intel_ringbuffer.c 38.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drv.h"
33
#include "i915_drm.h"
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41 42 43 44 45 46
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
struct pipe_control {
	struct drm_i915_gem_object *obj;
	volatile u32 *cpu_page;
	u32 gtt_offset;
};

47 48 49 50 51 52 53 54
static inline int ring_space(struct intel_ring_buffer *ring)
{
	int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
	if (space < 0)
		space += ring->size;
	return space;
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68
static u32 i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno;

	seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

69
static int
70
render_ring_flush(struct intel_ring_buffer *ring,
71 72
		  u32	invalidate_domains,
		  u32	flush_domains)
73
{
74
	struct drm_device *dev = ring->dev;
75
	u32 cmd;
76
	int ret;
77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
	if ((invalidate_domains|flush_domains) &
	    I915_GEM_DOMAIN_RENDER)
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (INTEL_INFO(dev)->gen < 4) {
111
		/*
112 113
		 * On the 965, the sampler cache always gets flushed
		 * and this bit is reserved.
114
		 */
115 116 117 118 119
		if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
			cmd |= MI_READ_FLUSH;
	}
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
120

121 122 123
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
	    (IS_G4X(dev) || IS_GEN5(dev)))
		cmd |= MI_INVALIDATE_ISP;
124

125 126 127
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;
128

129 130 131
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
132 133

	return 0;
134 135
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;


	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	return 0;
}

static int
gen6_render_ring_flush(struct intel_ring_buffer *ring,
                         u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;

	/* Force SNB workarounds for PIPE_CONTROL flushes */
	intel_emit_post_sync_nonzero_flush(ring);

	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;

	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* lower dword */
	intel_ring_emit(ring, 0); /* uppwer dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	return 0;
}

248
static void ring_write_tail(struct intel_ring_buffer *ring,
249
			    u32 value)
250
{
251
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
252
	I915_WRITE_TAIL(ring, value);
253 254
}

255
u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
256
{
257 258
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
	u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
D
Daniel Vetter 已提交
259
			RING_ACTHD(ring->mmio_base) : ACTHD;
260 261 262 263

	return I915_READ(acthd_reg);
}

264
static int init_ring_common(struct intel_ring_buffer *ring)
265
{
266
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
267
	struct drm_i915_gem_object *obj = ring->obj;
268 269 270
	u32 head;

	/* Stop the ring if it's running. */
271
	I915_WRITE_CTL(ring, 0);
272
	I915_WRITE_HEAD(ring, 0);
273
	ring->write_tail(ring, 0);
274 275

	/* Initialize the ring. */
276
	I915_WRITE_START(ring, obj->gtt_offset);
277
	head = I915_READ_HEAD(ring) & HEAD_ADDR;
278 279 280

	/* G45 ring initialization fails to reset head to zero */
	if (head != 0) {
281 282 283 284 285 286 287
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
			      ring->name,
			      I915_READ_CTL(ring),
			      I915_READ_HEAD(ring),
			      I915_READ_TAIL(ring),
			      I915_READ_START(ring));
288

289
		I915_WRITE_HEAD(ring, 0);
290

291 292 293 294 295 296 297 298 299
		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
				  ring->name,
				  I915_READ_CTL(ring),
				  I915_READ_HEAD(ring),
				  I915_READ_TAIL(ring),
				  I915_READ_START(ring));
		}
300 301
	}

302
	I915_WRITE_CTL(ring,
303
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
304
			| RING_REPORT_64K | RING_VALID);
305 306

	/* If the head is still not zero, the ring is dead */
307
	if ((I915_READ_CTL(ring) & RING_VALID) == 0 ||
308
	    I915_READ_START(ring) != obj->gtt_offset ||
309
	    (I915_READ_HEAD(ring) & HEAD_ADDR) != 0) {
310 311 312 313 314 315 316 317
		DRM_ERROR("%s initialization failed "
				"ctl %08x head %08x tail %08x start %08x\n",
				ring->name,
				I915_READ_CTL(ring),
				I915_READ_HEAD(ring),
				I915_READ_TAIL(ring),
				I915_READ_START(ring));
		return -EIO;
318 319
	}

320 321
	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
		i915_kernel_lost_context(ring->dev);
322
	else {
323
		ring->head = I915_READ_HEAD(ring);
324
		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
325
		ring->space = ring_space(ring);
326
	}
327

328 329 330
	return 0;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
static int
init_pipe_control(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc;
	struct drm_i915_gem_object *obj;
	int ret;

	if (ring->private)
		return 0;

	pc = kmalloc(sizeof(*pc), GFP_KERNEL);
	if (!pc)
		return -ENOMEM;

	obj = i915_gem_alloc_object(ring->dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
351 352

	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

	ret = i915_gem_object_pin(obj, 4096, true);
	if (ret)
		goto err_unref;

	pc->gtt_offset = obj->gtt_offset;
	pc->cpu_page =  kmap(obj->pages[0]);
	if (pc->cpu_page == NULL)
		goto err_unpin;

	pc->obj = obj;
	ring->private = pc;
	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(&obj->base);
err:
	kfree(pc);
	return ret;
}

static void
cleanup_pipe_control(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	struct drm_i915_gem_object *obj;

	if (!ring->private)
		return;

	obj = pc->obj;
	kunmap(obj->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(&obj->base);

	kfree(pc);
	ring->private = NULL;
}

394
static int init_render_ring(struct intel_ring_buffer *ring)
395
{
396
	struct drm_device *dev = ring->dev;
397
	struct drm_i915_private *dev_priv = dev->dev_private;
398
	int ret = init_ring_common(ring);
399

400
	if (INTEL_INFO(dev)->gen > 3) {
401
		int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
402
		if (IS_GEN6(dev) || IS_GEN7(dev))
403 404
			mode |= MI_FLUSH_ENABLE << 16 | MI_FLUSH_ENABLE;
		I915_WRITE(MI_MODE, mode);
405 406 407 408
		if (IS_GEN7(dev))
			I915_WRITE(GFX_MODE_GEN7,
				   GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
				   GFX_MODE_ENABLE(GFX_REPLAY_MODE));
409
	}
410

411
	if (INTEL_INFO(dev)->gen >= 5) {
412 413 414 415 416
		ret = init_pipe_control(ring);
		if (ret)
			return ret;
	}

417 418 419 420 421
	if (INTEL_INFO(dev)->gen >= 6) {
		I915_WRITE(INSTPM,
			   INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING);
	}

422 423 424
	return ret;
}

425 426 427 428 429 430 431 432
static void render_ring_cleanup(struct intel_ring_buffer *ring)
{
	if (!ring->private)
		return;

	cleanup_pipe_control(ring);
}

433
static void
434 435 436
update_mboxes(struct intel_ring_buffer *ring,
	    u32 seqno,
	    u32 mmio_offset)
437
{
438 439 440 441
	intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
			      MI_SEMAPHORE_GLOBAL_GTT |
			      MI_SEMAPHORE_REGISTER |
			      MI_SEMAPHORE_UPDATE);
442
	intel_ring_emit(ring, seqno);
443
	intel_ring_emit(ring, mmio_offset);
444 445
}

446 447 448 449 450 451 452 453 454
/**
 * gen6_add_request - Update the semaphore mailbox registers
 * 
 * @ring - ring that is adding a request
 * @seqno - return seqno stuck into the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
455 456
static int
gen6_add_request(struct intel_ring_buffer *ring,
457
		 u32 *seqno)
458
{
459 460
	u32 mbox1_reg;
	u32 mbox2_reg;
461 462 463 464 465 466
	int ret;

	ret = intel_ring_begin(ring, 10);
	if (ret)
		return ret;

467 468
	mbox1_reg = ring->signal_mbox[0];
	mbox2_reg = ring->signal_mbox[1];
469

470 471 472 473
	*seqno = i915_gem_get_seqno(ring->dev);

	update_mboxes(ring, *seqno, mbox1_reg);
	update_mboxes(ring, *seqno, mbox2_reg);
474 475
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
476
	intel_ring_emit(ring, *seqno);
477 478 479 480 481 482
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_advance(ring);

	return 0;
}

483 484 485 486 487 488 489 490 491 492 493
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
static int
intel_ring_sync(struct intel_ring_buffer *waiter,
		struct intel_ring_buffer *signaller,
		int ring,
494 495 496
		u32 seqno)
{
	int ret;
497 498 499
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
500

501
	ret = intel_ring_begin(waiter, 4);
502 503 504
	if (ret)
		return ret;

505 506 507 508 509
	intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
	intel_ring_emit(waiter, seqno);
	intel_ring_emit(waiter, 0);
	intel_ring_emit(waiter, MI_NOOP);
	intel_ring_advance(waiter);
510 511 512 513

	return 0;
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
/* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
int
render_ring_sync_to(struct intel_ring_buffer *waiter,
		    struct intel_ring_buffer *signaller,
		    u32 seqno)
{
	WARN_ON(signaller->semaphore_register[RCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       RCS,
			       seqno);
}

/* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
int
gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
		      struct intel_ring_buffer *signaller,
		      u32 seqno)
{
	WARN_ON(signaller->semaphore_register[VCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       VCS,
			       seqno);
}

/* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
int
gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
		      struct intel_ring_buffer *signaller,
		      u32 seqno)
{
	WARN_ON(signaller->semaphore_register[BCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       BCS,
			       seqno);
}



555 556
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
do {									\
557 558
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
		 PIPE_CONTROL_DEPTH_STALL);				\
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
	intel_ring_emit(ring__, 0);							\
	intel_ring_emit(ring__, 0);							\
} while (0)

static int
pc_render_add_request(struct intel_ring_buffer *ring,
		      u32 *result)
{
	struct drm_device *dev = ring->dev;
	u32 seqno = i915_gem_get_seqno(dev);
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;

	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
	 * incoherent with writes to memory, i.e. completely fubar,
	 * so we need to use PIPE_NOTIFY instead.
	 *
	 * However, we also need to workaround the qword write
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
	 * memory before requesting an interrupt.
	 */
	ret = intel_ring_begin(ring, 32);
	if (ret)
		return ret;

586
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
587 588
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
589 590 591 592 593 594 595 596 597 598 599 600 601 602
	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, 0);
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128; /* write to separate cachelines */
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
603
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
604 605
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
606 607 608 609 610 611 612 613 614 615
			PIPE_CONTROL_NOTIFY);
	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);

	*result = seqno;
	return 0;
}

616 617 618 619 620 621 622
static int
render_ring_add_request(struct intel_ring_buffer *ring,
			u32 *result)
{
	struct drm_device *dev = ring->dev;
	u32 seqno = i915_gem_get_seqno(dev);
	int ret;
623

624 625 626
	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;
627

628 629 630 631
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
632
	intel_ring_advance(ring);
633

634 635
	*result = seqno;
	return 0;
636 637
}

638
static u32
639
ring_get_seqno(struct intel_ring_buffer *ring)
640
{
641 642 643
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

644 645 646 647 648 649 650
static u32
pc_render_get_seqno(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	return pc->cpu_page[0];
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
static void
ironlake_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->gt_irq_mask &= ~mask;
	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
	POSTING_READ(GTIMR);
}

static void
ironlake_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->gt_irq_mask |= mask;
	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
	POSTING_READ(GTIMR);
}

static void
i915_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->irq_mask &= ~mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ(IMR);
}

static void
i915_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->irq_mask |= mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ(IMR);
}

683
static bool
684
render_ring_get_irq(struct intel_ring_buffer *ring)
685
{
686
	struct drm_device *dev = ring->dev;
687
	drm_i915_private_t *dev_priv = dev->dev_private;
688

689 690 691
	if (!dev->irq_enabled)
		return false;

692
	spin_lock(&ring->irq_lock);
693
	if (ring->irq_refcount++ == 0) {
694
		if (HAS_PCH_SPLIT(dev))
695 696
			ironlake_enable_irq(dev_priv,
					    GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
697 698 699
		else
			i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
	}
700
	spin_unlock(&ring->irq_lock);
701 702

	return true;
703 704
}

705
static void
706
render_ring_put_irq(struct intel_ring_buffer *ring)
707
{
708
	struct drm_device *dev = ring->dev;
709
	drm_i915_private_t *dev_priv = dev->dev_private;
710

711
	spin_lock(&ring->irq_lock);
712
	if (--ring->irq_refcount == 0) {
713
		if (HAS_PCH_SPLIT(dev))
714 715 716
			ironlake_disable_irq(dev_priv,
					     GT_USER_INTERRUPT |
					     GT_PIPE_NOTIFY);
717 718 719
		else
			i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
	}
720
	spin_unlock(&ring->irq_lock);
721 722
}

723
void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
724
{
725
	struct drm_device *dev = ring->dev;
726
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
	u32 mmio = 0;

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
	if (IS_GEN7(dev)) {
		switch (ring->id) {
		case RING_RENDER:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case RING_BLT:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		case RING_BSD:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		}
	} else if (IS_GEN6(ring->dev)) {
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
	} else {
		mmio = RING_HWS_PGA(ring->mmio_base);
	}

750 751
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
	POSTING_READ(mmio);
752 753
}

754
static int
755 756 757
bsd_ring_flush(struct intel_ring_buffer *ring,
	       u32     invalidate_domains,
	       u32     flush_domains)
758
{
759 760 761 762 763 764 765 766 767 768
	int ret;

	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;

	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
	return 0;
769 770
}

771
static int
772
ring_add_request(struct intel_ring_buffer *ring,
773
		 u32 *result)
774 775
{
	u32 seqno;
776 777 778 779 780
	int ret;

	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;
781

782
	seqno = i915_gem_get_seqno(ring->dev);
783

784 785 786 787 788
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_advance(ring);
789

790 791
	*result = seqno;
	return 0;
792 793
}

794 795 796 797 798 799 800 801 802 803 804
static bool
gen7_blt_ring_get_irq(struct intel_ring_buffer *ring)
{
	/* The BLT ring on IVB appears to have broken synchronization
	 * between the seqno write and the interrupt, so that the
	 * interrupt appears first.  Returning false here makes
	 * i915_wait_request() do a polling loop, instead.
	 */
	return false;
}

805 806 807 808
static bool
gen6_ring_get_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
{
	struct drm_device *dev = ring->dev;
809
	drm_i915_private_t *dev_priv = dev->dev_private;
810 811 812 813

	if (!dev->irq_enabled)
	       return false;

814
	spin_lock(&ring->irq_lock);
815
	if (ring->irq_refcount++ == 0) {
816 817 818 819
		ring->irq_mask &= ~rflag;
		I915_WRITE_IMR(ring, ring->irq_mask);
		ironlake_enable_irq(dev_priv, gflag);
	}
820
	spin_unlock(&ring->irq_lock);
821 822 823 824 825 826 827 828

	return true;
}

static void
gen6_ring_put_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
{
	struct drm_device *dev = ring->dev;
829
	drm_i915_private_t *dev_priv = dev->dev_private;
830

831
	spin_lock(&ring->irq_lock);
832
	if (--ring->irq_refcount == 0) {
833 834 835
		ring->irq_mask |= rflag;
		I915_WRITE_IMR(ring, ring->irq_mask);
		ironlake_disable_irq(dev_priv, gflag);
836
	}
837
	spin_unlock(&ring->irq_lock);
838 839
}

840
static bool
841
bsd_ring_get_irq(struct intel_ring_buffer *ring)
842
{
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
	struct drm_device *dev = ring->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;

	if (!dev->irq_enabled)
		return false;

	spin_lock(&ring->irq_lock);
	if (ring->irq_refcount++ == 0) {
		if (IS_G4X(dev))
			i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
		else
			ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
	}
	spin_unlock(&ring->irq_lock);

	return true;
859 860 861 862
}
static void
bsd_ring_put_irq(struct intel_ring_buffer *ring)
{
863 864 865 866 867 868 869 870 871 872 873
	struct drm_device *dev = ring->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;

	spin_lock(&ring->irq_lock);
	if (--ring->irq_refcount == 0) {
		if (IS_G4X(dev))
			i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
		else
			ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
	}
	spin_unlock(&ring->irq_lock);
874 875 876
}

static int
877
ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
878
{
879
	int ret;
880

881 882 883 884
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;

885
	intel_ring_emit(ring,
886
			MI_BATCH_BUFFER_START | (2 << 6) |
887
			MI_BATCH_NON_SECURE_I965);
888
	intel_ring_emit(ring, offset);
889 890
	intel_ring_advance(ring);

891 892 893
	return 0;
}

894
static int
895
render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
896
				u32 offset, u32 len)
897
{
898
	struct drm_device *dev = ring->dev;
899
	int ret;
900

901 902 903 904
	if (IS_I830(dev) || IS_845G(dev)) {
		ret = intel_ring_begin(ring, 4);
		if (ret)
			return ret;
905

906 907 908 909 910 911 912 913
		intel_ring_emit(ring, MI_BATCH_BUFFER);
		intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
		intel_ring_emit(ring, offset + len - 8);
		intel_ring_emit(ring, 0);
	} else {
		ret = intel_ring_begin(ring, 2);
		if (ret)
			return ret;
914

915 916 917 918 919
		if (INTEL_INFO(dev)->gen >= 4) {
			intel_ring_emit(ring,
					MI_BATCH_BUFFER_START | (2 << 6) |
					MI_BATCH_NON_SECURE_I965);
			intel_ring_emit(ring, offset);
920
		} else {
921 922 923
			intel_ring_emit(ring,
					MI_BATCH_BUFFER_START | (2 << 6));
			intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
924 925
		}
	}
926
	intel_ring_advance(ring);
927 928 929 930

	return 0;
}

931
static void cleanup_status_page(struct intel_ring_buffer *ring)
932
{
933
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
934
	struct drm_i915_gem_object *obj;
935

936 937
	obj = ring->status_page.obj;
	if (obj == NULL)
938 939
		return;

940
	kunmap(obj->pages[0]);
941
	i915_gem_object_unpin(obj);
942
	drm_gem_object_unreference(&obj->base);
943
	ring->status_page.obj = NULL;
944 945 946 947

	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
}

948
static int init_status_page(struct intel_ring_buffer *ring)
949
{
950
	struct drm_device *dev = ring->dev;
951
	drm_i915_private_t *dev_priv = dev->dev_private;
952
	struct drm_i915_gem_object *obj;
953 954 955 956 957 958 959 960
	int ret;

	obj = i915_gem_alloc_object(dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate status page\n");
		ret = -ENOMEM;
		goto err;
	}
961 962

	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
963

964
	ret = i915_gem_object_pin(obj, 4096, true);
965 966 967 968
	if (ret != 0) {
		goto err_unref;
	}

969 970
	ring->status_page.gfx_addr = obj->gtt_offset;
	ring->status_page.page_addr = kmap(obj->pages[0]);
971
	if (ring->status_page.page_addr == NULL) {
972 973 974
		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
		goto err_unpin;
	}
975 976
	ring->status_page.obj = obj;
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
977

978
	intel_ring_setup_status_page(ring);
979 980
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			ring->name, ring->status_page.gfx_addr);
981 982 983 984 985 986

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
987
	drm_gem_object_unreference(&obj->base);
988
err:
989
	return ret;
990 991
}

992
int intel_init_ring_buffer(struct drm_device *dev,
993
			   struct intel_ring_buffer *ring)
994
{
995
	struct drm_i915_gem_object *obj;
996 997
	int ret;

998
	ring->dev = dev;
999 1000
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
1001
	INIT_LIST_HEAD(&ring->gpu_write_list);
1002

1003
	init_waitqueue_head(&ring->irq_queue);
1004
	spin_lock_init(&ring->irq_lock);
1005
	ring->irq_mask = ~0;
1006

1007
	if (I915_NEED_GFX_HWS(dev)) {
1008
		ret = init_status_page(ring);
1009 1010 1011
		if (ret)
			return ret;
	}
1012

1013
	obj = i915_gem_alloc_object(dev, ring->size);
1014 1015
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate ringbuffer\n");
1016
		ret = -ENOMEM;
1017
		goto err_hws;
1018 1019
	}

1020
	ring->obj = obj;
1021

1022
	ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1023 1024
	if (ret)
		goto err_unref;
1025

1026
	ring->map.size = ring->size;
1027
	ring->map.offset = dev->agp->base + obj->gtt_offset;
1028 1029 1030 1031 1032 1033 1034
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;

	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
		DRM_ERROR("Failed to map ringbuffer.\n");
1035
		ret = -EINVAL;
1036
		goto err_unpin;
1037 1038
	}

1039
	ring->virtual_start = ring->map.handle;
1040
	ret = ring->init(ring);
1041 1042
	if (ret)
		goto err_unmap;
1043

1044 1045 1046 1047 1048 1049 1050 1051
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = ring->size;
	if (IS_I830(ring->dev))
		ring->effective_size -= 128;

1052
	return 0;
1053 1054 1055 1056 1057 1058

err_unmap:
	drm_core_ioremapfree(&ring->map, dev);
err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
1059 1060
	drm_gem_object_unreference(&obj->base);
	ring->obj = NULL;
1061
err_hws:
1062
	cleanup_status_page(ring);
1063
	return ret;
1064 1065
}

1066
void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1067
{
1068 1069 1070
	struct drm_i915_private *dev_priv;
	int ret;

1071
	if (ring->obj == NULL)
1072 1073
		return;

1074 1075
	/* Disable the ring buffer. The ring must be idle at this point */
	dev_priv = ring->dev->dev_private;
1076
	ret = intel_wait_ring_idle(ring);
1077 1078 1079 1080
	if (ret)
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

1081 1082
	I915_WRITE_CTL(ring, 0);

1083
	drm_core_ioremapfree(&ring->map, ring->dev);
1084

1085 1086 1087
	i915_gem_object_unpin(ring->obj);
	drm_gem_object_unreference(&ring->obj->base);
	ring->obj = NULL;
1088

Z
Zou Nan hai 已提交
1089 1090 1091
	if (ring->cleanup)
		ring->cleanup(ring);

1092
	cleanup_status_page(ring);
1093 1094
}

1095
static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1096
{
1097
	unsigned int *virt;
1098
	int rem = ring->size - ring->tail;
1099

1100
	if (ring->space < rem) {
1101
		int ret = intel_wait_ring_buffer(ring, rem);
1102 1103 1104 1105
		if (ret)
			return ret;
	}

1106
	virt = (unsigned int *)(ring->virtual_start + ring->tail);
1107 1108
	rem /= 8;
	while (rem--) {
1109
		*virt++ = MI_NOOP;
1110 1111
		*virt++ = MI_NOOP;
	}
1112

1113
	ring->tail = 0;
1114
	ring->space = ring_space(ring);
1115 1116 1117 1118

	return 0;
}

1119
int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1120
{
1121
	struct drm_device *dev = ring->dev;
1122
	struct drm_i915_private *dev_priv = dev->dev_private;
1123
	unsigned long end;
1124 1125
	u32 head;

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	/* If the reported head position has wrapped or hasn't advanced,
	 * fallback to the slow and accurate path.
	 */
	head = intel_read_status_page(ring, 4);
	if (head > ring->head) {
		ring->head = head;
		ring->space = ring_space(ring);
		if (ring->space >= n)
			return 0;
	}

C
Chris Wilson 已提交
1137
	trace_i915_ring_wait_begin(ring);
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	if (drm_core_check_feature(dev, DRIVER_GEM))
		/* With GEM the hangcheck timer should kick us out of the loop,
		 * leaving it early runs the risk of corrupting GEM state (due
		 * to running on almost untested codepaths). But on resume
		 * timers don't work yet, so prevent a complete hang in that
		 * case by choosing an insanely large timeout. */
		end = jiffies + 60 * HZ;
	else
		end = jiffies + 3 * HZ;

1148
	do {
1149 1150
		ring->head = I915_READ_HEAD(ring);
		ring->space = ring_space(ring);
1151
		if (ring->space >= n) {
C
Chris Wilson 已提交
1152
			trace_i915_ring_wait_end(ring);
1153 1154 1155 1156 1157 1158 1159 1160
			return 0;
		}

		if (dev->primary->master) {
			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
			if (master_priv->sarea_priv)
				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
		}
1161

1162
		msleep(1);
1163 1164
		if (atomic_read(&dev_priv->mm.wedged))
			return -EAGAIN;
1165
	} while (!time_after(jiffies, end));
C
Chris Wilson 已提交
1166
	trace_i915_ring_wait_end(ring);
1167 1168
	return -EBUSY;
}
1169

1170 1171
int intel_ring_begin(struct intel_ring_buffer *ring,
		     int num_dwords)
1172
{
1173
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1174
	int n = 4*num_dwords;
1175
	int ret;
1176

1177 1178 1179
	if (unlikely(atomic_read(&dev_priv->mm.wedged)))
		return -EIO;

1180
	if (unlikely(ring->tail + n > ring->effective_size)) {
1181 1182 1183 1184
		ret = intel_wrap_ring_buffer(ring);
		if (unlikely(ret))
			return ret;
	}
1185

1186 1187 1188 1189 1190
	if (unlikely(ring->space < n)) {
		ret = intel_wait_ring_buffer(ring, n);
		if (unlikely(ret))
			return ret;
	}
1191 1192

	ring->space -= n;
1193
	return 0;
1194
}
1195

1196
void intel_ring_advance(struct intel_ring_buffer *ring)
1197
{
1198
	ring->tail &= ring->size - 1;
1199
	ring->write_tail(ring, ring->tail);
1200
}
1201

1202
static const struct intel_ring_buffer render_ring = {
1203
	.name			= "render ring",
1204
	.id			= RING_RENDER,
1205
	.mmio_base		= RENDER_RING_BASE,
1206 1207
	.size			= 32 * PAGE_SIZE,
	.init			= init_render_ring,
1208
	.write_tail		= ring_write_tail,
1209 1210
	.flush			= render_ring_flush,
	.add_request		= render_ring_add_request,
1211 1212 1213
	.get_seqno		= ring_get_seqno,
	.irq_get		= render_ring_get_irq,
	.irq_put		= render_ring_put_irq,
1214
	.dispatch_execbuffer	= render_ring_dispatch_execbuffer,
1215
	.cleanup		= render_ring_cleanup,
1216 1217 1218 1219 1220
	.sync_to		= render_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_INVALID,
				   MI_SEMAPHORE_SYNC_RV,
				   MI_SEMAPHORE_SYNC_RB},
	.signal_mbox		= {GEN6_VRSYNC, GEN6_BRSYNC},
1221
};
1222 1223 1224

/* ring buffer for bit-stream decoder */

1225
static const struct intel_ring_buffer bsd_ring = {
1226
	.name                   = "bsd ring",
1227
	.id			= RING_BSD,
1228
	.mmio_base		= BSD_RING_BASE,
1229
	.size			= 32 * PAGE_SIZE,
1230
	.init			= init_ring_common,
1231
	.write_tail		= ring_write_tail,
1232
	.flush			= bsd_ring_flush,
1233
	.add_request		= ring_add_request,
1234 1235 1236
	.get_seqno		= ring_get_seqno,
	.irq_get		= bsd_ring_get_irq,
	.irq_put		= bsd_ring_put_irq,
1237
	.dispatch_execbuffer	= ring_dispatch_execbuffer,
1238
};
1239

1240

1241
static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1242
				     u32 value)
1243
{
1244
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1245 1246

       /* Every tail move must follow the sequence below */
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
	I915_WRITE(GEN6_BSD_RNCID, 0x0);

	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
		GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0,
		50))
	DRM_ERROR("timed out waiting for IDLE Indicator\n");

	I915_WRITE_TAIL(ring, value);
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
1261 1262
}

1263
static int gen6_ring_flush(struct intel_ring_buffer *ring,
1264
			   u32 invalidate, u32 flush)
1265
{
1266
	uint32_t cmd;
1267 1268 1269 1270 1271 1272
	int ret;

	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;

1273 1274 1275 1276
	cmd = MI_FLUSH_DW;
	if (invalidate & I915_GEM_GPU_DOMAINS)
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
	intel_ring_emit(ring, cmd);
1277 1278
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
1279
	intel_ring_emit(ring, MI_NOOP);
1280 1281
	intel_ring_advance(ring);
	return 0;
1282 1283 1284
}

static int
1285
gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1286
			      u32 offset, u32 len)
1287
{
1288
	int ret;
1289

1290 1291 1292
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;
1293

1294 1295 1296 1297
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
	/* bit0-7 is the length on GEN6+ */
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1298

1299
	return 0;
1300 1301
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
static bool
gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
{
	return gen6_ring_get_irq(ring,
				 GT_USER_INTERRUPT,
				 GEN6_RENDER_USER_INTERRUPT);
}

static void
gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
{
	return gen6_ring_put_irq(ring,
				 GT_USER_INTERRUPT,
				 GEN6_RENDER_USER_INTERRUPT);
}

1318
static bool
1319 1320
gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
{
1321 1322 1323
	return gen6_ring_get_irq(ring,
				 GT_GEN6_BSD_USER_INTERRUPT,
				 GEN6_BSD_USER_INTERRUPT);
1324 1325 1326 1327 1328
}

static void
gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
{
1329 1330 1331
	return gen6_ring_put_irq(ring,
				 GT_GEN6_BSD_USER_INTERRUPT,
				 GEN6_BSD_USER_INTERRUPT);
1332 1333
}

1334
/* ring buffer for Video Codec for Gen6+ */
1335
static const struct intel_ring_buffer gen6_bsd_ring = {
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	.name			= "gen6 bsd ring",
	.id			= RING_BSD,
	.mmio_base		= GEN6_BSD_RING_BASE,
	.size			= 32 * PAGE_SIZE,
	.init			= init_ring_common,
	.write_tail		= gen6_bsd_ring_write_tail,
	.flush			= gen6_ring_flush,
	.add_request		= gen6_add_request,
	.get_seqno		= ring_get_seqno,
	.irq_get		= gen6_bsd_ring_get_irq,
	.irq_put		= gen6_bsd_ring_put_irq,
	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1348 1349 1350 1351 1352
	.sync_to		= gen6_bsd_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_VR,
				   MI_SEMAPHORE_SYNC_INVALID,
				   MI_SEMAPHORE_SYNC_VB},
	.signal_mbox		= {GEN6_RVSYNC, GEN6_BVSYNC},
1353 1354 1355 1356
};

/* Blitter support (SandyBridge+) */

1357
static bool
1358
blt_ring_get_irq(struct intel_ring_buffer *ring)
1359
{
1360 1361 1362
	return gen6_ring_get_irq(ring,
				 GT_BLT_USER_INTERRUPT,
				 GEN6_BLITTER_USER_INTERRUPT);
1363
}
1364

1365
static void
1366
blt_ring_put_irq(struct intel_ring_buffer *ring)
1367
{
1368 1369 1370
	gen6_ring_put_irq(ring,
			  GT_BLT_USER_INTERRUPT,
			  GEN6_BLITTER_USER_INTERRUPT);
1371 1372
}

Z
Zou Nan hai 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

/* Workaround for some stepping of SNB,
 * each time when BLT engine ring tail moved,
 * the first command in the ring to be parsed
 * should be MI_BATCH_BUFFER_START
 */
#define NEED_BLT_WORKAROUND(dev) \
	(IS_GEN6(dev) && (dev->pdev->revision < 8))

static inline struct drm_i915_gem_object *
to_blt_workaround(struct intel_ring_buffer *ring)
{
	return ring->private;
}

static int blt_ring_init(struct intel_ring_buffer *ring)
{
	if (NEED_BLT_WORKAROUND(ring->dev)) {
		struct drm_i915_gem_object *obj;
1392
		u32 *ptr;
Z
Zou Nan hai 已提交
1393 1394
		int ret;

1395
		obj = i915_gem_alloc_object(ring->dev, 4096);
Z
Zou Nan hai 已提交
1396 1397 1398
		if (obj == NULL)
			return -ENOMEM;

1399
		ret = i915_gem_object_pin(obj, 4096, true);
Z
Zou Nan hai 已提交
1400 1401 1402 1403 1404 1405
		if (ret) {
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

		ptr = kmap(obj->pages[0]);
1406 1407
		*ptr++ = MI_BATCH_BUFFER_END;
		*ptr++ = MI_NOOP;
Z
Zou Nan hai 已提交
1408 1409
		kunmap(obj->pages[0]);

1410
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
Z
Zou Nan hai 已提交
1411
		if (ret) {
1412
			i915_gem_object_unpin(obj);
Z
Zou Nan hai 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

		ring->private = obj;
	}

	return init_ring_common(ring);
}

static int blt_ring_begin(struct intel_ring_buffer *ring,
			  int num_dwords)
{
	if (ring->private) {
		int ret = intel_ring_begin(ring, num_dwords+2);
		if (ret)
			return ret;

		intel_ring_emit(ring, MI_BATCH_BUFFER_START);
		intel_ring_emit(ring, to_blt_workaround(ring)->gtt_offset);

		return 0;
	} else
		return intel_ring_begin(ring, 4);
}

1439
static int blt_ring_flush(struct intel_ring_buffer *ring,
1440
			  u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
1441
{
1442
	uint32_t cmd;
1443 1444 1445 1446 1447 1448
	int ret;

	ret = blt_ring_begin(ring, 4);
	if (ret)
		return ret;

1449 1450 1451 1452
	cmd = MI_FLUSH_DW;
	if (invalidate & I915_GEM_DOMAIN_RENDER)
		cmd |= MI_INVALIDATE_TLB;
	intel_ring_emit(ring, cmd);
1453 1454
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
1455
	intel_ring_emit(ring, MI_NOOP);
1456 1457
	intel_ring_advance(ring);
	return 0;
Z
Zou Nan hai 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
}

static void blt_ring_cleanup(struct intel_ring_buffer *ring)
{
	if (!ring->private)
		return;

	i915_gem_object_unpin(ring->private);
	drm_gem_object_unreference(ring->private);
	ring->private = NULL;
}

1470
static const struct intel_ring_buffer gen6_blt_ring = {
1471 1472 1473 1474 1475 1476 1477 1478 1479
	.name			= "blt ring",
	.id			= RING_BLT,
	.mmio_base		= BLT_RING_BASE,
	.size			= 32 * PAGE_SIZE,
	.init			= blt_ring_init,
	.write_tail		= ring_write_tail,
	.flush			= blt_ring_flush,
	.add_request		= gen6_add_request,
	.get_seqno		= ring_get_seqno,
1480 1481
	.irq_get		= blt_ring_get_irq,
	.irq_put		= blt_ring_put_irq,
1482
	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1483 1484 1485 1486 1487 1488
	.cleanup		= blt_ring_cleanup,
	.sync_to		= gen6_blt_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_BR,
				   MI_SEMAPHORE_SYNC_BV,
				   MI_SEMAPHORE_SYNC_INVALID},
	.signal_mbox		= {GEN6_RBSYNC, GEN6_VBSYNC},
1489 1490
};

1491 1492 1493
int intel_init_render_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1494
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1495

1496 1497 1498
	*ring = render_ring;
	if (INTEL_INFO(dev)->gen >= 6) {
		ring->add_request = gen6_add_request;
1499
		ring->flush = gen6_render_ring_flush;
1500 1501
		ring->irq_get = gen6_render_ring_get_irq;
		ring->irq_put = gen6_render_ring_put_irq;
1502 1503 1504
	} else if (IS_GEN5(dev)) {
		ring->add_request = pc_render_add_request;
		ring->get_seqno = pc_render_get_seqno;
1505
	}
1506 1507

	if (!I915_NEED_GFX_HWS(dev)) {
1508 1509
		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
		memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1510 1511
	}

1512
	return intel_init_ring_buffer(dev, ring);
1513 1514
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];

	*ring = render_ring;
	if (INTEL_INFO(dev)->gen >= 6) {
		ring->add_request = gen6_add_request;
		ring->irq_get = gen6_render_ring_get_irq;
		ring->irq_put = gen6_render_ring_put_irq;
	} else if (IS_GEN5(dev)) {
		ring->add_request = pc_render_add_request;
		ring->get_seqno = pc_render_get_seqno;
	}

1530 1531 1532
	if (!I915_NEED_GFX_HWS(dev))
		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);

	ring->size = size;
	ring->effective_size = ring->size;
	if (IS_I830(ring->dev))
		ring->effective_size -= 128;

	ring->map.offset = start;
	ring->map.size = size;
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;

	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
		DRM_ERROR("can not ioremap virtual address for"
			  " ring buffer\n");
		return -ENOMEM;
	}

	ring->virtual_start = (void __force __iomem *)ring->map.handle;
	return 0;
}

1560 1561 1562
int intel_init_bsd_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1563
	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1564

1565
	if (IS_GEN6(dev) || IS_GEN7(dev))
1566
		*ring = gen6_bsd_ring;
1567
	else
1568
		*ring = bsd_ring;
1569

1570
	return intel_init_ring_buffer(dev, ring);
1571
}
1572 1573 1574 1575

int intel_init_blt_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1576
	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1577

1578
	*ring = gen6_blt_ring;
1579

1580 1581 1582
	if (IS_GEN7(dev))
		ring->irq_get = gen7_blt_ring_get_irq;

1583
	return intel_init_ring_buffer(dev, ring);
1584
}