		} else {
			i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
			ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
			if (ret != 0) {
2677
				i915_gem_object_put(obj);
2678 2679 2680 2681 2682 2683 2684 2685
				DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				dev_priv->semaphore_obj = obj;
			}
		}
	}

2686
	if (!i915.semaphores)
2687 2688 2689
		return;

	if (INTEL_GEN(dev_priv) >= 8) {
2690 2691
		u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);

2692 2693
		engine->semaphore.sync_to = gen8_ring_sync;
		engine->semaphore.signal = gen8_xcs_signal;
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704

		for (i = 0; i < I915_NUM_ENGINES; i++) {
			u64 ring_offset;

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2705 2706 2707
	} else if (INTEL_GEN(dev_priv) >= 6) {
		engine->semaphore.sync_to = gen6_ring_sync;
		engine->semaphore.signal = gen6_signal;
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
		for (i = 0; i < I915_NUM_ENGINES; i++) {
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
			} sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
				[RCS] = {
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
				},
				[VCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
				},
				[BCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
				},
				[VECS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

			if (i == engine->id || i == VCS2) {
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
				wait_mbox = sem_data[engine->id][i].wait_mbox;
				mbox_reg = sem_data[engine->id][i].mbox_reg;
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2756 2757 2758
	}
}

2759 2760 2761
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2762 2763
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2764
	if (INTEL_GEN(dev_priv) >= 8) {
2765 2766
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2767 2768
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2769 2770
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2771 2772
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2773 2774
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2775
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2776
	} else if (INTEL_GEN(dev_priv) >= 3) {
2777 2778
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2779
	} else {
2780 2781
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2782 2783 2784
	}
}

2785 2786 2787
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2788
	engine->init_hw = init_ring_common;
2789

2790
	engine->emit_request = i9xx_emit_request;
2791
	if (INTEL_GEN(dev_priv) >= 6)
2792 2793
		engine->emit_request = gen6_emit_request;
	engine->submit_request = i9xx_submit_request;
2794 2795

	if (INTEL_GEN(dev_priv) >= 8)
2796
		engine->emit_bb_start = gen8_emit_bb_start;
2797
	else if (INTEL_GEN(dev_priv) >= 6)
2798
		engine->emit_bb_start = gen6_emit_bb_start;
2799
	else if (INTEL_GEN(dev_priv) >= 4)
2800
		engine->emit_bb_start = i965_emit_bb_start;
2801
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2802
		engine->emit_bb_start = i830_emit_bb_start;
2803
	else
2804
		engine->emit_bb_start = i915_emit_bb_start;
2805

2806
	intel_ring_init_irq(dev_priv, engine);
2807
	intel_ring_init_semaphores(dev_priv, engine);
2808 2809
}

2810
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2811
{
2812
	struct drm_i915_private *dev_priv = engine->i915;
2813
	int ret;
2814

2815 2816
	intel_ring_default_vfuncs(dev_priv, engine);

2817 2818
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2819

2820
	if (INTEL_GEN(dev_priv) >= 8) {
2821
		engine->init_context = intel_rcs_ctx_init;
2822
		engine->emit_request = gen8_render_emit_request;
2823
		engine->emit_flush = gen8_render_ring_flush;
2824
		if (i915.semaphores)
2825
			engine->semaphore.signal = gen8_rcs_signal;
2826
	} else if (INTEL_GEN(dev_priv) >= 6) {
2827
		engine->init_context = intel_rcs_ctx_init;
2828
		engine->emit_flush = gen7_render_ring_flush;
2829
		if (IS_GEN6(dev_priv))
2830
			engine->emit_flush = gen6_render_ring_flush;
2831
	} else if (IS_GEN5(dev_priv)) {
2832
		engine->emit_flush = gen4_render_ring_flush;
2833
	} else {
2834
		if (INTEL_GEN(dev_priv) < 4)
2835
			engine->emit_flush = gen2_render_ring_flush;
2836
		else
2837
			engine->emit_flush = gen4_render_ring_flush;
2838
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2839
	}
B
Ben Widawsky 已提交
2840

2841
	if (IS_HASWELL(dev_priv))
2842
		engine->emit_bb_start = hsw_emit_bb_start;
2843

2844 2845
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2846

2847
	ret = intel_init_ring_buffer(engine);
2848 2849 2850
	if (ret)
		return ret;

2851
	if (INTEL_GEN(dev_priv) >= 6) {
2852 2853 2854 2855 2856
		ret = intel_init_pipe_control(engine, 4096);
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
		ret = intel_init_pipe_control(engine, I830_WA_SIZE);
2857 2858 2859 2860 2861
		if (ret)
			return ret;
	}

	return 0;
2862 2863
}

2864
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2865
{
2866
	struct drm_i915_private *dev_priv = engine->i915;
2867

2868 2869
	intel_ring_default_vfuncs(dev_priv, engine);

2870
	if (INTEL_GEN(dev_priv) >= 6) {
2871
		/* gen6 bsd needs a special wa for tail updates */
2872
		if (IS_GEN6(dev_priv))
2873
			engine->submit_request = gen6_bsd_submit_request;
2874
		engine->emit_flush = gen6_bsd_ring_flush;
2875
		if (INTEL_GEN(dev_priv) < 8)
2876
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2877
	} else {
2878
		engine->mmio_base = BSD_RING_BASE;
2879
		engine->emit_flush = bsd_ring_flush;
2880
		if (IS_GEN5(dev_priv))
2881
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2882
		else
2883
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2884 2885
	}

2886
	return intel_init_ring_buffer(engine);
2887
}
2888

2889
/**
2890
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2891
 */
2892
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2893
{
2894
	struct drm_i915_private *dev_priv = engine->i915;
2895 2896 2897

	intel_ring_default_vfuncs(dev_priv, engine);

2898
	engine->emit_flush = gen6_bsd_ring_flush;
2899

2900
	return intel_init_ring_buffer(engine);
2901 2902
}

2903
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2904
{
2905
	struct drm_i915_private *dev_priv = engine->i915;
2906 2907 2908

	intel_ring_default_vfuncs(dev_priv, engine);

2909
	engine->emit_flush = gen6_ring_flush;
2910
	if (INTEL_GEN(dev_priv) < 8)
2911
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2912

2913
	return intel_init_ring_buffer(engine);
2914
}
2915

2916
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2917
{
2918
	struct drm_i915_private *dev_priv = engine->i915;
2919 2920 2921

	intel_ring_default_vfuncs(dev_priv, engine);

2922
	engine->emit_flush = gen6_ring_flush;
2923

2924
	if (INTEL_GEN(dev_priv) < 8) {
2925
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2926 2927
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2928
	}
B
Ben Widawsky 已提交
2929

2930
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2931 2932
}

2933
void intel_engine_stop(struct intel_engine_cs *engine)
2934 2935 2936
{
	int ret;

2937
	if (!intel_engine_initialized(engine))
2938 2939
		return;

2940
	ret = intel_engine_idle(engine);
2941
	if (ret)
2942
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2943
			  engine->name, ret);
2944

2945
	stop_ring(engine);
2946
}