intel_ringbuffer.c 89.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37
int __intel_ring_space(int head, int tail, int size)
38
{
39 40
	int space = head - tail;
	if (space <= 0)
41
		space += size;
42
	return space - I915_RING_FREE_SPACE;
43 44
}

45 46 47 48 49 50 51 52 53 54 55
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
{
	if (ringbuf->last_retired_head != -1) {
		ringbuf->head = ringbuf->last_retired_head;
		ringbuf->last_retired_head = -1;
	}

	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
					    ringbuf->tail, ringbuf->size);
}

56
int intel_ring_space(struct intel_ringbuffer *ringbuf)
57
{
58 59
	intel_ring_update_space(ringbuf);
	return ringbuf->space;
60 61
}

62
bool intel_engine_stopped(struct intel_engine_cs *engine)
63
{
64
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
65
	return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
66
}
67

68
static void __intel_ring_advance(struct intel_engine_cs *engine)
69
{
70
	struct intel_ringbuffer *ringbuf = engine->buffer;
71
	ringbuf->tail &= ringbuf->size - 1;
72
	if (intel_engine_stopped(engine))
73
		return;
74
	engine->write_tail(engine, ringbuf->tail);
75 76
}

77
static int
78
gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 80 81
		       u32	invalidate_domains,
		       u32	flush_domains)
{
82
	struct intel_engine_cs *engine = req->engine;
83 84 85 86
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;
87
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 89 90 91 92
		cmd |= MI_NO_WRITE_FLUSH;

	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
		cmd |= MI_READ_FLUSH;

93
	ret = intel_ring_begin(req, 2);
94 95 96
	if (ret)
		return ret;

97 98 99
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
100 101 102 103 104

	return 0;
}

static int
105
gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 107
		       u32	invalidate_domains,
		       u32	flush_domains)
108
{
109
	struct intel_engine_cs *engine = req->engine;
110
	struct drm_device *dev = engine->dev;
111
	u32 cmd;
112
	int ret;
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 145 146
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
147

148 149 150
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
	    (IS_G4X(dev) || IS_GEN5(dev)))
		cmd |= MI_INVALIDATE_ISP;
151

152
	ret = intel_ring_begin(req, 2);
153 154
	if (ret)
		return ret;
155

156 157 158
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
159 160

	return 0;
161 162
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
201
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202
{
203
	struct intel_engine_cs *engine = req->engine;
204
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 206
	int ret;

207
	ret = intel_ring_begin(req, 6);
208 209 210
	if (ret)
		return ret;

211 212
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
213
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 215 216 217 218
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0); /* low dword */
	intel_ring_emit(engine, 0); /* high dword */
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
219

220
	ret = intel_ring_begin(req, 6);
221 222 223
	if (ret)
		return ret;

224 225 226 227 228 229 230
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
231 232 233 234 235

	return 0;
}

static int
236 237
gen6_render_ring_flush(struct drm_i915_gem_request *req,
		       u32 invalidate_domains, u32 flush_domains)
238
{
239
	struct intel_engine_cs *engine = req->engine;
240
	u32 flags = 0;
241
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 243
	int ret;

244
	/* Force SNB workarounds for PIPE_CONTROL flushes */
245
	ret = intel_emit_post_sync_nonzero_flush(req);
246 247 248
	if (ret)
		return ret;

249 250 251 252
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
253 254 255 256 257 258 259
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
260
		flags |= PIPE_CONTROL_CS_STALL;
261 262 263 264 265 266 267 268 269 270 271
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
272
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273
	}
274

275
	ret = intel_ring_begin(req, 4);
276 277 278
	if (ret)
		return ret;

279 280 281 282 283
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
284 285 286 287

	return 0;
}

288
static int
289
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290
{
291
	struct intel_engine_cs *engine = req->engine;
292 293
	int ret;

294
	ret = intel_ring_begin(req, 4);
295 296 297
	if (ret)
		return ret;

298 299
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
300
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 302 303
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
304 305 306 307

	return 0;
}

308
static int
309
gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 311
		       u32 invalidate_domains, u32 flush_domains)
{
312
	struct intel_engine_cs *engine = req->engine;
313
	u32 flags = 0;
314
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 316
	int ret;

317 318 319 320 321 322 323 324 325 326
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

327 328 329 330 331 332 333
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
336 337 338 339 340 341 342 343
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345 346 347 348
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
349
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350

351 352
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

353 354 355
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
356
		gen7_render_ring_cs_stall_wa(req);
357 358
	}

359
	ret = intel_ring_begin(req, 4);
360 361 362
	if (ret)
		return ret;

363 364 365 366 367
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
368 369 370 371

	return 0;
}

372
static int
373
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374 375
		       u32 flags, u32 scratch_addr)
{
376
	struct intel_engine_cs *engine = req->engine;
377 378
	int ret;

379
	ret = intel_ring_begin(req, 6);
380 381 382
	if (ret)
		return ret;

383 384 385 386 387 388 389
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
390 391 392 393

	return 0;
}

B
Ben Widawsky 已提交
394
static int
395
gen8_render_ring_flush(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
396 397 398
		       u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
399
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400
	int ret;
B
Ben Widawsky 已提交
401 402 403 404 405 406

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
409 410 411 412 413 414 415 416 417 418
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419 420

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421
		ret = gen8_emit_pipe_control(req,
422 423 424 425 426
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
427 428
	}

429
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
430 431
}

432
static void ring_write_tail(struct intel_engine_cs *engine,
433
			    u32 value)
434
{
435 436
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
	I915_WRITE_TAIL(engine, value);
437 438
}

439
u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
440
{
441
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
442
	u64 acthd;
443

444 445 446 447 448
	if (INTEL_INFO(engine->dev)->gen >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_INFO(engine->dev)->gen >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
449 450 451 452
	else
		acthd = I915_READ(ACTHD);

	return acthd;
453 454
}

455
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
456
{
457
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
458 459 460
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
461
	if (INTEL_INFO(engine->dev)->gen >= 4)
462 463 464 465
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

466
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
467
{
468 469
	struct drm_device *dev = engine->dev;
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
470
	i915_reg_t mmio;
471 472 473 474 475

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
	if (IS_GEN7(dev)) {
476
		switch (engine->id) {
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
495 496
	} else if (IS_GEN6(engine->dev)) {
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
497 498
	} else {
		/* XXX: gen8 returns to sanity */
499
		mmio = RING_HWS_PGA(engine->mmio_base);
500 501
	}

502
	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
503 504 505 506 507 508 509 510 511 512
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
514 515

		/* ring should be idle before issuing a sync flush*/
516
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
517 518 519 520 521 522 523

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
			     1000))
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524
				  engine->name);
525 526 527
	}
}

528
static bool stop_ring(struct intel_engine_cs *engine)
529
{
530
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
531

532 533 534 535 536
	if (!IS_GEN2(engine->dev)) {
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
		if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
537 538 539 540
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
541
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
542
				return false;
543 544
		}
	}
545

546 547 548
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
	engine->write_tail(engine, 0);
549

550 551 552
	if (!IS_GEN2(engine->dev)) {
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
553
	}
554

555
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
556
}
557

558 559 560 561 562
void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
{
	memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
}

563
static int init_ring_common(struct intel_engine_cs *engine)
564
{
565
	struct drm_device *dev = engine->dev;
566
	struct drm_i915_private *dev_priv = dev->dev_private;
567
	struct intel_ringbuffer *ringbuf = engine->buffer;
568
	struct drm_i915_gem_object *obj = ringbuf->obj;
569 570
	int ret = 0;

571
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
572

573
	if (!stop_ring(engine)) {
574
		/* G45 ring initialization often fails to reset head to zero */
575 576
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
577 578 579 580 581
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
582

583
		if (!stop_ring(engine)) {
584 585
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
586 587 588 589 590
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
591 592
			ret = -EIO;
			goto out;
593
		}
594 595
	}

596
	if (I915_NEED_GFX_HWS(dev))
597
		intel_ring_setup_status_page(engine);
598
	else
599
		ring_setup_phys_status_page(engine);
600

601
	/* Enforce ordering by reading HEAD register back */
602
	I915_READ_HEAD(engine);
603

604 605 606 607
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
608
	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
609 610

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
611
	if (I915_READ_HEAD(engine))
612
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
613 614 615
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
616

617
	I915_WRITE_CTL(engine,
618
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
619
			| RING_VALID);
620 621

	/* If the head is still not zero, the ring is dead */
622 623 624
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
625
		DRM_ERROR("%s initialization failed "
626
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
627 628 629 630 631 632
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
633 634
		ret = -EIO;
		goto out;
635 636
	}

637
	ringbuf->last_retired_head = -1;
638 639
	ringbuf->head = I915_READ_HEAD(engine);
	ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
640
	intel_ring_update_space(ringbuf);
641

642
	intel_engine_init_hangcheck(engine);
643

644
out:
645
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
646 647

	return ret;
648 649
}

650
void
651
intel_fini_pipe_control(struct intel_engine_cs *engine)
652
{
653
	struct drm_device *dev = engine->dev;
654

655
	if (engine->scratch.obj == NULL)
656 657 658
		return;

	if (INTEL_INFO(dev)->gen >= 5) {
659 660
		kunmap(sg_page(engine->scratch.obj->pages->sgl));
		i915_gem_object_ggtt_unpin(engine->scratch.obj);
661 662
	}

663 664
	drm_gem_object_unreference(&engine->scratch.obj->base);
	engine->scratch.obj = NULL;
665 666 667
}

int
668
intel_init_pipe_control(struct intel_engine_cs *engine)
669 670 671
{
	int ret;

672
	WARN_ON(engine->scratch.obj);
673

674
	engine->scratch.obj = i915_gem_object_create(engine->dev, 4096);
675
	if (engine->scratch.obj == NULL) {
676 677 678 679
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
680

681 682
	ret = i915_gem_object_set_cache_level(engine->scratch.obj,
					      I915_CACHE_LLC);
683 684
	if (ret)
		goto err_unref;
685

686
	ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
687 688 689
	if (ret)
		goto err_unref;

690 691 692
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
	engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
	if (engine->scratch.cpu_page == NULL) {
693
		ret = -ENOMEM;
694
		goto err_unpin;
695
	}
696

697
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
698
			 engine->name, engine->scratch.gtt_offset);
699 700 701
	return 0;

err_unpin:
702
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
703
err_unref:
704
	drm_gem_object_unreference(&engine->scratch.obj->base);
705 706 707 708
err:
	return ret;
}

709
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
710
{
711
	int ret, i;
712
	struct intel_engine_cs *engine = req->engine;
713
	struct drm_device *dev = engine->dev;
714
	struct drm_i915_private *dev_priv = dev->dev_private;
715
	struct i915_workarounds *w = &dev_priv->workarounds;
716

717
	if (w->count == 0)
718
		return 0;
719

720
	engine->gpu_caches_dirty = true;
721
	ret = intel_ring_flush_all_caches(req);
722 723
	if (ret)
		return ret;
724

725
	ret = intel_ring_begin(req, (w->count * 2 + 2));
726 727 728
	if (ret)
		return ret;

729
	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
730
	for (i = 0; i < w->count; i++) {
731 732
		intel_ring_emit_reg(engine, w->reg[i].addr);
		intel_ring_emit(engine, w->reg[i].value);
733
	}
734
	intel_ring_emit(engine, MI_NOOP);
735

736
	intel_ring_advance(engine);
737

738
	engine->gpu_caches_dirty = true;
739
	ret = intel_ring_flush_all_caches(req);
740 741
	if (ret)
		return ret;
742

743
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
744

745
	return 0;
746 747
}

748
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
749 750 751
{
	int ret;

752
	ret = intel_ring_workarounds_emit(req);
753 754 755
	if (ret != 0)
		return ret;

756
	ret = i915_gem_render_state_init(req);
757
	if (ret)
758
		return ret;
759

760
	return 0;
761 762
}

763
static int wa_add(struct drm_i915_private *dev_priv,
764 765
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
766 767 768 769 770 771 772 773 774 775 776 777 778
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
779 780
}

781
#define WA_REG(addr, mask, val) do { \
782
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
783 784
		if (r) \
			return r; \
785
	} while (0)
786 787

#define WA_SET_BIT_MASKED(addr, mask) \
788
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
789 790

#define WA_CLR_BIT_MASKED(addr, mask) \
791
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
792

793
#define WA_SET_FIELD_MASKED(addr, mask, value) \
794
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
795

796 797
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
798

799
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
800

801 802
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
803
{
804
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
805
	struct i915_workarounds *wa = &dev_priv->workarounds;
806
	const uint32_t index = wa->hw_whitelist_count[engine->id];
807 808 809 810

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

811
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
812
		 i915_mmio_reg_offset(reg));
813
	wa->hw_whitelist_count[engine->id]++;
814 815 816 817

	return 0;
}

818
static int gen8_init_workarounds(struct intel_engine_cs *engine)
819
{
820
	struct drm_device *dev = engine->dev;
821 822 823
	struct drm_i915_private *dev_priv = dev->dev_private;

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
824

825 826 827
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

828 829 830 831
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

832 833 834 835 836
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
837
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
838
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
839
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
840 841
			  HDC_FORCE_NON_COHERENT);

842 843 844 845 846 847 848 849 850 851
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

852 853 854
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

855 856 857 858 859 860 861 862 863 864 865 866
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

867 868 869
	return 0;
}

870
static int bdw_init_workarounds(struct intel_engine_cs *engine)
871
{
872
	int ret;
873
	struct drm_device *dev = engine->dev;
874
	struct drm_i915_private *dev_priv = dev->dev_private;
875

876
	ret = gen8_init_workarounds(engine);
877 878 879
	if (ret)
		return ret;

880
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
881
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
882

883
	/* WaDisableDopClockGating:bdw */
884 885
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
886

887 888
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
889

890
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
891 892 893
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
894
			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
895 896 897 898

	return 0;
}

899
static int chv_init_workarounds(struct intel_engine_cs *engine)
900
{
901
	int ret;
902
	struct drm_device *dev = engine->dev;
903 904
	struct drm_i915_private *dev_priv = dev->dev_private;

905
	ret = gen8_init_workarounds(engine);
906 907 908
	if (ret)
		return ret;

909
	/* WaDisableThreadStallDopClockGating:chv */
910
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
911

912 913 914
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

915 916 917
	return 0;
}

918
static int gen9_init_workarounds(struct intel_engine_cs *engine)
919
{
920
	struct drm_device *dev = engine->dev;
921
	struct drm_i915_private *dev_priv = dev->dev_private;
922
	uint32_t tmp;
923
	int ret;
924

925 926 927 928 929 930 931 932
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

	/* WaDisableKillLogic:bxt,skl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

933
	/* WaClearFlowControlGpgpuContextSave:skl,bxt */
934
	/* WaDisablePartialInstShootdown:skl,bxt */
935
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
936
			  FLOW_CONTROL_ENABLE |
937 938
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

939
	/* Syncing dependencies between camera and graphics:skl,bxt */
940 941 942
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

943 944 945
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
946 947
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
948

949 950 951
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
952 953
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
954 955 956 957 958
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
959 960
	}

961
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
962 963 964 965
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt */
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
966

967
	/* Wa4x4STCOptimizationDisable:skl,bxt */
968
	/* WaDisablePartialResolveInVc:skl,bxt */
969 970
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
971

972
	/* WaCcsTlbPrefetchDisable:skl,bxt */
973 974 975
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

976
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
977 978
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
979 980 981
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

982 983
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
984
	if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
985
	    IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
986 987 988
		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);

989
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
990
	if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
991 992 993
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

994 995 996
	/* WaDisableSTUnitPowerOptimization:skl,bxt */
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

997 998 999 1000
	/* WaOCLCoherentLineFlush:skl,bxt */
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

1001
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
1002
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1003 1004 1005
	if (ret)
		return ret;

1006
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt */
1007
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1008 1009 1010
	if (ret)
		return ret;

1011 1012 1013
	return 0;
}

1014
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1015
{
1016
	struct drm_device *dev = engine->dev;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	struct drm_i915_private *dev_priv = dev->dev_private;
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
1028
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1056
static int skl_init_workarounds(struct intel_engine_cs *engine)
1057
{
1058
	int ret;
1059
	struct drm_device *dev = engine->dev;
1060 1061
	struct drm_i915_private *dev_priv = dev->dev_private;

1062
	ret = gen9_init_workarounds(engine);
1063 1064
	if (ret)
		return ret;
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
	if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1076
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1077 1078 1079 1080 1081 1082 1083 1084
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1085
	if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1086 1087 1088 1089 1090
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1091
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1092 1093 1094 1095
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1096
	/* WaDisablePowerCompilerClockGating:skl */
1097
	if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1098 1099 1100
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1101 1102
	/* This is tied to WaForceContextSaveRestoreNonCoherent */
	if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
1103 1104 1105 1106 1107 1108 1109 1110
		/*
		 *Use Force Non-Coherent whenever executing a 3D context. This
		 * is a workaround for a possible hang in the unlikely event
		 * a TLB invalidation occurs during a PSD flush.
		 */
		/* WaForceEnableNonCoherent:skl */
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FORCE_NON_COHERENT);
1111 1112 1113 1114

		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);
1115 1116
	}

1117 1118
	/* WaBarrierPerformanceFixDisable:skl */
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1119 1120 1121 1122
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1123
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1124
	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1125 1126 1127 1128
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1129
	/* WaDisableLSQCROPERFforOCL:skl */
1130
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1131 1132 1133
	if (ret)
		return ret;

1134
	return skl_tune_iz_hashing(engine);
1135 1136
}

1137
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1138
{
1139
	int ret;
1140
	struct drm_device *dev = engine->dev;
1141 1142
	struct drm_i915_private *dev_priv = dev->dev_private;

1143
	ret = gen9_init_workarounds(engine);
1144 1145
	if (ret)
		return ret;
1146

1147 1148
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
T
Tim Gore 已提交
1149
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1150 1151 1152
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
T
Tim Gore 已提交
1153
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1154 1155 1156 1157
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1158 1159 1160 1161
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1162
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1163
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1164 1165 1166 1167 1168
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1169 1170 1171
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1172
	/* WaDisableLSQCROPERFforOCL:bxt */
1173
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1174
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1175 1176
		if (ret)
			return ret;
1177

1178
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1179 1180
		if (ret)
			return ret;
1181 1182
	}

1183 1184 1185 1186
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
	if (IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN8_L3SQCREG1, BXT_WA_L3SQCREG1_DEFAULT);

1187 1188 1189
	return 0;
}

1190
int init_workarounds_ring(struct intel_engine_cs *engine)
1191
{
1192
	struct drm_device *dev = engine->dev;
1193 1194
	struct drm_i915_private *dev_priv = dev->dev_private;

1195
	WARN_ON(engine->id != RCS);
1196 1197

	dev_priv->workarounds.count = 0;
1198
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1199 1200

	if (IS_BROADWELL(dev))
1201
		return bdw_init_workarounds(engine);
1202 1203

	if (IS_CHERRYVIEW(dev))
1204
		return chv_init_workarounds(engine);
1205

1206
	if (IS_SKYLAKE(dev))
1207
		return skl_init_workarounds(engine);
1208 1209

	if (IS_BROXTON(dev))
1210
		return bxt_init_workarounds(engine);
1211

1212 1213 1214
	return 0;
}

1215
static int init_render_ring(struct intel_engine_cs *engine)
1216
{
1217
	struct drm_device *dev = engine->dev;
1218
	struct drm_i915_private *dev_priv = dev->dev_private;
1219
	int ret = init_ring_common(engine);
1220 1221
	if (ret)
		return ret;
1222

1223 1224
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1225
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1226 1227 1228 1229

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1230
	 *
1231
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1232
	 */
1233
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1234 1235
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1236
	/* Required for the hardware to program scanline values for waiting */
1237
	/* WaEnableFlushTlbInvalidationMode:snb */
1238 1239
	if (INTEL_INFO(dev)->gen == 6)
		I915_WRITE(GFX_MODE,
1240
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1241

1242
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1243 1244
	if (IS_GEN7(dev))
		I915_WRITE(GFX_MODE_GEN7,
1245
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1246
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1247

1248
	if (IS_GEN6(dev)) {
1249 1250 1251 1252 1253 1254
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1255
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1256 1257
	}

1258
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1259
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1260

1261
	if (HAS_L3_DPF(dev))
1262
		I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1263

1264
	return init_workarounds_ring(engine);
1265 1266
}

1267
static void render_ring_cleanup(struct intel_engine_cs *engine)
1268
{
1269
	struct drm_device *dev = engine->dev;
1270 1271 1272 1273 1274 1275 1276
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
		dev_priv->semaphore_obj = NULL;
	}
1277

1278
	intel_fini_pipe_control(engine);
1279 1280
}

1281
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1282 1283 1284
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 8
1285
	struct intel_engine_cs *signaller = signaller_req->engine;
1286 1287 1288
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *waiter;
1289 1290
	enum intel_engine_id id;
	int ret, num_rings;
1291 1292 1293 1294 1295

	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1296
	ret = intel_ring_begin(signaller_req, num_dwords);
1297 1298 1299
	if (ret)
		return ret;

1300
	for_each_engine_id(waiter, dev_priv, id) {
1301
		u32 seqno;
1302
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1303 1304 1305
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1306
		seqno = i915_gem_request_get_seqno(signaller_req);
1307 1308 1309 1310 1311 1312
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_QW_WRITE |
					   PIPE_CONTROL_FLUSH_ENABLE);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1313
		intel_ring_emit(signaller, seqno);
1314 1315 1316 1317 1318 1319 1320 1321 1322
		intel_ring_emit(signaller, 0);
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
					   MI_SEMAPHORE_TARGET(waiter->id));
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1323
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1324 1325 1326
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 6
1327
	struct intel_engine_cs *signaller = signaller_req->engine;
1328 1329 1330
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *waiter;
1331 1332
	enum intel_engine_id id;
	int ret, num_rings;
1333 1334 1335 1336 1337

	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1338
	ret = intel_ring_begin(signaller_req, num_dwords);
1339 1340 1341
	if (ret)
		return ret;

1342
	for_each_engine_id(waiter, dev_priv, id) {
1343
		u32 seqno;
1344
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1345 1346 1347
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1348
		seqno = i915_gem_request_get_seqno(signaller_req);
1349 1350 1351 1352 1353
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
					   MI_FLUSH_DW_OP_STOREDW);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
					   MI_FLUSH_DW_USE_GTT);
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1354
		intel_ring_emit(signaller, seqno);
1355 1356 1357 1358 1359 1360 1361 1362
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
					   MI_SEMAPHORE_TARGET(waiter->id));
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1363
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1364
		       unsigned int num_dwords)
1365
{
1366
	struct intel_engine_cs *signaller = signaller_req->engine;
1367 1368
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1369
	struct intel_engine_cs *useless;
1370 1371
	enum intel_engine_id id;
	int ret, num_rings;
1372

1373 1374 1375 1376
#define MBOX_UPDATE_DWORDS 3
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
#undef MBOX_UPDATE_DWORDS
1377

1378
	ret = intel_ring_begin(signaller_req, num_dwords);
1379 1380 1381
	if (ret)
		return ret;

1382 1383
	for_each_engine_id(useless, dev_priv, id) {
		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1384 1385

		if (i915_mmio_reg_valid(mbox_reg)) {
1386
			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1387

1388
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1389
			intel_ring_emit_reg(signaller, mbox_reg);
1390
			intel_ring_emit(signaller, seqno);
1391 1392
		}
	}
1393

1394 1395 1396 1397
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
		intel_ring_emit(signaller, MI_NOOP);

1398
	return 0;
1399 1400
}

1401 1402
/**
 * gen6_add_request - Update the semaphore mailbox registers
1403 1404
 *
 * @request - request to write to the ring
1405 1406 1407 1408
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1409
static int
1410
gen6_add_request(struct drm_i915_gem_request *req)
1411
{
1412
	struct intel_engine_cs *engine = req->engine;
1413
	int ret;
1414

1415 1416
	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 4);
B
Ben Widawsky 已提交
1417
	else
1418
		ret = intel_ring_begin(req, 4);
B
Ben Widawsky 已提交
1419

1420 1421 1422
	if (ret)
		return ret;

1423 1424 1425 1426 1427 1428
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1429 1430 1431 1432

	return 0;
}

1433 1434 1435 1436 1437 1438 1439
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
					      u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	return dev_priv->last_seqno < seqno;
}

1440 1441 1442 1443 1444 1445 1446
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1447 1448

static int
1449
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1450 1451 1452
	       struct intel_engine_cs *signaller,
	       u32 seqno)
{
1453
	struct intel_engine_cs *waiter = waiter_req->engine;
1454 1455 1456
	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
	int ret;

1457
	ret = intel_ring_begin(waiter_req, 4);
1458 1459 1460 1461 1462
	if (ret)
		return ret;

	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
				MI_SEMAPHORE_GLOBAL_GTT |
B
Ben Widawsky 已提交
1463
				MI_SEMAPHORE_POLL |
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
				MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(waiter, seqno);
	intel_ring_emit(waiter,
			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
	intel_ring_emit(waiter,
			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
	intel_ring_advance(waiter);
	return 0;
}

1474
static int
1475
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1476
	       struct intel_engine_cs *signaller,
1477
	       u32 seqno)
1478
{
1479
	struct intel_engine_cs *waiter = waiter_req->engine;
1480 1481 1482
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1483 1484
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
	int ret;
1485

1486 1487 1488 1489 1490 1491
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
	seqno -= 1;

1492
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1493

1494
	ret = intel_ring_begin(waiter_req, 4);
1495 1496 1497
	if (ret)
		return ret;

1498 1499
	/* If seqno wrap happened, omit the wait with no-ops */
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1500
		intel_ring_emit(waiter, dw1 | wait_mbox);
1501 1502 1503 1504 1505 1506 1507 1508 1509
		intel_ring_emit(waiter, seqno);
		intel_ring_emit(waiter, 0);
		intel_ring_emit(waiter, MI_NOOP);
	} else {
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
	}
1510
	intel_ring_advance(waiter);
1511 1512 1513 1514

	return 0;
}

1515 1516
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
do {									\
1517 1518
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
		 PIPE_CONTROL_DEPTH_STALL);				\
1519 1520 1521 1522 1523 1524
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
	intel_ring_emit(ring__, 0);							\
	intel_ring_emit(ring__, 0);							\
} while (0)

static int
1525
pc_render_add_request(struct drm_i915_gem_request *req)
1526
{
1527
	struct intel_engine_cs *engine = req->engine;
1528
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	int ret;

	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
	 * incoherent with writes to memory, i.e. completely fubar,
	 * so we need to use PIPE_NOTIFY instead.
	 *
	 * However, we also need to workaround the qword write
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
	 * memory before requesting an interrupt.
	 */
1539
	ret = intel_ring_begin(req, 32);
1540 1541 1542
	if (ret)
		return ret;

1543 1544
	intel_ring_emit(engine,
			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1545 1546
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1547 1548 1549 1550 1551
	intel_ring_emit(engine,
			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, 0);
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1552
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1553
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1554
	scratch_addr += 2 * CACHELINE_BYTES;
1555
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1556
	scratch_addr += 2 * CACHELINE_BYTES;
1557
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1558
	scratch_addr += 2 * CACHELINE_BYTES;
1559
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1560
	scratch_addr += 2 * CACHELINE_BYTES;
1561
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1562

1563 1564
	intel_ring_emit(engine,
			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1565 1566
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1567
			PIPE_CONTROL_NOTIFY);
1568 1569 1570 1571 1572
	intel_ring_emit(engine,
			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, 0);
	__intel_ring_advance(engine);
1573 1574 1575 1576

	return 0;
}

1577 1578
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1579 1580 1581
{
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
	 */
1592 1593
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1594 1595
}

1596
static u32
1597
ring_get_seqno(struct intel_engine_cs *engine)
1598
{
1599
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1600 1601
}

M
Mika Kuoppala 已提交
1602
static void
1603
ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
M
Mika Kuoppala 已提交
1604
{
1605
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
M
Mika Kuoppala 已提交
1606 1607
}

1608
static u32
1609
pc_render_get_seqno(struct intel_engine_cs *engine)
1610
{
1611
	return engine->scratch.cpu_page[0];
1612 1613
}

M
Mika Kuoppala 已提交
1614
static void
1615
pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
M
Mika Kuoppala 已提交
1616
{
1617
	engine->scratch.cpu_page[0] = seqno;
M
Mika Kuoppala 已提交
1618 1619
}

1620
static bool
1621
gen5_ring_get_irq(struct intel_engine_cs *engine)
1622
{
1623
	struct drm_device *dev = engine->dev;
1624
	struct drm_i915_private *dev_priv = dev->dev_private;
1625
	unsigned long flags;
1626

1627
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1628 1629
		return false;

1630
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1631 1632
	if (engine->irq_refcount++ == 0)
		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1633
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1634 1635 1636 1637 1638

	return true;
}

static void
1639
gen5_ring_put_irq(struct intel_engine_cs *engine)
1640
{
1641
	struct drm_device *dev = engine->dev;
1642
	struct drm_i915_private *dev_priv = dev->dev_private;
1643
	unsigned long flags;
1644

1645
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1646 1647
	if (--engine->irq_refcount == 0)
		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1648
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1649 1650
}

1651
static bool
1652
i9xx_ring_get_irq(struct intel_engine_cs *engine)
1653
{
1654
	struct drm_device *dev = engine->dev;
1655
	struct drm_i915_private *dev_priv = dev->dev_private;
1656
	unsigned long flags;
1657

1658
	if (!intel_irqs_enabled(dev_priv))
1659 1660
		return false;

1661
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1662 1663
	if (engine->irq_refcount++ == 0) {
		dev_priv->irq_mask &= ~engine->irq_enable_mask;
1664 1665 1666
		I915_WRITE(IMR, dev_priv->irq_mask);
		POSTING_READ(IMR);
	}
1667
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1668 1669

	return true;
1670 1671
}

1672
static void
1673
i9xx_ring_put_irq(struct intel_engine_cs *engine)
1674
{
1675
	struct drm_device *dev = engine->dev;
1676
	struct drm_i915_private *dev_priv = dev->dev_private;
1677
	unsigned long flags;
1678

1679
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1680 1681
	if (--engine->irq_refcount == 0) {
		dev_priv->irq_mask |= engine->irq_enable_mask;
1682 1683 1684
		I915_WRITE(IMR, dev_priv->irq_mask);
		POSTING_READ(IMR);
	}
1685
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1686 1687
}

C
Chris Wilson 已提交
1688
static bool
1689
i8xx_ring_get_irq(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1690
{
1691
	struct drm_device *dev = engine->dev;
1692
	struct drm_i915_private *dev_priv = dev->dev_private;
1693
	unsigned long flags;
C
Chris Wilson 已提交
1694

1695
	if (!intel_irqs_enabled(dev_priv))
C
Chris Wilson 已提交
1696 1697
		return false;

1698
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1699 1700
	if (engine->irq_refcount++ == 0) {
		dev_priv->irq_mask &= ~engine->irq_enable_mask;
C
Chris Wilson 已提交
1701 1702 1703
		I915_WRITE16(IMR, dev_priv->irq_mask);
		POSTING_READ16(IMR);
	}
1704
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
C
Chris Wilson 已提交
1705 1706 1707 1708 1709

	return true;
}

static void
1710
i8xx_ring_put_irq(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1711
{
1712
	struct drm_device *dev = engine->dev;
1713
	struct drm_i915_private *dev_priv = dev->dev_private;
1714
	unsigned long flags;
C
Chris Wilson 已提交
1715

1716
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1717 1718
	if (--engine->irq_refcount == 0) {
		dev_priv->irq_mask |= engine->irq_enable_mask;
C
Chris Wilson 已提交
1719 1720 1721
		I915_WRITE16(IMR, dev_priv->irq_mask);
		POSTING_READ16(IMR);
	}
1722
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
C
Chris Wilson 已提交
1723 1724
}

1725
static int
1726
bsd_ring_flush(struct drm_i915_gem_request *req,
1727 1728
	       u32     invalidate_domains,
	       u32     flush_domains)
1729
{
1730
	struct intel_engine_cs *engine = req->engine;
1731 1732
	int ret;

1733
	ret = intel_ring_begin(req, 2);
1734 1735 1736
	if (ret)
		return ret;

1737 1738 1739
	intel_ring_emit(engine, MI_FLUSH);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1740
	return 0;
1741 1742
}

1743
static int
1744
i9xx_add_request(struct drm_i915_gem_request *req)
1745
{
1746
	struct intel_engine_cs *engine = req->engine;
1747 1748
	int ret;

1749
	ret = intel_ring_begin(req, 4);
1750 1751
	if (ret)
		return ret;
1752

1753 1754 1755 1756 1757 1758
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1759

1760
	return 0;
1761 1762
}

1763
static bool
1764
gen6_ring_get_irq(struct intel_engine_cs *engine)
1765
{
1766
	struct drm_device *dev = engine->dev;
1767
	struct drm_i915_private *dev_priv = dev->dev_private;
1768
	unsigned long flags;
1769

1770 1771
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
		return false;
1772

1773
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1774 1775 1776 1777
	if (engine->irq_refcount++ == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS)
			I915_WRITE_IMR(engine,
				       ~(engine->irq_enable_mask |
1778
					 GT_PARITY_ERROR(dev)));
1779
		else
1780 1781
			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1782
	}
1783
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1784 1785 1786 1787 1788

	return true;
}

static void
1789
gen6_ring_put_irq(struct intel_engine_cs *engine)
1790
{
1791
	struct drm_device *dev = engine->dev;
1792
	struct drm_i915_private *dev_priv = dev->dev_private;
1793
	unsigned long flags;
1794

1795
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1796 1797 1798
	if (--engine->irq_refcount == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS)
			I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1799
		else
1800 1801
			I915_WRITE_IMR(engine, ~0);
		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1802
	}
1803
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1804 1805
}

B
Ben Widawsky 已提交
1806
static bool
1807
hsw_vebox_get_irq(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1808
{
1809
	struct drm_device *dev = engine->dev;
B
Ben Widawsky 已提交
1810 1811 1812
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1813
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
B
Ben Widawsky 已提交
1814 1815
		return false;

1816
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1817 1818 1819
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
		gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1820
	}
1821
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
B
Ben Widawsky 已提交
1822 1823 1824 1825 1826

	return true;
}

static void
1827
hsw_vebox_put_irq(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1828
{
1829
	struct drm_device *dev = engine->dev;
B
Ben Widawsky 已提交
1830 1831 1832
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1833
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1834 1835 1836
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~0);
		gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1837
	}
1838
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
B
Ben Widawsky 已提交
1839 1840
}

1841
static bool
1842
gen8_ring_get_irq(struct intel_engine_cs *engine)
1843
{
1844
	struct drm_device *dev = engine->dev;
1845 1846 1847
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1848
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1849 1850 1851
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1852 1853 1854 1855
	if (engine->irq_refcount++ == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS) {
			I915_WRITE_IMR(engine,
				       ~(engine->irq_enable_mask |
1856 1857
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
		} else {
1858
			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1859
		}
1860
		POSTING_READ(RING_IMR(engine->mmio_base));
1861 1862 1863 1864 1865 1866 1867
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void
1868
gen8_ring_put_irq(struct intel_engine_cs *engine)
1869
{
1870
	struct drm_device *dev = engine->dev;
1871 1872 1873 1874
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1875 1876 1877
	if (--engine->irq_refcount == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS) {
			I915_WRITE_IMR(engine,
1878 1879
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
		} else {
1880
			I915_WRITE_IMR(engine, ~0);
1881
		}
1882
		POSTING_READ(RING_IMR(engine->mmio_base));
1883 1884 1885 1886
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1887
static int
1888
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1889
			 u64 offset, u32 length,
1890
			 unsigned dispatch_flags)
1891
{
1892
	struct intel_engine_cs *engine = req->engine;
1893
	int ret;
1894

1895
	ret = intel_ring_begin(req, 2);
1896 1897 1898
	if (ret)
		return ret;

1899
	intel_ring_emit(engine,
1900 1901
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1902 1903
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1904 1905
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
1906

1907 1908 1909
	return 0;
}

1910 1911
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1912 1913
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1914
static int
1915
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1916 1917
			 u64 offset, u32 len,
			 unsigned dispatch_flags)
1918
{
1919
	struct intel_engine_cs *engine = req->engine;
1920
	u32 cs_offset = engine->scratch.gtt_offset;
1921
	int ret;
1922

1923
	ret = intel_ring_begin(req, 6);
1924 1925
	if (ret)
		return ret;
1926

1927
	/* Evict the invalid PTE TLBs */
1928 1929 1930 1931 1932 1933 1934
	intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(engine, cs_offset);
	intel_ring_emit(engine, 0xdeadbeef);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1935

1936
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1937 1938 1939
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1940
		ret = intel_ring_begin(req, 6 + 2);
1941 1942
		if (ret)
			return ret;
1943 1944 1945 1946 1947

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
		intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(engine,
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
		intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(engine, cs_offset);
		intel_ring_emit(engine, 4096);
		intel_ring_emit(engine, offset);

		intel_ring_emit(engine, MI_FLUSH);
		intel_ring_emit(engine, MI_NOOP);
		intel_ring_advance(engine);
1959 1960

		/* ... and execute it. */
1961
		offset = cs_offset;
1962
	}
1963

1964
	ret = intel_ring_begin(req, 2);
1965 1966 1967
	if (ret)
		return ret;

1968 1969 1970 1971
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1972

1973 1974 1975 1976
	return 0;
}

static int
1977
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1978
			 u64 offset, u32 len,
1979
			 unsigned dispatch_flags)
1980
{
1981
	struct intel_engine_cs *engine = req->engine;
1982 1983
	int ret;

1984
	ret = intel_ring_begin(req, 2);
1985 1986 1987
	if (ret)
		return ret;

1988 1989 1990 1991
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1992 1993 1994 1995

	return 0;
}

1996
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1997
{
1998
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
1999 2000 2001 2002

	if (!dev_priv->status_page_dmah)
		return;

2003 2004
	drm_pci_free(engine->dev, dev_priv->status_page_dmah);
	engine->status_page.page_addr = NULL;
2005 2006
}

2007
static void cleanup_status_page(struct intel_engine_cs *engine)
2008
{
2009
	struct drm_i915_gem_object *obj;
2010

2011
	obj = engine->status_page.obj;
2012
	if (obj == NULL)
2013 2014
		return;

2015
	kunmap(sg_page(obj->pages->sgl));
B
Ben Widawsky 已提交
2016
	i915_gem_object_ggtt_unpin(obj);
2017
	drm_gem_object_unreference(&obj->base);
2018
	engine->status_page.obj = NULL;
2019 2020
}

2021
static int init_status_page(struct intel_engine_cs *engine)
2022
{
2023
	struct drm_i915_gem_object *obj = engine->status_page.obj;
2024

2025
	if (obj == NULL) {
2026
		unsigned flags;
2027
		int ret;
2028

2029
		obj = i915_gem_object_create(engine->dev, 4096);
2030 2031 2032 2033
		if (obj == NULL) {
			DRM_ERROR("Failed to allocate status page\n");
			return -ENOMEM;
		}
2034

2035 2036 2037 2038
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
		if (ret)
			goto err_unref;

2039
		flags = 0;
2040
		if (!HAS_LLC(engine->dev))
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
			/* On g33, we cannot place HWS above 256MiB, so
			 * restrict its pinning to the low mappable arena.
			 * Though this restriction is not documented for
			 * gen4, gen5, or byt, they also behave similarly
			 * and hang if the HWS is placed at the top of the
			 * GTT. To generalise, it appears that all !llc
			 * platforms have issues with us placing the HWS
			 * above the mappable region (even though we never
			 * actualy map it).
			 */
			flags |= PIN_MAPPABLE;
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2053 2054 2055 2056 2057 2058
		if (ret) {
err_unref:
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

2059
		engine->status_page.obj = obj;
2060
	}
2061

2062 2063 2064
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2065

2066
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2067
			engine->name, engine->status_page.gfx_addr);
2068 2069 2070 2071

	return 0;
}

2072
static int init_phys_status_page(struct intel_engine_cs *engine)
2073
{
2074
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2075 2076 2077

	if (!dev_priv->status_page_dmah) {
		dev_priv->status_page_dmah =
2078
			drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
2079 2080 2081 2082
		if (!dev_priv->status_page_dmah)
			return -ENOMEM;
	}

2083 2084
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2085 2086 2087 2088

	return 0;
}

2089
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2090
{
2091
	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2092
		i915_gem_object_unpin_map(ringbuf->obj);
2093 2094
	else
		iounmap(ringbuf->virtual_start);
2095
	ringbuf->virtual_start = NULL;
2096
	ringbuf->vma = NULL;
2097
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2098 2099 2100 2101 2102 2103
}

int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
				     struct intel_ringbuffer *ringbuf)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
2104
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2105
	struct drm_i915_gem_object *obj = ringbuf->obj;
2106 2107
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	unsigned flags = PIN_OFFSET_BIAS | 4096;
2108
	void *addr;
2109 2110
	int ret;

2111
	if (HAS_LLC(dev_priv) && !obj->stolen) {
2112
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2113 2114
		if (ret)
			return ret;
2115

2116
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2117 2118
		if (ret)
			goto err_unpin;
2119

2120 2121 2122
		addr = i915_gem_object_pin_map(obj);
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2123
			goto err_unpin;
2124 2125
		}
	} else {
2126 2127
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
					    flags | PIN_MAPPABLE);
2128 2129
		if (ret)
			return ret;
2130

2131
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2132 2133
		if (ret)
			goto err_unpin;
2134

2135 2136 2137
		/* Access through the GTT requires the device to be awake. */
		assert_rpm_wakelock_held(dev_priv);

2138 2139 2140
		addr = ioremap_wc(ggtt->mappable_base +
				  i915_gem_obj_ggtt_offset(obj), ringbuf->size);
		if (addr == NULL) {
2141 2142
			ret = -ENOMEM;
			goto err_unpin;
2143
		}
2144 2145
	}

2146
	ringbuf->virtual_start = addr;
2147
	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2148
	return 0;
2149 2150 2151 2152

err_unpin:
	i915_gem_object_ggtt_unpin(obj);
	return ret;
2153 2154
}

2155
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2156
{
2157 2158 2159 2160
	drm_gem_object_unreference(&ringbuf->obj->base);
	ringbuf->obj = NULL;
}

2161 2162
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
				      struct intel_ringbuffer *ringbuf)
2163
{
2164
	struct drm_i915_gem_object *obj;
2165

2166 2167
	obj = NULL;
	if (!HAS_LLC(dev))
2168
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2169
	if (obj == NULL)
2170
		obj = i915_gem_object_create(dev, ringbuf->size);
2171 2172
	if (obj == NULL)
		return -ENOMEM;
2173

2174 2175 2176
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2177
	ringbuf->obj = obj;
2178

2179
	return 0;
2180 2181
}

2182 2183 2184 2185 2186 2187 2188
struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
{
	struct intel_ringbuffer *ring;
	int ret;

	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2189 2190 2191
	if (ring == NULL) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				 engine->name);
2192
		return ERR_PTR(-ENOMEM);
2193
	}
2194

2195
	ring->engine = engine;
2196
	list_add(&ring->link, &engine->buffers);
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
	if (IS_I830(engine->dev) || IS_845G(engine->dev))
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
	if (ret) {
2212 2213 2214
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
				 engine->name, ret);
		list_del(&ring->link);
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
		kfree(ring);
		return ERR_PTR(ret);
	}

	return ring;
}

void
intel_ringbuffer_free(struct intel_ringbuffer *ring)
{
	intel_destroy_ringbuffer_obj(ring);
2226
	list_del(&ring->link);
2227 2228 2229
	kfree(ring);
}

2230
static int intel_init_ring_buffer(struct drm_device *dev,
2231
				  struct intel_engine_cs *engine)
2232
{
2233
	struct intel_ringbuffer *ringbuf;
2234 2235
	int ret;

2236
	WARN_ON(engine->buffer);
2237

2238 2239 2240 2241 2242 2243 2244 2245
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->buffers);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2246

2247
	init_waitqueue_head(&engine->irq_queue);
2248

2249
	ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2250 2251 2252 2253
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
		goto error;
	}
2254
	engine->buffer = ringbuf;
2255

2256
	if (I915_NEED_GFX_HWS(dev)) {
2257
		ret = init_status_page(engine);
2258
		if (ret)
2259
			goto error;
2260
	} else {
2261 2262
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2263
		if (ret)
2264
			goto error;
2265 2266
	}

2267 2268 2269
	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
	if (ret) {
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2270
				engine->name, ret);
2271 2272
		intel_destroy_ringbuffer_obj(ringbuf);
		goto error;
2273
	}
2274

2275
	ret = i915_cmd_parser_init_ring(engine);
2276
	if (ret)
2277 2278 2279
		goto error;

	return 0;
2280

2281
error:
2282
	intel_cleanup_engine(engine);
2283
	return ret;
2284 2285
}

2286
void intel_cleanup_engine(struct intel_engine_cs *engine)
2287
{
2288
	struct drm_i915_private *dev_priv;
2289

2290
	if (!intel_engine_initialized(engine))
2291 2292
		return;

2293
	dev_priv = to_i915(engine->dev);
2294

2295
	if (engine->buffer) {
2296
		intel_stop_engine(engine);
2297
		WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2298

2299 2300 2301
		intel_unpin_ringbuffer_obj(engine->buffer);
		intel_ringbuffer_free(engine->buffer);
		engine->buffer = NULL;
2302
	}
2303

2304 2305
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2306

2307 2308
	if (I915_NEED_GFX_HWS(engine->dev)) {
		cleanup_status_page(engine);
2309
	} else {
2310 2311
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2312
	}
2313

2314 2315 2316
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
	engine->dev = NULL;
2317 2318
}

2319
static int ring_wait_for_space(struct intel_engine_cs *engine, int n)
2320
{
2321
	struct intel_ringbuffer *ringbuf = engine->buffer;
2322
	struct drm_i915_gem_request *request;
2323 2324
	unsigned space;
	int ret;
2325

2326 2327
	if (intel_ring_space(ringbuf) >= n)
		return 0;
2328

2329 2330 2331
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

2332
	list_for_each_entry(request, &engine->request_list, list) {
2333 2334 2335
		space = __intel_ring_space(request->postfix, ringbuf->tail,
					   ringbuf->size);
		if (space >= n)
2336 2337 2338
			break;
	}

2339
	if (WARN_ON(&request->list == &engine->request_list))
2340 2341
		return -ENOSPC;

2342
	ret = i915_wait_request(request);
2343 2344 2345
	if (ret)
		return ret;

2346
	ringbuf->space = space;
2347 2348 2349
	return 0;
}

2350
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2351 2352
{
	uint32_t __iomem *virt;
2353
	int rem = ringbuf->size - ringbuf->tail;
2354

2355
	virt = ringbuf->virtual_start + ringbuf->tail;
2356 2357 2358 2359
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

2360
	ringbuf->tail = 0;
2361
	intel_ring_update_space(ringbuf);
2362 2363
}

2364
int intel_engine_idle(struct intel_engine_cs *engine)
2365
{
2366
	struct drm_i915_gem_request *req;
2367 2368

	/* Wait upon the last request to be completed */
2369
	if (list_empty(&engine->request_list))
2370 2371
		return 0;

2372 2373 2374
	req = list_entry(engine->request_list.prev,
			 struct drm_i915_gem_request,
			 list);
2375 2376 2377

	/* Make sure we do not trigger any retires */
	return __i915_wait_request(req,
2378
				   req->i915->mm.interruptible,
2379
				   NULL, NULL);
2380 2381
}

2382
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2383
{
2384
	request->ringbuf = request->engine->buffer;
2385
	return 0;
2386 2387
}

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
int intel_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_ring_begin(request, 0);
}

2403 2404
void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
{
2405
	WARN_ON(ringbuf->reserved_size);
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_size = size;
}

void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_size   = 0;
	ringbuf->reserved_in_use = false;
}

void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_in_use = true;
	ringbuf->reserved_tail   = ringbuf->tail;
}

void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(!ringbuf->reserved_in_use);
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	if (ringbuf->tail > ringbuf->reserved_tail) {
		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
		     "request reserved size too small: %d vs %d!\n",
		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
	} else {
		/*
		 * The ring was wrapped while the reserved space was in use.
		 * That means that some unknown amount of the ring tail was
		 * no-op filled and skipped. Thus simply adding the ring size
		 * to the tail and doing the above space check will not work.
		 * Rather than attempt to track how much tail was skipped,
		 * it is much simpler to say that also skipping the sanity
		 * check every once in a while is not a big issue.
		 */
	}
2445 2446 2447 2448 2449

	ringbuf->reserved_size   = 0;
	ringbuf->reserved_in_use = false;
}

2450
static int __intel_ring_prepare(struct intel_engine_cs *engine, int bytes)
M
Mika Kuoppala 已提交
2451
{
2452
	struct intel_ringbuffer *ringbuf = engine->buffer;
2453 2454 2455 2456
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
2457

2458 2459 2460 2461
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
2462

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
2474 2475 2476
			 * falls off the end. So don't need an immediate wrap
			 * and only need to effectively wait for the reserved
			 * size space from the start of ringbuffer.
2477 2478 2479 2480 2481
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
2482
		}
M
Mika Kuoppala 已提交
2483 2484
	}

2485
	if (wait_bytes) {
2486
		ret = ring_wait_for_space(engine, wait_bytes);
M
Mika Kuoppala 已提交
2487 2488
		if (unlikely(ret))
			return ret;
2489 2490 2491

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
M
Mika Kuoppala 已提交
2492 2493 2494 2495 2496
	}

	return 0;
}

2497
int intel_ring_begin(struct drm_i915_gem_request *req,
2498
		     int num_dwords)
2499
{
2500
	struct intel_engine_cs *engine = req->engine;
2501
	int ret;
2502

2503
	ret = __intel_ring_prepare(engine, num_dwords * sizeof(uint32_t));
2504 2505 2506
	if (ret)
		return ret;

2507
	engine->buffer->space -= num_dwords * sizeof(uint32_t);
2508
	return 0;
2509
}
2510

2511
/* Align the ring tail to a cacheline boundary */
2512
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2513
{
2514
	struct intel_engine_cs *engine = req->engine;
2515
	int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2516 2517 2518 2519 2520
	int ret;

	if (num_dwords == 0)
		return 0;

2521
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2522
	ret = intel_ring_begin(req, num_dwords);
2523 2524 2525 2526
	if (ret)
		return ret;

	while (num_dwords--)
2527
		intel_ring_emit(engine, MI_NOOP);
2528

2529
	intel_ring_advance(engine);
2530 2531 2532 2533

	return 0;
}

2534
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2535
{
2536
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2537

2538 2539 2540 2541 2542 2543 2544 2545
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2546
	if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
2547 2548
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2549
		if (HAS_VEBOX(dev_priv))
2550
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2551
	}
2552 2553 2554 2555 2556 2557 2558 2559
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2560 2561
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2562

2563
	engine->set_seqno(engine, seqno);
2564
	engine->last_submitted_seqno = seqno;
2565

2566
	engine->hangcheck.seqno = seqno;
2567
}
2568

2569
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2570
				     u32 value)
2571
{
2572
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2573 2574

       /* Every tail move must follow the sequence below */
2575 2576 2577 2578

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2579
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2580 2581 2582 2583
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	/* Clear the context id. Here be magic! */
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2584

2585
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2586
	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2587 2588 2589
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
		     50))
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2590

2591
	/* Now that the ring is fully powered up, update the tail */
2592 2593
	I915_WRITE_TAIL(engine, value);
	POSTING_READ(RING_TAIL(engine->mmio_base));
2594 2595 2596 2597

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2598
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2599
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2600 2601
}

2602
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2603
			       u32 invalidate, u32 flush)
2604
{
2605
	struct intel_engine_cs *engine = req->engine;
2606
	uint32_t cmd;
2607 2608
	int ret;

2609
	ret = intel_ring_begin(req, 4);
2610 2611 2612
	if (ret)
		return ret;

2613
	cmd = MI_FLUSH_DW;
2614
	if (INTEL_INFO(engine->dev)->gen >= 8)
B
Ben Widawsky 已提交
2615
		cmd += 1;
2616 2617 2618 2619 2620 2621 2622 2623

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2624 2625 2626 2627 2628 2629
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2630
	if (invalidate & I915_GEM_GPU_DOMAINS)
2631 2632
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2633 2634 2635 2636 2637 2638
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
	if (INTEL_INFO(engine->dev)->gen >= 8) {
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2639
	} else  {
2640 2641
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2642
	}
2643
	intel_ring_advance(engine);
2644
	return 0;
2645 2646
}

2647
static int
2648
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2649
			      u64 offset, u32 len,
2650
			      unsigned dispatch_flags)
2651
{
2652
	struct intel_engine_cs *engine = req->engine;
2653
	bool ppgtt = USES_PPGTT(engine->dev) &&
2654
			!(dispatch_flags & I915_DISPATCH_SECURE);
2655 2656
	int ret;

2657
	ret = intel_ring_begin(req, 4);
2658 2659 2660 2661
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2662
	intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2663 2664
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2665 2666 2667 2668
	intel_ring_emit(engine, lower_32_bits(offset));
	intel_ring_emit(engine, upper_32_bits(offset));
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
2669 2670 2671 2672

	return 0;
}

2673
static int
2674
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2675 2676
			     u64 offset, u32 len,
			     unsigned dispatch_flags)
2677
{
2678
	struct intel_engine_cs *engine = req->engine;
2679 2680
	int ret;

2681
	ret = intel_ring_begin(req, 2);
2682 2683 2684
	if (ret)
		return ret;

2685
	intel_ring_emit(engine,
2686
			MI_BATCH_BUFFER_START |
2687
			(dispatch_flags & I915_DISPATCH_SECURE ?
2688 2689 2690
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2691
	/* bit0-7 is the length on GEN6+ */
2692 2693
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2694 2695 2696 2697

	return 0;
}

2698
static int
2699
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2700
			      u64 offset, u32 len,
2701
			      unsigned dispatch_flags)
2702
{
2703
	struct intel_engine_cs *engine = req->engine;
2704
	int ret;
2705

2706
	ret = intel_ring_begin(req, 2);
2707 2708
	if (ret)
		return ret;
2709

2710
	intel_ring_emit(engine,
2711
			MI_BATCH_BUFFER_START |
2712 2713
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2714
	/* bit0-7 is the length on GEN6+ */
2715 2716
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2717

2718
	return 0;
2719 2720
}

2721 2722
/* Blitter support (SandyBridge+) */

2723
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2724
			   u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
2725
{
2726
	struct intel_engine_cs *engine = req->engine;
2727
	struct drm_device *dev = engine->dev;
2728
	uint32_t cmd;
2729 2730
	int ret;

2731
	ret = intel_ring_begin(req, 4);
2732 2733 2734
	if (ret)
		return ret;

2735
	cmd = MI_FLUSH_DW;
2736
	if (INTEL_INFO(dev)->gen >= 8)
B
Ben Widawsky 已提交
2737
		cmd += 1;
2738 2739 2740 2741 2742 2743 2744 2745

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2746 2747 2748 2749 2750 2751
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2752
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2753
		cmd |= MI_INVALIDATE_TLB;
2754 2755 2756
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2757
	if (INTEL_INFO(dev)->gen >= 8) {
2758 2759
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2760
	} else  {
2761 2762
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2763
	}
2764
	intel_ring_advance(engine);
R
Rodrigo Vivi 已提交
2765

2766
	return 0;
Z
Zou Nan hai 已提交
2767 2768
}

2769 2770
int intel_init_render_ring_buffer(struct drm_device *dev)
{
2771
	struct drm_i915_private *dev_priv = dev->dev_private;
2772
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2773 2774
	struct drm_i915_gem_object *obj;
	int ret;
2775

2776 2777 2778 2779
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->mmio_base = RENDER_RING_BASE;
2780

B
Ben Widawsky 已提交
2781
	if (INTEL_INFO(dev)->gen >= 8) {
2782
		if (i915_semaphore_is_enabled(dev)) {
2783
			obj = i915_gem_object_create(dev, 4096);
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
			if (obj == NULL) {
				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
				if (ret != 0) {
					drm_gem_object_unreference(&obj->base);
					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
					i915.semaphores = 0;
				} else
					dev_priv->semaphore_obj = obj;
			}
		}
2798

2799 2800 2801 2802 2803 2804
		engine->init_context = intel_rcs_ctx_init;
		engine->add_request = gen6_add_request;
		engine->flush = gen8_render_ring_flush;
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2805 2806
		engine->irq_seqno_barrier = gen6_seqno_barrier;
		engine->get_seqno = ring_get_seqno;
2807
		engine->set_seqno = ring_set_seqno;
B
Ben Widawsky 已提交
2808
		if (i915_semaphore_is_enabled(dev)) {
2809
			WARN_ON(!dev_priv->semaphore_obj);
2810 2811 2812
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_rcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
2813 2814
		}
	} else if (INTEL_INFO(dev)->gen >= 6) {
2815 2816 2817
		engine->init_context = intel_rcs_ctx_init;
		engine->add_request = gen6_add_request;
		engine->flush = gen7_render_ring_flush;
2818
		if (INTEL_INFO(dev)->gen == 6)
2819 2820 2821 2822
			engine->flush = gen6_render_ring_flush;
		engine->irq_get = gen6_ring_get_irq;
		engine->irq_put = gen6_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2823 2824
		engine->irq_seqno_barrier = gen6_seqno_barrier;
		engine->get_seqno = ring_get_seqno;
2825
		engine->set_seqno = ring_set_seqno;
B
Ben Widawsky 已提交
2826
		if (i915_semaphore_is_enabled(dev)) {
2827 2828
			engine->semaphore.sync_to = gen6_ring_sync;
			engine->semaphore.signal = gen6_signal;
B
Ben Widawsky 已提交
2829 2830 2831 2832 2833 2834 2835
			/*
			 * The current semaphore is only applied on pre-gen8
			 * platform.  And there is no VCS2 ring on the pre-gen8
			 * platform. So the semaphore between RCS and VCS2 is
			 * initialized as INVALID.  Gen8 will initialize the
			 * sema between VCS2 and RCS later.
			 */
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
2846
		}
2847
	} else if (IS_GEN5(dev)) {
2848 2849 2850 2851 2852 2853 2854
		engine->add_request = pc_render_add_request;
		engine->flush = gen4_render_ring_flush;
		engine->get_seqno = pc_render_get_seqno;
		engine->set_seqno = pc_render_set_seqno;
		engine->irq_get = gen5_ring_get_irq;
		engine->irq_put = gen5_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2855
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2856
	} else {
2857
		engine->add_request = i9xx_add_request;
2858
		if (INTEL_INFO(dev)->gen < 4)
2859
			engine->flush = gen2_render_ring_flush;
2860
		else
2861 2862 2863
			engine->flush = gen4_render_ring_flush;
		engine->get_seqno = ring_get_seqno;
		engine->set_seqno = ring_set_seqno;
C
Chris Wilson 已提交
2864
		if (IS_GEN2(dev)) {
2865 2866
			engine->irq_get = i8xx_ring_get_irq;
			engine->irq_put = i8xx_ring_put_irq;
C
Chris Wilson 已提交
2867
		} else {
2868 2869
			engine->irq_get = i9xx_ring_get_irq;
			engine->irq_put = i9xx_ring_put_irq;
C
Chris Wilson 已提交
2870
		}
2871
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2872
	}
2873
	engine->write_tail = ring_write_tail;
B
Ben Widawsky 已提交
2874

2875
	if (IS_HASWELL(dev))
2876
		engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2877
	else if (IS_GEN8(dev))
2878
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2879
	else if (INTEL_INFO(dev)->gen >= 6)
2880
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2881
	else if (INTEL_INFO(dev)->gen >= 4)
2882
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2883
	else if (IS_I830(dev) || IS_845G(dev))
2884
		engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2885
	else
2886 2887 2888
		engine->dispatch_execbuffer = i915_dispatch_execbuffer;
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2889

2890 2891
	/* Workaround batchbuffer to combat CS tlb bug. */
	if (HAS_BROKEN_CS_TLB(dev)) {
2892
		obj = i915_gem_object_create(dev, I830_WA_SIZE);
2893 2894 2895 2896 2897
		if (obj == NULL) {
			DRM_ERROR("Failed to allocate batch bo\n");
			return -ENOMEM;
		}

2898
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2899 2900 2901 2902 2903 2904
		if (ret != 0) {
			drm_gem_object_unreference(&obj->base);
			DRM_ERROR("Failed to ping batch bo\n");
			return ret;
		}

2905 2906
		engine->scratch.obj = obj;
		engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2907 2908
	}

2909
	ret = intel_init_ring_buffer(dev, engine);
2910 2911 2912 2913
	if (ret)
		return ret;

	if (INTEL_INFO(dev)->gen >= 5) {
2914
		ret = intel_init_pipe_control(engine);
2915 2916 2917 2918 2919
		if (ret)
			return ret;
	}

	return 0;
2920 2921 2922 2923
}

int intel_init_bsd_ring_buffer(struct drm_device *dev)
{
2924
	struct drm_i915_private *dev_priv = dev->dev_private;
2925
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2926

2927 2928 2929
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
2930

2931
	engine->write_tail = ring_write_tail;
2932
	if (INTEL_INFO(dev)->gen >= 6) {
2933
		engine->mmio_base = GEN6_BSD_RING_BASE;
2934 2935
		/* gen6 bsd needs a special wa for tail updates */
		if (IS_GEN6(dev))
2936 2937 2938
			engine->write_tail = gen6_bsd_ring_write_tail;
		engine->flush = gen6_bsd_ring_flush;
		engine->add_request = gen6_add_request;
2939 2940
		engine->irq_seqno_barrier = gen6_seqno_barrier;
		engine->get_seqno = ring_get_seqno;
2941
		engine->set_seqno = ring_set_seqno;
2942
		if (INTEL_INFO(dev)->gen >= 8) {
2943
			engine->irq_enable_mask =
2944
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2945 2946 2947
			engine->irq_get = gen8_ring_get_irq;
			engine->irq_put = gen8_ring_put_irq;
			engine->dispatch_execbuffer =
2948
				gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
2949
			if (i915_semaphore_is_enabled(dev)) {
2950 2951 2952
				engine->semaphore.sync_to = gen8_ring_sync;
				engine->semaphore.signal = gen8_xcs_signal;
				GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
2953
			}
2954
		} else {
2955 2956 2957 2958
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
			engine->irq_get = gen6_ring_get_irq;
			engine->irq_put = gen6_ring_put_irq;
			engine->dispatch_execbuffer =
2959
				gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
2960
			if (i915_semaphore_is_enabled(dev)) {
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
				engine->semaphore.sync_to = gen6_ring_sync;
				engine->semaphore.signal = gen6_signal;
				engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
				engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
				engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
				engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
				engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
				engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
				engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
				engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
				engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
				engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
2973
			}
2974
		}
2975
	} else {
2976 2977 2978 2979 2980
		engine->mmio_base = BSD_RING_BASE;
		engine->flush = bsd_ring_flush;
		engine->add_request = i9xx_add_request;
		engine->get_seqno = ring_get_seqno;
		engine->set_seqno = ring_set_seqno;
2981
		if (IS_GEN5(dev)) {
2982 2983 2984
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
			engine->irq_get = gen5_ring_get_irq;
			engine->irq_put = gen5_ring_put_irq;
2985
		} else {
2986 2987 2988
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
			engine->irq_get = i9xx_ring_get_irq;
			engine->irq_put = i9xx_ring_put_irq;
2989
		}
2990
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2991
	}
2992
	engine->init_hw = init_ring_common;
2993

2994
	return intel_init_ring_buffer(dev, engine);
2995
}
2996

2997
/**
2998
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2999 3000 3001 3002
 */
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3003
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3004 3005 3006 3007 3008 3009 3010 3011 3012

	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;

	engine->write_tail = ring_write_tail;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
	engine->flush = gen6_bsd_ring_flush;
	engine->add_request = gen6_add_request;
3013 3014
	engine->irq_seqno_barrier = gen6_seqno_barrier;
	engine->get_seqno = ring_get_seqno;
3015 3016
	engine->set_seqno = ring_set_seqno;
	engine->irq_enable_mask =
3017
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3018 3019 3020
	engine->irq_get = gen8_ring_get_irq;
	engine->irq_put = gen8_ring_put_irq;
	engine->dispatch_execbuffer =
3021
			gen8_ring_dispatch_execbuffer;
3022
	if (i915_semaphore_is_enabled(dev)) {
3023 3024 3025
		engine->semaphore.sync_to = gen8_ring_sync;
		engine->semaphore.signal = gen8_xcs_signal;
		GEN8_RING_SEMAPHORE_INIT(engine);
3026
	}
3027
	engine->init_hw = init_ring_common;
3028

3029
	return intel_init_ring_buffer(dev, engine);
3030 3031
}

3032 3033
int intel_init_blt_ring_buffer(struct drm_device *dev)
{
3034
	struct drm_i915_private *dev_priv = dev->dev_private;
3035
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3036 3037 3038 3039 3040 3041 3042 3043 3044

	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;

	engine->mmio_base = BLT_RING_BASE;
	engine->write_tail = ring_write_tail;
	engine->flush = gen6_ring_flush;
	engine->add_request = gen6_add_request;
3045 3046
	engine->irq_seqno_barrier = gen6_seqno_barrier;
	engine->get_seqno = ring_get_seqno;
3047
	engine->set_seqno = ring_set_seqno;
3048
	if (INTEL_INFO(dev)->gen >= 8) {
3049
		engine->irq_enable_mask =
3050
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3051 3052 3053
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3054
		if (i915_semaphore_is_enabled(dev)) {
3055 3056 3057
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_xcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
3058
		}
3059
	} else {
3060 3061 3062 3063
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
		engine->irq_get = gen6_ring_get_irq;
		engine->irq_put = gen6_ring_put_irq;
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3064
		if (i915_semaphore_is_enabled(dev)) {
3065 3066
			engine->semaphore.signal = gen6_signal;
			engine->semaphore.sync_to = gen6_ring_sync;
B
Ben Widawsky 已提交
3067 3068 3069 3070 3071 3072 3073
			/*
			 * The current semaphore is only applied on pre-gen8
			 * platform.  And there is no VCS2 ring on the pre-gen8
			 * platform. So the semaphore between BCS and VCS2 is
			 * initialized as INVALID.  Gen8 will initialize the
			 * sema between BCS and VCS2 later.
			 */
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
3084
		}
3085
	}
3086
	engine->init_hw = init_ring_common;
3087

3088
	return intel_init_ring_buffer(dev, engine);
3089
}
3090

B
Ben Widawsky 已提交
3091 3092
int intel_init_vebox_ring_buffer(struct drm_device *dev)
{
3093
	struct drm_i915_private *dev_priv = dev->dev_private;
3094
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
B
Ben Widawsky 已提交
3095

3096 3097 3098
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
B
Ben Widawsky 已提交
3099

3100 3101 3102 3103
	engine->mmio_base = VEBOX_RING_BASE;
	engine->write_tail = ring_write_tail;
	engine->flush = gen6_ring_flush;
	engine->add_request = gen6_add_request;
3104 3105
	engine->irq_seqno_barrier = gen6_seqno_barrier;
	engine->get_seqno = ring_get_seqno;
3106
	engine->set_seqno = ring_set_seqno;
3107 3108

	if (INTEL_INFO(dev)->gen >= 8) {
3109
		engine->irq_enable_mask =
3110
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3111 3112 3113
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3114
		if (i915_semaphore_is_enabled(dev)) {
3115 3116 3117
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_xcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
3118
		}
3119
	} else {
3120 3121 3122 3123
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
		engine->irq_get = hsw_vebox_get_irq;
		engine->irq_put = hsw_vebox_put_irq;
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3124
		if (i915_semaphore_is_enabled(dev)) {
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
			engine->semaphore.sync_to = gen6_ring_sync;
			engine->semaphore.signal = gen6_signal;
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
3137
		}
3138
	}
3139
	engine->init_hw = init_ring_common;
B
Ben Widawsky 已提交
3140

3141
	return intel_init_ring_buffer(dev, engine);
B
Ben Widawsky 已提交
3142 3143
}

3144
int
3145
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3146
{
3147
	struct intel_engine_cs *engine = req->engine;
3148 3149
	int ret;

3150
	if (!engine->gpu_caches_dirty)
3151 3152
		return 0;

3153
	ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3154 3155 3156
	if (ret)
		return ret;

3157
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3158

3159
	engine->gpu_caches_dirty = false;
3160 3161 3162 3163
	return 0;
}

int
3164
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3165
{
3166
	struct intel_engine_cs *engine = req->engine;
3167 3168 3169 3170
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
3171
	if (engine->gpu_caches_dirty)
3172 3173
		flush_domains = I915_GEM_GPU_DOMAINS;

3174
	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3175 3176 3177
	if (ret)
		return ret;

3178
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3179

3180
	engine->gpu_caches_dirty = false;
3181 3182
	return 0;
}
3183 3184

void
3185
intel_stop_engine(struct intel_engine_cs *engine)
3186 3187 3188
{
	int ret;

3189
	if (!intel_engine_initialized(engine))
3190 3191
		return;

3192
	ret = intel_engine_idle(engine);
3193
	if (ret)
3194
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3195
			  engine->name, ret);
3196

3197
	stop_ring(engine);
3198
}