intel_pm.c 225.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_device *dev)
60
{
61 62
	struct drm_i915_private *dev_priv = dev->dev_private;

63
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
64 65 66
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

67 68
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
69 70 71 72

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
73 74

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
75 76 77 78
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
79 80 81 82

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
83 84 85 86
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
87
	struct drm_i915_private *dev_priv = to_i915(dev);
88 89 90

	gen9_init_clock_gating(dev);

91 92 93 94
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

95 96
	/*
	 * FIXME:
97
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
98 99
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
100
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
101 102 103 104 105 106 107 108

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
109 110
}

111 112
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
113
	struct drm_i915_private *dev_priv = to_i915(dev);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
152
	struct drm_i915_private *dev_priv = to_i915(dev);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

178
	dev_priv->ips.r_t = dev_priv->mem_freq;
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
210
		dev_priv->ips.c_m = 0;
211
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
212
		dev_priv->ips.c_m = 1;
213
	} else {
214
		dev_priv->ips.c_m = 2;
215 216 217
	}
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

256 257
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

321
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
322
{
323
	struct drm_device *dev = &dev_priv->drm;
324
	u32 val;
325

326
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
327
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
328
		POSTING_READ(FW_BLC_SELF_VLV);
329
		dev_priv->wm.vlv.cxsr = enable;
330
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
331
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
332
		POSTING_READ(FW_BLC_SELF);
333 334 335 336
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
337
		POSTING_READ(DSPFW3);
338
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
339 340 341
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
342
		POSTING_READ(FW_BLC_SELF);
343
	} else if (IS_I915GM(dev_priv)) {
344 345 346 347 348
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
349 350 351
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
352
		POSTING_READ(INSTPM);
353 354 355
	} else {
		return;
	}
356

357 358
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
359 360
}

361

362 363 364 365 366 367 368 369 370 371 372 373 374 375
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
376
static const int pessimal_latency_ns = 5000;
377

378 379 380 381 382 383
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
384
	struct drm_i915_private *dev_priv = to_i915(dev);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

433
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
434
{
435
	struct drm_i915_private *dev_priv = to_i915(dev);
436 437 438 439 440 441 442 443 444 445 446 447 448
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

449
static int i830_get_fifo_size(struct drm_device *dev, int plane)
450
{
451
	struct drm_i915_private *dev_priv = to_i915(dev);
452 453 454 455 456 457 458 459 460 461 462 463 464 465
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

466
static int i845_get_fifo_size(struct drm_device *dev, int plane)
467
{
468
	struct drm_i915_private *dev_priv = to_i915(dev);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
484 485 486 487 488
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
489 490
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
491 492 493 494 495
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
496 497
};
static const struct intel_watermark_params pineview_cursor_wm = {
498 499 500 501 502
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
503 504
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
505 506 507 508 509
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
510 511
};
static const struct intel_watermark_params g4x_wm_info = {
512 513 514 515 516
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
517 518
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
519 520 521 522 523
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
524 525
};
static const struct intel_watermark_params i965_cursor_wm_info = {
526 527 528 529 530
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
531 532
};
static const struct intel_watermark_params i945_wm_info = {
533 534 535 536 537
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
538 539
};
static const struct intel_watermark_params i915_wm_info = {
540 541 542 543 544
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
545
};
546
static const struct intel_watermark_params i830_a_wm_info = {
547 548 549 550 551
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
552
};
553 554 555 556 557 558 559
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
560
static const struct intel_watermark_params i845_wm_info = {
561 562 563 564 565
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
566 567 568 569 570 571
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
572
 * @cpp: bytes per pixel
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
588
					int fifo_size, int cpp,
589 590 591 592 593 594 595 596 597 598
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
599
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
600 601 602 603 604 605 606 607 608 609 610 611 612 613
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
614 615 616 617 618 619 620 621 622 623 624

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

625 626 627 628 629 630 631
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

632
	for_each_crtc(dev, crtc) {
633
		if (intel_crtc_active(crtc)) {
634 635 636 637 638 639 640 641 642
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

643
static void pineview_update_wm(struct drm_crtc *unused_crtc)
644
{
645
	struct drm_device *dev = unused_crtc->dev;
646
	struct drm_i915_private *dev_priv = to_i915(dev);
647 648 649 650 651
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

652 653 654 655
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
656 657
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
658
		intel_set_memory_cxsr(dev_priv, false);
659 660 661 662 663
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
664
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
665
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
666
		int clock = adjusted_mode->crtc_clock;
667 668 669 670

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
671
					cpp, latency->display_sr);
672 673
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
674
		reg |= FW_WM(wm, SR);
675 676 677 678 679 680
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
681
					cpp, latency->cursor_sr);
682 683
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
684
		reg |= FW_WM(wm, CURSOR_SR);
685 686 687 688 689
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
690
					cpp, latency->display_hpll_disable);
691 692
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
693
		reg |= FW_WM(wm, HPLL_SR);
694 695 696 697 698
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
699
					cpp, latency->cursor_hpll_disable);
700 701
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
702
		reg |= FW_WM(wm, HPLL_CURSOR);
703 704 705
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

706
		intel_set_memory_cxsr(dev_priv, true);
707
	} else {
708
		intel_set_memory_cxsr(dev_priv, false);
709 710 711 712 713 714 715 716 717 718 719 720 721
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
722
	const struct drm_display_mode *adjusted_mode;
723
	int htotal, hdisplay, clock, cpp;
724 725 726 727
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
728
	if (!intel_crtc_active(crtc)) {
729 730 731 732 733
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

734
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
735
	clock = adjusted_mode->crtc_clock;
736
	htotal = adjusted_mode->crtc_htotal;
737
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
738
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
739 740

	/* Use the small buffer method to calculate plane watermark */
741
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
742 743 744 745 746 747 748 749 750
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
751
	line_time_us = max(htotal * 1000 / clock, 1);
752
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
753
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
781
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
782 783 784 785 786
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
787
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
808
	const struct drm_display_mode *adjusted_mode;
809
	int hdisplay, htotal, cpp, clock;
810 811 812 813 814 815 816 817 818 819 820
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
821
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
822
	clock = adjusted_mode->crtc_clock;
823
	htotal = adjusted_mode->crtc_htotal;
824
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
825
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
826

827
	line_time_us = max(htotal * 1000 / clock, 1);
828
	line_count = (latency_ns / line_time_us + 1000) / 1000;
829
	line_size = hdisplay * cpp;
830 831

	/* Use the minimum of the small and large buffer method for primary */
832
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
833 834 835 836 837 838
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
839
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
840 841 842 843 844 845 846 847
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

848 849 850
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

851 852 853 854 855 856 857 858 859 860 861 862
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

863
	I915_WRITE(DSPFW1,
864 865 866 867
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
868
	I915_WRITE(DSPFW2,
869 870 871
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
872
	I915_WRITE(DSPFW3,
873
		   FW_WM(wm->sr.cursor, CURSOR_SR));
874 875 876

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
877 878
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
879
		I915_WRITE(DSPFW8_CHV,
880 881
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
882
		I915_WRITE(DSPFW9_CHV,
883 884
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
885
		I915_WRITE(DSPHOWM,
886 887 888 889 890 891 892 893 894 895
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
896 897
	} else {
		I915_WRITE(DSPFW7,
898 899
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
900
		I915_WRITE(DSPHOWM,
901 902 903 904 905 906 907
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
908 909
	}

910 911 912 913 914 915
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

916
	POSTING_READ(DSPFW1);
917 918
}

919 920
#undef FW_WM_VLV

921 922 923 924 925 926
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

927 928 929 930
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
931
				   unsigned int cpp,
932 933 934 935 936
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
937
	ret = (ret + 1) * horiz_pixels * cpp;
938 939 940 941 942 943 944
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
945
	struct drm_i915_private *dev_priv = to_i915(dev);
946 947 948 949

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

950 951
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

952 953 954
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
955 956

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
957 958 959 960 961 962 963 964 965
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
966
	int clock, htotal, cpp, width, wm;
967 968 969 970

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

971
	if (!state->base.visible)
972 973
		return 0;

974
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
990
		wm = vlv_wm_method2(clock, htotal, width, cpp,
991 992 993 994 995 996
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1013
		if (state->base.visible) {
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1029
		if (!state->base.visible) {
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1098
static void vlv_compute_wm(struct intel_crtc *crtc)
1099 1100 1101 1102 1103 1104 1105 1106 1107
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1108
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1109
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1110 1111 1112

	wm_state->num_active_planes = 0;

1113
	vlv_compute_fifo(crtc);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1129
		if (!state->base.visible)
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1170
					wm_state->wm[level].cursor;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1189
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1190 1191 1192 1193 1194 1195 1196
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1287 1288 1289 1290 1291 1292
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1293
	wm->level = to_i915(dev)->wm.max_level;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1312 1313 1314
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
1336
	struct drm_i915_private *dev_priv = to_i915(dev);
1337 1338 1339 1340
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1341
	vlv_compute_wm(intel_crtc);
1342 1343
	vlv_merge_wm(dev, &wm);

1344 1345 1346
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1347
		return;
1348
	}
1349 1350 1351 1352 1353 1354 1355 1356 1357

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1358
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1359 1360
		intel_set_memory_cxsr(dev_priv, false);

1361 1362 1363
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1364 1365 1366 1367 1368 1369 1370 1371
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1372
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1384 1385
}

1386 1387
#define single_plane_enabled(mask) is_power_of_2(mask)

1388
static void g4x_update_wm(struct drm_crtc *crtc)
1389
{
1390
	struct drm_device *dev = crtc->dev;
1391
	static const int sr_latency_ns = 12000;
1392
	struct drm_i915_private *dev_priv = to_i915(dev);
1393 1394 1395
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1396
	bool cxsr_enabled;
1397

1398
	if (g4x_compute_wm0(dev, PIPE_A,
1399 1400
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1401
			    &planea_wm, &cursora_wm))
1402
		enabled |= 1 << PIPE_A;
1403

1404
	if (g4x_compute_wm0(dev, PIPE_B,
1405 1406
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1407
			    &planeb_wm, &cursorb_wm))
1408
		enabled |= 1 << PIPE_B;
1409 1410 1411 1412 1413 1414

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1415
			     &plane_sr, &cursor_sr)) {
1416
		cxsr_enabled = true;
1417
	} else {
1418
		cxsr_enabled = false;
1419
		intel_set_memory_cxsr(dev_priv, false);
1420 1421
		plane_sr = cursor_sr = 0;
	}
1422

1423 1424
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1425 1426 1427 1428 1429
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1430 1431 1432 1433
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1434
	I915_WRITE(DSPFW2,
1435
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1436
		   FW_WM(cursora_wm, CURSORA));
1437 1438
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1439
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1440
		   FW_WM(cursor_sr, CURSOR_SR));
1441 1442 1443

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1444 1445
}

1446
static void i965_update_wm(struct drm_crtc *unused_crtc)
1447
{
1448
	struct drm_device *dev = unused_crtc->dev;
1449
	struct drm_i915_private *dev_priv = to_i915(dev);
1450 1451 1452
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1453
	bool cxsr_enabled;
1454 1455 1456 1457 1458 1459

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1460
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1461
		int clock = adjusted_mode->crtc_clock;
1462
		int htotal = adjusted_mode->crtc_htotal;
1463
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1464
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1465 1466 1467
		unsigned long line_time_us;
		int entries;

1468
		line_time_us = max(htotal * 1000 / clock, 1);
1469 1470 1471

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1472
			cpp * hdisplay;
1473 1474 1475 1476 1477 1478 1479 1480 1481
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1482
			cpp * crtc->cursor->state->crtc_w;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1494
		cxsr_enabled = true;
1495
	} else {
1496
		cxsr_enabled = false;
1497
		/* Turn off self refresh if both pipes are enabled */
1498
		intel_set_memory_cxsr(dev_priv, false);
1499 1500 1501 1502 1503 1504
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1505 1506 1507 1508 1509 1510
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1511
	/* update cursor SR watermark */
1512
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1513 1514 1515

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1516 1517
}

1518 1519
#undef FW_WM

1520
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1521
{
1522
	struct drm_device *dev = unused_crtc->dev;
1523
	struct drm_i915_private *dev_priv = to_i915(dev);
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
1534
	else if (!IS_GEN2(dev_priv))
1535 1536
		wm_info = &i915_wm_info;
	else
1537
		wm_info = &i830_a_wm_info;
1538 1539 1540

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1541
	if (intel_crtc_active(crtc)) {
1542
		const struct drm_display_mode *adjusted_mode;
1543
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1544
		if (IS_GEN2(dev_priv))
1545 1546
			cpp = 4;

1547
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1548
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1549
					       wm_info, fifo_size, cpp,
1550
					       pessimal_latency_ns);
1551
		enabled = crtc;
1552
	} else {
1553
		planea_wm = fifo_size - wm_info->guard_size;
1554 1555 1556 1557
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1558
	if (IS_GEN2(dev_priv))
1559
		wm_info = &i830_bc_wm_info;
1560 1561 1562

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1563
	if (intel_crtc_active(crtc)) {
1564
		const struct drm_display_mode *adjusted_mode;
1565
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1566
		if (IS_GEN2(dev_priv))
1567 1568
			cpp = 4;

1569
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1570
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1571
					       wm_info, fifo_size, cpp,
1572
					       pessimal_latency_ns);
1573 1574 1575 1576
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1577
	} else {
1578
		planeb_wm = fifo_size - wm_info->guard_size;
1579 1580 1581
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1582 1583 1584

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1585
	if (IS_I915GM(dev_priv) && enabled) {
1586
		struct drm_i915_gem_object *obj;
1587

1588
		obj = intel_fb_obj(enabled->primary->state->fb);
1589 1590

		/* self-refresh seems busted with untiled */
1591
		if (!i915_gem_object_is_tiled(obj))
1592 1593 1594
			enabled = NULL;
	}

1595 1596 1597 1598 1599 1600
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1601
	intel_set_memory_cxsr(dev_priv, false);
1602 1603 1604 1605 1606

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1607
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1608
		int clock = adjusted_mode->crtc_clock;
1609
		int htotal = adjusted_mode->crtc_htotal;
1610
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1611
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1612 1613 1614
		unsigned long line_time_us;
		int entries;

1615
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1616 1617
			cpp = 4;

1618
		line_time_us = max(htotal * 1000 / clock, 1);
1619 1620 1621

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1622
			cpp * hdisplay;
1623 1624 1625 1626 1627 1628
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1629
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1630 1631
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1632
		else
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1649 1650
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1651 1652
}

1653
static void i845_update_wm(struct drm_crtc *unused_crtc)
1654
{
1655
	struct drm_device *dev = unused_crtc->dev;
1656
	struct drm_i915_private *dev_priv = to_i915(dev);
1657
	struct drm_crtc *crtc;
1658
	const struct drm_display_mode *adjusted_mode;
1659 1660 1661 1662 1663 1664 1665
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1666
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1667
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1668
				       &i845_wm_info,
1669
				       dev_priv->display.get_fifo_size(dev, 0),
1670
				       4, pessimal_latency_ns);
1671 1672 1673 1674 1675 1676 1677 1678
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1679
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1680
{
1681
	uint32_t pixel_rate;
1682

1683
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1684 1685 1686 1687

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1688
	if (pipe_config->pch_pfit.enabled) {
1689
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1690 1691 1692 1693
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1694 1695 1696 1697 1698 1699 1700 1701

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1702 1703 1704
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1705 1706 1707 1708 1709 1710 1711
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1712
/* latency must be in 0.1us units. */
1713
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1714 1715 1716
{
	uint64_t ret;

1717 1718 1719
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1720
	ret = (uint64_t) pixel_rate * cpp * latency;
1721 1722 1723 1724 1725
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1726
/* latency must be in 0.1us units. */
1727
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1728
			       uint32_t horiz_pixels, uint8_t cpp,
1729 1730 1731 1732
			       uint32_t latency)
{
	uint32_t ret;

1733 1734
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1735 1736
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1737

1738
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1739
	ret = (ret + 1) * horiz_pixels * cpp;
1740 1741 1742 1743
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1744
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1745
			   uint8_t cpp)
1746
{
1747 1748 1749 1750 1751 1752
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1753
	if (WARN_ON(!cpp))
1754 1755 1756 1757
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1758
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1759 1760
}

1761
struct ilk_wm_maximums {
1762 1763 1764 1765 1766 1767
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1768 1769 1770 1771
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1772
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1773
				   const struct intel_plane_state *pstate,
1774 1775
				   uint32_t mem_value,
				   bool is_lp)
1776
{
1777 1778
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1779 1780
	uint32_t method1, method2;

1781
	if (!cstate->base.active || !pstate->base.visible)
1782 1783
		return 0;

1784
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1785 1786 1787 1788

	if (!is_lp)
		return method1;

1789 1790
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1791
				 drm_rect_width(&pstate->base.dst),
1792
				 cpp, mem_value);
1793 1794

	return min(method1, method2);
1795 1796
}

1797 1798 1799 1800
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1801
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1802
				   const struct intel_plane_state *pstate,
1803 1804
				   uint32_t mem_value)
{
1805 1806
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1807 1808
	uint32_t method1, method2;

1809
	if (!cstate->base.active || !pstate->base.visible)
1810 1811
		return 0;

1812
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1813 1814
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1815
				 drm_rect_width(&pstate->base.dst),
1816
				 cpp, mem_value);
1817 1818 1819
	return min(method1, method2);
}

1820 1821 1822 1823
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1824
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1825
				   const struct intel_plane_state *pstate,
1826 1827
				   uint32_t mem_value)
{
1828 1829 1830 1831 1832 1833
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1834
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1835

1836
	if (!cstate->base.active)
1837 1838
		return 0;

1839 1840
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1841
			      width, cpp, mem_value);
1842 1843
}

1844
/* Only for WM_LP. */
1845
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1846
				   const struct intel_plane_state *pstate,
1847
				   uint32_t pri_val)
1848
{
1849 1850
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1851

1852
	if (!cstate->base.active || !pstate->base.visible)
1853 1854
		return 0;

1855
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1856 1857
}

1858 1859
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1860 1861 1862
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1863 1864 1865 1866 1867
		return 768;
	else
		return 512;
}

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1902 1903 1904
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1905
				     const struct intel_wm_config *config,
1906 1907 1908 1909 1910 1911
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1912
	if (is_sprite && !config->sprites_enabled)
1913 1914 1915
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1916
	if (level == 0 || config->num_pipes_active > 1) {
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1928
	if (config->sprites_enabled) {
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1940
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1941 1942 1943 1944
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1945 1946
				      int level,
				      const struct intel_wm_config *config)
1947 1948
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1949
	if (level > 0 && config->num_pipes_active > 1)
1950 1951 1952
		return 64;

	/* otherwise just report max that registers can hold */
1953
	return ilk_cursor_wm_reg_max(dev, level);
1954 1955
}

1956
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1957 1958 1959
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1960
				    struct ilk_wm_maximums *max)
1961
{
1962 1963 1964
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1965
	max->fbc = ilk_fbc_wm_reg_max(dev);
1966 1967
}

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1978
static bool ilk_validate_wm_level(int level,
1979
				  const struct ilk_wm_maximums *max,
1980
				  struct intel_wm_level *result)
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2019
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2020
				 const struct intel_crtc *intel_crtc,
2021
				 int level,
2022
				 struct intel_crtc_state *cstate,
2023 2024 2025
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2026
				 struct intel_wm_level *result)
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2051 2052 2053
	result->enable = true;
}

2054
static uint32_t
2055
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2056
{
2057 2058
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2059 2060
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2061
	u32 linetime, ips_linetime;
2062

2063 2064 2065 2066
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2067
	if (WARN_ON(intel_state->cdclk == 0))
2068
		return 0;
2069

2070 2071 2072
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2073 2074 2075
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2076
					 intel_state->cdclk);
2077

2078 2079
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2080 2081
}

2082
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2083
{
2084
	struct drm_i915_private *dev_priv = to_i915(dev);
2085

2086
	if (IS_GEN9(dev_priv)) {
2087
		uint32_t val;
2088
		int ret, i;
2089
		int level, max_level = ilk_wm_max_level(dev_priv);
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2145
		/*
2146 2147
		 * WaWmMemoryReadLatency:skl
		 *
2148
		 * punit doesn't take into account the read latency so we need
2149 2150
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2151
		 */
2152 2153 2154 2155 2156
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2157
				wm[level] += 2;
2158
			}
2159 2160
		}

2161
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2162 2163 2164 2165 2166
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2167 2168 2169 2170
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2171 2172 2173 2174 2175 2176 2177
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2178 2179 2180 2181 2182 2183 2184
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2185 2186 2187
	}
}

2188 2189
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2190 2191
{
	/* ILK sprite LP0 latency is 1300 ns */
2192
	if (IS_GEN5(dev_priv))
2193 2194 2195
		wm[0] = 13;
}

2196 2197
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2198 2199
{
	/* ILK cursor LP0 latency is 1300 ns */
2200
	if (IS_GEN5(dev_priv))
2201 2202 2203
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2204
	if (IS_IVYBRIDGE(dev_priv))
2205 2206 2207
		wm[3] *= 2;
}

2208
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2209 2210
{
	/* how many WM levels are we expecting */
2211
	if (INTEL_GEN(dev_priv) >= 9)
2212
		return 7;
2213
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2214
		return 4;
2215
	else if (INTEL_GEN(dev_priv) >= 6)
2216
		return 3;
2217
	else
2218 2219
		return 2;
}
2220

2221
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2222
				   const char *name,
2223
				   const uint16_t wm[8])
2224
{
2225
	int level, max_level = ilk_wm_max_level(dev_priv);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2236 2237 2238 2239
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2240
		if (IS_GEN9(dev_priv))
2241 2242
			latency *= 10;
		else if (level > 0)
2243 2244 2245 2246 2247 2248 2249 2250
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2251 2252 2253
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2254
	int level, max_level = ilk_wm_max_level(dev_priv);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
2268
	struct drm_i915_private *dev_priv = to_i915(dev);
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2283 2284 2285
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2286 2287
}

2288
static void ilk_setup_wm_latency(struct drm_device *dev)
2289
{
2290
	struct drm_i915_private *dev_priv = to_i915(dev);
2291 2292 2293 2294 2295 2296 2297 2298

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2299
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2300
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2301

2302 2303 2304
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2305

2306
	if (IS_GEN6(dev_priv))
2307
		snb_wm_latency_quirk(dev);
2308 2309
}

2310 2311
static void skl_setup_wm_latency(struct drm_device *dev)
{
2312
	struct drm_i915_private *dev_priv = to_i915(dev);
2313 2314

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2315
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2316 2317
}

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2341
/* Compute new watermarks for the pipe */
2342
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2343
{
2344 2345
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2346
	struct intel_pipe_wm *pipe_wm;
2347
	struct drm_device *dev = state->dev;
2348
	const struct drm_i915_private *dev_priv = to_i915(dev);
2349
	struct intel_plane *intel_plane;
2350
	struct intel_plane_state *pristate = NULL;
2351
	struct intel_plane_state *sprstate = NULL;
2352
	struct intel_plane_state *curstate = NULL;
2353
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2354
	struct ilk_wm_maximums max;
2355

2356
	pipe_wm = &cstate->wm.ilk.optimal;
2357

2358
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2359 2360 2361 2362 2363 2364
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2365 2366

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2367
			pristate = ps;
2368
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2369
			sprstate = ps;
2370
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2371
			curstate = ps;
2372 2373
	}

2374
	pipe_wm->pipe_enabled = cstate->base.active;
2375
	if (sprstate) {
2376 2377 2378 2379
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2380 2381
	}

2382 2383
	usable_level = max_level;

2384
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2385
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2386
		usable_level = 1;
2387 2388

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2389
	if (pipe_wm->sprites_scaled)
2390
		usable_level = 0;
2391

2392
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2393 2394 2395 2396
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2397

2398
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2399
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2400

2401
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2402
		return -EINVAL;
2403 2404 2405 2406

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2407
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2408

2409
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2410
				     pristate, sprstate, curstate, wm);
2411 2412 2413 2414 2415 2416

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2417 2418 2419 2420 2421 2422
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2423
			usable_level = level;
2424 2425
	}

2426
	return 0;
2427 2428
}

2429 2430 2431 2432 2433 2434 2435 2436 2437
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2438
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2439
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2440
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2441 2442 2443 2444 2445 2446

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2447
	*a = newstate->wm.ilk.optimal;
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2476
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2477 2478 2479 2480 2481
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2482 2483 2484 2485 2486 2487 2488 2489 2490
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2491 2492
	ret_wm->enable = true;

2493
	for_each_intel_crtc(dev, intel_crtc) {
2494
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2495 2496 2497 2498
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2499

2500 2501 2502 2503 2504
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2505
		if (!wm->enable)
2506
			ret_wm->enable = false;
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2519
			 const struct intel_wm_config *config,
2520
			 const struct ilk_wm_maximums *max,
2521 2522
			 struct intel_pipe_wm *merged)
{
2523
	struct drm_i915_private *dev_priv = to_i915(dev);
2524
	int level, max_level = ilk_wm_max_level(dev_priv);
2525
	int last_enabled_level = max_level;
2526

2527
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2528
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2529
	    config->num_pipes_active > 1)
2530
		last_enabled_level = 0;
2531

2532 2533
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2534 2535 2536 2537 2538 2539 2540

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2541 2542 2543 2544 2545
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2546 2547 2548 2549 2550 2551

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2552 2553
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2554 2555 2556
			wm->fbc_val = 0;
		}
	}
2557 2558 2559 2560 2561 2562 2563

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2564
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2565
	    intel_fbc_is_active(dev_priv)) {
2566 2567 2568 2569 2570 2571
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2572 2573
}

2574 2575 2576 2577 2578 2579
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2580 2581 2582
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2583
	struct drm_i915_private *dev_priv = to_i915(dev);
2584

2585
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2586 2587 2588 2589 2590
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2591
static void ilk_compute_wm_results(struct drm_device *dev,
2592
				   const struct intel_pipe_wm *merged,
2593
				   enum intel_ddb_partitioning partitioning,
2594
				   struct ilk_wm_values *results)
2595
{
2596 2597
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2598

2599
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2600
	results->partitioning = partitioning;
2601

2602
	/* LP1+ register values */
2603
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2604
		const struct intel_wm_level *r;
2605

2606
		level = ilk_wm_lp_to_level(wm_lp, merged);
2607

2608
		r = &merged->wm[level];
2609

2610 2611 2612 2613 2614
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2615
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2616 2617 2618
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2619 2620 2621
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2622 2623 2624 2625 2626 2627 2628
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2629 2630 2631 2632
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2633 2634 2635 2636 2637
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2638
	}
2639

2640
	/* LP0 register values */
2641
	for_each_intel_crtc(dev, intel_crtc) {
2642
		enum pipe pipe = intel_crtc->pipe;
2643 2644
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2645 2646 2647 2648

		if (WARN_ON(!r->enable))
			continue;

2649
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2650

2651 2652 2653 2654
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2655 2656 2657
	}
}

2658 2659
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2660
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2661 2662
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2663
{
2664
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2665
	int level1 = 0, level2 = 0;
2666

2667 2668 2669 2670 2671
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2672 2673
	}

2674 2675
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2676 2677 2678
			return r2;
		else
			return r1;
2679
	} else if (level1 > level2) {
2680 2681 2682 2683 2684 2685
		return r1;
	} else {
		return r2;
	}
}

2686 2687 2688 2689 2690 2691 2692 2693
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2694
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2695 2696
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2697 2698 2699 2700 2701
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2702
	for_each_pipe(dev_priv, pipe) {
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2746 2747
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2748
{
2749
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2750
	bool changed = false;
2751

2752 2753 2754
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2755
		changed = true;
2756 2757 2758 2759
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2760
		changed = true;
2761 2762 2763 2764
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2765
		changed = true;
2766
	}
2767

2768 2769 2770 2771
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2772

2773 2774 2775 2776 2777 2778 2779
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2780 2781
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2782
{
2783
	struct drm_device *dev = &dev_priv->drm;
2784
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2785 2786 2787
	unsigned int dirty;
	uint32_t val;

2788
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2789 2790 2791 2792 2793
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2794
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2795
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2796
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2797
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2798
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2799 2800
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2801
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2802
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2803
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2804
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2805
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2806 2807
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2808
	if (dirty & WM_DIRTY_DDB) {
2809
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2824 2825
	}

2826
	if (dirty & WM_DIRTY_FBC) {
2827 2828 2829 2830 2831 2832 2833 2834
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2835 2836 2837 2838 2839
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2840 2841 2842 2843 2844
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2845

2846
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2847
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2848
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2849
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2850
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2851
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2852 2853

	dev_priv->wm.hw = *results;
2854 2855
}

2856
bool ilk_disable_lp_wm(struct drm_device *dev)
2857
{
2858
	struct drm_i915_private *dev_priv = to_i915(dev);
2859 2860 2861 2862

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2863
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2864

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2902 2903 2904
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2905 2906 2907 2908 2909 2910 2911 2912
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2913 2914
}

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2927
intel_enable_sagv(struct drm_i915_private *dev_priv)
2928 2929 2930
{
	int ret;

2931 2932 2933 2934
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2950
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2951
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2952
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2953 2954 2955 2956 2957 2958
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2959
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2960 2961 2962 2963
	return 0;
}

static int
2964
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2978
intel_disable_sagv(struct drm_i915_private *dev_priv)
2979 2980 2981
{
	int ret, result;

2982 2983 2984 2985
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2986 2987 2988 2989 2990 2991
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2992
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3004
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
3005
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3006
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3007 3008 3009 3010 3011 3012
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

3013
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3014 3015 3016
	return 0;
}

3017
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3018 3019 3020 3021
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3022 3023
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3024 3025
	struct intel_crtc_state *cstate;
	struct skl_plane_wm *wm;
3026
	enum pipe pipe;
3027
	int level, latency;
3028

3029 3030 3031
	if (!intel_has_sagv(dev_priv))
		return false;

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3045
	crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3046
	cstate = to_intel_crtc_state(crtc->base.state);
3047

3048
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3049 3050
		return false;

3051
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3052
		wm = &cstate->wm.skl.optimal.planes[skl_wm_plane_id(plane)];
3053

3054
		/* Skip this plane if it's not enabled */
3055
		if (!wm->wm[0].plane_en)
3056 3057 3058
			continue;

		/* Find the highest enabled wm level for this plane */
3059
		for (level = ilk_wm_max_level(dev_priv);
3060
		     !wm->wm[level].plane_en; --level)
3061 3062
		     { }

3063 3064 3065 3066 3067 3068 3069
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
		    plane->base.state->fb->modifier[0] ==
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3070 3071 3072 3073 3074
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3075
		if (latency < SKL_SAGV_BLOCK_TIME)
3076 3077 3078 3079 3080 3081
			return false;
	}

	return true;
}

3082 3083
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3084
				   const struct intel_crtc_state *cstate,
3085 3086
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3087
{
3088 3089 3090
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3091
	struct drm_crtc *for_crtc = cstate->base.crtc;
3092 3093
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3094

3095
	if (WARN_ON(!state) || !cstate->base.active) {
3096 3097
		alloc->start = 0;
		alloc->end = 0;
3098
		*num_active = hweight32(dev_priv->active_crtcs);
3099 3100 3101
		return;
	}

3102 3103 3104 3105 3106
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3107 3108
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3109 3110 3111

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3112
	/*
3113 3114 3115 3116 3117 3118
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3119
	 */
3120
	if (!intel_state->active_pipe_changes) {
3121
		*alloc = to_intel_crtc(for_crtc)->hw_ddb;
3122
		return;
3123
	}
3124 3125 3126 3127 3128 3129

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3130 3131
}

3132
static unsigned int skl_cursor_allocation(int num_active)
3133
{
3134
	if (num_active == 1)
3135 3136 3137 3138 3139
		return 32;

	return 8;
}

3140 3141 3142 3143
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3144 3145
	if (entry->end)
		entry->end += 1;
3146 3147
}

3148 3149
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3150 3151 3152 3153 3154
{
	enum pipe pipe;
	int plane;
	u32 val;

3155 3156
	memset(ddb, 0, sizeof(*ddb));

3157
	for_each_pipe(dev_priv, pipe) {
3158 3159 3160 3161
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3162 3163
			continue;

3164
		for_each_universal_plane(dev_priv, pipe, plane) {
3165 3166 3167 3168 3169 3170
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3171 3172
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3173 3174

		intel_display_power_put(dev_priv, power_domain);
3175 3176 3177
	}
}

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3200
	if (WARN_ON(!pstate->base.visible))
3201 3202 3203
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3204 3205 3206 3207
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3208
	if (drm_rotation_90_or_270(pstate->base.rotation))
3209 3210 3211 3212 3213 3214 3215 3216 3217
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3218
static unsigned int
3219 3220 3221
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3222
{
3223
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3224
	struct drm_framebuffer *fb = pstate->fb;
3225
	uint32_t down_scale_amount, data_rate;
3226
	uint32_t width = 0, height = 0;
3227 3228
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3229
	if (!intel_pstate->base.visible)
3230 3231 3232 3233 3234
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3235

3236 3237
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3238

3239
	if (drm_rotation_90_or_270(pstate->rotation))
3240
		swap(width, height);
3241 3242

	/* for planar format */
3243
	if (format == DRM_FORMAT_NV12) {
3244
		if (y)  /* y-plane data rate */
3245
			data_rate = width * height *
3246
				drm_format_plane_cpp(format, 0);
3247
		else    /* uv-plane data rate */
3248
			data_rate = (width / 2) * (height / 2) *
3249
				drm_format_plane_cpp(format, 1);
3250 3251 3252
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3253 3254
	}

3255 3256 3257
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3258 3259 3260 3261 3262 3263 3264 3265
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3266
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3267
{
3268 3269 3270 3271 3272
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3273
	struct drm_plane *plane;
3274
	const struct intel_plane *intel_plane;
3275
	const struct drm_plane_state *pstate;
3276
	unsigned int rate, total_data_rate = 0;
3277
	int id;
3278 3279 3280

	if (WARN_ON(!state))
		return 0;
3281

3282
	/* Calculate and cache data rate for each plane */
3283
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3296
	}
3297

3298 3299 3300
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3301

3302
		/* packed/uv */
3303 3304
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3305 3306 3307 3308 3309
	}

	return total_data_rate;
}

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3332 3333
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3334

3335
	if (drm_rotation_90_or_270(pstate->rotation))
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3349
	if (drm_rotation_90_or_270(pstate->rotation)) {
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3373
static int
3374
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3375 3376
		      struct skl_ddb_allocation *ddb /* out */)
{
3377
	struct drm_atomic_state *state = cstate->base.state;
3378
	struct drm_crtc *crtc = cstate->base.crtc;
3379 3380
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3381
	struct intel_plane *intel_plane;
3382
	struct drm_plane *plane;
3383
	const struct drm_plane_state *pstate;
3384
	enum pipe pipe = intel_crtc->pipe;
3385
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3386
	uint16_t alloc_size, start, cursor_blocks;
3387 3388
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3389
	unsigned int total_data_rate;
3390 3391
	int num_active;
	int id, i;
3392

3393 3394 3395 3396
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3397 3398 3399
	if (WARN_ON(!state))
		return 0;

3400
	if (!cstate->base.active) {
3401
		alloc->start = alloc->end = 0;
3402 3403 3404
		return 0;
	}

3405
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3406
	alloc_size = skl_ddb_entry_size(alloc);
3407 3408
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3409
		return 0;
3410 3411
	}

3412
	cursor_blocks = skl_cursor_allocation(num_active);
3413 3414
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3415 3416 3417

	alloc_size -= cursor_blocks;

3418
	/* 1. Allocate the mininum required blocks for each active plane */
3419
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3420 3421
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3422

3423
		if (!pstate->visible) {
3424 3425 3426 3427 3428 3429 3430 3431
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3432
		}
3433

3434 3435
		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3436
	}
3437

3438 3439 3440
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3441 3442
	}

3443
	/*
3444 3445
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3446 3447 3448
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3449
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3450
	if (total_data_rate == 0)
3451
		return 0;
3452

3453
	start = alloc->start;
3454
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3455 3456
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3457
		int id = skl_wm_plane_id(intel_plane);
3458

3459
		data_rate = cstate->wm.skl.plane_data_rate[id];
3460 3461

		/*
3462
		 * allocation for (packed formats) or (uv-plane part of planar format):
3463 3464 3465
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3466
		plane_blocks = minimum[id];
3467 3468
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3469

3470 3471 3472 3473 3474
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3475 3476

		start += plane_blocks;
3477 3478 3479 3480

		/*
		 * allocation for y_plane part of planar format:
		 */
3481 3482 3483 3484 3485
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3486

3487 3488 3489 3490
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3491 3492

		start += y_plane_blocks;
3493 3494
	}

3495
	return 0;
3496 3497
}

3498 3499
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3500
 * for the read latency) and cpp should always be <= 8, so that
3501 3502 3503
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3504
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3505 3506 3507 3508 3509 3510
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3511
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3512 3513 3514 3515 3516 3517
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3518
			       uint32_t latency, uint32_t plane_blocks_per_line)
3519
{
3520 3521
	uint32_t ret;
	uint32_t wm_intermediate_val;
3522 3523 3524 3525 3526 3527

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3528
				plane_blocks_per_line;
3529 3530 3531 3532

	return ret;
}

3533 3534 3535 3536 3537 3538 3539 3540
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3541
	if (WARN_ON(!pstate->base.visible))
3542 3543 3544 3545 3546 3547
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3548
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3549 3550 3551 3552 3553 3554 3555 3556
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3557 3558 3559 3560 3561 3562 3563 3564
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3565
{
3566 3567
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3568 3569 3570 3571 3572
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3573
	uint8_t cpp;
3574
	uint32_t width = 0, height = 0;
3575
	uint32_t plane_pixel_rate;
3576
	uint32_t y_tile_minimum, y_min_scanlines;
3577 3578 3579
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3580

3581
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3582 3583 3584
		*enabled = false;
		return 0;
	}
3585

3586 3587 3588
	if (apply_memory_bw_wa && fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
		latency += 15;

3589 3590
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3591

3592
	if (drm_rotation_90_or_270(pstate->rotation))
3593 3594
		swap(width, height);

3595
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3596 3597
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3598
	if (drm_rotation_90_or_270(pstate->rotation)) {
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3613 3614 3615
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3616 3617 3618 3619 3620
		}
	} else {
		y_min_scanlines = 4;
	}

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
	plane_bytes_per_line = width * cpp;
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3634 3635
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3636
				 cstate->base.adjusted_mode.crtc_htotal,
3637
				 latency,
3638
				 plane_blocks_per_line);
3639

3640
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3641 3642
	if (apply_memory_bw_wa)
		y_tile_minimum *= 2;
3643

3644 3645
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3646 3647
		selected_result = max(method2, y_tile_minimum);
	} else {
3648 3649 3650 3651
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3652 3653 3654 3655
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3656

3657 3658
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3659

3660
	if (level >= 1 && level <= 7) {
3661
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3662 3663
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
			res_blocks += y_tile_minimum;
3664
			res_lines += y_min_scanlines;
3665
		} else {
3666
			res_blocks++;
3667
		}
3668
	}
3669

3670 3671
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3688
	}
3689 3690 3691

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3692
	*enabled = true;
3693

3694
	return 0;
3695 3696
}

3697 3698 3699 3700
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3701
		     struct intel_plane *intel_plane,
3702 3703
		     int level,
		     struct skl_wm_level *result)
3704
{
3705
	struct drm_atomic_state *state = cstate->base.state;
3706
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3707 3708
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3709
	uint16_t ddb_blocks;
3710
	enum pipe pipe = intel_crtc->pipe;
3711
	int ret;
L
Lyude 已提交
3712 3713 3714 3715 3716 3717
	int i = skl_wm_plane_id(intel_plane);

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3718

3719
	/*
L
Lyude 已提交
3720 3721 3722 3723 3724 3725 3726 3727 3728
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3729
	 */
L
Lyude 已提交
3730 3731
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3732

L
Lyude 已提交
3733
	WARN_ON(!intel_pstate->base.fb);
3734

L
Lyude 已提交
3735
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3736

L
Lyude 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3747 3748

	return 0;
3749 3750
}

3751
static uint32_t
3752
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3753
{
3754 3755
	uint32_t pixel_rate;

3756
	if (!cstate->base.active)
3757 3758
		return 0;

3759 3760 3761
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3762
		return 0;
3763

3764
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3765
			    pixel_rate);
3766 3767
}

3768
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3769
				      struct skl_wm_level *trans_wm /* out */)
3770
{
3771
	if (!cstate->base.active)
3772
		return;
3773 3774

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3775
	trans_wm->plane_en = false;
3776 3777
}

3778 3779 3780
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3781
{
3782
	struct drm_device *dev = cstate->base.crtc->dev;
3783
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3784 3785
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3786
	int level, max_level = ilk_wm_max_level(dev_priv);
3787
	int ret;
3788

L
Lyude 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
		wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3808
	}
3809
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3810

3811
	return 0;
3812 3813
}

3814 3815
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3816 3817 3818 3819 3820 3821 3822 3823
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3839
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3840 3841
			const struct skl_plane_wm *wm,
			const struct skl_ddb_allocation *ddb,
3842 3843 3844 3845 3846
			int plane)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3847
	int level, max_level = ilk_wm_max_level(dev_priv);
3848 3849 3850
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3851 3852
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane, level),
				   &wm->wm[level]);
3853
	}
3854 3855
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane),
			   &wm->trans_wm);
3856 3857

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3858
			    &ddb->plane[pipe][plane]);
3859
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3860
			    &ddb->y_plane[pipe][plane]);
3861 3862 3863
}

void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3864 3865
			 const struct skl_plane_wm *wm,
			 const struct skl_ddb_allocation *ddb)
3866 3867 3868 3869
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3870
	int level, max_level = ilk_wm_max_level(dev_priv);
3871 3872 3873
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3874 3875
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3876
	}
3877
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3878

3879
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3880
			    &ddb->plane[pipe][PLANE_CURSOR]);
3881 3882
}

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3897 3898
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3899
{
3900
	return a->start < b->end && b->start < a->end;
3901 3902
}

3903
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
3904
				 struct intel_crtc *intel_crtc)
3905
{
3906 3907 3908 3909 3910 3911
	struct drm_crtc *other_crtc;
	struct drm_crtc_state *other_cstate;
	struct intel_crtc *other_intel_crtc;
	const struct skl_ddb_entry *ddb =
		&to_intel_crtc_state(intel_crtc->base.state)->wm.skl.ddb;
	int i;
3912

3913 3914
	for_each_crtc_in_state(state, other_crtc, other_cstate, i) {
		other_intel_crtc = to_intel_crtc(other_crtc);
3915

3916
		if (other_intel_crtc == intel_crtc)
3917 3918
			continue;

3919
		if (skl_ddb_entries_overlap(ddb, &other_intel_crtc->hw_ddb))
3920
			return true;
3921 3922
	}

3923
	return false;
3924 3925
}

3926 3927 3928 3929
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3930
{
3931 3932
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3933
	int ret;
3934

3935 3936 3937
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3938

3939
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3940 3941 3942
		*changed = false;
	else
		*changed = true;
3943

3944
	return 0;
3945 3946
}

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3960
static int
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;
	int id;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

3978
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
		id = skl_wm_plane_id(to_intel_plane(plane));

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
					&new_ddb->plane[pipe][id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
					&new_ddb->y_plane[pipe][id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

3995 3996 3997 3998 3999 4000 4001
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4002
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4003
	uint32_t realloc_pipes = pipes_modified(state);
4004 4005 4006 4007 4008 4009 4010 4011
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4012 4013 4014 4015 4016 4017
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4018 4019
		intel_state->active_pipe_changes = ~0;

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4043
	if (intel_state->active_pipe_changes) {
4044
		realloc_pipes = ~0;
4045 4046
		intel_state->wm_results.dirty_pipes = ~0;
	}
4047

4048 4049 4050 4051 4052 4053
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4054 4055 4056 4057 4058 4059 4060
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4061
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4062 4063
		if (ret)
			return ret;
4064

4065
		ret = skl_ddb_add_affected_planes(cstate);
4066 4067
		if (ret)
			return ret;
4068 4069 4070 4071 4072
	}

	return 0;
}

4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	int id;
4097
	int i;
4098 4099

	for_each_crtc_in_state(state, crtc, cstate, i) {
4100 4101
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4102

4103
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4104 4105 4106 4107 4108 4109 4110 4111 4112
			const struct skl_ddb_entry *old, *new;

			id = skl_wm_plane_id(intel_plane);
			old = &old_ddb->plane[pipe][id];
			new = &new_ddb->plane[pipe][id];

			if (skl_ddb_entry_equal(old, new))
				continue;

4113 4114 4115 4116 4117
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4118 4119 4120 4121
		}
	}
}

4122 4123 4124 4125 4126
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4127 4128 4129
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4130
	bool changed = false;
4131
	int ret, i;
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4146 4147 4148
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4149 4150 4151 4152
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4183 4184
	skl_print_wm_changes(state);

4185 4186 4187
	return 0;
}

4188 4189 4190 4191
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
4192
	struct drm_i915_private *dev_priv = to_i915(dev);
4193
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4194
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4195
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4196
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4197
	enum pipe pipe = intel_crtc->pipe;
4198

4199
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4200 4201
		return;

4202 4203 4204
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
4205

4206
	/*
4207 4208 4209 4210
	 * If this pipe isn't active already, we're going to be enabling it
	 * very soon. Since it's safe to update a pipe's ddb allocation while
	 * the pipe's shut off, just do so here. Already active pipes will have
	 * their watermarks updated once we update their planes.
4211
	 */
4212 4213 4214
	if (crtc->state->active_changed) {
		int plane;

4215
		for_each_universal_plane(dev_priv, pipe, plane)
4216 4217
			skl_write_plane_wm(intel_crtc, &pipe_wm->planes[plane],
					   &results->ddb, plane);
4218

4219 4220
		skl_write_cursor_wm(intel_crtc, &pipe_wm->planes[PLANE_CURSOR],
				    &results->ddb);
4221 4222 4223
	}

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4224

4225 4226
	intel_crtc->hw_ddb = cstate->wm.skl.ddb;

4227
	mutex_unlock(&dev_priv->wm.wm_mutex);
4228 4229
}

4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4248
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4249
{
4250
	struct drm_device *dev = &dev_priv->drm;
4251
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4252
	struct ilk_wm_maximums max;
4253
	struct intel_wm_config config = {};
4254
	struct ilk_wm_values results = {};
4255
	enum intel_ddb_partitioning partitioning;
4256

4257 4258 4259 4260
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4261 4262

	/* 5/6 split only in single pipe config on IVB+ */
4263
	if (INTEL_INFO(dev)->gen >= 7 &&
4264 4265 4266
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4267

4268
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4269
	} else {
4270
		best_lp_wm = &lp_wm_1_2;
4271 4272
	}

4273
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4274
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4275

4276
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4277

4278
	ilk_write_wm_values(dev_priv, &results);
4279 4280
}

4281
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4282
{
4283 4284
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4285

4286
	mutex_lock(&dev_priv->wm.wm_mutex);
4287
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4288 4289 4290
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4291

4292 4293 4294 4295
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4296

4297 4298
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4299
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4300 4301 4302
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4303 4304
}

4305 4306
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4307
{
4308 4309 4310 4311
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4312 4313
}

4314 4315
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4316 4317
{
	struct drm_device *dev = crtc->dev;
4318
	struct drm_i915_private *dev_priv = to_i915(dev);
4319
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4320 4321
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4322
	enum pipe pipe = intel_crtc->pipe;
4323 4324
	int level, id, max_level;
	uint32_t val;
4325

4326
	max_level = ilk_wm_max_level(dev_priv);
4327

4328 4329
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		id = skl_wm_plane_id(intel_plane);
4330
		wm = &out->planes[id];
4331

4332 4333 4334 4335 4336
		for (level = 0; level <= max_level; level++) {
			if (id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, id, level));
			else
				val = I915_READ(CUR_WM(pipe, level));
4337

4338
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4339 4340
		}

4341 4342 4343 4344 4345 4346
		if (id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, id));
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4347 4348
	}

4349 4350
	if (!intel_crtc->active)
		return;
4351

4352
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4353 4354 4355 4356
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4357
	struct drm_i915_private *dev_priv = to_i915(dev);
4358
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4359
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4360
	struct drm_crtc *crtc;
4361 4362
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4363

4364
	skl_ddb_get_hw_state(dev_priv, ddb);
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

		if (intel_crtc->active) {
			hw->dirty_pipes |= drm_crtc_mask(crtc);
			intel_crtc->wm.active.skl = cstate->wm.skl.optimal;
		}
	}
4376

4377 4378 4379 4380 4381 4382 4383
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4384 4385
}

4386 4387 4388
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4389
	struct drm_i915_private *dev_priv = to_i915(dev);
4390
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4391
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4392
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4393
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4394
	enum pipe pipe = intel_crtc->pipe;
4395
	static const i915_reg_t wm0_pipe_reg[] = {
4396 4397 4398 4399 4400 4401
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4402
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4403
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4404

4405 4406
	memset(active, 0, sizeof(*active));

4407
	active->pipe_enabled = intel_crtc->active;
4408 4409

	if (active->pipe_enabled) {
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4424
		int level, max_level = ilk_wm_max_level(dev_priv);
4425 4426 4427 4428 4429 4430 4431 4432 4433

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4434 4435

	intel_crtc->wm.active.ilk = *active;
4436 4437
}

4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4555 4556 4557 4558 4559 4560 4561 4562 4563
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4564
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4591 4592
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4593
	struct drm_i915_private *dev_priv = to_i915(dev);
4594
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4595 4596
	struct drm_crtc *crtc;

4597
	for_each_crtc(dev, crtc)
4598 4599 4600 4601 4602 4603 4604
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4605 4606 4607 4608
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4609

4610
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4611 4612
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4613
	else if (IS_IVYBRIDGE(dev_priv))
4614 4615
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4616 4617 4618 4619 4620

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4653
void intel_update_watermarks(struct drm_crtc *crtc)
4654
{
4655
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4656 4657

	if (dev_priv->display.update_wm)
4658
		dev_priv->display.update_wm(crtc);
4659 4660
}

4661
/*
4662 4663 4664 4665 4666 4667 4668 4669
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4670
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4671 4672 4673
{
	u16 rgvswctl;

4674 4675
	assert_spin_locked(&mchdev_lock);

4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4693
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4694
{
4695
	u32 rgvmodectl;
4696 4697
	u8 fmax, fmin, fstart, vstart;

4698 4699
	spin_lock_irq(&mchdev_lock);

4700 4701
	rgvmodectl = I915_READ(MEMMODECTL);

4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4722
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4723 4724
		PXVFREQ_PX_SHIFT;

4725 4726
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4727

4728 4729 4730
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4747
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4748
		DRM_ERROR("stuck trying to change perf mode\n");
4749
	mdelay(1);
4750

4751
	ironlake_set_drps(dev_priv, fstart);
4752

4753 4754
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4755
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4756
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4757
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4758 4759

	spin_unlock_irq(&mchdev_lock);
4760 4761
}

4762
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4763
{
4764 4765 4766 4767 4768
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4769 4770 4771 4772 4773 4774 4775 4776 4777

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4778
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4779
	mdelay(1);
4780 4781
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4782
	mdelay(1);
4783

4784
	spin_unlock_irq(&mchdev_lock);
4785 4786
}

4787 4788 4789 4790 4791
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4792
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4793
{
4794
	u32 limits;
4795

4796 4797 4798 4799 4800 4801
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4802
	if (IS_GEN9(dev_priv)) {
4803 4804 4805 4806 4807 4808 4809 4810
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4811 4812 4813 4814

	return limits;
}

4815 4816 4817
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4818 4819
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4820 4821 4822 4823

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4824 4825
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4826 4827 4828 4829
			new_power = BETWEEN;
		break;

	case BETWEEN:
4830 4831
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4832
			new_power = LOW_POWER;
4833 4834
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4835 4836 4837 4838
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4839 4840
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4841 4842 4843 4844
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4845
	if (val <= dev_priv->rps.min_freq_softlimit)
4846
		new_power = LOW_POWER;
4847
	if (val >= dev_priv->rps.max_freq_softlimit)
4848 4849 4850 4851 4852 4853 4854 4855
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4856 4857
		ei_up = 16000;
		threshold_up = 95;
4858 4859

		/* Downclock if less than 85% busy over 32ms */
4860 4861
		ei_down = 32000;
		threshold_down = 85;
4862 4863 4864 4865
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4866 4867
		ei_up = 13000;
		threshold_up = 90;
4868 4869

		/* Downclock if less than 75% busy over 32ms */
4870 4871
		ei_down = 32000;
		threshold_down = 75;
4872 4873 4874 4875
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4876 4877
		ei_up = 10000;
		threshold_up = 85;
4878 4879

		/* Downclock if less than 60% busy over 32ms */
4880 4881
		ei_down = 32000;
		threshold_down = 60;
4882 4883 4884
		break;
	}

4885
	I915_WRITE(GEN6_RP_UP_EI,
4886
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4887
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4888 4889
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4890 4891

	I915_WRITE(GEN6_RP_DOWN_EI,
4892
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4893
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4904

4905
	dev_priv->rps.power = new_power;
4906 4907
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4908 4909 4910
	dev_priv->rps.last_adj = 0;
}

4911 4912 4913 4914 4915
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4916
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4917
	if (val < dev_priv->rps.max_freq_softlimit)
4918
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4919

4920 4921
	mask &= dev_priv->pm_rps_events;

4922
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4923 4924
}

4925 4926 4927
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4928
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4929
{
4930
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4931
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4932 4933
		return;

4934
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4935 4936
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4937

C
Chris Wilson 已提交
4938 4939 4940 4941 4942
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4943

4944
		if (IS_GEN9(dev_priv))
4945 4946
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4947
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4948 4949 4950 4951 4952 4953 4954
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4955
	}
4956 4957 4958 4959

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4960
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4961
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4962

4963 4964
	POSTING_READ(GEN6_RPNSWREQ);

4965
	dev_priv->rps.cur_freq = val;
4966
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4967 4968
}

4969
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4970 4971
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4972 4973
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4974

4975
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4976 4977 4978
		      "Odd GPU freq value\n"))
		val &= ~1;

4979 4980
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4981
	if (val != dev_priv->rps.cur_freq) {
4982
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4983 4984 4985
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4986 4987 4988 4989 4990

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4991
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4992 4993
 *
 * * If Gfx is Idle, then
4994 4995 4996
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4997 4998 4999
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5000
	u32 val = dev_priv->rps.idle_freq;
5001

5002
	if (dev_priv->rps.cur_freq <= val)
5003 5004
		return;

5005 5006 5007
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5008
	valleyview_set_rps(dev_priv, val);
5009
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5010 5011
}

5012 5013 5014 5015 5016 5017 5018 5019
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5020

5021 5022
		gen6_enable_rps_interrupts(dev_priv);

5023 5024 5025 5026 5027
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5028 5029 5030 5031
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5032 5033
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5034 5035 5036 5037 5038 5039 5040
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5041
	mutex_lock(&dev_priv->rps.hw_lock);
5042
	if (dev_priv->rps.enabled) {
5043
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5044
			vlv_set_rps_idle(dev_priv);
5045
		else
5046
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5047
		dev_priv->rps.last_adj = 0;
5048 5049
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5050
	}
5051
	mutex_unlock(&dev_priv->rps.hw_lock);
5052

5053
	spin_lock(&dev_priv->rps.client_lock);
5054 5055
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5056
	spin_unlock(&dev_priv->rps.client_lock);
5057 5058
}

5059
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5060 5061
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5062
{
5063 5064 5065
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5066
	if (!(dev_priv->gt.awake &&
5067
	      dev_priv->rps.enabled &&
5068
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5069
		return;
5070

5071 5072 5073
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5074
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5075 5076
		rps = NULL;

5077 5078 5079 5080 5081
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5082
			schedule_work(&dev_priv->rps.work);
5083 5084
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5085

5086 5087 5088
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5089 5090
		} else
			dev_priv->rps.boosts++;
5091
	}
5092
	spin_unlock(&dev_priv->rps.client_lock);
5093 5094
}

5095
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5096
{
5097 5098
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5099
	else
5100
		gen6_set_rps(dev_priv, val);
5101 5102
}

5103
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5104 5105
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5106
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5107 5108
}

5109
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5110 5111 5112 5113
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5114
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5115 5116
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5117
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5118
	I915_WRITE(GEN6_RP_CONTROL, 0);
5119 5120
}

5121
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5122 5123 5124 5125
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5126
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5127
{
5128 5129
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5130
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5131

5132
	I915_WRITE(GEN6_RC_CONTROL, 0);
5133

5134
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5135 5136
}

5137
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5138
{
5139
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5140 5141 5142 5143 5144
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5145
	if (HAS_RC6p(dev_priv))
5146 5147 5148 5149 5150
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5151 5152

	else
5153 5154
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5155 5156
}

5157
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5158
{
5159
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5160 5161
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5173 5174

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5175
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5176 5177 5178 5179 5180 5181 5182 5183
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5184 5185 5186
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5187
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5188 5189 5190 5191 5192 5193 5194
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5195
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5196 5197 5198
		enable_rc6 = false;
	}

5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5213 5214 5215 5216 5217 5218
		enable_rc6 = false;
	}

	return enable_rc6;
}

5219
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5220
{
5221
	/* No RC6 before Ironlake and code is gone for ilk. */
5222
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5223 5224
		return 0;

5225 5226 5227
	if (!enable_rc6)
		return 0;

5228
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5229 5230 5231 5232
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5233
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5234 5235 5236
	if (enable_rc6 >= 0) {
		int mask;

5237
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5238 5239 5240 5241 5242 5243
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5244 5245 5246
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5247 5248 5249

		return enable_rc6 & mask;
	}
5250

5251
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5252
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5253 5254

	return INTEL_RC6_ENABLE;
5255 5256
}

5257
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5258 5259
{
	/* All of these values are in units of 50MHz */
5260

5261
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5262
	if (IS_BROXTON(dev_priv)) {
5263
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5264 5265 5266 5267
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5268
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5269 5270 5271 5272
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5273
	/* hw_max = RP0 until we check for overclocking */
5274
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5275

5276
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5277 5278
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5279 5280 5281 5282 5283
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5284
			dev_priv->rps.efficient_freq =
5285 5286 5287 5288
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5289 5290
	}

5291
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5292
		/* Store the frequency values in 16.66 MHZ units, which is
5293 5294
		 * the natural hardware unit for SKL
		 */
5295 5296 5297 5298 5299 5300
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5301 5302
}

5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5315
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5316
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5317 5318 5319
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5320
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5321
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5322 5323 5324 5325 5326 5327 5328 5329 5330
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5331
		gen9_disable_rps(dev_priv);
5332 5333 5334 5335
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5336 5337 5338 5339 5340 5341 5342 5343
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5344 5345
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5346 5347 5348
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5349
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5350 5351 5352 5353

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5354
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5355
{
5356
	struct intel_engine_cs *engine;
5357
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5358 5359 5360 5361 5362 5363 5364
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5365
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5366 5367 5368 5369 5370

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5371 5372

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5373
	if (IS_SKYLAKE(dev_priv))
5374 5375 5376
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5377 5378
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5379
	for_each_engine(engine, dev_priv, id)
5380
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5381

5382
	if (HAS_GUC(dev_priv))
5383 5384
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5385 5386
	I915_WRITE(GEN6_RC_SLEEP, 0);

5387 5388 5389 5390
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5391
	/* 3a: Enable RC6 */
5392
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5393
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5394
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5395
	/* WaRsUseTimeoutMode:bxt */
5396
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5397
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5398 5399 5400
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5401 5402
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5403 5404 5405
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5406
	}
Z
Zhe Wang 已提交
5407

5408 5409
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5410
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5411
	 */
5412
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5413 5414 5415 5416
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5417

5418
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5419 5420
}

5421
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5422
{
5423
	struct intel_engine_cs *engine;
5424
	enum intel_engine_id id;
5425
	uint32_t rc6_mask = 0;
5426 5427 5428 5429 5430 5431

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5432
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5433 5434 5435 5436 5437 5438 5439 5440

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5441
	for_each_engine(engine, dev_priv, id)
5442
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5443
	I915_WRITE(GEN6_RC_SLEEP, 0);
5444
	if (IS_BROADWELL(dev_priv))
5445 5446 5447
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5448 5449

	/* 3: Enable RC6 */
5450
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5451
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5452 5453
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5454 5455 5456 5457 5458 5459 5460
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5461 5462

	/* 4 Program defaults and thresholds for RPS*/
5463 5464 5465 5466
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5481 5482

	/* 5: Enable RPS */
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5493
	reset_rps(dev_priv, gen6_set_rps);
5494

5495
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5496 5497
}

5498
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5499
{
5500
	struct intel_engine_cs *engine;
5501
	enum intel_engine_id id;
5502
	u32 rc6vids, rc6_mask = 0;
5503 5504
	u32 gtfifodbg;
	int rc6_mode;
5505
	int ret;
5506

5507
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5508

5509 5510 5511 5512 5513 5514 5515 5516 5517
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5518 5519
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5520 5521 5522 5523
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5524
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5535
	for_each_engine(engine, dev_priv, id)
5536
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5537 5538 5539

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5540
	if (IS_IVYBRIDGE(dev_priv))
5541 5542 5543
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5544
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5545 5546
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5547
	/* Check if we are enabling RC6 */
5548
	rc6_mode = intel_enable_rc6();
5549 5550 5551
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5552
	/* We don't use those on Haswell */
5553
	if (!IS_HASWELL(dev_priv)) {
5554 5555
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5556

5557 5558 5559
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5560

5561
	intel_print_rc6_info(dev_priv, rc6_mask);
5562 5563 5564 5565 5566 5567

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5568 5569
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5570 5571
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5572
	reset_rps(dev_priv, gen6_set_rps);
5573

5574 5575
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5576
	if (IS_GEN6(dev_priv) && ret) {
5577
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5578
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5579 5580 5581 5582 5583 5584 5585 5586 5587
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5588
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5589 5590
}

5591
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5592 5593
{
	int min_freq = 15;
5594 5595
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5596
	unsigned int max_gpu_freq, min_gpu_freq;
5597
	int scaling_factor = 180;
5598
	struct cpufreq_policy *policy;
5599

5600
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5601

5602 5603 5604 5605 5606 5607 5608 5609 5610
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5611
		max_ia_freq = tsc_khz;
5612
	}
5613 5614 5615 5616

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5617
	min_ring_freq = I915_READ(DCLK) & 0xf;
5618 5619
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5620

5621
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5622 5623 5624 5625 5626 5627 5628 5629
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5630 5631 5632 5633 5634
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5635 5636
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5637 5638
		unsigned int ia_freq = 0, ring_freq = 0;

5639
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5640 5641 5642 5643 5644
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5645
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5646 5647
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5648
		} else if (IS_HASWELL(dev_priv)) {
5649
			ring_freq = mult_frac(gpu_freq, 5, 4);
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5666

B
Ben Widawsky 已提交
5667 5668
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5669 5670 5671
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5672 5673 5674
	}
}

5675
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5676 5677 5678
{
	u32 val, rp0;

5679
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5680

5681
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5696
	}
5697 5698 5699

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5713 5714 5715 5716
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5717 5718 5719
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5720 5721 5722
	return rp1;
}

5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5734
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5735 5736 5737
{
	u32 val, rp0;

5738
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5751
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5752
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5753
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5754 5755 5756 5757 5758
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5759
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5760
{
5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5772 5773
}

5774 5775 5776 5777 5778 5779 5780 5781 5782
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5783 5784 5785 5786 5787 5788 5789 5790 5791

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5792
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5793
{
5794
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5795
	unsigned long pctx_paddr, paddr;
5796 5797 5798 5799 5800
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5801
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5802
		paddr = (dev_priv->mm.stolen_base +
5803
			 (ggtt->stolen_size - pctx_size));
5804 5805 5806 5807

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5808 5809

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5810 5811
}

5812
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5825
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5826
								      pcbr_offset,
5827
								      I915_GTT_OFFSET_NONE,
5828 5829 5830 5831
								      pctx_size);
		goto out;
	}

5832 5833
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5834 5835 5836 5837 5838 5839 5840 5841
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5842
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5843 5844
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5845
		goto out;
5846 5847 5848 5849 5850 5851
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5852
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5853 5854 5855
	dev_priv->vlv_pctx = pctx;
}

5856
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5857 5858 5859 5860
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5861
	i915_gem_object_put(dev_priv->vlv_pctx);
5862 5863 5864
	dev_priv->vlv_pctx = NULL;
}

5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5876
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5877
{
5878
	u32 val;
5879

5880
	valleyview_setup_pctx(dev_priv);
5881

5882 5883
	vlv_init_gpll_ref_freq(dev_priv);

5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5897
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5898

5899 5900 5901
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5902
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5903 5904 5905 5906
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5907
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5908 5909
			 dev_priv->rps.efficient_freq);

5910 5911
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5912
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5913 5914
			 dev_priv->rps.rp1_freq);

5915 5916
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5917
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5918 5919 5920
			 dev_priv->rps.min_freq);
}

5921
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5922
{
5923
	u32 val;
5924

5925
	cherryview_setup_pctx(dev_priv);
5926

5927 5928
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5929
	mutex_lock(&dev_priv->sb_lock);
5930
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5931
	mutex_unlock(&dev_priv->sb_lock);
5932

5933 5934 5935 5936
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5937
	default:
5938 5939 5940
		dev_priv->mem_freq = 1600;
		break;
	}
5941
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5942

5943 5944 5945
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5946
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5947 5948 5949 5950
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5951
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5952 5953
			 dev_priv->rps.efficient_freq);

5954 5955
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5956
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5957 5958
			 dev_priv->rps.rp1_freq);

5959 5960
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5961
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5962
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5963 5964
			 dev_priv->rps.min_freq);

5965 5966 5967 5968 5969
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5970 5971
}

5972
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5973
{
5974
	valleyview_cleanup_pctx(dev_priv);
5975 5976
}

5977
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5978
{
5979
	struct intel_engine_cs *engine;
5980
	enum intel_engine_id id;
5981
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5982 5983 5984

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5985 5986
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5997
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5998

5999 6000 6001
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6002 6003 6004 6005 6006
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6007
	for_each_engine(engine, dev_priv, id)
6008
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6009 6010
	I915_WRITE(GEN6_RC_SLEEP, 0);

6011 6012
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6024 6025
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6026
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6027 6028 6029

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6030
	/* 4 Program defaults and thresholds for RPS*/
6031
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6042
		   GEN6_RP_MEDIA_IS_GFX |
6043 6044 6045 6046
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6047 6048 6049 6050 6051 6052
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6053 6054
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6055 6056 6057
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6058
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6059 6060
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6061
	reset_rps(dev_priv, valleyview_set_rps);
6062

6063
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6064 6065
}

6066
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6067
{
6068
	struct intel_engine_cs *engine;
6069
	enum intel_engine_id id;
6070
	u32 gtfifodbg, val, rc6_mode = 0;
6071 6072 6073

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6074 6075
	valleyview_check_pctx(dev_priv);

6076 6077
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6078 6079
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6080 6081 6082
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6083
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6084
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6085

6086 6087 6088
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6089
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6109
	for_each_engine(engine, dev_priv, id)
6110
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6111

6112
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6113 6114

	/* allows RC6 residency counter to work */
6115
	I915_WRITE(VLV_COUNTER_CONTROL,
6116 6117
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6118 6119
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6120

6121
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6122
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6123

6124
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6125

6126
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6127

D
Deepak S 已提交
6128 6129 6130 6131 6132 6133
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6134
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6135

6136 6137 6138
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6139
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6140 6141
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6142
	reset_rps(dev_priv, valleyview_set_rps);
6143

6144
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6145 6146
}

6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6176
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6177 6178 6179 6180 6181 6182
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6183 6184
	assert_spin_locked(&mchdev_lock);

6185
	diff1 = now - dev_priv->ips.last_time1;
6186 6187 6188 6189 6190 6191 6192

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6193
		return dev_priv->ips.chipset_power;
6194 6195 6196 6197 6198 6199 6200 6201

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6202 6203
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6204 6205
		diff += total_count;
	} else {
6206
		diff = total_count - dev_priv->ips.last_count1;
6207 6208 6209
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6210 6211
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6222 6223
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6224

6225
	dev_priv->ips.chipset_power = ret;
6226 6227 6228 6229

	return ret;
}

6230 6231 6232 6233
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6234
	if (INTEL_INFO(dev_priv)->gen != 5)
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6273
{
6274 6275 6276
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6277
	if (INTEL_INFO(dev_priv)->is_mobile)
6278 6279 6280
		return vm > 0 ? vm : 0;

	return vd;
6281 6282
}

6283
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6284
{
6285
	u64 now, diff, diffms;
6286 6287
	u32 count;

6288
	assert_spin_locked(&mchdev_lock);
6289

6290 6291 6292
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6293 6294 6295 6296 6297 6298 6299

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6300 6301
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6302 6303
		diff += count;
	} else {
6304
		diff = count - dev_priv->ips.last_count2;
6305 6306
	}

6307 6308
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6309 6310 6311 6312

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6313
	dev_priv->ips.gfx_power = diff;
6314 6315
}

6316 6317
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6318
	if (INTEL_INFO(dev_priv)->gen != 5)
6319 6320
		return;

6321
	spin_lock_irq(&mchdev_lock);
6322 6323 6324

	__i915_update_gfx_val(dev_priv);

6325
	spin_unlock_irq(&mchdev_lock);
6326 6327
}

6328
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6329 6330 6331 6332
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6333 6334
	assert_spin_locked(&mchdev_lock);

6335
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6355
	corr2 = (corr * dev_priv->ips.corr);
6356 6357 6358 6359

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6360
	__i915_update_gfx_val(dev_priv);
6361

6362
	return dev_priv->ips.gfx_power + state2;
6363 6364
}

6365 6366 6367 6368
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6369
	if (INTEL_INFO(dev_priv)->gen != 5)
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6392
	spin_lock_irq(&mchdev_lock);
6393 6394 6395 6396
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6397 6398
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6399 6400 6401 6402

	ret = chipset_val + graphics_val;

out_unlock:
6403
	spin_unlock_irq(&mchdev_lock);
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6419
	spin_lock_irq(&mchdev_lock);
6420 6421 6422 6423 6424 6425
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6426 6427
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6428 6429

out_unlock:
6430
	spin_unlock_irq(&mchdev_lock);
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6447
	spin_lock_irq(&mchdev_lock);
6448 6449 6450 6451 6452 6453
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6454 6455
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6456 6457

out_unlock:
6458
	spin_unlock_irq(&mchdev_lock);
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6473
	spin_lock_irq(&mchdev_lock);
6474 6475
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6476
	spin_unlock_irq(&mchdev_lock);
6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6493
	spin_lock_irq(&mchdev_lock);
6494 6495 6496 6497 6498 6499
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6500
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6501

6502
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6503 6504 6505
		ret = false;

out_unlock:
6506
	spin_unlock_irq(&mchdev_lock);
6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6534 6535
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6536
	spin_lock_irq(&mchdev_lock);
6537
	i915_mch_dev = dev_priv;
6538
	spin_unlock_irq(&mchdev_lock);
6539 6540 6541 6542 6543 6544

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6545
	spin_lock_irq(&mchdev_lock);
6546
	i915_mch_dev = NULL;
6547
	spin_unlock_irq(&mchdev_lock);
6548
}
6549

6550
static void intel_init_emon(struct drm_i915_private *dev_priv)
6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6567
		I915_WRITE(PEW(i), 0);
6568
	for (i = 0; i < 3; i++)
6569
		I915_WRITE(DEW(i), 0);
6570 6571 6572

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6573
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6594
		I915_WRITE(PXW(i), val);
6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6610
		I915_WRITE(PXWL(i), 0);
6611 6612 6613 6614 6615 6616

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6617
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6618 6619
}

6620
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6621
{
6622 6623 6624 6625 6626 6627 6628 6629
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6630

6631
	mutex_lock(&dev_priv->drm.struct_mutex);
6632 6633 6634
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6635 6636 6637 6638
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6639
	else if (INTEL_GEN(dev_priv) >= 6)
6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6669 6670 6671
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6672
	mutex_unlock(&dev_priv->rps.hw_lock);
6673
	mutex_unlock(&dev_priv->drm.struct_mutex);
6674 6675

	intel_autoenable_gt_powersave(dev_priv);
6676 6677
}

6678
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6679
{
6680
	if (IS_VALLEYVIEW(dev_priv))
6681
		valleyview_cleanup_gt_powersave(dev_priv);
6682 6683 6684

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6685 6686
}

6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6706 6707 6708 6709
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6710 6711

	gen6_reset_rps_interrupts(dev_priv);
6712 6713
}

6714
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6715
{
6716 6717
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6718

6719
	mutex_lock(&dev_priv->rps.hw_lock);
6720

6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6732
	}
6733 6734 6735

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6736 6737
}

6738
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6739
{
6740 6741 6742
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6743 6744
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6745

6746 6747 6748
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6749

6750
	mutex_lock(&dev_priv->rps.hw_lock);
6751 6752 6753 6754 6755

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6756
	} else if (INTEL_GEN(dev_priv) >= 9) {
6757 6758 6759
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6760
			gen6_update_ring_freq(dev_priv);
6761 6762
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6763
		gen6_update_ring_freq(dev_priv);
6764
	} else if (INTEL_GEN(dev_priv) >= 6) {
6765
		gen6_enable_rps(dev_priv);
6766
		gen6_update_ring_freq(dev_priv);
6767 6768 6769
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6770
	}
6771 6772 6773 6774 6775 6776 6777

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6778
	dev_priv->rps.enabled = true;
6779 6780
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6781

6782 6783 6784 6785 6786 6787 6788 6789 6790 6791
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6792
	rcs = dev_priv->engine[RCS];
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6845 6846
static void ibx_init_clock_gating(struct drm_device *dev)
{
6847
	struct drm_i915_private *dev_priv = to_i915(dev);
6848 6849 6850 6851 6852 6853 6854 6855 6856

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6857 6858
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
6859
	struct drm_i915_private *dev_priv = to_i915(dev);
6860
	enum pipe pipe;
6861

6862
	for_each_pipe(dev_priv, pipe) {
6863 6864 6865
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6866 6867 6868

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6869 6870 6871
	}
}

6872 6873
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
6874
	struct drm_i915_private *dev_priv = to_i915(dev);
6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6886
static void ironlake_init_clock_gating(struct drm_device *dev)
6887
{
6888
	struct drm_i915_private *dev_priv = to_i915(dev);
6889
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6890

6891 6892 6893 6894
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6895 6896 6897
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6915
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6916 6917 6918
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6919 6920

	ilk_init_lp_watermarks(dev);
6921 6922 6923 6924 6925 6926 6927 6928

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6929
	if (IS_IRONLAKE_M(dev_priv)) {
6930
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6931 6932 6933 6934 6935 6936 6937 6938
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6939 6940
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6941 6942 6943 6944 6945 6946
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6947

6948
	/* WaDisableRenderCachePipelinedFlush:ilk */
6949 6950
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6951

6952 6953 6954
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6955
	g4x_disable_trickle_feed(dev);
6956

6957 6958 6959 6960 6961
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
6962
	struct drm_i915_private *dev_priv = to_i915(dev);
6963
	int pipe;
6964
	uint32_t val;
6965 6966 6967 6968 6969 6970

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6971 6972 6973
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6974 6975
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6976 6977 6978
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6979
	for_each_pipe(dev_priv, pipe) {
6980 6981 6982
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6983
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6984
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6985 6986 6987
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6988 6989
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6990
	/* WADP0ClockGatingDisable */
6991
	for_each_pipe(dev_priv, pipe) {
6992 6993 6994
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6995 6996
}

6997 6998
static void gen6_check_mch_setup(struct drm_device *dev)
{
6999
	struct drm_i915_private *dev_priv = to_i915(dev);
7000 7001 7002
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7003 7004 7005
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7006 7007
}

7008
static void gen6_init_clock_gating(struct drm_device *dev)
7009
{
7010
	struct drm_i915_private *dev_priv = to_i915(dev);
7011
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7012

7013
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7014 7015 7016 7017 7018

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7019
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7020 7021 7022
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7023 7024 7025
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7026 7027 7028
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7029 7030 7031 7032
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7033 7034
	 */
	I915_WRITE(GEN6_GT_MODE,
7035
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7036

7037
	ilk_init_lp_watermarks(dev);
7038 7039

	I915_WRITE(CACHE_MODE_0,
7040
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7056
	 *
7057 7058
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7059 7060 7061 7062 7063
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7064
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7065 7066
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7067

7068 7069 7070 7071 7072 7073 7074 7075
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7076 7077 7078 7079 7080 7081 7082 7083
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7084 7085
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7086 7087 7088 7089 7090 7091 7092
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7093 7094 7095 7096
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7097

7098
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
7099

7100
	cpt_init_clock_gating(dev);
7101 7102

	gen6_check_mch_setup(dev);
7103 7104 7105 7106 7107 7108
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7109
	/*
7110
	 * WaVSThreadDispatchOverride:ivb,vlv
7111 7112 7113 7114
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7115 7116 7117 7118 7119 7120 7121 7122
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7123 7124
static void lpt_init_clock_gating(struct drm_device *dev)
{
7125
	struct drm_i915_private *dev_priv = to_i915(dev);
7126 7127 7128 7129 7130

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7131
	if (HAS_PCH_LPT_LP(dev_priv))
7132 7133 7134
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7135 7136

	/* WADPOClockGatingDisable:hsw */
7137 7138
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7139
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7140 7141
}

7142 7143
static void lpt_suspend_hw(struct drm_device *dev)
{
7144
	struct drm_i915_private *dev_priv = to_i915(dev);
7145

7146
	if (HAS_PCH_LPT_LP(dev_priv)) {
7147 7148 7149 7150 7151 7152 7153
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7177 7178
static void kabylake_init_clock_gating(struct drm_device *dev)
{
7179
	struct drm_i915_private *dev_priv = dev->dev_private;
7180

7181
	gen9_init_clock_gating(dev);
7182 7183 7184 7185 7186

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7187 7188 7189 7190 7191

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7192 7193 7194 7195

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7196 7197
}

7198 7199
static void skylake_init_clock_gating(struct drm_device *dev)
{
7200
	struct drm_i915_private *dev_priv = dev->dev_private;
7201

7202
	gen9_init_clock_gating(dev);
7203 7204 7205 7206

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7207 7208 7209 7210

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7211 7212
}

7213
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7214
{
7215
	struct drm_i915_private *dev_priv = to_i915(dev);
7216
	enum pipe pipe;
B
Ben Widawsky 已提交
7217

7218
	ilk_init_lp_watermarks(dev);
7219

7220
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7221
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7222

7223
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7224 7225 7226
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7227
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7228
	for_each_pipe(dev_priv, pipe) {
7229
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7230
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7231
			   BDW_DPRS_MASK_VBLANK_SRD);
7232
	}
7233

7234 7235 7236 7237 7238
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7239

7240 7241
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7242 7243 7244 7245

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7246

7247 7248
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7249

7250 7251 7252 7253 7254 7255 7256
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7257 7258 7259 7260
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7261
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7262 7263
}

7264 7265
static void haswell_init_clock_gating(struct drm_device *dev)
{
7266
	struct drm_i915_private *dev_priv = to_i915(dev);
7267

7268
	ilk_init_lp_watermarks(dev);
7269

7270 7271 7272 7273 7274
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7275
	/* This is required by WaCatErrorRejectionIssue:hsw */
7276 7277 7278 7279
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7280 7281 7282
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7283

7284 7285 7286
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7287 7288 7289 7290
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7291
	/* WaDisable4x2SubspanOptimization:hsw */
7292 7293
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7294

7295 7296 7297
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7298 7299 7300 7301
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7302 7303
	 */
	I915_WRITE(GEN7_GT_MODE,
7304
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7305

7306 7307 7308 7309
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7310
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7311 7312
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7313 7314 7315
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7316

7317
	lpt_init_clock_gating(dev);
7318 7319
}

7320
static void ivybridge_init_clock_gating(struct drm_device *dev)
7321
{
7322
	struct drm_i915_private *dev_priv = to_i915(dev);
7323
	uint32_t snpcr;
7324

7325
	ilk_init_lp_watermarks(dev);
7326

7327
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7328

7329
	/* WaDisableEarlyCull:ivb */
7330 7331 7332
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7333
	/* WaDisableBackToBackFlipFix:ivb */
7334 7335 7336 7337
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7338
	/* WaDisablePSDDualDispatchEnable:ivb */
7339
	if (IS_IVB_GT1(dev_priv))
7340 7341 7342
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7343 7344 7345
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7346
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7347 7348 7349
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7350
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7351 7352 7353
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7354
		   GEN7_WA_L3_CHICKEN_MODE);
7355
	if (IS_IVB_GT1(dev_priv))
7356 7357
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7358 7359 7360 7361
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7362 7363
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7364
	}
7365

7366
	/* WaForceL3Serialization:ivb */
7367 7368 7369
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7370
	/*
7371
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7372
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7373 7374
	 */
	I915_WRITE(GEN6_UCGCTL2,
7375
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7376

7377
	/* This is required by WaCatErrorRejectionIssue:ivb */
7378 7379 7380 7381
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7382
	g4x_disable_trickle_feed(dev);
7383 7384

	gen7_setup_fixed_func_scheduler(dev_priv);
7385

7386 7387 7388 7389 7390
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7391

7392
	/* WaDisable4x2SubspanOptimization:ivb */
7393 7394
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7395

7396 7397 7398
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7399 7400 7401 7402
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7403 7404
	 */
	I915_WRITE(GEN7_GT_MODE,
7405
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7406

7407 7408 7409 7410
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7411

7412
	if (!HAS_PCH_NOP(dev_priv))
7413
		cpt_init_clock_gating(dev);
7414 7415

	gen6_check_mch_setup(dev);
7416 7417
}

7418
static void valleyview_init_clock_gating(struct drm_device *dev)
7419
{
7420
	struct drm_i915_private *dev_priv = to_i915(dev);
7421

7422
	/* WaDisableEarlyCull:vlv */
7423 7424 7425
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7426
	/* WaDisableBackToBackFlipFix:vlv */
7427 7428 7429 7430
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7431
	/* WaPsdDispatchEnable:vlv */
7432
	/* WaDisablePSDDualDispatchEnable:vlv */
7433
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7434 7435
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7436

7437 7438 7439
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7440
	/* WaForceL3Serialization:vlv */
7441 7442 7443
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7444
	/* WaDisableDopClockGating:vlv */
7445 7446 7447
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7448
	/* This is required by WaCatErrorRejectionIssue:vlv */
7449 7450 7451 7452
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7453 7454
	gen7_setup_fixed_func_scheduler(dev_priv);

7455
	/*
7456
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7457
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7458 7459
	 */
	I915_WRITE(GEN6_UCGCTL2,
7460
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7461

7462 7463 7464 7465 7466
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7467

7468 7469 7470 7471
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7472 7473
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7474

7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7486 7487 7488 7489 7490 7491
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7492
	/*
7493
	 * WaDisableVLVClockGating_VBIIssue:vlv
7494 7495 7496
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7497
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7498 7499
}

7500 7501
static void cherryview_init_clock_gating(struct drm_device *dev)
{
7502
	struct drm_i915_private *dev_priv = to_i915(dev);
7503

7504 7505 7506 7507 7508
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7509 7510 7511 7512

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7513 7514 7515 7516

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7517 7518 7519 7520

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7521

7522 7523 7524 7525 7526 7527 7528
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7529 7530 7531 7532 7533
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7534 7535
}

7536
static void g4x_init_clock_gating(struct drm_device *dev)
7537
{
7538
	struct drm_i915_private *dev_priv = to_i915(dev);
7539 7540 7541 7542 7543 7544 7545 7546 7547 7548
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7549
	if (IS_GM45(dev_priv))
7550 7551
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7552 7553 7554 7555

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7556

7557 7558 7559
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7560
	g4x_disable_trickle_feed(dev);
7561 7562
}

7563
static void crestline_init_clock_gating(struct drm_device *dev)
7564
{
7565
	struct drm_i915_private *dev_priv = to_i915(dev);
7566 7567 7568 7569 7570 7571

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7572 7573
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7574 7575 7576

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7577 7578
}

7579
static void broadwater_init_clock_gating(struct drm_device *dev)
7580
{
7581
	struct drm_i915_private *dev_priv = to_i915(dev);
7582 7583 7584 7585 7586 7587 7588

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7589 7590
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7591 7592 7593

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7594 7595
}

7596
static void gen3_init_clock_gating(struct drm_device *dev)
7597
{
7598
	struct drm_i915_private *dev_priv = to_i915(dev);
7599 7600 7601 7602 7603
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7604 7605 7606

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7607 7608 7609

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7610 7611

	/* interrupts should cause a wake up from C3 */
7612
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7613 7614 7615

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7616 7617 7618

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7619 7620
}

7621
static void i85x_init_clock_gating(struct drm_device *dev)
7622
{
7623
	struct drm_i915_private *dev_priv = to_i915(dev);
7624 7625

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7626 7627 7628 7629

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7630 7631 7632

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7633 7634
}

7635
static void i830_init_clock_gating(struct drm_device *dev)
7636
{
7637
	struct drm_i915_private *dev_priv = to_i915(dev);
7638 7639

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7640 7641 7642 7643

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7644 7645 7646 7647
}

void intel_init_clock_gating(struct drm_device *dev)
{
7648
	struct drm_i915_private *dev_priv = to_i915(dev);
7649

7650
	dev_priv->display.init_clock_gating(dev);
7651 7652
}

7653 7654
void intel_suspend_hw(struct drm_device *dev)
{
7655
	if (HAS_PCH_LPT(to_i915(dev)))
7656 7657 7658
		lpt_suspend_hw(dev);
}

7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7676
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7677
	else if (IS_KABYLAKE(dev_priv))
7678
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7713 7714 7715
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
7716
	struct drm_i915_private *dev_priv = to_i915(dev);
7717

7718
	intel_fbc_init(dev_priv);
7719

7720 7721 7722
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
7723
	else if (IS_GEN5(dev_priv))
7724 7725
		i915_ironlake_get_mem_freq(dev);

7726
	/* For FIFO watermark updates */
7727
	if (INTEL_INFO(dev)->gen >= 9) {
7728
		skl_setup_wm_latency(dev);
7729
		dev_priv->display.update_wm = skl_update_wm;
7730
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7731
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7732
		ilk_setup_wm_latency(dev);
7733

7734
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7735
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7736
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7737
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7738
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7739 7740 7741 7742 7743 7744
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7745 7746 7747 7748
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7749
	} else if (IS_CHERRYVIEW(dev_priv)) {
7750 7751
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7752
	} else if (IS_VALLEYVIEW(dev_priv)) {
7753 7754
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7755
	} else if (IS_PINEVIEW(dev)) {
7756
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7757 7758 7759 7760 7761 7762 7763 7764 7765
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7766
			intel_set_memory_cxsr(dev_priv, false);
7767 7768 7769
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7770
	} else if (IS_G4X(dev_priv)) {
7771
		dev_priv->display.update_wm = g4x_update_wm;
7772
	} else if (IS_GEN4(dev_priv)) {
7773
		dev_priv->display.update_wm = i965_update_wm;
7774
	} else if (IS_GEN3(dev_priv)) {
7775 7776
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7777
	} else if (IS_GEN2(dev_priv)) {
7778 7779
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7780
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7781 7782
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7783
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7784 7785 7786
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7787 7788 7789
	}
}

7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7802
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7834
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7835
{
7836 7837
	int status;

7838
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7839

7840 7841 7842 7843 7844 7845
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7846 7847 7848 7849
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7850 7851 7852
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7853

7854 7855 7856
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7857 7858 7859 7860
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7861 7862
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7863

7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7875 7876 7877
	return 0;
}

7878
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7879
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7880
{
7881 7882
	int status;

7883
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7884

7885 7886 7887 7888 7889 7890
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7891 7892 7893 7894
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7895 7896
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7897

7898 7899 7900
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7901 7902 7903 7904
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7905
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7906

7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7918 7919
	return 0;
}
7920

7921 7922
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7923 7924 7925 7926 7927
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7928 7929
}

7930
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7931
{
7932
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7933 7934
}

7935
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7936
{
7937 7938 7939 7940 7941
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7942 7943
}

7944
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7945
{
7946
	/* CHV needs even values */
7947
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7948 7949
}

7950
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7951
{
7952
	if (IS_GEN9(dev_priv))
7953 7954
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7955
	else if (IS_CHERRYVIEW(dev_priv))
7956
		return chv_gpu_freq(dev_priv, val);
7957
	else if (IS_VALLEYVIEW(dev_priv))
7958 7959 7960
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7961 7962
}

7963 7964
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7965
	if (IS_GEN9(dev_priv))
7966 7967
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7968
	else if (IS_CHERRYVIEW(dev_priv))
7969
		return chv_freq_opcode(dev_priv, val);
7970
	else if (IS_VALLEYVIEW(dev_priv))
7971 7972
		return byt_freq_opcode(dev_priv, val);
	else
7973
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7974
}
7975

7976 7977
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7978
	struct drm_i915_gem_request *req;
7979 7980 7981 7982 7983
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7984
	struct drm_i915_gem_request *req = boost->req;
7985

7986
	if (!i915_gem_request_completed(req))
7987
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7988

7989
	i915_gem_request_put(req);
7990 7991 7992
	kfree(boost);
}

7993
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7994 7995 7996
{
	struct request_boost *boost;

7997
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7998 7999
		return;

8000
	if (i915_gem_request_completed(req))
8001 8002
		return;

8003 8004 8005 8006
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8007
	boost->req = i915_gem_request_get(req);
8008 8009

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8010
	queue_work(req->i915->wq, &boost->work);
8011 8012
}

D
Daniel Vetter 已提交
8013
void intel_pm_setup(struct drm_device *dev)
8014
{
8015
	struct drm_i915_private *dev_priv = to_i915(dev);
8016

D
Daniel Vetter 已提交
8017
	mutex_init(&dev_priv->rps.hw_lock);
8018
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8019

8020 8021
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8022
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8023

8024
	dev_priv->pm.suspended = false;
8025
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8026
}