intel_pm.c 227.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
102 103
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
104 105
}

106 107 108 109 110 111 112 113 114 115 116
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
117 118 119 120 121 122 123 124 125 126

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

127 128
}

129
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

167
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

194
	dev_priv->ips.r_t = dev_priv->mem_freq;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
226
		dev_priv->ips.c_m = 0;
227
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228
		dev_priv->ips.c_m = 1;
229
	} else {
230
		dev_priv->ips.c_m = 2;
231 232 233
	}
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

272 273
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

334 335 336
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

337
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338
{
339
	bool was_enabled;
340
	u32 val;
341

342
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
343
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
344
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345
		POSTING_READ(FW_BLC_SELF_VLV);
346
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
347
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
348
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349
		POSTING_READ(FW_BLC_SELF);
350
	} else if (IS_PINEVIEW(dev_priv)) {
351 352 353 354 355 356
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
357
		I915_WRITE(DSPFW3, val);
358
		POSTING_READ(DSPFW3);
359
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 362 363
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
364
		POSTING_READ(FW_BLC_SELF);
365
	} else if (IS_I915GM(dev_priv)) {
366 367 368 369 370
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
371
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
372 373 374
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
375
		POSTING_READ(INSTPM);
376
	} else {
377
		return false;
378
	}
379

380 381 382 383 384
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
385 386
}

387
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
388
{
389 390
	bool ret;

391
	mutex_lock(&dev_priv->wm.wm_mutex);
392
	ret = _intel_set_memory_cxsr(dev_priv, enable);
393 394
	dev_priv->wm.vlv.cxsr = enable;
	mutex_unlock(&dev_priv->wm.wm_mutex);
395 396

	return ret;
397
}
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
413
static const int pessimal_latency_ns = 5000;
414

415 416 417
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

418
static void vlv_get_fifo_size(struct intel_crtc *crtc)
419
{
420 421 422 423
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct vlv_fifo_state *fifo_state = &crtc->wm.fifo_state;
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
424

425
	switch (pipe) {
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
446 447
		MISSING_CASE(pipe);
		return;
448 449
	}

450 451 452 453 454 455 456 457 458 459 460
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;

	DRM_DEBUG_KMS("Pipe %c FIFO size: %d/%d/%d/%d\n",
		      pipe_name(pipe),
		      fifo_state->plane[PLANE_PRIMARY],
		      fifo_state->plane[PLANE_SPRITE0],
		      fifo_state->plane[PLANE_SPRITE1],
		      fifo_state->plane[PLANE_CURSOR]);
461 462
}

463
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
464 465 466 467 468 469 470 471 472 473 474 475 476 477
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

478
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

494
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
511 512 513 514 515
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
516 517
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
518 519 520 521 522
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
523 524
};
static const struct intel_watermark_params pineview_cursor_wm = {
525 526 527 528 529
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
530 531
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
532 533 534 535 536
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
537 538
};
static const struct intel_watermark_params g4x_wm_info = {
539 540 541 542 543
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
544 545
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
546 547 548 549 550
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
551 552
};
static const struct intel_watermark_params i965_cursor_wm_info = {
553 554 555 556 557
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
558 559
};
static const struct intel_watermark_params i945_wm_info = {
560 561 562 563 564
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
565 566
};
static const struct intel_watermark_params i915_wm_info = {
567 568 569 570 571
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
572
};
573
static const struct intel_watermark_params i830_a_wm_info = {
574 575 576 577 578
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
579
};
580 581 582 583 584 585 586
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
587
static const struct intel_watermark_params i845_wm_info = {
588 589 590 591 592
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
593 594 595 596 597 598
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
599
 * @cpp: bytes per pixel
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
615
					int fifo_size, int cpp,
616 617 618 619 620 621 622 623 624 625
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
626
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
627 628 629 630 631 632 633 634 635 636 637 638 639 640
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
641 642 643 644 645 646 647 648 649 650 651

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

652 653 654
	return wm_size;
}

655
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
656
{
657
	struct intel_crtc *crtc, *enabled = NULL;
658

659
	for_each_intel_crtc(&dev_priv->drm, crtc) {
660
		if (intel_crtc_active(crtc)) {
661 662 663 664 665 666 667 668 669
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

670
static void pineview_update_wm(struct intel_crtc *unused_crtc)
671
{
672
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
673
	struct intel_crtc *crtc;
674 675 676 677
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

678 679 680 681
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
682 683
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
684
		intel_set_memory_cxsr(dev_priv, false);
685 686 687
		return;
	}

688
	crtc = single_enabled_crtc(dev_priv);
689
	if (crtc) {
690 691 692 693
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
694
		int cpp = fb->format->cpp[0];
695
		int clock = adjusted_mode->crtc_clock;
696 697 698 699

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
700
					cpp, latency->display_sr);
701 702
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
703
		reg |= FW_WM(wm, SR);
704 705 706 707 708 709
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
710
					cpp, latency->cursor_sr);
711 712
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
713
		reg |= FW_WM(wm, CURSOR_SR);
714 715 716 717 718
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
719
					cpp, latency->display_hpll_disable);
720 721
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
722
		reg |= FW_WM(wm, HPLL_SR);
723 724 725 726 727
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
728
					cpp, latency->cursor_hpll_disable);
729 730
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
731
		reg |= FW_WM(wm, HPLL_CURSOR);
732 733 734
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

735
		intel_set_memory_cxsr(dev_priv, true);
736
	} else {
737
		intel_set_memory_cxsr(dev_priv, false);
738 739 740
	}
}

741
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
742 743 744 745 746 747 748 749
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
750
	struct intel_crtc *crtc;
751
	const struct drm_display_mode *adjusted_mode;
752
	const struct drm_framebuffer *fb;
753
	int htotal, hdisplay, clock, cpp;
754 755 756
	int line_time_us, line_count;
	int entries, tlb_miss;

757
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
758
	if (!intel_crtc_active(crtc)) {
759 760 761 762 763
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

764 765
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
766
	clock = adjusted_mode->crtc_clock;
767
	htotal = adjusted_mode->crtc_htotal;
768
	hdisplay = crtc->config->pipe_src_w;
769
	cpp = fb->format->cpp[0];
770 771

	/* Use the small buffer method to calculate plane watermark */
772
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
773 774 775 776 777 778 779 780 781
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
782
	line_time_us = max(htotal * 1000 / clock, 1);
783
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
784
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
803
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
804 805 806 807 808 809 810 811
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
812
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
813 814 815 816 817
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
818
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
819 820 821 822 823 824 825 826 827 828 829 830
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

831
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
832 833 834 835 836 837
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
838
	struct intel_crtc *crtc;
839
	const struct drm_display_mode *adjusted_mode;
840
	const struct drm_framebuffer *fb;
841
	int hdisplay, htotal, cpp, clock;
842 843 844 845 846 847 848 849 850 851
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

852
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
853 854
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
855
	clock = adjusted_mode->crtc_clock;
856
	htotal = adjusted_mode->crtc_htotal;
857
	hdisplay = crtc->config->pipe_src_w;
858
	cpp = fb->format->cpp[0];
859

860
	line_time_us = max(htotal * 1000 / clock, 1);
861
	line_count = (latency_ns / line_time_us + 1000) / 1000;
862
	line_size = hdisplay * cpp;
863 864

	/* Use the minimum of the small and large buffer method for primary */
865
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
866 867 868 869 870 871
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
872
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
873 874 875
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

876
	return g4x_check_srwm(dev_priv,
877 878 879 880
			      *display_wm, *cursor_wm,
			      display, cursor);
}

881 882 883
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

884
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
885 886
				const struct vlv_wm_values *wm)
{
887 888 889 890 891 892 893 894 895
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
896

897 898 899 900 901 902 903 904 905 906 907
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

908
	I915_WRITE(DSPFW1,
909
		   FW_WM(wm->sr.plane, SR) |
910 911 912
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
913
	I915_WRITE(DSPFW2,
914 915 916
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
917
	I915_WRITE(DSPFW3,
918
		   FW_WM(wm->sr.cursor, CURSOR_SR));
919 920 921

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
922 923
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
924
		I915_WRITE(DSPFW8_CHV,
925 926
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
927
		I915_WRITE(DSPFW9_CHV,
928 929
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
930
		I915_WRITE(DSPHOWM,
931
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
932 933 934 935 936 937 938 939 940
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
941 942
	} else {
		I915_WRITE(DSPFW7,
943 944
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
945
		I915_WRITE(DSPHOWM,
946
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
947 948 949 950 951 952
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
953 954 955
	}

	POSTING_READ(DSPFW1);
956 957
}

958 959
#undef FW_WM_VLV

960 961 962 963 964 965
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

966 967 968 969
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
970
				   unsigned int cpp,
971 972 973 974 975
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
976
	ret = (ret + 1) * horiz_pixels * cpp;
977 978 979 980 981
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

982
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
983 984 985 986
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

987 988
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

989 990 991
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
992 993

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
994 995 996
	}
}

997 998
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
999 1000
				     int level)
{
1001
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1002
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1003 1004
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1005
	int clock, htotal, cpp, width, wm;
1006 1007 1008 1009

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1010
	if (!plane_state->base.visible)
1011 1012
		return 0;

1013
	cpp = plane_state->base.fb->format->cpp[0];
1014 1015 1016
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1029
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1030 1031 1032 1033 1034 1035
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1036 1037
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
1038
	struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1039 1040
	struct vlv_fifo_state *fifo_state = &crtc->wm.fifo_state;
	struct drm_device *dev = crtc->base.dev;
1041 1042 1043 1044 1045 1046 1047 1048 1049
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1050
		if (plane->id == PLANE_CURSOR)
1051 1052
			continue;

1053
		if (state->base.visible) {
1054
			wm_state->num_active_planes++;
1055
			total_rate += state->base.fb->format->cpp[0];
1056 1057 1058 1059 1060 1061 1062 1063
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

1064 1065
		if (plane->id == PLANE_CURSOR) {
			fifo_state->plane[plane->id] = 63;
1066 1067 1068
			continue;
		}

1069
		if (!state->base.visible) {
1070
			fifo_state->plane[plane->id] = 0;
1071 1072 1073
			continue;
		}

1074
		rate = state->base.fb->format->cpp[0];
1075 1076
		fifo_state->plane[plane->id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane->id];
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

1088
		if (plane->id == PLANE_CURSOR)
1089 1090 1091
			continue;

		/* give it all to the first plane if none are active */
1092
		if (fifo_state->plane[plane->id] == 0 &&
1093 1094 1095 1096
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1097
		fifo_state->plane[plane->id] += plane_extra;
1098 1099 1100 1101 1102 1103
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1104 1105 1106 1107 1108 1109 1110 1111
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1112 1113
static void vlv_invert_wms(struct intel_crtc *crtc)
{
1114
	struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1115 1116 1117
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
1118
		struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1119
		const struct vlv_fifo_state *fifo_state = &crtc->wm.fifo_state;
1120
		const int sr_fifo_size =
1121
			INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1122
		enum plane_id plane_id;
1123

1124 1125 1126 1127 1128 1129
		wm_state->sr[level].plane =
			vlv_invert_wm_value(wm_state->sr[level].plane,
					    sr_fifo_size);
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(wm_state->sr[level].cursor,
					    63);
1130

1131 1132 1133 1134
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(wm_state->wm[level].plane[plane_id],
						    fifo_state->plane[plane_id]);
1135 1136 1137 1138
		}
	}
}

1139
static void vlv_compute_wm(struct intel_crtc *crtc)
1140
{
1141
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1142
	struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1143
	const struct vlv_fifo_state *fifo_state = &crtc->wm.fifo_state;
1144 1145 1146 1147 1148
	struct intel_plane *plane;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1149
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1150
	wm_state->num_levels = dev_priv->wm.max_level + 1;
1151 1152 1153

	wm_state->num_active_planes = 0;

1154
	vlv_compute_fifo(crtc);
1155 1156 1157 1158

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

1159
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1160 1161
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
1162
		int level;
1163

1164
		if (!state->base.visible)
1165 1166 1167 1168
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
1169
			int wm = vlv_compute_wm_level(crtc->config, state, level);
1170
			int max_wm = fifo_state->plane[plane->id];
1171 1172 1173 1174 1175

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

1176
			if (wm > max_wm)
1177 1178
				break;

1179
			wm_state->wm[level].plane[plane->id] = wm;
1180 1181 1182 1183 1184 1185 1186 1187
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
1188
		if (plane->id == PLANE_CURSOR) {
1189 1190
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1191 1192
					wm_state->wm[level].plane[PLANE_CURSOR];
		} else {
1193 1194
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
1195
					max(wm_state->sr[level].plane,
1196
					    wm_state->wm[level].plane[plane->id]);
1197 1198 1199 1200
		}
	}

	/* clear any (partially) filled invalid levels */
1201
	for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1202 1203 1204 1205 1206 1207 1208
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1209 1210 1211 1212 1213
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
1214 1215 1216
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct vlv_fifo_state *fifo_state = &crtc->wm.fifo_state;
	int sprite0_start, sprite1_start, fifo_size;
1217

1218 1219 1220
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1221

1222 1223
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1224 1225 1226 1227 1228

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

1229 1230
	spin_lock(&dev_priv->wm.dsparb_lock);

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
1287 1288 1289 1290

	POSTING_READ(DSPARB);

	spin_unlock(&dev_priv->wm.dsparb_lock);
1291 1292 1293 1294
}

#undef VLV_FIFO

1295
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1296 1297 1298 1299 1300
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1301
	wm->level = dev_priv->wm.max_level;
1302 1303
	wm->cxsr = true;

1304
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1305
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1320 1321 1322
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1323
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1324
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1325 1326 1327 1328 1329 1330 1331 1332 1333
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

1334 1335 1336 1337
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1338 1339 1340
	}
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

1351
static void vlv_update_wm(struct intel_crtc *crtc)
1352
{
1353
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1354
	enum pipe pipe = crtc->pipe;
1355 1356
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
1357

1358
	vlv_compute_wm(crtc);
1359
	vlv_merge_wm(dev_priv, &new_wm);
1360

1361
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) {
1362
		/* FIXME should be part of crtc atomic commit */
1363
		vlv_pipe_set_fifo_size(crtc);
1364

1365
		return;
1366
	}
1367

1368
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1369 1370
		chv_set_memory_dvfs(dev_priv, false);

1371
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1372 1373
		chv_set_memory_pm5(dev_priv, false);

1374
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1375
		_intel_set_memory_cxsr(dev_priv, false);
1376

1377
	/* FIXME should be part of crtc atomic commit */
1378
	vlv_pipe_set_fifo_size(crtc);
1379

1380
	vlv_write_wm_values(dev_priv, &new_wm);
1381 1382 1383

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1384 1385 1386
		      pipe_name(pipe), new_wm.pipe[pipe].plane[PLANE_PRIMARY], new_wm.pipe[pipe].plane[PLANE_CURSOR],
		      new_wm.pipe[pipe].plane[PLANE_SPRITE0], new_wm.pipe[pipe].plane[PLANE_SPRITE1],
		      new_wm.sr.plane, new_wm.sr.cursor, new_wm.level, new_wm.cxsr);
1387

1388
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1389
		_intel_set_memory_cxsr(dev_priv, true);
1390

1391
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1392 1393
		chv_set_memory_pm5(dev_priv, true);

1394
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1395 1396
		chv_set_memory_dvfs(dev_priv, true);

1397
	*old_wm = new_wm;
1398 1399
}

1400 1401
#define single_plane_enabled(mask) is_power_of_2(mask)

1402
static void g4x_update_wm(struct intel_crtc *crtc)
1403
{
1404
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1405 1406 1407 1408
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1409
	bool cxsr_enabled;
1410

1411
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1412 1413
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1414
			    &planea_wm, &cursora_wm))
1415
		enabled |= 1 << PIPE_A;
1416

1417
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1418 1419
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1420
			    &planeb_wm, &cursorb_wm))
1421
		enabled |= 1 << PIPE_B;
1422 1423

	if (single_plane_enabled(enabled) &&
1424
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1425 1426 1427
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1428
			     &plane_sr, &cursor_sr)) {
1429
		cxsr_enabled = true;
1430
	} else {
1431
		cxsr_enabled = false;
1432
		intel_set_memory_cxsr(dev_priv, false);
1433 1434
		plane_sr = cursor_sr = 0;
	}
1435

1436 1437
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1438 1439 1440 1441 1442
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1443 1444 1445 1446
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1447
	I915_WRITE(DSPFW2,
1448
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1449
		   FW_WM(cursora_wm, CURSORA));
1450 1451
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1452
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1453
		   FW_WM(cursor_sr, CURSOR_SR));
1454 1455 1456

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1457 1458
}

1459
static void i965_update_wm(struct intel_crtc *unused_crtc)
1460
{
1461
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1462
	struct intel_crtc *crtc;
1463 1464
	int srwm = 1;
	int cursor_sr = 16;
1465
	bool cxsr_enabled;
1466 1467

	/* Calc sr entries for one plane configs */
1468
	crtc = single_enabled_crtc(dev_priv);
1469 1470 1471
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1472 1473 1474 1475
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1476
		int clock = adjusted_mode->crtc_clock;
1477
		int htotal = adjusted_mode->crtc_htotal;
1478
		int hdisplay = crtc->config->pipe_src_w;
1479
		int cpp = fb->format->cpp[0];
1480 1481 1482
		unsigned long line_time_us;
		int entries;

1483
		line_time_us = max(htotal * 1000 / clock, 1);
1484 1485 1486

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1487
			cpp * hdisplay;
1488 1489 1490 1491 1492 1493 1494 1495 1496
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1497
			cpp * crtc->base.cursor->state->crtc_w;
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1509
		cxsr_enabled = true;
1510
	} else {
1511
		cxsr_enabled = false;
1512
		/* Turn off self refresh if both pipes are enabled */
1513
		intel_set_memory_cxsr(dev_priv, false);
1514 1515 1516 1517 1518 1519
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1520 1521 1522 1523 1524 1525
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1526
	/* update cursor SR watermark */
1527
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1528 1529 1530

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1531 1532
}

1533 1534
#undef FW_WM

1535
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1536
{
1537
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1538 1539 1540 1541 1542 1543
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1544
	struct intel_crtc *crtc, *enabled = NULL;
1545

1546
	if (IS_I945GM(dev_priv))
1547
		wm_info = &i945_wm_info;
1548
	else if (!IS_GEN2(dev_priv))
1549 1550
		wm_info = &i915_wm_info;
	else
1551
		wm_info = &i830_a_wm_info;
1552

1553
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1554
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1555 1556 1557 1558 1559 1560 1561
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1562
		if (IS_GEN2(dev_priv))
1563
			cpp = 4;
1564
		else
1565
			cpp = fb->format->cpp[0];
1566

1567
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1568
					       wm_info, fifo_size, cpp,
1569
					       pessimal_latency_ns);
1570
		enabled = crtc;
1571
	} else {
1572
		planea_wm = fifo_size - wm_info->guard_size;
1573 1574 1575 1576
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1577
	if (IS_GEN2(dev_priv))
1578
		wm_info = &i830_bc_wm_info;
1579

1580
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1581
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1582 1583 1584 1585 1586 1587 1588
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1589
		if (IS_GEN2(dev_priv))
1590
			cpp = 4;
1591
		else
1592
			cpp = fb->format->cpp[0];
1593

1594
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1595
					       wm_info, fifo_size, cpp,
1596
					       pessimal_latency_ns);
1597 1598 1599 1600
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1601
	} else {
1602
		planeb_wm = fifo_size - wm_info->guard_size;
1603 1604 1605
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1606 1607 1608

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1609
	if (IS_I915GM(dev_priv) && enabled) {
1610
		struct drm_i915_gem_object *obj;
1611

1612
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1613 1614

		/* self-refresh seems busted with untiled */
1615
		if (!i915_gem_object_is_tiled(obj))
1616 1617 1618
			enabled = NULL;
	}

1619 1620 1621 1622 1623 1624
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1625
	intel_set_memory_cxsr(dev_priv, false);
1626 1627

	/* Calc sr entries for one plane configs */
1628
	if (HAS_FW_BLC(dev_priv) && enabled) {
1629 1630
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1631 1632 1633 1634
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1635
		int clock = adjusted_mode->crtc_clock;
1636
		int htotal = adjusted_mode->crtc_htotal;
1637 1638
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1639 1640 1641
		unsigned long line_time_us;
		int entries;

1642
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1643
			cpp = 4;
1644
		else
1645
			cpp = fb->format->cpp[0];
1646

1647
		line_time_us = max(htotal * 1000 / clock, 1);
1648 1649 1650

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1651
			cpp * hdisplay;
1652 1653 1654 1655 1656 1657
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1658
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1659 1660
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1661
		else
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1678 1679
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1680 1681
}

1682
static void i845_update_wm(struct intel_crtc *unused_crtc)
1683
{
1684
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1685
	struct intel_crtc *crtc;
1686
	const struct drm_display_mode *adjusted_mode;
1687 1688 1689
	uint32_t fwater_lo;
	int planea_wm;

1690
	crtc = single_enabled_crtc(dev_priv);
1691 1692 1693
	if (crtc == NULL)
		return;

1694
	adjusted_mode = &crtc->config->base.adjusted_mode;
1695
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1696
				       &i845_wm_info,
1697
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1698
				       4, pessimal_latency_ns);
1699 1700 1701 1702 1703 1704 1705 1706
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1707
/* latency must be in 0.1us units. */
1708
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1709 1710 1711
{
	uint64_t ret;

1712 1713 1714
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1715
	ret = (uint64_t) pixel_rate * cpp * latency;
1716 1717 1718 1719 1720
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1721
/* latency must be in 0.1us units. */
1722
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1723
			       uint32_t horiz_pixels, uint8_t cpp,
1724 1725 1726 1727
			       uint32_t latency)
{
	uint32_t ret;

1728 1729
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1730 1731
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1732

1733
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1734
	ret = (ret + 1) * horiz_pixels * cpp;
1735 1736 1737 1738
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1739
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1740
			   uint8_t cpp)
1741
{
1742 1743 1744 1745 1746 1747
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1748
	if (WARN_ON(!cpp))
1749 1750 1751 1752
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1753
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1754 1755
}

1756
struct ilk_wm_maximums {
1757 1758 1759 1760 1761 1762
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1763 1764 1765 1766
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1767
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1768
				   const struct intel_plane_state *pstate,
1769 1770
				   uint32_t mem_value,
				   bool is_lp)
1771
{
1772
	uint32_t method1, method2;
1773
	int cpp;
1774

1775
	if (!cstate->base.active || !pstate->base.visible)
1776 1777
		return 0;

1778
	cpp = pstate->base.fb->format->cpp[0];
1779

1780
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
1781 1782 1783 1784

	if (!is_lp)
		return method1;

1785
	method2 = ilk_wm_method2(cstate->pixel_rate,
1786
				 cstate->base.adjusted_mode.crtc_htotal,
1787
				 drm_rect_width(&pstate->base.dst),
1788
				 cpp, mem_value);
1789 1790

	return min(method1, method2);
1791 1792
}

1793 1794 1795 1796
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1797
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1798
				   const struct intel_plane_state *pstate,
1799 1800 1801
				   uint32_t mem_value)
{
	uint32_t method1, method2;
1802
	int cpp;
1803

1804
	if (!cstate->base.active || !pstate->base.visible)
1805 1806
		return 0;

1807
	cpp = pstate->base.fb->format->cpp[0];
1808

1809 1810
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
1811
				 cstate->base.adjusted_mode.crtc_htotal,
1812
				 drm_rect_width(&pstate->base.dst),
1813
				 cpp, mem_value);
1814 1815 1816
	return min(method1, method2);
}

1817 1818 1819 1820
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1821
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1822
				   const struct intel_plane_state *pstate,
1823 1824
				   uint32_t mem_value)
{
1825 1826
	int cpp;

1827
	/*
1828 1829 1830 1831 1832 1833
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
1834
	 */
1835
	if (!cstate->base.active || !pstate->base.fb)
1836 1837
		return 0;

1838 1839
	cpp = pstate->base.fb->format->cpp[0];

1840
	return ilk_wm_method2(cstate->pixel_rate,
1841
			      cstate->base.adjusted_mode.crtc_htotal,
1842
			      pstate->base.crtc_w, cpp, mem_value);
1843 1844
}

1845
/* Only for WM_LP. */
1846
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1847
				   const struct intel_plane_state *pstate,
1848
				   uint32_t pri_val)
1849
{
1850
	int cpp;
1851

1852
	if (!cstate->base.active || !pstate->base.visible)
1853 1854
		return 0;

1855
	cpp = pstate->base.fb->format->cpp[0];
1856

1857
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1858 1859
}

1860 1861
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1862
{
1863
	if (INTEL_GEN(dev_priv) >= 8)
1864
		return 3072;
1865
	else if (INTEL_GEN(dev_priv) >= 7)
1866 1867 1868 1869 1870
		return 768;
	else
		return 512;
}

1871 1872 1873
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
1874
{
1875
	if (INTEL_GEN(dev_priv) >= 8)
1876 1877
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
1878
	else if (INTEL_GEN(dev_priv) >= 7)
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

1889 1890
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1891
{
1892
	if (INTEL_GEN(dev_priv) >= 7)
1893 1894 1895 1896 1897
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

1898
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1899
{
1900
	if (INTEL_GEN(dev_priv) >= 8)
1901 1902 1903 1904 1905
		return 31;
	else
		return 15;
}

1906 1907 1908
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1909
				     const struct intel_wm_config *config,
1910 1911 1912
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
1913 1914
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1915 1916

	/* if sprites aren't enabled, sprites get nothing */
1917
	if (is_sprite && !config->sprites_enabled)
1918 1919 1920
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1921
	if (level == 0 || config->num_pipes_active > 1) {
1922
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1923 1924 1925 1926 1927 1928

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
1929
		if (INTEL_GEN(dev_priv) <= 6)
1930 1931 1932
			fifo_size /= 2;
	}

1933
	if (config->sprites_enabled) {
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1945
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1946 1947 1948 1949
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1950 1951
				      int level,
				      const struct intel_wm_config *config)
1952 1953
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1954
	if (level > 0 && config->num_pipes_active > 1)
1955 1956 1957
		return 64;

	/* otherwise just report max that registers can hold */
1958
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
1959 1960
}

1961
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1962 1963 1964
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1965
				    struct ilk_wm_maximums *max)
1966
{
1967 1968 1969
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1970
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1971 1972
}

1973
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
1974 1975 1976
					int level,
					struct ilk_wm_maximums *max)
{
1977 1978 1979 1980
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
1981 1982
}

1983
static bool ilk_validate_wm_level(int level,
1984
				  const struct ilk_wm_maximums *max,
1985
				  struct intel_wm_level *result)
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2024
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2025
				 const struct intel_crtc *intel_crtc,
2026
				 int level,
2027
				 struct intel_crtc_state *cstate,
2028 2029 2030
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2031
				 struct intel_wm_level *result)
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2056 2057 2058
	result->enable = true;
}

2059
static uint32_t
2060
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2061
{
2062 2063
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2064 2065
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2066
	u32 linetime, ips_linetime;
2067

2068 2069 2070 2071
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2072
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2073
		return 0;
2074

2075 2076 2077
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2078 2079 2080
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2081
					 intel_state->cdclk.logical.cdclk);
2082

2083 2084
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2085 2086
}

2087 2088
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2089
{
2090
	if (IS_GEN9(dev_priv)) {
2091
		uint32_t val;
2092
		int ret, i;
2093
		int level, max_level = ilk_wm_max_level(dev_priv);
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2149
		/*
2150
		 * WaWmMemoryReadLatency:skl,glk
2151
		 *
2152
		 * punit doesn't take into account the read latency so we need
2153 2154
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2155
		 */
2156 2157 2158 2159 2160
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2161
				wm[level] += 2;
2162
			}
2163 2164
		}

2165
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2166 2167 2168 2169 2170
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2171 2172 2173 2174
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2175
	} else if (INTEL_GEN(dev_priv) >= 6) {
2176 2177 2178 2179 2180 2181
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2182
	} else if (INTEL_GEN(dev_priv) >= 5) {
2183 2184 2185 2186 2187 2188
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2189 2190 2191
	}
}

2192 2193
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2194 2195
{
	/* ILK sprite LP0 latency is 1300 ns */
2196
	if (IS_GEN5(dev_priv))
2197 2198 2199
		wm[0] = 13;
}

2200 2201
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2202 2203
{
	/* ILK cursor LP0 latency is 1300 ns */
2204
	if (IS_GEN5(dev_priv))
2205 2206 2207
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2208
	if (IS_IVYBRIDGE(dev_priv))
2209 2210 2211
		wm[3] *= 2;
}

2212
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2213 2214
{
	/* how many WM levels are we expecting */
2215
	if (INTEL_GEN(dev_priv) >= 9)
2216
		return 7;
2217
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2218
		return 4;
2219
	else if (INTEL_GEN(dev_priv) >= 6)
2220
		return 3;
2221
	else
2222 2223
		return 2;
}
2224

2225
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2226
				   const char *name,
2227
				   const uint16_t wm[8])
2228
{
2229
	int level, max_level = ilk_wm_max_level(dev_priv);
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2240 2241 2242 2243
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2244
		if (IS_GEN9(dev_priv))
2245 2246
			latency *= 10;
		else if (level > 0)
2247 2248 2249 2250 2251 2252 2253 2254
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2255 2256 2257
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2258
	int level, max_level = ilk_wm_max_level(dev_priv);
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2270
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2286 2287 2288
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2289 2290
}

2291
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2292
{
2293
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2294 2295 2296 2297 2298 2299

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2300
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2301
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2302

2303 2304 2305
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2306

2307
	if (IS_GEN6(dev_priv))
2308
		snb_wm_latency_quirk(dev_priv);
2309 2310
}

2311
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2312
{
2313
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2314
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2315 2316
}

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2340
/* Compute new watermarks for the pipe */
2341
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2342
{
2343 2344
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2345
	struct intel_pipe_wm *pipe_wm;
2346
	struct drm_device *dev = state->dev;
2347
	const struct drm_i915_private *dev_priv = to_i915(dev);
2348
	struct intel_plane *intel_plane;
2349
	struct intel_plane_state *pristate = NULL;
2350
	struct intel_plane_state *sprstate = NULL;
2351
	struct intel_plane_state *curstate = NULL;
2352
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2353
	struct ilk_wm_maximums max;
2354

2355
	pipe_wm = &cstate->wm.ilk.optimal;
2356

2357
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2358 2359 2360 2361 2362 2363
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2364 2365

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2366
			pristate = ps;
2367
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2368
			sprstate = ps;
2369
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2370
			curstate = ps;
2371 2372
	}

2373
	pipe_wm->pipe_enabled = cstate->base.active;
2374
	if (sprstate) {
2375 2376 2377 2378
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2379 2380
	}

2381 2382
	usable_level = max_level;

2383
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2384
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2385
		usable_level = 1;
2386 2387

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2388
	if (pipe_wm->sprites_scaled)
2389
		usable_level = 0;
2390

2391
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2392 2393 2394 2395
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2396

2397
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2398
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2399

2400
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2401
		return -EINVAL;
2402

2403
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2404 2405

	for (level = 1; level <= max_level; level++) {
2406
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2407

2408
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2409
				     pristate, sprstate, curstate, wm);
2410 2411 2412 2413 2414 2415

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2416 2417 2418 2419 2420 2421
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2422
			usable_level = level;
2423 2424
	}

2425
	return 0;
2426 2427
}

2428 2429 2430 2431 2432 2433 2434 2435 2436
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2437
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2438
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2439
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2440 2441 2442 2443 2444 2445

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2446
	*a = newstate->wm.ilk.optimal;
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2475
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2476 2477 2478 2479 2480
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2481 2482 2483 2484 2485 2486 2487 2488 2489
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2490 2491
	ret_wm->enable = true;

2492
	for_each_intel_crtc(dev, intel_crtc) {
2493
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2494 2495 2496 2497
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2498

2499 2500 2501 2502 2503
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2504
		if (!wm->enable)
2505
			ret_wm->enable = false;
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2518
			 const struct intel_wm_config *config,
2519
			 const struct ilk_wm_maximums *max,
2520 2521
			 struct intel_pipe_wm *merged)
{
2522
	struct drm_i915_private *dev_priv = to_i915(dev);
2523
	int level, max_level = ilk_wm_max_level(dev_priv);
2524
	int last_enabled_level = max_level;
2525

2526
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2527
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2528
	    config->num_pipes_active > 1)
2529
		last_enabled_level = 0;
2530

2531
	/* ILK: FBC WM must be disabled always */
2532
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2533 2534 2535 2536 2537 2538 2539

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2540 2541 2542 2543 2544
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2545 2546 2547 2548 2549 2550

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2551 2552
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2553 2554 2555
			wm->fbc_val = 0;
		}
	}
2556 2557 2558 2559 2560 2561 2562

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2563
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2564
	    intel_fbc_is_active(dev_priv)) {
2565 2566 2567 2568 2569 2570
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2571 2572
}

2573 2574 2575 2576 2577 2578
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2579 2580 2581
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2582
	struct drm_i915_private *dev_priv = to_i915(dev);
2583

2584
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2585 2586 2587 2588 2589
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2590
static void ilk_compute_wm_results(struct drm_device *dev,
2591
				   const struct intel_pipe_wm *merged,
2592
				   enum intel_ddb_partitioning partitioning,
2593
				   struct ilk_wm_values *results)
2594
{
2595
	struct drm_i915_private *dev_priv = to_i915(dev);
2596 2597
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2598

2599
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2600
	results->partitioning = partitioning;
2601

2602
	/* LP1+ register values */
2603
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2604
		const struct intel_wm_level *r;
2605

2606
		level = ilk_wm_lp_to_level(wm_lp, merged);
2607

2608
		r = &merged->wm[level];
2609

2610 2611 2612 2613 2614
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2615
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2616 2617 2618
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2619 2620 2621
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2622
		if (INTEL_GEN(dev_priv) >= 8)
2623 2624 2625 2626 2627 2628
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2629 2630 2631 2632
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2633
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2634 2635 2636 2637
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2638
	}
2639

2640
	/* LP0 register values */
2641
	for_each_intel_crtc(dev, intel_crtc) {
2642
		enum pipe pipe = intel_crtc->pipe;
2643 2644
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2645 2646 2647 2648

		if (WARN_ON(!r->enable))
			continue;

2649
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2650

2651 2652 2653 2654
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2655 2656 2657
	}
}

2658 2659
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2660
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2661 2662
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2663
{
2664
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2665
	int level1 = 0, level2 = 0;
2666

2667 2668 2669 2670 2671
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2672 2673
	}

2674 2675
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2676 2677 2678
			return r2;
		else
			return r1;
2679
	} else if (level1 > level2) {
2680 2681 2682 2683 2684 2685
		return r1;
	} else {
		return r2;
	}
}

2686 2687 2688 2689 2690 2691 2692 2693
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2694
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2695 2696
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2697 2698 2699 2700 2701
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2702
	for_each_pipe(dev_priv, pipe) {
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2746 2747
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2748
{
2749
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2750
	bool changed = false;
2751

2752 2753 2754
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2755
		changed = true;
2756 2757 2758 2759
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2760
		changed = true;
2761 2762 2763 2764
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2765
		changed = true;
2766
	}
2767

2768 2769 2770 2771
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2772

2773 2774 2775 2776 2777 2778 2779
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2780 2781
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2782
{
2783
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2784 2785 2786
	unsigned int dirty;
	uint32_t val;

2787
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2788 2789 2790 2791 2792
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2793
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2794
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2795
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2796
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2797
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2798 2799
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2800
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2801
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2802
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2803
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2804
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2805 2806
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2807
	if (dirty & WM_DIRTY_DDB) {
2808
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2823 2824
	}

2825
	if (dirty & WM_DIRTY_FBC) {
2826 2827 2828 2829 2830 2831 2832 2833
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2834 2835 2836 2837
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

2838
	if (INTEL_GEN(dev_priv) >= 7) {
2839 2840 2841 2842 2843
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2844

2845
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2846
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2847
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2848
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2849
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2850
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2851 2852

	dev_priv->wm.hw = *results;
2853 2854
}

2855
bool ilk_disable_lp_wm(struct drm_device *dev)
2856
{
2857
	struct drm_i915_private *dev_priv = to_i915(dev);
2858 2859 2860 2861

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2862
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2863

2864 2865 2866 2867 2868 2869 2870 2871
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

2872
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
2873 2874 2875 2876 2877
		return true;

	return false;
}

2878 2879 2880
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2881 2882 2883 2884 2885 2886 2887 2888
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2889 2890
}

2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2903
intel_enable_sagv(struct drm_i915_private *dev_priv)
2904 2905 2906
{
	int ret;

2907 2908 2909 2910
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2926
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2927
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2928
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2929 2930 2931 2932 2933 2934
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2935
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2936 2937 2938 2939
	return 0;
}

int
2940
intel_disable_sagv(struct drm_i915_private *dev_priv)
2941
{
2942
	int ret;
2943

2944 2945 2946 2947
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2948 2949 2950 2951 2952 2953
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2954 2955 2956 2957
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
2958 2959 2960 2961 2962 2963
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2964
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2965
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2966
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2967
		return 0;
2968 2969 2970
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
2971 2972
	}

2973
	dev_priv->sagv_status = I915_SAGV_DISABLED;
2974 2975 2976
	return 0;
}

2977
bool intel_can_enable_sagv(struct drm_atomic_state *state)
2978 2979 2980 2981
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2982 2983
	struct intel_crtc *crtc;
	struct intel_plane *plane;
2984
	struct intel_crtc_state *cstate;
2985
	enum pipe pipe;
2986
	int level, latency;
2987

2988 2989 2990
	if (!intel_has_sagv(dev_priv))
		return false;

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3004
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3005
	cstate = to_intel_crtc_state(crtc->base.state);
3006

3007
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3008 3009
		return false;

3010
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3011 3012
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3013

3014
		/* Skip this plane if it's not enabled */
3015
		if (!wm->wm[0].plane_en)
3016 3017 3018
			continue;

		/* Find the highest enabled wm level for this plane */
3019
		for (level = ilk_wm_max_level(dev_priv);
3020
		     !wm->wm[level].plane_en; --level)
3021 3022
		     { }

3023 3024 3025
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3026
		    plane->base.state->fb->modifier ==
3027 3028 3029
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3030 3031 3032 3033 3034
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3035
		if (latency < SKL_SAGV_BLOCK_TIME)
3036 3037 3038 3039 3040 3041
			return false;
	}

	return true;
}

3042 3043
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3044
				   const struct intel_crtc_state *cstate,
3045 3046
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3047
{
3048 3049 3050
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3051
	struct drm_crtc *for_crtc = cstate->base.crtc;
3052 3053
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3054

3055
	if (WARN_ON(!state) || !cstate->base.active) {
3056 3057
		alloc->start = 0;
		alloc->end = 0;
3058
		*num_active = hweight32(dev_priv->active_crtcs);
3059 3060 3061
		return;
	}

3062 3063 3064 3065 3066
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3067 3068
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3069 3070 3071

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3072
	/*
3073 3074 3075 3076 3077 3078
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3079
	 */
3080
	if (!intel_state->active_pipe_changes) {
3081 3082 3083 3084 3085
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3086
		return;
3087
	}
3088 3089 3090 3091 3092 3093

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3094 3095
}

3096
static unsigned int skl_cursor_allocation(int num_active)
3097
{
3098
	if (num_active == 1)
3099 3100 3101 3102 3103
		return 32;

	return 8;
}

3104 3105 3106 3107
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3108 3109
	if (entry->end)
		entry->end += 1;
3110 3111
}

3112 3113
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3114
{
3115
	struct intel_crtc *crtc;
3116

3117 3118
	memset(ddb, 0, sizeof(*ddb));

3119
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3120
		enum intel_display_power_domain power_domain;
3121 3122
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3123 3124 3125

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3126 3127
			continue;

3128 3129 3130 3131 3132 3133 3134
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3135

3136 3137
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3138 3139

		intel_display_power_put(dev_priv, power_domain);
3140 3141 3142
	}
}

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3165
	if (WARN_ON(!pstate->base.visible))
3166 3167 3168
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3169 3170 3171 3172
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3173
	if (drm_rotation_90_or_270(pstate->base.rotation))
3174 3175 3176 3177 3178 3179 3180 3181 3182
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3183
static unsigned int
3184 3185 3186
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3187
{
3188
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3189
	uint32_t down_scale_amount, data_rate;
3190
	uint32_t width = 0, height = 0;
3191 3192
	struct drm_framebuffer *fb;
	u32 format;
3193

3194
	if (!intel_pstate->base.visible)
3195
		return 0;
3196 3197

	fb = pstate->fb;
V
Ville Syrjälä 已提交
3198
	format = fb->format->format;
3199

3200 3201 3202 3203
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3204

3205 3206
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3207

3208
	if (drm_rotation_90_or_270(pstate->rotation))
3209
		swap(width, height);
3210 3211

	/* for planar format */
3212
	if (format == DRM_FORMAT_NV12) {
3213
		if (y)  /* y-plane data rate */
3214
			data_rate = width * height *
3215
				fb->format->cpp[0];
3216
		else    /* uv-plane data rate */
3217
			data_rate = (width / 2) * (height / 2) *
3218
				fb->format->cpp[1];
3219 3220
	} else {
		/* for packed formats */
3221
		data_rate = width * height * fb->format->cpp[0];
3222 3223
	}

3224 3225 3226
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3227 3228 3229 3230 3231 3232 3233 3234
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3235 3236 3237
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3238
{
3239 3240
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3241 3242
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3243
	unsigned int total_data_rate = 0;
3244 3245 3246

	if (WARN_ON(!state))
		return 0;
3247

3248
	/* Calculate and cache data rate for each plane */
3249
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3250 3251
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3252 3253 3254 3255

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3256
		plane_data_rate[plane_id] = rate;
3257 3258

		total_data_rate += rate;
3259 3260 3261 3262

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3263
		plane_y_data_rate[plane_id] = rate;
3264

3265
		total_data_rate += rate;
3266 3267 3268 3269 3270
	}

	return total_data_rate;
}

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
3285
	if (y && fb->format->format != DRM_FORMAT_NV12)
3286 3287 3288
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3289 3290
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3291 3292
		return 8;

3293 3294
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3295

3296
	if (drm_rotation_90_or_270(pstate->rotation))
3297 3298 3299
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
3300
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3301 3302 3303 3304
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
3305
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
3306
		plane_bpp = fb->format->cpp[1];
3307
	else
3308
		plane_bpp = fb->format->cpp[0];
3309

3310
	if (drm_rotation_90_or_270(pstate->rotation)) {
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3334 3335 3336 3337 3338 3339 3340 3341
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3342
		enum plane_id plane_id = to_intel_plane(plane)->id;
3343

3344
		if (plane_id == PLANE_CURSOR)
3345 3346 3347 3348 3349
			continue;

		if (!pstate->visible)
			continue;

3350 3351
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3352 3353 3354 3355 3356
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3357
static int
3358
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3359 3360
		      struct skl_ddb_allocation *ddb /* out */)
{
3361
	struct drm_atomic_state *state = cstate->base.state;
3362
	struct drm_crtc *crtc = cstate->base.crtc;
3363 3364 3365
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3366
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3367
	uint16_t alloc_size, start;
3368 3369
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3370
	unsigned int total_data_rate;
3371
	enum plane_id plane_id;
3372
	int num_active;
3373 3374
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3375

3376 3377 3378 3379
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3380 3381 3382
	if (WARN_ON(!state))
		return 0;

3383
	if (!cstate->base.active) {
3384
		alloc->start = alloc->end = 0;
3385 3386 3387
		return 0;
	}

3388
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3389
	alloc_size = skl_ddb_entry_size(alloc);
3390 3391
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3392
		return 0;
3393 3394
	}

3395
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3396

3397 3398 3399 3400 3401
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3402

3403 3404 3405
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3406 3407
	}

3408 3409 3410
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3411
	/*
3412 3413
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3414 3415 3416
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3417 3418 3419
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3420
	if (total_data_rate == 0)
3421
		return 0;
3422

3423
	start = alloc->start;
3424
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3425 3426
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3427

3428
		if (plane_id == PLANE_CURSOR)
3429 3430
			continue;

3431
		data_rate = plane_data_rate[plane_id];
3432 3433

		/*
3434
		 * allocation for (packed formats) or (uv-plane part of planar format):
3435 3436 3437
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3438
		plane_blocks = minimum[plane_id];
3439 3440
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3441

3442 3443
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3444 3445
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3446
		}
3447 3448

		start += plane_blocks;
3449 3450 3451 3452

		/*
		 * allocation for y_plane part of planar format:
		 */
3453
		y_data_rate = plane_y_data_rate[plane_id];
3454

3455
		y_plane_blocks = y_minimum[plane_id];
3456 3457
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3458

3459
		if (y_data_rate) {
3460 3461
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3462
		}
3463 3464

		start += y_plane_blocks;
3465 3466
	}

3467
	return 0;
3468 3469
}

3470 3471
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3472
 * for the read latency) and cpp should always be <= 8, so that
3473 3474 3475
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3476 3477
static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
					 uint32_t latency)
3478
{
3479 3480
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
3481 3482

	if (latency == 0)
3483
		return FP_16_16_MAX;
3484

3485 3486
	wm_intermediate_val = latency * pixel_rate * cpp;
	ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
3487 3488 3489
	return ret;
}

3490 3491 3492 3493
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
3494
{
3495
	uint32_t wm_intermediate_val;
3496
	uint_fixed_16_16_t ret;
3497 3498

	if (latency == 0)
3499
		return FP_16_16_MAX;
3500 3501

	wm_intermediate_val = latency * pixel_rate;
3502 3503 3504
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
	ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
3505 3506 3507
	return ret;
}

3508 3509 3510 3511 3512 3513 3514 3515
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3516
	if (WARN_ON(!pstate->base.visible))
3517 3518 3519 3520 3521 3522
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3523
	adjusted_pixel_rate = cstate->pixel_rate;
3524 3525 3526 3527 3528 3529 3530 3531
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3532 3533 3534 3535 3536 3537 3538 3539
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3540
{
3541 3542
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3543
	uint32_t latency = dev_priv->wm.skl_latency[level];
3544 3545 3546 3547 3548
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t selected_result;
	uint32_t interm_pbpl;
	uint32_t plane_bytes_per_line;
3549
	uint32_t res_blocks, res_lines;
3550
	uint8_t cpp;
3551
	uint32_t width = 0, height = 0;
3552
	uint32_t plane_pixel_rate;
3553 3554
	uint_fixed_16_16_t y_tile_minimum;
	uint32_t y_min_scanlines;
3555 3556 3557
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3558
	bool y_tiled, x_tiled;
3559

3560
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3561 3562 3563
		*enabled = false;
		return 0;
	}
3564

3565 3566 3567 3568
	y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED;
	x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;

3569 3570 3571 3572
	/* Display WA #1141: kbl. */
	if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
		latency += 4;

3573
	if (apply_memory_bw_wa && x_tiled)
3574 3575
		latency += 15;

3576 3577
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3578

3579
	if (drm_rotation_90_or_270(pstate->rotation))
3580 3581
		swap(width, height);

3582
	cpp = fb->format->cpp[0];
3583 3584
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3585
	if (drm_rotation_90_or_270(pstate->rotation)) {
V
Ville Syrjälä 已提交
3586
		int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
3587 3588
			fb->format->cpp[1] :
			fb->format->cpp[0];
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3600 3601 3602
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3603 3604 3605 3606 3607
		}
	} else {
		y_min_scanlines = 4;
	}

3608 3609 3610
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3611
	plane_bytes_per_line = width * cpp;
3612
	if (y_tiled) {
3613 3614
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
					   y_min_scanlines, 512);
3615
		plane_blocks_per_line =
3616
		      fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
3617
	} else if (x_tiled) {
3618 3619
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3620
	} else {
3621 3622
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3623 3624
	}

3625 3626
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3627
				 cstate->base.adjusted_mode.crtc_htotal,
3628
				 latency,
3629
				 plane_blocks_per_line);
3630

3631 3632
	y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
					     plane_blocks_per_line);
3633

3634
	if (y_tiled) {
3635
		selected_result = max_fixed_16_16(method2, y_tile_minimum);
3636
	} else {
3637 3638 3639
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
3640 3641 3642
		else if ((ddb_allocation /
			fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
			selected_result = min_fixed_16_16(method1, method2);
3643 3644 3645
		else
			selected_result = method1;
	}
3646

3647 3648 3649
	res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
	res_lines = DIV_ROUND_UP(selected_result.val,
				 plane_blocks_per_line.val);
3650

3651
	if (level >= 1 && level <= 7) {
3652
		if (y_tiled) {
3653
			res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
3654
			res_lines += y_min_scanlines;
3655
		} else {
3656
			res_blocks++;
3657
		}
3658
	}
3659

3660 3661
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3662 3663 3664 3665 3666 3667 3668 3669

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3670 3671
			struct drm_plane *plane = pstate->plane;

3672
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3673 3674
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3675 3676 3677
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3678
	}
3679 3680 3681

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3682
	*enabled = true;
3683

3684
	return 0;
3685 3686
}

3687 3688 3689 3690
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3691
		     struct intel_plane *intel_plane,
3692 3693
		     int level,
		     struct skl_wm_level *result)
3694
{
3695
	struct drm_atomic_state *state = cstate->base.state;
3696
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3697 3698
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3699
	uint16_t ddb_blocks;
3700
	enum pipe pipe = intel_crtc->pipe;
3701
	int ret;
L
Lyude 已提交
3702 3703 3704 3705 3706

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3707

3708
	/*
L
Lyude 已提交
3709 3710 3711 3712 3713 3714 3715 3716 3717
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3718
	 */
L
Lyude 已提交
3719 3720
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3721

L
Lyude 已提交
3722
	WARN_ON(!intel_pstate->base.fb);
3723

3724
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3725

L
Lyude 已提交
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3736 3737

	return 0;
3738 3739
}

3740
static uint32_t
3741
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3742
{
M
Mahesh Kumar 已提交
3743 3744
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
3745
	uint32_t pixel_rate;
M
Mahesh Kumar 已提交
3746
	uint32_t linetime_wm;
3747

3748
	if (!cstate->base.active)
3749 3750
		return 0;

3751
	pixel_rate = cstate->pixel_rate;
3752 3753

	if (WARN_ON(pixel_rate == 0))
3754
		return 0;
3755

M
Mahesh Kumar 已提交
3756 3757 3758 3759 3760 3761 3762 3763
	linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
				   1000, pixel_rate);

	/* Display WA #1135: bxt. */
	if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
		linetime_wm = DIV_ROUND_UP(linetime_wm, 2);

	return linetime_wm;
3764 3765
}

3766
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3767
				      struct skl_wm_level *trans_wm /* out */)
3768
{
3769
	if (!cstate->base.active)
3770
		return;
3771 3772

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3773
	trans_wm->plane_en = false;
3774 3775
}

3776 3777 3778
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3779
{
3780
	struct drm_device *dev = cstate->base.crtc->dev;
3781
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3782 3783
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3784
	int level, max_level = ilk_wm_max_level(dev_priv);
3785
	int ret;
3786

L
Lyude 已提交
3787 3788 3789 3790 3791 3792 3793 3794 3795
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3796
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
3797 3798 3799 3800 3801 3802 3803 3804 3805

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3806
	}
3807
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3808

3809
	return 0;
3810 3811
}

3812 3813
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3814 3815 3816 3817 3818 3819 3820 3821
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3837 3838 3839
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
3840
			       enum plane_id plane_id)
3841 3842 3843 3844
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3845
	int level, max_level = ilk_wm_max_level(dev_priv);
3846 3847 3848
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3849
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
3850
				   &wm->wm[level]);
3851
	}
3852
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
3853
			   &wm->trans_wm);
3854

3855 3856 3857 3858
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
3859 3860
}

3861 3862 3863
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
3864 3865 3866 3867
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3868
	int level, max_level = ilk_wm_max_level(dev_priv);
3869 3870 3871
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3872 3873
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3874
	}
3875
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3876

3877
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3878
			    &ddb->plane[pipe][PLANE_CURSOR]);
3879 3880
}

3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3895 3896
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3897
{
3898
	return a->start < b->end && b->start < a->end;
3899 3900
}

3901 3902 3903
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
3904
{
3905
	int i;
3906

3907 3908 3909
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
3910
			return true;
3911

3912
	return false;
3913 3914
}

3915
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3916
			      const struct skl_pipe_wm *old_pipe_wm,
3917
			      struct skl_pipe_wm *pipe_wm, /* out */
3918
			      struct skl_ddb_allocation *ddb, /* out */
3919
			      bool *changed /* out */)
3920
{
3921
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3922
	int ret;
3923

3924 3925 3926
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3927

3928
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3929 3930 3931
		*changed = false;
	else
		*changed = true;
3932

3933
	return 0;
3934 3935
}

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3949
static int
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

3966
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3967
		enum plane_id plane_id = to_intel_plane(plane)->id;
3968

3969 3970 3971 3972
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

3983 3984 3985 3986 3987 3988 3989
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3990
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3991
	uint32_t realloc_pipes = pipes_modified(state);
3992 3993 3994 3995 3996 3997 3998 3999
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4000 4001 4002 4003 4004 4005
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4006 4007
		intel_state->active_pipe_changes = ~0;

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4031
	if (intel_state->active_pipe_changes) {
4032
		realloc_pipes = ~0;
4033 4034
		intel_state->wm_results.dirty_pipes = ~0;
	}
4035

4036 4037 4038 4039 4040 4041
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4042 4043 4044 4045 4046 4047 4048
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4049
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4050 4051
		if (ret)
			return ret;
4052

4053
		ret = skl_ddb_add_affected_planes(cstate);
4054 4055
		if (ret)
			return ret;
4056 4057 4058 4059 4060
	}

	return 0;
}

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4084
	int i;
4085 4086

	for_each_crtc_in_state(state, crtc, cstate, i) {
4087 4088
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4089

4090
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4091
			enum plane_id plane_id = intel_plane->id;
4092 4093
			const struct skl_ddb_entry *old, *new;

4094 4095
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4096 4097 4098 4099

			if (skl_ddb_entry_equal(old, new))
				continue;

4100 4101 4102 4103 4104
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4105 4106 4107 4108
		}
	}
}

4109 4110 4111 4112 4113
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4114 4115 4116
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4117
	bool changed = false;
4118
	int ret, i;
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4133 4134 4135
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4136 4137 4138 4139
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4153 4154
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4155 4156

		pipe_wm = &intel_cstate->wm.skl.optimal;
4157 4158
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4172 4173
	skl_print_wm_changes(state);

4174 4175 4176
	return 0;
}

4177 4178 4179 4180 4181 4182
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4183
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4184
	enum pipe pipe = crtc->pipe;
4185
	enum plane_id plane_id;
4186 4187 4188

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4189 4190

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4191

4192 4193 4194 4195 4196 4197 4198 4199
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4200 4201
}

4202 4203
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4204
{
4205
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4206
	struct drm_device *dev = intel_crtc->base.dev;
4207
	struct drm_i915_private *dev_priv = to_i915(dev);
4208
	struct skl_wm_values *results = &state->wm_results;
4209
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4210
	enum pipe pipe = intel_crtc->pipe;
4211

4212
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4213 4214
		return;

4215
	mutex_lock(&dev_priv->wm.wm_mutex);
4216

4217 4218
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4219 4220

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4221 4222

	mutex_unlock(&dev_priv->wm.wm_mutex);
4223 4224
}

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4243
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4244
{
4245
	struct drm_device *dev = &dev_priv->drm;
4246
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4247
	struct ilk_wm_maximums max;
4248
	struct intel_wm_config config = {};
4249
	struct ilk_wm_values results = {};
4250
	enum intel_ddb_partitioning partitioning;
4251

4252 4253 4254 4255
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4256 4257

	/* 5/6 split only in single pipe config on IVB+ */
4258
	if (INTEL_GEN(dev_priv) >= 7 &&
4259 4260 4261
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4262

4263
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4264
	} else {
4265
		best_lp_wm = &lp_wm_1_2;
4266 4267
	}

4268
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4269
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4270

4271
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4272

4273
	ilk_write_wm_values(dev_priv, &results);
4274 4275
}

4276 4277
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4278
{
4279 4280
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4281

4282
	mutex_lock(&dev_priv->wm.wm_mutex);
4283
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4284 4285 4286
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4287

4288 4289
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4290 4291 4292
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4293

4294 4295
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4296
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4297 4298 4299
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4300 4301
}

4302 4303
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4304
{
4305 4306 4307 4308
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4309 4310
}

4311 4312
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4313
{
4314
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4315 4316
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4317 4318
	int level, max_level;
	enum plane_id plane_id;
4319
	uint32_t val;
4320

4321
	max_level = ilk_wm_max_level(dev_priv);
4322

4323 4324
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4325

4326
		for (level = 0; level <= max_level; level++) {
4327 4328
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4329 4330
			else
				val = I915_READ(CUR_WM(pipe, level));
4331

4332
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4333 4334
		}

4335 4336
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4337 4338 4339 4340
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4341 4342
	}

4343 4344
	if (!intel_crtc->active)
		return;
4345

4346
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4347 4348 4349 4350
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4351
	struct drm_i915_private *dev_priv = to_i915(dev);
4352
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4353
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4354
	struct drm_crtc *crtc;
4355 4356
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4357

4358
	skl_ddb_get_hw_state(dev_priv, ddb);
4359 4360 4361 4362 4363 4364
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4365
		if (intel_crtc->active)
4366 4367
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4368

4369 4370 4371 4372 4373 4374 4375
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4376 4377
}

4378 4379 4380
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4381
	struct drm_i915_private *dev_priv = to_i915(dev);
4382
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4383
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4384
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4385
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4386
	enum pipe pipe = intel_crtc->pipe;
4387
	static const i915_reg_t wm0_pipe_reg[] = {
4388 4389 4390 4391 4392 4393
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4394
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4395
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4396

4397 4398
	memset(active, 0, sizeof(*active));

4399
	active->pipe_enabled = intel_crtc->active;
4400 4401

	if (active->pipe_enabled) {
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4416
		int level, max_level = ilk_wm_max_level(dev_priv);
4417 4418 4419 4420 4421 4422 4423 4424 4425

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4426 4427

	intel_crtc->wm.active.ilk = *active;
4428 4429
}

4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

4444
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
4445
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4446
		wm->ddl[pipe].plane[PLANE_CURSOR] =
4447
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4448
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
4449
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4450
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
4451 4452 4453 4454 4455
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
4456 4457 4458
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4459 4460

	tmp = I915_READ(DSPFW2);
4461 4462 4463
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4464 4465 4466 4467 4468 4469

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
4470 4471
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4472 4473

		tmp = I915_READ(DSPFW8_CHV);
4474 4475
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4476 4477

		tmp = I915_READ(DSPFW9_CHV);
4478 4479
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4480 4481 4482

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4483 4484 4485 4486 4487 4488 4489 4490 4491
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4492 4493
	} else {
		tmp = I915_READ(DSPFW7);
4494 4495
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4496 4497 4498

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4499 4500 4501 4502 4503 4504
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4515
	struct intel_crtc *crtc;
4516 4517 4518 4519 4520
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

4521 4522
	for_each_intel_crtc(dev, crtc)
		vlv_get_fifo_size(crtc);
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4534 4535 4536 4537 4538 4539 4540 4541 4542
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4543
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4557 4558 4559 4560 4561 4562

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4563 4564 4565 4566 4567
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
4568 4569 4570 4571 4572

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4573 4574
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4575
	struct drm_i915_private *dev_priv = to_i915(dev);
4576
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4577 4578
	struct drm_crtc *crtc;

4579
	for_each_crtc(dev, crtc)
4580 4581 4582 4583 4584 4585 4586
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4587
	if (INTEL_GEN(dev_priv) >= 7) {
4588 4589 4590
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4591

4592
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4593 4594
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4595
	else if (IS_IVYBRIDGE(dev_priv))
4596 4597
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4598 4599 4600 4601 4602

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4635
void intel_update_watermarks(struct intel_crtc *crtc)
4636
{
4637
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4638 4639

	if (dev_priv->display.update_wm)
4640
		dev_priv->display.update_wm(crtc);
4641 4642
}

4643
/*
4644 4645 4646 4647 4648 4649 4650 4651
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4652
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4653 4654 4655
{
	u16 rgvswctl;

4656
	lockdep_assert_held(&mchdev_lock);
4657

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4675
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4676
{
4677
	u32 rgvmodectl;
4678 4679
	u8 fmax, fmin, fstart, vstart;

4680 4681
	spin_lock_irq(&mchdev_lock);

4682 4683
	rgvmodectl = I915_READ(MEMMODECTL);

4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4704
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4705 4706
		PXVFREQ_PX_SHIFT;

4707 4708
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4709

4710 4711 4712
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4729
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4730
		DRM_ERROR("stuck trying to change perf mode\n");
4731
	mdelay(1);
4732

4733
	ironlake_set_drps(dev_priv, fstart);
4734

4735 4736
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4737
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4738
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4739
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4740 4741

	spin_unlock_irq(&mchdev_lock);
4742 4743
}

4744
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4745
{
4746 4747 4748 4749 4750
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4751 4752 4753 4754 4755 4756 4757 4758 4759

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4760
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4761
	mdelay(1);
4762 4763
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4764
	mdelay(1);
4765

4766
	spin_unlock_irq(&mchdev_lock);
4767 4768
}

4769 4770 4771 4772 4773
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4774
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4775
{
4776
	u32 limits;
4777

4778 4779 4780 4781 4782 4783
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4784
	if (IS_GEN9(dev_priv)) {
4785 4786 4787 4788 4789 4790 4791 4792
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4793 4794 4795 4796

	return limits;
}

4797 4798 4799
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4800 4801
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4802 4803 4804 4805

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4806 4807
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4808 4809 4810 4811
			new_power = BETWEEN;
		break;

	case BETWEEN:
4812 4813
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4814
			new_power = LOW_POWER;
4815 4816
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4817 4818 4819 4820
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4821 4822
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4823 4824 4825 4826
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4827
	if (val <= dev_priv->rps.min_freq_softlimit)
4828
		new_power = LOW_POWER;
4829
	if (val >= dev_priv->rps.max_freq_softlimit)
4830 4831 4832 4833 4834 4835 4836 4837
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4838 4839
		ei_up = 16000;
		threshold_up = 95;
4840 4841

		/* Downclock if less than 85% busy over 32ms */
4842 4843
		ei_down = 32000;
		threshold_down = 85;
4844 4845 4846 4847
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4848 4849
		ei_up = 13000;
		threshold_up = 90;
4850 4851

		/* Downclock if less than 75% busy over 32ms */
4852 4853
		ei_down = 32000;
		threshold_down = 75;
4854 4855 4856 4857
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4858 4859
		ei_up = 10000;
		threshold_up = 85;
4860 4861

		/* Downclock if less than 60% busy over 32ms */
4862 4863
		ei_down = 32000;
		threshold_down = 60;
4864 4865 4866
		break;
	}

4867 4868 4869 4870 4871 4872
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

4873
	I915_WRITE(GEN6_RP_UP_EI,
4874
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4875
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4876 4877
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4878 4879

	I915_WRITE(GEN6_RP_DOWN_EI,
4880
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4881
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4892

4893
skip_hw_write:
4894
	dev_priv->rps.power = new_power;
4895 4896
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4897 4898 4899
	dev_priv->rps.last_adj = 0;
}

4900 4901 4902 4903 4904
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4905
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4906
	if (val < dev_priv->rps.max_freq_softlimit)
4907
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4908

4909 4910
	mask &= dev_priv->pm_rps_events;

4911
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4912 4913
}

4914 4915 4916
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4917
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4918
{
C
Chris Wilson 已提交
4919 4920 4921 4922 4923
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4924

4925
		if (IS_GEN9(dev_priv))
4926 4927
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4928
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4929 4930 4931 4932 4933 4934 4935
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4936
	}
4937 4938 4939 4940

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4941
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4942
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4943

4944
	dev_priv->rps.cur_freq = val;
4945
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4946 4947

	return 0;
4948 4949
}

4950
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4951
{
4952 4953
	int err;

4954
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4955 4956 4957
		      "Odd GPU freq value\n"))
		val &= ~1;

4958 4959
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4960
	if (val != dev_priv->rps.cur_freq) {
4961 4962 4963 4964
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

4965
		gen6_set_rps_thresholds(dev_priv, val);
4966
	}
4967 4968 4969

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4970 4971

	return 0;
4972 4973
}

4974
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4975 4976
 *
 * * If Gfx is Idle, then
4977 4978 4979
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4980 4981 4982
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4983
	u32 val = dev_priv->rps.idle_freq;
4984
	int err;
4985

4986
	if (dev_priv->rps.cur_freq <= val)
4987 4988
		return;

4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
5001
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5002
	err = valleyview_set_rps(dev_priv, val);
5003
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5004 5005 5006

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
5007 5008
}

5009 5010 5011 5012
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
5013 5014
		u8 freq;

5015 5016 5017 5018
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5019

5020 5021
		gen6_enable_rps_interrupts(dev_priv);

5022 5023 5024 5025 5026 5027
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
		freq = max(dev_priv->rps.cur_freq,
			   dev_priv->rps.efficient_freq);

5028
		if (intel_set_rps(dev_priv,
5029
				  clamp(freq,
5030 5031 5032
					dev_priv->rps.min_freq_softlimit,
					dev_priv->rps.max_freq_softlimit)))
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
5033 5034 5035 5036
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5037 5038
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5039 5040 5041 5042 5043 5044 5045
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5046
	mutex_lock(&dev_priv->rps.hw_lock);
5047
	if (dev_priv->rps.enabled) {
5048
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5049
			vlv_set_rps_idle(dev_priv);
5050
		else
5051
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5052
		dev_priv->rps.last_adj = 0;
5053 5054
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5055
	}
5056
	mutex_unlock(&dev_priv->rps.hw_lock);
5057

5058
	spin_lock(&dev_priv->rps.client_lock);
5059 5060
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5061
	spin_unlock(&dev_priv->rps.client_lock);
5062 5063
}

5064
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5065 5066
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5067
{
5068 5069 5070
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5071
	if (!(dev_priv->gt.awake &&
5072
	      dev_priv->rps.enabled &&
5073
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5074
		return;
5075

5076 5077 5078
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5079
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5080 5081
		rps = NULL;

5082 5083 5084 5085 5086
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5087
			schedule_work(&dev_priv->rps.work);
5088 5089
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5090

5091 5092 5093
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5094 5095
		} else
			dev_priv->rps.boosts++;
5096
	}
5097
	spin_unlock(&dev_priv->rps.client_lock);
5098 5099
}

5100
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5101
{
5102 5103
	int err;

5104 5105 5106 5107
	lockdep_assert_held(&dev_priv->rps.hw_lock);
	GEM_BUG_ON(val > dev_priv->rps.max_freq);
	GEM_BUG_ON(val < dev_priv->rps.min_freq);

5108 5109 5110 5111 5112
	if (!dev_priv->rps.enabled) {
		dev_priv->rps.cur_freq = val;
		return 0;
	}

5113
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5114
		err = valleyview_set_rps(dev_priv, val);
5115
	else
5116 5117 5118
		err = gen6_set_rps(dev_priv, val);

	return err;
5119 5120
}

5121
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5122 5123
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5124
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5125 5126
}

5127
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5128 5129 5130 5131
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5132
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5133 5134
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5135
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5136
	I915_WRITE(GEN6_RP_CONTROL, 0);
5137 5138
}

5139
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5140 5141 5142 5143
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5144
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5145
{
5146 5147
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5148
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5149

5150
	I915_WRITE(GEN6_RC_CONTROL, 0);
5151

5152
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5153 5154
}

5155
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5156
{
5157
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5158 5159 5160 5161 5162
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5163
	if (HAS_RC6p(dev_priv))
5164 5165 5166 5167 5168
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5169 5170

	else
5171 5172
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5173 5174
}

5175
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5176
{
5177
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5178 5179
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5191 5192

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5193
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5194 5195 5196 5197 5198 5199 5200 5201
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5202 5203 5204
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5205
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5206 5207 5208 5209 5210 5211 5212
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5213
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5214 5215 5216
		enable_rc6 = false;
	}

5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5231 5232 5233 5234 5235 5236
		enable_rc6 = false;
	}

	return enable_rc6;
}

5237
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5238
{
5239
	/* No RC6 before Ironlake and code is gone for ilk. */
5240
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5241 5242
		return 0;

5243 5244 5245
	if (!enable_rc6)
		return 0;

5246
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5247 5248 5249 5250
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5251
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5252 5253 5254
	if (enable_rc6 >= 0) {
		int mask;

5255
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5256 5257 5258 5259 5260 5261
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5262 5263 5264
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5265 5266 5267

		return enable_rc6 & mask;
	}
5268

5269
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5270
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5271 5272

	return INTEL_RC6_ENABLE;
5273 5274
}

5275
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5276 5277
{
	/* All of these values are in units of 50MHz */
5278

5279
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5280
	if (IS_GEN9_LP(dev_priv)) {
5281
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5282 5283 5284 5285
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5286
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5287 5288 5289 5290
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5291
	/* hw_max = RP0 until we check for overclocking */
5292
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5293

5294
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5295
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5296
	    IS_GEN9_BC(dev_priv)) {
5297 5298 5299 5300 5301
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5302
			dev_priv->rps.efficient_freq =
5303 5304 5305 5306
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5307 5308
	}

5309
	if (IS_GEN9_BC(dev_priv)) {
5310
		/* Store the frequency values in 16.66 MHZ units, which is
5311 5312
		 * the natural hardware unit for SKL
		 */
5313 5314 5315 5316 5317 5318
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5319 5320
}

5321
static void reset_rps(struct drm_i915_private *dev_priv,
5322
		      int (*set)(struct drm_i915_private *, u8))
5323 5324 5325 5326 5327 5328 5329
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

5330 5331
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
5332 5333
}

J
Jesse Barnes 已提交
5334
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5335
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5336 5337 5338
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5339 5340 5341 5342 5343 5344 5345 5346
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5347 5348
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5349 5350 5351
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5352
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5353 5354 5355 5356

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5357
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5358
{
5359
	struct intel_engine_cs *engine;
5360
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5361 5362 5363 5364 5365 5366 5367
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5368
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5369 5370 5371 5372 5373

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5374 5375

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5376
	if (IS_SKYLAKE(dev_priv))
5377 5378 5379
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5380 5381
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5382
	for_each_engine(engine, dev_priv, id)
5383
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5384

5385
	if (HAS_GUC(dev_priv))
5386 5387
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5388 5389
	I915_WRITE(GEN6_RC_SLEEP, 0);

5390 5391 5392 5393
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5394
	/* 3a: Enable RC6 */
5395
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5396
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5397
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5398 5399 5400
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
Z
Zhe Wang 已提交
5401

5402 5403
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5404
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5405
	 */
5406
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5407 5408 5409 5410
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5411

5412
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5413 5414
}

5415
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5416
{
5417
	struct intel_engine_cs *engine;
5418
	enum intel_engine_id id;
5419
	uint32_t rc6_mask = 0;
5420 5421 5422 5423 5424 5425

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5426
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5427 5428 5429 5430 5431 5432 5433 5434

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5435
	for_each_engine(engine, dev_priv, id)
5436
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5437
	I915_WRITE(GEN6_RC_SLEEP, 0);
5438
	if (IS_BROADWELL(dev_priv))
5439 5440 5441
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5442 5443

	/* 3: Enable RC6 */
5444
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5445
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5446 5447
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5448 5449 5450 5451 5452 5453 5454
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5455 5456

	/* 4 Program defaults and thresholds for RPS*/
5457 5458 5459 5460
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5475 5476

	/* 5: Enable RPS */
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5487
	reset_rps(dev_priv, gen6_set_rps);
5488

5489
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5490 5491
}

5492
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5493
{
5494
	struct intel_engine_cs *engine;
5495
	enum intel_engine_id id;
5496
	u32 rc6vids, rc6_mask = 0;
5497 5498
	u32 gtfifodbg;
	int rc6_mode;
5499
	int ret;
5500

5501
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5502

5503 5504 5505 5506 5507 5508 5509 5510 5511
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5512 5513
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5514 5515 5516 5517
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5518
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5529
	for_each_engine(engine, dev_priv, id)
5530
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5531 5532 5533

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5534
	if (IS_IVYBRIDGE(dev_priv))
5535 5536 5537
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5538
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5539 5540
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5541
	/* Check if we are enabling RC6 */
5542
	rc6_mode = intel_enable_rc6();
5543 5544 5545
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5546
	/* We don't use those on Haswell */
5547
	if (!IS_HASWELL(dev_priv)) {
5548 5549
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5550

5551 5552 5553
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5554

5555
	intel_print_rc6_info(dev_priv, rc6_mask);
5556 5557 5558 5559 5560 5561

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5562 5563
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5564 5565
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5566
	reset_rps(dev_priv, gen6_set_rps);
5567

5568 5569
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5570
	if (IS_GEN6(dev_priv) && ret) {
5571
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5572
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5573 5574 5575 5576 5577 5578 5579 5580 5581
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5582
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5583 5584
}

5585
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5586 5587
{
	int min_freq = 15;
5588 5589
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5590
	unsigned int max_gpu_freq, min_gpu_freq;
5591
	int scaling_factor = 180;
5592
	struct cpufreq_policy *policy;
5593

5594
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5595

5596 5597 5598 5599 5600 5601 5602 5603 5604
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5605
		max_ia_freq = tsc_khz;
5606
	}
5607 5608 5609 5610

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5611
	min_ring_freq = I915_READ(DCLK) & 0xf;
5612 5613
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5614

5615
	if (IS_GEN9_BC(dev_priv)) {
5616 5617 5618 5619 5620 5621 5622 5623
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5624 5625 5626 5627 5628
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5629 5630
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5631 5632
		unsigned int ia_freq = 0, ring_freq = 0;

5633
		if (IS_GEN9_BC(dev_priv)) {
5634 5635 5636 5637 5638
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5639
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5640 5641
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5642
		} else if (IS_HASWELL(dev_priv)) {
5643
			ring_freq = mult_frac(gpu_freq, 5, 4);
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5660

B
Ben Widawsky 已提交
5661 5662
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5663 5664 5665
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5666 5667 5668
	}
}

5669
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5670 5671 5672
{
	u32 val, rp0;

5673
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5674

5675
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5690
	}
5691 5692 5693

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5707 5708 5709 5710
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5711 5712 5713
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5714 5715 5716
	return rp1;
}

5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5739
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5740 5741 5742
{
	u32 val, rp0;

5743
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5756
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5757
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5758
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5759 5760 5761 5762 5763
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5764
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5765
{
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5777 5778
}

5779 5780 5781 5782 5783 5784 5785 5786 5787
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5788 5789 5790 5791 5792 5793 5794 5795 5796

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5797
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5798
{
5799
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5800
	unsigned long pctx_paddr, paddr;
5801 5802 5803 5804 5805
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5806
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5807
		paddr = (dev_priv->mm.stolen_base +
5808
			 (ggtt->stolen_size - pctx_size));
5809 5810 5811 5812

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5813 5814

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5815 5816
}

5817
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5830
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
5831
								      pcbr_offset,
5832
								      I915_GTT_OFFSET_NONE,
5833 5834 5835 5836
								      pctx_size);
		goto out;
	}

5837 5838
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5839 5840 5841 5842 5843 5844 5845 5846
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5847
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
5848 5849
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5850
		goto out;
5851 5852 5853 5854 5855 5856
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5857
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5858 5859 5860
	dev_priv->vlv_pctx = pctx;
}

5861
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5862 5863 5864 5865
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5866
	i915_gem_object_put(dev_priv->vlv_pctx);
5867 5868 5869
	dev_priv->vlv_pctx = NULL;
}

5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5881
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5882
{
5883
	u32 val;
5884

5885
	valleyview_setup_pctx(dev_priv);
5886

5887 5888
	vlv_init_gpll_ref_freq(dev_priv);

5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5902
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5903

5904 5905 5906
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5907
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5908 5909 5910 5911
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5912
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5913 5914
			 dev_priv->rps.efficient_freq);

5915 5916
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5917
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5918 5919
			 dev_priv->rps.rp1_freq);

5920 5921
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5922
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5923 5924 5925
			 dev_priv->rps.min_freq);
}

5926
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5927
{
5928
	u32 val;
5929

5930
	cherryview_setup_pctx(dev_priv);
5931

5932 5933
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5934
	mutex_lock(&dev_priv->sb_lock);
5935
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5936
	mutex_unlock(&dev_priv->sb_lock);
5937

5938 5939 5940 5941
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5942
	default:
5943 5944 5945
		dev_priv->mem_freq = 1600;
		break;
	}
5946
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5947

5948 5949 5950
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5951
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5952 5953 5954 5955
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5956
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5957 5958
			 dev_priv->rps.efficient_freq);

5959 5960
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5961
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5962 5963
			 dev_priv->rps.rp1_freq);

5964
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
5965
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5966
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5967 5968
			 dev_priv->rps.min_freq);

5969 5970 5971 5972 5973
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5974 5975
}

5976
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5977
{
5978
	valleyview_cleanup_pctx(dev_priv);
5979 5980
}

5981
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5982
{
5983
	struct intel_engine_cs *engine;
5984
	enum intel_engine_id id;
5985
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5986 5987 5988

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5989 5990
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6001
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6002

6003 6004 6005
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6006 6007 6008 6009 6010
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6011
	for_each_engine(engine, dev_priv, id)
6012
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6013 6014
	I915_WRITE(GEN6_RC_SLEEP, 0);

6015 6016
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6028 6029
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6030
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6031 6032 6033

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6034
	/* 4 Program defaults and thresholds for RPS*/
6035
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6036 6037 6038 6039 6040 6041 6042 6043 6044 6045
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6046
		   GEN6_RP_MEDIA_IS_GFX |
6047 6048 6049 6050
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6051 6052 6053 6054 6055 6056
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6057 6058
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6059 6060 6061
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6062
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6063 6064
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6065
	reset_rps(dev_priv, valleyview_set_rps);
6066

6067
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6068 6069
}

6070
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6071
{
6072
	struct intel_engine_cs *engine;
6073
	enum intel_engine_id id;
6074
	u32 gtfifodbg, val, rc6_mode = 0;
6075 6076 6077

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6078 6079
	valleyview_check_pctx(dev_priv);

6080 6081
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6082 6083
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6084 6085 6086
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6087
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6088
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6089

6090 6091 6092
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6093
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6113
	for_each_engine(engine, dev_priv, id)
6114
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6115

6116
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6117 6118

	/* allows RC6 residency counter to work */
6119
	I915_WRITE(VLV_COUNTER_CONTROL,
6120 6121
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6122 6123
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6124

6125
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6126
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6127

6128
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6129

6130
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6131

D
Deepak S 已提交
6132 6133 6134 6135 6136 6137
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6138
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6139

6140 6141 6142
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6143
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6144 6145
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6146
	reset_rps(dev_priv, valleyview_set_rps);
6147

6148
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6149 6150
}

6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6180
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6181 6182 6183 6184 6185 6186
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6187
	lockdep_assert_held(&mchdev_lock);
6188

6189
	diff1 = now - dev_priv->ips.last_time1;
6190 6191 6192 6193 6194 6195 6196

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6197
		return dev_priv->ips.chipset_power;
6198 6199 6200 6201 6202 6203 6204 6205

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6206 6207
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6208 6209
		diff += total_count;
	} else {
6210
		diff = total_count - dev_priv->ips.last_count1;
6211 6212 6213
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6214 6215
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6226 6227
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6228

6229
	dev_priv->ips.chipset_power = ret;
6230 6231 6232 6233

	return ret;
}

6234 6235 6236 6237
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6238
	if (INTEL_INFO(dev_priv)->gen != 5)
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6277
{
6278 6279 6280
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6281
	if (INTEL_INFO(dev_priv)->is_mobile)
6282 6283 6284
		return vm > 0 ? vm : 0;

	return vd;
6285 6286
}

6287
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6288
{
6289
	u64 now, diff, diffms;
6290 6291
	u32 count;

6292
	lockdep_assert_held(&mchdev_lock);
6293

6294 6295 6296
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6297 6298 6299 6300 6301 6302 6303

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6304 6305
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6306 6307
		diff += count;
	} else {
6308
		diff = count - dev_priv->ips.last_count2;
6309 6310
	}

6311 6312
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6313 6314 6315 6316

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6317
	dev_priv->ips.gfx_power = diff;
6318 6319
}

6320 6321
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6322
	if (INTEL_INFO(dev_priv)->gen != 5)
6323 6324
		return;

6325
	spin_lock_irq(&mchdev_lock);
6326 6327 6328

	__i915_update_gfx_val(dev_priv);

6329
	spin_unlock_irq(&mchdev_lock);
6330 6331
}

6332
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6333 6334 6335 6336
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6337
	lockdep_assert_held(&mchdev_lock);
6338

6339
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6359
	corr2 = (corr * dev_priv->ips.corr);
6360 6361 6362 6363

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6364
	__i915_update_gfx_val(dev_priv);
6365

6366
	return dev_priv->ips.gfx_power + state2;
6367 6368
}

6369 6370 6371 6372
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6373
	if (INTEL_INFO(dev_priv)->gen != 5)
6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6396
	spin_lock_irq(&mchdev_lock);
6397 6398 6399 6400
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6401 6402
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6403 6404 6405 6406

	ret = chipset_val + graphics_val;

out_unlock:
6407
	spin_unlock_irq(&mchdev_lock);
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6423
	spin_lock_irq(&mchdev_lock);
6424 6425 6426 6427 6428 6429
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6430 6431
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6432 6433

out_unlock:
6434
	spin_unlock_irq(&mchdev_lock);
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6451
	spin_lock_irq(&mchdev_lock);
6452 6453 6454 6455 6456 6457
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6458 6459
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6460 6461

out_unlock:
6462
	spin_unlock_irq(&mchdev_lock);
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6477
	spin_lock_irq(&mchdev_lock);
6478 6479
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6480
	spin_unlock_irq(&mchdev_lock);
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6497
	spin_lock_irq(&mchdev_lock);
6498 6499 6500 6501 6502 6503
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6504
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6505

6506
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6507 6508 6509
		ret = false;

out_unlock:
6510
	spin_unlock_irq(&mchdev_lock);
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6538 6539
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6540
	spin_lock_irq(&mchdev_lock);
6541
	i915_mch_dev = dev_priv;
6542
	spin_unlock_irq(&mchdev_lock);
6543 6544 6545 6546 6547 6548

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6549
	spin_lock_irq(&mchdev_lock);
6550
	i915_mch_dev = NULL;
6551
	spin_unlock_irq(&mchdev_lock);
6552
}
6553

6554
static void intel_init_emon(struct drm_i915_private *dev_priv)
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6571
		I915_WRITE(PEW(i), 0);
6572
	for (i = 0; i < 3; i++)
6573
		I915_WRITE(DEW(i), 0);
6574 6575 6576

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6577
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6598
		I915_WRITE(PXW(i), val);
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6614
		I915_WRITE(PXWL(i), 0);
6615 6616 6617 6618 6619 6620

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6621
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6622 6623
}

6624
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6625
{
6626 6627 6628 6629 6630 6631 6632 6633
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6634

6635
	mutex_lock(&dev_priv->drm.struct_mutex);
6636 6637 6638
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6639 6640 6641 6642
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6643
	else if (INTEL_GEN(dev_priv) >= 6)
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6673 6674 6675
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6676
	mutex_unlock(&dev_priv->rps.hw_lock);
6677
	mutex_unlock(&dev_priv->drm.struct_mutex);
6678 6679

	intel_autoenable_gt_powersave(dev_priv);
6680 6681
}

6682
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6683
{
6684
	if (IS_VALLEYVIEW(dev_priv))
6685
		valleyview_cleanup_gt_powersave(dev_priv);
6686 6687 6688

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6689 6690
}

6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6710 6711 6712 6713
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6714 6715

	gen6_reset_rps_interrupts(dev_priv);
6716 6717
}

6718
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6719
{
6720 6721
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6722

6723
	mutex_lock(&dev_priv->rps.hw_lock);
6724

6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6736
	}
6737 6738 6739

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6740 6741
}

6742
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6743
{
6744 6745 6746
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6747 6748
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6749

6750 6751 6752
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6753

6754
	mutex_lock(&dev_priv->rps.hw_lock);
6755 6756 6757 6758 6759

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6760
	} else if (INTEL_GEN(dev_priv) >= 9) {
6761 6762
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
6763
		if (IS_GEN9_BC(dev_priv))
6764
			gen6_update_ring_freq(dev_priv);
6765 6766
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6767
		gen6_update_ring_freq(dev_priv);
6768
	} else if (INTEL_GEN(dev_priv) >= 6) {
6769
		gen6_enable_rps(dev_priv);
6770
		gen6_update_ring_freq(dev_priv);
6771 6772 6773
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6774
	}
6775 6776 6777 6778 6779 6780 6781

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6782
	dev_priv->rps.enabled = true;
6783 6784
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6785

6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6796
	rcs = dev_priv->engine[RCS];
6797
	if (rcs->last_retired_context)
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6849
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6850 6851 6852 6853 6854 6855 6856 6857 6858
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6859
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6860
{
6861
	enum pipe pipe;
6862

6863
	for_each_pipe(dev_priv, pipe) {
6864 6865 6866
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6867 6868 6869

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6870 6871 6872
	}
}

6873
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6885
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6886
{
6887
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6888

6889 6890 6891 6892
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6893 6894 6895
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6913
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6914 6915 6916
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6917

6918
	ilk_init_lp_watermarks(dev_priv);
6919 6920 6921 6922 6923 6924 6925 6926

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6927
	if (IS_IRONLAKE_M(dev_priv)) {
6928
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6929 6930 6931 6932 6933 6934 6935 6936
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6937 6938
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6939 6940 6941 6942 6943 6944
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6945

6946
	/* WaDisableRenderCachePipelinedFlush:ilk */
6947 6948
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6949

6950 6951 6952
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6953
	g4x_disable_trickle_feed(dev_priv);
6954

6955
	ibx_init_clock_gating(dev_priv);
6956 6957
}

6958
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6959 6960
{
	int pipe;
6961
	uint32_t val;
6962 6963 6964 6965 6966 6967

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6968 6969 6970
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6971 6972
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6973 6974 6975
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6976
	for_each_pipe(dev_priv, pipe) {
6977 6978 6979
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6980
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6981
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6982 6983 6984
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6985 6986
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6987
	/* WADP0ClockGatingDisable */
6988
	for_each_pipe(dev_priv, pipe) {
6989 6990 6991
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6992 6993
}

6994
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6995 6996 6997 6998
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6999 7000 7001
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7002 7003
}

7004
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7005
{
7006
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7007

7008
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7009 7010 7011 7012 7013

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7014
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7015 7016 7017
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7018 7019 7020
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7021 7022 7023
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7024 7025 7026 7027
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7028 7029
	 */
	I915_WRITE(GEN6_GT_MODE,
7030
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7031

7032
	ilk_init_lp_watermarks(dev_priv);
7033 7034

	I915_WRITE(CACHE_MODE_0,
7035
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7051
	 *
7052 7053
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7054 7055 7056 7057 7058
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7059
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7060 7061
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7062

7063 7064 7065 7066 7067 7068 7069 7070
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7071 7072 7073 7074 7075 7076 7077 7078
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7079 7080
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7081 7082 7083 7084 7085 7086 7087
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7088 7089 7090 7091
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7092

7093
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7094

7095
	cpt_init_clock_gating(dev_priv);
7096

7097
	gen6_check_mch_setup(dev_priv);
7098 7099 7100 7101 7102 7103
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7104
	/*
7105
	 * WaVSThreadDispatchOverride:ivb,vlv
7106 7107 7108 7109
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7110 7111 7112 7113 7114 7115 7116 7117
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7118
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7119 7120 7121 7122 7123
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7124
	if (HAS_PCH_LPT_LP(dev_priv))
7125 7126 7127
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7128 7129

	/* WADPOClockGatingDisable:hsw */
7130 7131
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7132
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7133 7134
}

7135
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7136
{
7137
	if (HAS_PCH_LPT_LP(dev_priv)) {
7138 7139 7140 7141 7142 7143 7144
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7168
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7169
{
7170
	gen9_init_clock_gating(dev_priv);
7171 7172 7173 7174 7175

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7176 7177 7178 7179 7180

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7181 7182 7183 7184

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7185 7186
}

7187
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7188
{
7189
	gen9_init_clock_gating(dev_priv);
7190 7191 7192 7193

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7194 7195 7196 7197

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7198 7199
}

7200
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7201
{
7202
	enum pipe pipe;
B
Ben Widawsky 已提交
7203

7204
	ilk_init_lp_watermarks(dev_priv);
7205

7206
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7207
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7208

7209
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7210 7211 7212
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7213
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7214
	for_each_pipe(dev_priv, pipe) {
7215
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7216
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7217
			   BDW_DPRS_MASK_VBLANK_SRD);
7218
	}
7219

7220 7221 7222 7223 7224
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7225

7226 7227
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7228 7229 7230 7231

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7232

7233 7234
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7235

7236 7237 7238 7239 7240 7241 7242
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7243 7244 7245 7246
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7247
	lpt_init_clock_gating(dev_priv);
7248 7249 7250 7251 7252 7253 7254 7255

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7256 7257
}

7258
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7259
{
7260
	ilk_init_lp_watermarks(dev_priv);
7261

7262 7263 7264 7265 7266
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7267
	/* This is required by WaCatErrorRejectionIssue:hsw */
7268 7269 7270 7271
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7272 7273 7274
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7275

7276 7277 7278
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7279 7280 7281 7282
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7283
	/* WaDisable4x2SubspanOptimization:hsw */
7284 7285
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7286

7287 7288 7289
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7290 7291 7292 7293
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7294 7295
	 */
	I915_WRITE(GEN7_GT_MODE,
7296
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7297

7298 7299 7300 7301
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7302
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7303 7304
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7305 7306 7307
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7308

7309
	lpt_init_clock_gating(dev_priv);
7310 7311
}

7312
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7313
{
7314
	uint32_t snpcr;
7315

7316
	ilk_init_lp_watermarks(dev_priv);
7317

7318
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7319

7320
	/* WaDisableEarlyCull:ivb */
7321 7322 7323
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7324
	/* WaDisableBackToBackFlipFix:ivb */
7325 7326 7327 7328
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7329
	/* WaDisablePSDDualDispatchEnable:ivb */
7330
	if (IS_IVB_GT1(dev_priv))
7331 7332 7333
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7334 7335 7336
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7337
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7338 7339 7340
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7341
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7342 7343 7344
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7345
		   GEN7_WA_L3_CHICKEN_MODE);
7346
	if (IS_IVB_GT1(dev_priv))
7347 7348
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7349 7350 7351 7352
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7353 7354
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7355
	}
7356

7357
	/* WaForceL3Serialization:ivb */
7358 7359 7360
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7361
	/*
7362
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7363
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7364 7365
	 */
	I915_WRITE(GEN6_UCGCTL2,
7366
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7367

7368
	/* This is required by WaCatErrorRejectionIssue:ivb */
7369 7370 7371 7372
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7373
	g4x_disable_trickle_feed(dev_priv);
7374 7375

	gen7_setup_fixed_func_scheduler(dev_priv);
7376

7377 7378 7379 7380 7381
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7382

7383
	/* WaDisable4x2SubspanOptimization:ivb */
7384 7385
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7386

7387 7388 7389
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7390 7391 7392 7393
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7394 7395
	 */
	I915_WRITE(GEN7_GT_MODE,
7396
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7397

7398 7399 7400 7401
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7402

7403
	if (!HAS_PCH_NOP(dev_priv))
7404
		cpt_init_clock_gating(dev_priv);
7405

7406
	gen6_check_mch_setup(dev_priv);
7407 7408
}

7409
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7410
{
7411
	/* WaDisableEarlyCull:vlv */
7412 7413 7414
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7415
	/* WaDisableBackToBackFlipFix:vlv */
7416 7417 7418 7419
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7420
	/* WaPsdDispatchEnable:vlv */
7421
	/* WaDisablePSDDualDispatchEnable:vlv */
7422
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7423 7424
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7425

7426 7427 7428
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7429
	/* WaForceL3Serialization:vlv */
7430 7431 7432
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7433
	/* WaDisableDopClockGating:vlv */
7434 7435 7436
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7437
	/* This is required by WaCatErrorRejectionIssue:vlv */
7438 7439 7440 7441
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7442 7443
	gen7_setup_fixed_func_scheduler(dev_priv);

7444
	/*
7445
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7446
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7447 7448
	 */
	I915_WRITE(GEN6_UCGCTL2,
7449
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7450

7451 7452 7453 7454 7455
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7456

7457 7458 7459 7460
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7461 7462
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7463

7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7475 7476 7477 7478 7479 7480
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7481
	/*
7482
	 * WaDisableVLVClockGating_VBIIssue:vlv
7483 7484 7485
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7486
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7487 7488
}

7489
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7490
{
7491 7492 7493 7494 7495
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7496 7497 7498 7499

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7500 7501 7502 7503

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7504 7505 7506 7507

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7508

7509 7510 7511 7512 7513 7514 7515
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7516 7517 7518 7519 7520
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7521 7522
}

7523
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7535
	if (IS_GM45(dev_priv))
7536 7537
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7538 7539 7540 7541

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7542

7543 7544 7545
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7546
	g4x_disable_trickle_feed(dev_priv);
7547 7548
}

7549
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7550 7551 7552 7553 7554 7555
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7556 7557
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7558 7559 7560

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7561 7562
}

7563
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7564 7565 7566 7567 7568 7569 7570
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7571 7572
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7573 7574 7575

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7576 7577
}

7578
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7579 7580 7581 7582 7583 7584
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7585

7586
	if (IS_PINEVIEW(dev_priv))
7587
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7588 7589 7590

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7591 7592

	/* interrupts should cause a wake up from C3 */
7593
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7594 7595 7596

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7597 7598 7599

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7600 7601
}

7602
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7603 7604
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7605 7606 7607 7608

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7609 7610 7611

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7612 7613
}

7614
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7615
{
7616 7617 7618
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7619 7620
}

7621
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7622
{
7623
	dev_priv->display.init_clock_gating(dev_priv);
7624 7625
}

7626
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7627
{
7628 7629
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7630 7631
}

7632
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7649
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7650
	else if (IS_KABYLAKE(dev_priv))
7651
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7652
	else if (IS_BROXTON(dev_priv))
7653
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7654 7655
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7672
	else if (IS_I965GM(dev_priv))
7673
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7674
	else if (IS_I965G(dev_priv))
7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7688
/* Set up chip specific power management-related functions */
7689
void intel_init_pm(struct drm_i915_private *dev_priv)
7690
{
7691
	intel_fbc_init(dev_priv);
7692

7693
	/* For cxsr */
7694
	if (IS_PINEVIEW(dev_priv))
7695
		i915_pineview_get_mem_freq(dev_priv);
7696
	else if (IS_GEN5(dev_priv))
7697
		i915_ironlake_get_mem_freq(dev_priv);
7698

7699
	/* For FIFO watermark updates */
7700
	if (INTEL_GEN(dev_priv) >= 9) {
7701
		skl_setup_wm_latency(dev_priv);
7702
		dev_priv->display.initial_watermarks = skl_initial_wm;
7703
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7704
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7705
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7706
		ilk_setup_wm_latency(dev_priv);
7707

7708
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7709
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7710
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7711
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7712
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7713 7714 7715 7716 7717 7718
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7719 7720 7721 7722
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7723
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7724
		vlv_setup_wm_latency(dev_priv);
7725
		dev_priv->display.update_wm = vlv_update_wm;
7726
	} else if (IS_PINEVIEW(dev_priv)) {
7727
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7728 7729 7730 7731 7732 7733 7734 7735 7736
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7737
			intel_set_memory_cxsr(dev_priv, false);
7738 7739 7740
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7741
	} else if (IS_G4X(dev_priv)) {
7742
		dev_priv->display.update_wm = g4x_update_wm;
7743
	} else if (IS_GEN4(dev_priv)) {
7744
		dev_priv->display.update_wm = i965_update_wm;
7745
	} else if (IS_GEN3(dev_priv)) {
7746 7747
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7748
	} else if (IS_GEN2(dev_priv)) {
7749
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7750
			dev_priv->display.update_wm = i845_update_wm;
7751
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7752 7753
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7754
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7755 7756 7757
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7758 7759 7760
	}
}

7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7773
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7805
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7806
{
7807 7808
	int status;

7809
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7810

7811 7812 7813 7814 7815 7816
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7817 7818 7819 7820
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7821 7822 7823
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7824

7825 7826 7827
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7828 7829 7830 7831
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7832 7833
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7834

7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7846 7847 7848
	return 0;
}

7849
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7850
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7851
{
7852 7853
	int status;

7854
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7855

7856 7857 7858 7859 7860 7861
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7862 7863 7864 7865
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7866
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
7867
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7868
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7869

7870 7871 7872
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7873 7874 7875 7876
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7877
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7878

7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7890 7891
	return 0;
}
7892

7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
7914
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
7915 7916
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
7917
 * for @timeout_base_ms and if this times out for another 50 ms with
7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
7953
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
7954
	 * account for interrupts that could reduce the number of these
7955 7956
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
7957 7958 7959 7960
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
7961
	ret = wait_for_atomic(COND, 50);
7962 7963 7964 7965 7966 7967 7968
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

7969 7970
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7971 7972 7973 7974 7975
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7976 7977
}

7978
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7979
{
7980
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7981 7982
}

7983
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7984
{
7985 7986 7987 7988 7989
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7990 7991
}

7992
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7993
{
7994
	/* CHV needs even values */
7995
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7996 7997
}

7998
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7999
{
8000
	if (IS_GEN9(dev_priv))
8001 8002
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
8003
	else if (IS_CHERRYVIEW(dev_priv))
8004
		return chv_gpu_freq(dev_priv, val);
8005
	else if (IS_VALLEYVIEW(dev_priv))
8006 8007 8008
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
8009 8010
}

8011 8012
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
8013
	if (IS_GEN9(dev_priv))
8014 8015
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
8016
	else if (IS_CHERRYVIEW(dev_priv))
8017
		return chv_freq_opcode(dev_priv, val);
8018
	else if (IS_VALLEYVIEW(dev_priv))
8019 8020
		return byt_freq_opcode(dev_priv, val);
	else
8021
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8022
}
8023

8024 8025
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8026
	struct drm_i915_gem_request *req;
8027 8028 8029 8030 8031
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8032
	struct drm_i915_gem_request *req = boost->req;
8033

8034
	if (!i915_gem_request_completed(req))
8035
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8036

8037
	i915_gem_request_put(req);
8038 8039 8040
	kfree(boost);
}

8041
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8042 8043 8044
{
	struct request_boost *boost;

8045
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8046 8047
		return;

8048
	if (i915_gem_request_completed(req))
8049 8050
		return;

8051 8052 8053 8054
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8055
	boost->req = i915_gem_request_get(req);
8056 8057

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8058
	queue_work(req->i915->wq, &boost->work);
8059 8060
}

8061
void intel_pm_setup(struct drm_i915_private *dev_priv)
8062
{
D
Daniel Vetter 已提交
8063
	mutex_init(&dev_priv->rps.hw_lock);
8064
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8065

8066 8067
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8068
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8069

8070
	dev_priv->pm.suspended = false;
8071
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8072
}