intel_pm.c 224.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67 68 69 70

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 74 75 76
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101 102 103 104

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
105 106
}

107
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

145
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

172
	dev_priv->ips.r_t = dev_priv->mem_freq;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
204
		dev_priv->ips.c_m = 0;
205
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206
		dev_priv->ips.c_m = 1;
207
	} else {
208
		dev_priv->ips.c_m = 2;
209 210 211
	}
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

250 251
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

312 313 314
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

315
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316
{
317
	u32 val;
318

319
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
320
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
321
		POSTING_READ(FW_BLC_SELF_VLV);
322
		dev_priv->wm.vlv.cxsr = enable;
323
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
324
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
325
		POSTING_READ(FW_BLC_SELF);
326
	} else if (IS_PINEVIEW(dev_priv)) {
327 328 329
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
330
		POSTING_READ(DSPFW3);
331
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
332 333 334
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
335
		POSTING_READ(FW_BLC_SELF);
336
	} else if (IS_I915GM(dev_priv)) {
337 338 339 340 341
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
342 343 344
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
345
		POSTING_READ(INSTPM);
346 347 348
	} else {
		return;
	}
349

350 351
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
352 353
}

354

355 356 357 358 359 360 361 362 363 364 365 366 367 368
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
369
static const int pessimal_latency_ns = 5000;
370

371 372 373
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

374
static int vlv_get_fifo_size(struct drm_i915_private *dev_priv,
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
			      enum pipe pipe, int plane)
{
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

425
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
426 427 428 429 430 431 432 433 434 435 436 437 438 439
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

440
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

456
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
473 474 475 476 477
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
478 479
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
480 481 482 483 484
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
485 486
};
static const struct intel_watermark_params pineview_cursor_wm = {
487 488 489 490 491
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
492 493
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
494 495 496 497 498
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
499 500
};
static const struct intel_watermark_params g4x_wm_info = {
501 502 503 504 505
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
506 507
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
508 509 510 511 512
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
513 514
};
static const struct intel_watermark_params i965_cursor_wm_info = {
515 516 517 518 519
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
520 521
};
static const struct intel_watermark_params i945_wm_info = {
522 523 524 525 526
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
527 528
};
static const struct intel_watermark_params i915_wm_info = {
529 530 531 532 533
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
534
};
535
static const struct intel_watermark_params i830_a_wm_info = {
536 537 538 539 540
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
541
};
542 543 544 545 546 547 548
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
549
static const struct intel_watermark_params i845_wm_info = {
550 551 552 553 554
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
555 556 557 558 559 560
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
561
 * @cpp: bytes per pixel
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
577
					int fifo_size, int cpp,
578 579 580 581 582 583 584 585 586 587
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
588
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
589 590 591 592 593 594 595 596 597 598 599 600 601 602
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
603 604 605 606 607 608 609 610 611 612 613

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

614 615 616
	return wm_size;
}

617
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
618
{
619
	struct intel_crtc *crtc, *enabled = NULL;
620

621
	for_each_intel_crtc(&dev_priv->drm, crtc) {
622
		if (intel_crtc_active(crtc)) {
623 624 625 626 627 628 629 630 631
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

632
static void pineview_update_wm(struct intel_crtc *unused_crtc)
633
{
634
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
635
	struct intel_crtc *crtc;
636 637 638 639
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

640 641 642 643
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
644 645
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
646
		intel_set_memory_cxsr(dev_priv, false);
647 648 649
		return;
	}

650
	crtc = single_enabled_crtc(dev_priv);
651
	if (crtc) {
652 653 654 655 656
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
657
		int clock = adjusted_mode->crtc_clock;
658 659 660 661

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
662
					cpp, latency->display_sr);
663 664
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
665
		reg |= FW_WM(wm, SR);
666 667 668 669 670 671
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
672
					cpp, latency->cursor_sr);
673 674
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
675
		reg |= FW_WM(wm, CURSOR_SR);
676 677 678 679 680
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
681
					cpp, latency->display_hpll_disable);
682 683
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
684
		reg |= FW_WM(wm, HPLL_SR);
685 686 687 688 689
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
690
					cpp, latency->cursor_hpll_disable);
691 692
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
693
		reg |= FW_WM(wm, HPLL_CURSOR);
694 695 696
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

697
		intel_set_memory_cxsr(dev_priv, true);
698
	} else {
699
		intel_set_memory_cxsr(dev_priv, false);
700 701 702
	}
}

703
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
704 705 706 707 708 709 710 711
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
712
	struct intel_crtc *crtc;
713
	const struct drm_display_mode *adjusted_mode;
714
	const struct drm_framebuffer *fb;
715
	int htotal, hdisplay, clock, cpp;
716 717 718
	int line_time_us, line_count;
	int entries, tlb_miss;

719
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
720
	if (!intel_crtc_active(crtc)) {
721 722 723 724 725
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

726 727
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
728
	clock = adjusted_mode->crtc_clock;
729
	htotal = adjusted_mode->crtc_htotal;
730 731
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
732 733

	/* Use the small buffer method to calculate plane watermark */
734
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
735 736 737 738 739 740 741 742 743
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
744
	line_time_us = max(htotal * 1000 / clock, 1);
745
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
746
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
765
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
766 767 768 769 770 771 772 773
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
774
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
775 776 777 778 779
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
780
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
781 782 783 784 785 786 787 788 789 790 791 792
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

793
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
794 795 796 797 798 799
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
800
	struct intel_crtc *crtc;
801
	const struct drm_display_mode *adjusted_mode;
802
	const struct drm_framebuffer *fb;
803
	int hdisplay, htotal, cpp, clock;
804 805 806 807 808 809 810 811 812 813
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

814
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
815 816
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
817
	clock = adjusted_mode->crtc_clock;
818
	htotal = adjusted_mode->crtc_htotal;
819 820
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
821

822
	line_time_us = max(htotal * 1000 / clock, 1);
823
	line_count = (latency_ns / line_time_us + 1000) / 1000;
824
	line_size = hdisplay * cpp;
825 826

	/* Use the minimum of the small and large buffer method for primary */
827
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
828 829 830 831 832 833
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
834
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
835 836 837
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

838
	return g4x_check_srwm(dev_priv,
839 840 841 842
			      *display_wm, *cursor_wm,
			      display, cursor);
}

843 844 845
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

846 847 848 849 850 851 852 853 854 855 856 857
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

858
	I915_WRITE(DSPFW1,
859 860 861 862
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
863
	I915_WRITE(DSPFW2,
864 865 866
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
867
	I915_WRITE(DSPFW3,
868
		   FW_WM(wm->sr.cursor, CURSOR_SR));
869 870 871

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
872 873
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
874
		I915_WRITE(DSPFW8_CHV,
875 876
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
877
		I915_WRITE(DSPFW9_CHV,
878 879
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
880
		I915_WRITE(DSPHOWM,
881 882 883 884 885 886 887 888 889 890
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
891 892
	} else {
		I915_WRITE(DSPFW7,
893 894
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
895
		I915_WRITE(DSPHOWM,
896 897 898 899 900 901 902
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
903 904
	}

905 906 907 908 909 910
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

911
	POSTING_READ(DSPFW1);
912 913
}

914 915
#undef FW_WM_VLV

916 917 918 919 920 921
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

922 923 924 925
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
926
				   unsigned int cpp,
927 928 929 930 931
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
932
	ret = (ret + 1) * horiz_pixels * cpp;
933 934 935 936 937
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

938
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
939 940 941 942
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

943 944
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

945 946 947
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
948 949

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
950 951 952 953 954 955 956 957 958
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
959
	int clock, htotal, cpp, width, wm;
960 961 962 963

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

964
	if (!state->base.visible)
965 966
		return 0;

967
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
983
		wm = vlv_wm_method2(clock, htotal, width, cpp,
984 985 986 987 988 989
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1006
		if (state->base.visible) {
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1022
		if (!state->base.visible) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1091
static void vlv_compute_wm(struct intel_crtc *crtc)
1092 1093 1094 1095 1096 1097 1098 1099 1100
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1101
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1102
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1103 1104 1105

	wm_state->num_active_planes = 0;

1106
	vlv_compute_fifo(crtc);
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1122
		if (!state->base.visible)
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1163
					wm_state->wm[level].cursor;
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1182
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1183 1184 1185 1186 1187 1188 1189
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1280 1281 1282 1283 1284 1285
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1286
	wm->level = to_i915(dev)->wm.max_level;
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1305 1306 1307
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

1326
static void vlv_update_wm(struct intel_crtc *crtc)
1327
{
1328
	struct drm_device *dev = crtc->base.dev;
1329
	struct drm_i915_private *dev_priv = to_i915(dev);
1330
	enum pipe pipe = crtc->pipe;
1331 1332
	struct vlv_wm_values wm = {};

1333
	vlv_compute_wm(crtc);
1334 1335
	vlv_merge_wm(dev, &wm);

1336 1337
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
1338
		vlv_pipe_set_fifo_size(crtc);
1339
		return;
1340
	}
1341 1342 1343 1344 1345 1346 1347 1348 1349

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1350
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1351 1352
		intel_set_memory_cxsr(dev_priv, false);

1353
	/* FIXME should be part of crtc atomic commit */
1354
	vlv_pipe_set_fifo_size(crtc);
1355

1356
	vlv_write_wm_values(crtc, &wm);
1357 1358 1359 1360 1361 1362 1363

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1364
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1376 1377
}

1378 1379
#define single_plane_enabled(mask) is_power_of_2(mask)

1380
static void g4x_update_wm(struct intel_crtc *crtc)
1381
{
1382
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1383 1384 1385 1386
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1387
	bool cxsr_enabled;
1388

1389
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1390 1391
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1392
			    &planea_wm, &cursora_wm))
1393
		enabled |= 1 << PIPE_A;
1394

1395
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1396 1397
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1398
			    &planeb_wm, &cursorb_wm))
1399
		enabled |= 1 << PIPE_B;
1400 1401

	if (single_plane_enabled(enabled) &&
1402
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1403 1404 1405
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1406
			     &plane_sr, &cursor_sr)) {
1407
		cxsr_enabled = true;
1408
	} else {
1409
		cxsr_enabled = false;
1410
		intel_set_memory_cxsr(dev_priv, false);
1411 1412
		plane_sr = cursor_sr = 0;
	}
1413

1414 1415
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1416 1417 1418 1419 1420
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1421 1422 1423 1424
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1425
	I915_WRITE(DSPFW2,
1426
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1427
		   FW_WM(cursora_wm, CURSORA));
1428 1429
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1430
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1431
		   FW_WM(cursor_sr, CURSOR_SR));
1432 1433 1434

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1435 1436
}

1437
static void i965_update_wm(struct intel_crtc *unused_crtc)
1438
{
1439
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1440
	struct intel_crtc *crtc;
1441 1442
	int srwm = 1;
	int cursor_sr = 16;
1443
	bool cxsr_enabled;
1444 1445

	/* Calc sr entries for one plane configs */
1446
	crtc = single_enabled_crtc(dev_priv);
1447 1448 1449
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1450 1451 1452 1453
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1454
		int clock = adjusted_mode->crtc_clock;
1455
		int htotal = adjusted_mode->crtc_htotal;
1456 1457
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1458 1459 1460
		unsigned long line_time_us;
		int entries;

1461
		line_time_us = max(htotal * 1000 / clock, 1);
1462 1463 1464

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1465
			cpp * hdisplay;
1466 1467 1468 1469 1470 1471 1472 1473 1474
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1475
			cpp * crtc->base.cursor->state->crtc_w;
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1487
		cxsr_enabled = true;
1488
	} else {
1489
		cxsr_enabled = false;
1490
		/* Turn off self refresh if both pipes are enabled */
1491
		intel_set_memory_cxsr(dev_priv, false);
1492 1493 1494 1495 1496 1497
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1498 1499 1500 1501 1502 1503
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1504
	/* update cursor SR watermark */
1505
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1506 1507 1508

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1509 1510
}

1511 1512
#undef FW_WM

1513
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1514
{
1515
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1516 1517 1518 1519 1520 1521
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1522
	struct intel_crtc *crtc, *enabled = NULL;
1523

1524
	if (IS_I945GM(dev_priv))
1525
		wm_info = &i945_wm_info;
1526
	else if (!IS_GEN2(dev_priv))
1527 1528
		wm_info = &i915_wm_info;
	else
1529
		wm_info = &i830_a_wm_info;
1530

1531
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1532
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1533 1534 1535 1536 1537 1538 1539
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1540
		if (IS_GEN2(dev_priv))
1541
			cpp = 4;
1542 1543
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1544

1545
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1546
					       wm_info, fifo_size, cpp,
1547
					       pessimal_latency_ns);
1548
		enabled = crtc;
1549
	} else {
1550
		planea_wm = fifo_size - wm_info->guard_size;
1551 1552 1553 1554
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1555
	if (IS_GEN2(dev_priv))
1556
		wm_info = &i830_bc_wm_info;
1557

1558
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1559
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1560 1561 1562 1563 1564 1565 1566
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1567
		if (IS_GEN2(dev_priv))
1568
			cpp = 4;
1569 1570
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1571

1572
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1573
					       wm_info, fifo_size, cpp,
1574
					       pessimal_latency_ns);
1575 1576 1577 1578
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1579
	} else {
1580
		planeb_wm = fifo_size - wm_info->guard_size;
1581 1582 1583
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1584 1585 1586

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1587
	if (IS_I915GM(dev_priv) && enabled) {
1588
		struct drm_i915_gem_object *obj;
1589

1590
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1591 1592

		/* self-refresh seems busted with untiled */
1593
		if (!i915_gem_object_is_tiled(obj))
1594 1595 1596
			enabled = NULL;
	}

1597 1598 1599 1600 1601 1602
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1603
	intel_set_memory_cxsr(dev_priv, false);
1604 1605

	/* Calc sr entries for one plane configs */
1606
	if (HAS_FW_BLC(dev_priv) && enabled) {
1607 1608
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1609 1610 1611 1612
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1613
		int clock = adjusted_mode->crtc_clock;
1614
		int htotal = adjusted_mode->crtc_htotal;
1615 1616
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1617 1618 1619
		unsigned long line_time_us;
		int entries;

1620
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1621
			cpp = 4;
1622 1623
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1624

1625
		line_time_us = max(htotal * 1000 / clock, 1);
1626 1627 1628

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1629
			cpp * hdisplay;
1630 1631 1632 1633 1634 1635
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1636
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1637 1638
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1639
		else
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1656 1657
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1658 1659
}

1660
static void i845_update_wm(struct intel_crtc *unused_crtc)
1661
{
1662
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1663
	struct intel_crtc *crtc;
1664
	const struct drm_display_mode *adjusted_mode;
1665 1666 1667
	uint32_t fwater_lo;
	int planea_wm;

1668
	crtc = single_enabled_crtc(dev_priv);
1669 1670 1671
	if (crtc == NULL)
		return;

1672
	adjusted_mode = &crtc->config->base.adjusted_mode;
1673
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1674
				       &i845_wm_info,
1675
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1676
				       4, pessimal_latency_ns);
1677 1678 1679 1680 1681 1682 1683 1684
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1685
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1686
{
1687
	uint32_t pixel_rate;
1688

1689
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1690 1691 1692 1693

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1694
	if (pipe_config->pch_pfit.enabled) {
1695
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1696 1697 1698 1699
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1700 1701 1702 1703 1704 1705 1706 1707

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1708 1709 1710
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1711 1712 1713 1714 1715 1716 1717
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1718
/* latency must be in 0.1us units. */
1719
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1720 1721 1722
{
	uint64_t ret;

1723 1724 1725
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1726
	ret = (uint64_t) pixel_rate * cpp * latency;
1727 1728 1729 1730 1731
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1732
/* latency must be in 0.1us units. */
1733
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1734
			       uint32_t horiz_pixels, uint8_t cpp,
1735 1736 1737 1738
			       uint32_t latency)
{
	uint32_t ret;

1739 1740
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1741 1742
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1743

1744
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1745
	ret = (ret + 1) * horiz_pixels * cpp;
1746 1747 1748 1749
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1750
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1751
			   uint8_t cpp)
1752
{
1753 1754 1755 1756 1757 1758
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1759
	if (WARN_ON(!cpp))
1760 1761 1762 1763
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1764
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1765 1766
}

1767
struct ilk_wm_maximums {
1768 1769 1770 1771 1772 1773
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1774 1775 1776 1777
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1778
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1779
				   const struct intel_plane_state *pstate,
1780 1781
				   uint32_t mem_value,
				   bool is_lp)
1782
{
1783 1784
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1785 1786
	uint32_t method1, method2;

1787
	if (!cstate->base.active || !pstate->base.visible)
1788 1789
		return 0;

1790
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1791 1792 1793 1794

	if (!is_lp)
		return method1;

1795 1796
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1797
				 drm_rect_width(&pstate->base.dst),
1798
				 cpp, mem_value);
1799 1800

	return min(method1, method2);
1801 1802
}

1803 1804 1805 1806
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1807
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1808
				   const struct intel_plane_state *pstate,
1809 1810
				   uint32_t mem_value)
{
1811 1812
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1813 1814
	uint32_t method1, method2;

1815
	if (!cstate->base.active || !pstate->base.visible)
1816 1817
		return 0;

1818
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1819 1820
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1821
				 drm_rect_width(&pstate->base.dst),
1822
				 cpp, mem_value);
1823 1824 1825
	return min(method1, method2);
}

1826 1827 1828 1829
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1830
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1831
				   const struct intel_plane_state *pstate,
1832 1833
				   uint32_t mem_value)
{
1834 1835 1836 1837 1838 1839
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1840
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1841

1842
	if (!cstate->base.active)
1843 1844
		return 0;

1845 1846
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1847
			      width, cpp, mem_value);
1848 1849
}

1850
/* Only for WM_LP. */
1851
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1852
				   const struct intel_plane_state *pstate,
1853
				   uint32_t pri_val)
1854
{
1855 1856
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1857

1858
	if (!cstate->base.active || !pstate->base.visible)
1859 1860
		return 0;

1861
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1862 1863
}

1864 1865
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1866 1867 1868
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1869 1870 1871 1872 1873
		return 768;
	else
		return 512;
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1908 1909 1910
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1911
				     const struct intel_wm_config *config,
1912 1913 1914 1915 1916 1917
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1918
	if (is_sprite && !config->sprites_enabled)
1919 1920 1921
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1922
	if (level == 0 || config->num_pipes_active > 1) {
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1934
	if (config->sprites_enabled) {
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1946
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1947 1948 1949 1950
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1951 1952
				      int level,
				      const struct intel_wm_config *config)
1953 1954
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1955
	if (level > 0 && config->num_pipes_active > 1)
1956 1957 1958
		return 64;

	/* otherwise just report max that registers can hold */
1959
	return ilk_cursor_wm_reg_max(dev, level);
1960 1961
}

1962
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1963 1964 1965
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1966
				    struct ilk_wm_maximums *max)
1967
{
1968 1969 1970
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1971
	max->fbc = ilk_fbc_wm_reg_max(dev);
1972 1973
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1984
static bool ilk_validate_wm_level(int level,
1985
				  const struct ilk_wm_maximums *max,
1986
				  struct intel_wm_level *result)
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2025
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2026
				 const struct intel_crtc *intel_crtc,
2027
				 int level,
2028
				 struct intel_crtc_state *cstate,
2029 2030 2031
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2032
				 struct intel_wm_level *result)
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2057 2058 2059
	result->enable = true;
}

2060
static uint32_t
2061
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2062
{
2063 2064
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2065 2066
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2067
	u32 linetime, ips_linetime;
2068

2069 2070 2071 2072
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2073
	if (WARN_ON(intel_state->cdclk == 0))
2074
		return 0;
2075

2076 2077 2078
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2079 2080 2081
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2082
					 intel_state->cdclk);
2083

2084 2085
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2086 2087
}

2088 2089
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2090
{
2091
	if (IS_GEN9(dev_priv)) {
2092
		uint32_t val;
2093
		int ret, i;
2094
		int level, max_level = ilk_wm_max_level(dev_priv);
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2150
		/*
2151 2152
		 * WaWmMemoryReadLatency:skl
		 *
2153
		 * punit doesn't take into account the read latency so we need
2154 2155
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2156
		 */
2157 2158 2159 2160 2161
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2162
				wm[level] += 2;
2163
			}
2164 2165
		}

2166
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2167 2168 2169 2170 2171
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2172 2173 2174 2175
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2176
	} else if (INTEL_GEN(dev_priv) >= 6) {
2177 2178 2179 2180 2181 2182
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2183
	} else if (INTEL_GEN(dev_priv) >= 5) {
2184 2185 2186 2187 2188 2189
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2190 2191 2192
	}
}

2193 2194
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2195 2196
{
	/* ILK sprite LP0 latency is 1300 ns */
2197
	if (IS_GEN5(dev_priv))
2198 2199 2200
		wm[0] = 13;
}

2201 2202
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2203 2204
{
	/* ILK cursor LP0 latency is 1300 ns */
2205
	if (IS_GEN5(dev_priv))
2206 2207 2208
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2209
	if (IS_IVYBRIDGE(dev_priv))
2210 2211 2212
		wm[3] *= 2;
}

2213
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2214 2215
{
	/* how many WM levels are we expecting */
2216
	if (INTEL_GEN(dev_priv) >= 9)
2217
		return 7;
2218
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2219
		return 4;
2220
	else if (INTEL_GEN(dev_priv) >= 6)
2221
		return 3;
2222
	else
2223 2224
		return 2;
}
2225

2226
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2227
				   const char *name,
2228
				   const uint16_t wm[8])
2229
{
2230
	int level, max_level = ilk_wm_max_level(dev_priv);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2241 2242 2243 2244
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2245
		if (IS_GEN9(dev_priv))
2246 2247
			latency *= 10;
		else if (level > 0)
2248 2249 2250 2251 2252 2253 2254 2255
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2256 2257 2258
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2259
	int level, max_level = ilk_wm_max_level(dev_priv);
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2271
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2287 2288 2289
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2290 2291
}

2292
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2293
{
2294
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2295 2296 2297 2298 2299 2300

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2301
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2302
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2303

2304 2305 2306
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2307

2308
	if (IS_GEN6(dev_priv))
2309
		snb_wm_latency_quirk(dev_priv);
2310 2311
}

2312
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2313
{
2314
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2315
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2316 2317
}

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2341
/* Compute new watermarks for the pipe */
2342
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2343
{
2344 2345
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2346
	struct intel_pipe_wm *pipe_wm;
2347
	struct drm_device *dev = state->dev;
2348
	const struct drm_i915_private *dev_priv = to_i915(dev);
2349
	struct intel_plane *intel_plane;
2350
	struct intel_plane_state *pristate = NULL;
2351
	struct intel_plane_state *sprstate = NULL;
2352
	struct intel_plane_state *curstate = NULL;
2353
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2354
	struct ilk_wm_maximums max;
2355

2356
	pipe_wm = &cstate->wm.ilk.optimal;
2357

2358
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2359 2360 2361 2362 2363 2364
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2365 2366

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2367
			pristate = ps;
2368
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2369
			sprstate = ps;
2370
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2371
			curstate = ps;
2372 2373
	}

2374
	pipe_wm->pipe_enabled = cstate->base.active;
2375
	if (sprstate) {
2376 2377 2378 2379
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2380 2381
	}

2382 2383
	usable_level = max_level;

2384
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2385
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2386
		usable_level = 1;
2387 2388

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2389
	if (pipe_wm->sprites_scaled)
2390
		usable_level = 0;
2391

2392
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2393 2394 2395 2396
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2397

2398
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2399
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2400

2401
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2402
		return -EINVAL;
2403 2404 2405 2406

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2407
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2408

2409
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2410
				     pristate, sprstate, curstate, wm);
2411 2412 2413 2414 2415 2416

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2417 2418 2419 2420 2421 2422
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2423
			usable_level = level;
2424 2425
	}

2426
	return 0;
2427 2428
}

2429 2430 2431 2432 2433 2434 2435 2436 2437
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2438
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2439
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2440
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2441 2442 2443 2444 2445 2446

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2447
	*a = newstate->wm.ilk.optimal;
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2476
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2477 2478 2479 2480 2481
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2482 2483 2484 2485 2486 2487 2488 2489 2490
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2491 2492
	ret_wm->enable = true;

2493
	for_each_intel_crtc(dev, intel_crtc) {
2494
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2495 2496 2497 2498
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2499

2500 2501 2502 2503 2504
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2505
		if (!wm->enable)
2506
			ret_wm->enable = false;
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2519
			 const struct intel_wm_config *config,
2520
			 const struct ilk_wm_maximums *max,
2521 2522
			 struct intel_pipe_wm *merged)
{
2523
	struct drm_i915_private *dev_priv = to_i915(dev);
2524
	int level, max_level = ilk_wm_max_level(dev_priv);
2525
	int last_enabled_level = max_level;
2526

2527
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2528
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2529
	    config->num_pipes_active > 1)
2530
		last_enabled_level = 0;
2531

2532 2533
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2534 2535 2536 2537 2538 2539 2540

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2541 2542 2543 2544 2545
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2546 2547 2548 2549 2550 2551

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2552 2553
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2554 2555 2556
			wm->fbc_val = 0;
		}
	}
2557 2558 2559 2560 2561 2562 2563

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2564
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2565
	    intel_fbc_is_active(dev_priv)) {
2566 2567 2568 2569 2570 2571
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2572 2573
}

2574 2575 2576 2577 2578 2579
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2580 2581 2582
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2583
	struct drm_i915_private *dev_priv = to_i915(dev);
2584

2585
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2586 2587 2588 2589 2590
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2591
static void ilk_compute_wm_results(struct drm_device *dev,
2592
				   const struct intel_pipe_wm *merged,
2593
				   enum intel_ddb_partitioning partitioning,
2594
				   struct ilk_wm_values *results)
2595
{
2596 2597
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2598

2599
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2600
	results->partitioning = partitioning;
2601

2602
	/* LP1+ register values */
2603
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2604
		const struct intel_wm_level *r;
2605

2606
		level = ilk_wm_lp_to_level(wm_lp, merged);
2607

2608
		r = &merged->wm[level];
2609

2610 2611 2612 2613 2614
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2615
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2616 2617 2618
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2619 2620 2621
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2622 2623 2624 2625 2626 2627 2628
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2629 2630 2631 2632
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2633 2634 2635 2636 2637
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2638
	}
2639

2640
	/* LP0 register values */
2641
	for_each_intel_crtc(dev, intel_crtc) {
2642
		enum pipe pipe = intel_crtc->pipe;
2643 2644
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2645 2646 2647 2648

		if (WARN_ON(!r->enable))
			continue;

2649
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2650

2651 2652 2653 2654
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2655 2656 2657
	}
}

2658 2659
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2660
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2661 2662
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2663
{
2664
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2665
	int level1 = 0, level2 = 0;
2666

2667 2668 2669 2670 2671
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2672 2673
	}

2674 2675
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2676 2677 2678
			return r2;
		else
			return r1;
2679
	} else if (level1 > level2) {
2680 2681 2682 2683 2684 2685
		return r1;
	} else {
		return r2;
	}
}

2686 2687 2688 2689 2690 2691 2692 2693
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2694
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2695 2696
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2697 2698 2699 2700 2701
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2702
	for_each_pipe(dev_priv, pipe) {
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2746 2747
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2748
{
2749
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2750
	bool changed = false;
2751

2752 2753 2754
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2755
		changed = true;
2756 2757 2758 2759
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2760
		changed = true;
2761 2762 2763 2764
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2765
		changed = true;
2766
	}
2767

2768 2769 2770 2771
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2772

2773 2774 2775 2776 2777 2778 2779
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2780 2781
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2782
{
2783
	struct drm_device *dev = &dev_priv->drm;
2784
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2785 2786 2787
	unsigned int dirty;
	uint32_t val;

2788
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2789 2790 2791 2792 2793
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2794
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2795
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2796
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2797
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2798
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2799 2800
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2801
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2802
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2803
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2804
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2805
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2806 2807
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2808
	if (dirty & WM_DIRTY_DDB) {
2809
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2824 2825
	}

2826
	if (dirty & WM_DIRTY_FBC) {
2827 2828 2829 2830 2831 2832 2833 2834
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2835 2836 2837 2838 2839
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2840 2841 2842 2843 2844
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2845

2846
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2847
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2848
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2849
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2850
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2851
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2852 2853

	dev_priv->wm.hw = *results;
2854 2855
}

2856
bool ilk_disable_lp_wm(struct drm_device *dev)
2857
{
2858
	struct drm_i915_private *dev_priv = to_i915(dev);
2859 2860 2861 2862

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2863
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2864

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2902 2903 2904
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2905 2906 2907 2908 2909 2910 2911 2912
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2913 2914
}

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2927
intel_enable_sagv(struct drm_i915_private *dev_priv)
2928 2929 2930
{
	int ret;

2931 2932 2933 2934
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2950
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2951
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2952
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2953 2954 2955 2956 2957 2958
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2959
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2960 2961 2962 2963
	return 0;
}

static int
2964
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2978
intel_disable_sagv(struct drm_i915_private *dev_priv)
2979 2980 2981
{
	int ret, result;

2982 2983 2984 2985
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2986 2987 2988 2989 2990 2991
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2992
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3004
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
3005
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3006
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3007 3008 3009 3010 3011 3012
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

3013
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3014 3015 3016
	return 0;
}

3017
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3018 3019 3020 3021
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3022 3023
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3024 3025
	struct intel_crtc_state *cstate;
	struct skl_plane_wm *wm;
3026
	enum pipe pipe;
3027
	int level, latency;
3028

3029 3030 3031
	if (!intel_has_sagv(dev_priv))
		return false;

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3045
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3046
	cstate = to_intel_crtc_state(crtc->base.state);
3047

3048
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3049 3050
		return false;

3051
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3052
		wm = &cstate->wm.skl.optimal.planes[skl_wm_plane_id(plane)];
3053

3054
		/* Skip this plane if it's not enabled */
3055
		if (!wm->wm[0].plane_en)
3056 3057 3058
			continue;

		/* Find the highest enabled wm level for this plane */
3059
		for (level = ilk_wm_max_level(dev_priv);
3060
		     !wm->wm[level].plane_en; --level)
3061 3062
		     { }

3063 3064 3065 3066 3067 3068 3069
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
		    plane->base.state->fb->modifier[0] ==
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3070 3071 3072 3073 3074
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3075
		if (latency < SKL_SAGV_BLOCK_TIME)
3076 3077 3078 3079 3080 3081
			return false;
	}

	return true;
}

3082 3083
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3084
				   const struct intel_crtc_state *cstate,
3085 3086
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3087
{
3088 3089 3090
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3091
	struct drm_crtc *for_crtc = cstate->base.crtc;
3092 3093
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3094

3095
	if (WARN_ON(!state) || !cstate->base.active) {
3096 3097
		alloc->start = 0;
		alloc->end = 0;
3098
		*num_active = hweight32(dev_priv->active_crtcs);
3099 3100 3101
		return;
	}

3102 3103 3104 3105 3106
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3107 3108
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3109 3110 3111

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3112
	/*
3113 3114 3115 3116 3117 3118
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3119
	 */
3120
	if (!intel_state->active_pipe_changes) {
3121
		*alloc = to_intel_crtc(for_crtc)->hw_ddb;
3122
		return;
3123
	}
3124 3125 3126 3127 3128 3129

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3130 3131
}

3132
static unsigned int skl_cursor_allocation(int num_active)
3133
{
3134
	if (num_active == 1)
3135 3136 3137 3138 3139
		return 32;

	return 8;
}

3140 3141 3142 3143
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3144 3145
	if (entry->end)
		entry->end += 1;
3146 3147
}

3148 3149
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3150 3151 3152 3153 3154
{
	enum pipe pipe;
	int plane;
	u32 val;

3155 3156
	memset(ddb, 0, sizeof(*ddb));

3157
	for_each_pipe(dev_priv, pipe) {
3158 3159 3160 3161
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3162 3163
			continue;

3164
		for_each_universal_plane(dev_priv, pipe, plane) {
3165 3166 3167 3168 3169 3170
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3171 3172
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3173 3174

		intel_display_power_put(dev_priv, power_domain);
3175 3176 3177
	}
}

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3200
	if (WARN_ON(!pstate->base.visible))
3201 3202 3203
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3204 3205 3206 3207
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3208
	if (drm_rotation_90_or_270(pstate->base.rotation))
3209 3210 3211 3212 3213 3214 3215 3216 3217
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3218
static unsigned int
3219 3220 3221
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3222
{
3223
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3224
	struct drm_framebuffer *fb = pstate->fb;
3225
	uint32_t down_scale_amount, data_rate;
3226
	uint32_t width = 0, height = 0;
3227 3228
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3229
	if (!intel_pstate->base.visible)
3230 3231 3232 3233 3234
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3235

3236 3237
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3238

3239
	if (drm_rotation_90_or_270(pstate->rotation))
3240
		swap(width, height);
3241 3242

	/* for planar format */
3243
	if (format == DRM_FORMAT_NV12) {
3244
		if (y)  /* y-plane data rate */
3245
			data_rate = width * height *
3246
				drm_format_plane_cpp(format, 0);
3247
		else    /* uv-plane data rate */
3248
			data_rate = (width / 2) * (height / 2) *
3249
				drm_format_plane_cpp(format, 1);
3250 3251 3252
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3253 3254
	}

3255 3256 3257
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3258 3259 3260 3261 3262 3263 3264 3265
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3266 3267 3268
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3269
{
3270 3271
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3272
	struct drm_plane *plane;
3273
	const struct intel_plane *intel_plane;
3274
	const struct drm_plane_state *pstate;
3275
	unsigned int rate, total_data_rate = 0;
3276
	int id;
3277 3278 3279

	if (WARN_ON(!state))
		return 0;
3280

3281
	/* Calculate and cache data rate for each plane */
3282
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3283 3284 3285 3286 3287 3288
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3289 3290 3291
		plane_data_rate[id] = rate;

		total_data_rate += rate;
3292 3293 3294 3295

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3296
		plane_y_data_rate[id] = rate;
3297

3298
		total_data_rate += rate;
3299 3300 3301 3302 3303
	}

	return total_data_rate;
}

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3326 3327
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3328

3329
	if (drm_rotation_90_or_270(pstate->rotation))
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3343
	if (drm_rotation_90_or_270(pstate->rotation)) {
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
		struct intel_plane *intel_plane = to_intel_plane(plane);
		int id = skl_wm_plane_id(intel_plane);

		if (id == PLANE_CURSOR)
			continue;

		if (!pstate->visible)
			continue;

		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3391
static int
3392
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3393 3394
		      struct skl_ddb_allocation *ddb /* out */)
{
3395
	struct drm_atomic_state *state = cstate->base.state;
3396
	struct drm_crtc *crtc = cstate->base.crtc;
3397 3398 3399
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3400
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3401
	uint16_t alloc_size, start;
3402 3403
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3404
	unsigned int total_data_rate;
3405 3406
	int num_active;
	int id, i;
3407 3408
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3409

3410 3411 3412 3413
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3414 3415 3416
	if (WARN_ON(!state))
		return 0;

3417
	if (!cstate->base.active) {
3418
		alloc->start = alloc->end = 0;
3419 3420 3421
		return 0;
	}

3422
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3423
	alloc_size = skl_ddb_entry_size(alloc);
3424 3425
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3426
		return 0;
3427 3428
	}

3429
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3430

3431 3432 3433 3434 3435
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3436

3437
	for (i = 0; i < I915_MAX_PLANES; i++) {
3438 3439
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3440 3441
	}

3442 3443 3444
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3445
	/*
3446 3447
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3448 3449 3450
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3451 3452 3453
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3454
	if (total_data_rate == 0)
3455
		return 0;
3456

3457
	start = alloc->start;
3458
	for (id = 0; id < I915_MAX_PLANES; id++) {
3459 3460
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3461

3462 3463 3464
		if (id == PLANE_CURSOR)
			continue;

3465
		data_rate = plane_data_rate[id];
3466 3467

		/*
3468
		 * allocation for (packed formats) or (uv-plane part of planar format):
3469 3470 3471
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3472
		plane_blocks = minimum[id];
3473 3474
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3475

3476 3477 3478 3479 3480
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3481 3482

		start += plane_blocks;
3483 3484 3485 3486

		/*
		 * allocation for y_plane part of planar format:
		 */
3487
		y_data_rate = plane_y_data_rate[id];
3488 3489 3490 3491

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3492

3493 3494 3495 3496
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3497 3498

		start += y_plane_blocks;
3499 3500
	}

3501
	return 0;
3502 3503
}

3504 3505
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3506
 * for the read latency) and cpp should always be <= 8, so that
3507 3508 3509
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3510
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3511 3512 3513 3514 3515 3516
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3517
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3518 3519 3520 3521 3522 3523
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3524
			       uint32_t latency, uint32_t plane_blocks_per_line)
3525
{
3526 3527
	uint32_t ret;
	uint32_t wm_intermediate_val;
3528 3529 3530 3531 3532 3533

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3534
				plane_blocks_per_line;
3535 3536 3537 3538

	return ret;
}

3539 3540 3541 3542 3543 3544 3545 3546
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3547
	if (WARN_ON(!pstate->base.visible))
3548 3549 3550 3551 3552 3553
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3554
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3555 3556 3557 3558 3559 3560 3561 3562
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3563 3564 3565 3566 3567 3568 3569 3570
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3571
{
3572 3573
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3574 3575 3576 3577 3578
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3579
	uint8_t cpp;
3580
	uint32_t width = 0, height = 0;
3581
	uint32_t plane_pixel_rate;
3582
	uint32_t y_tile_minimum, y_min_scanlines;
3583 3584 3585
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3586

3587
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3588 3589 3590
		*enabled = false;
		return 0;
	}
3591

3592 3593 3594
	if (apply_memory_bw_wa && fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
		latency += 15;

3595 3596
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3597

3598
	if (drm_rotation_90_or_270(pstate->rotation))
3599 3600
		swap(width, height);

3601
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3602 3603
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3604
	if (drm_rotation_90_or_270(pstate->rotation)) {
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3619 3620 3621
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3622 3623 3624 3625 3626
		}
	} else {
		y_min_scanlines = 4;
	}

3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	plane_bytes_per_line = width * cpp;
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3640 3641
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3642
				 cstate->base.adjusted_mode.crtc_htotal,
3643
				 latency,
3644
				 plane_blocks_per_line);
3645

3646
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3647 3648
	if (apply_memory_bw_wa)
		y_tile_minimum *= 2;
3649

3650 3651
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3652 3653
		selected_result = max(method2, y_tile_minimum);
	} else {
3654 3655 3656 3657
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3658 3659 3660 3661
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3662

3663 3664
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3665

3666
	if (level >= 1 && level <= 7) {
3667
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3668 3669
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
			res_blocks += y_tile_minimum;
3670
			res_lines += y_min_scanlines;
3671
		} else {
3672
			res_blocks++;
3673
		}
3674
	}
3675

3676 3677
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3694
	}
3695 3696 3697

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3698
	*enabled = true;
3699

3700
	return 0;
3701 3702
}

3703 3704 3705 3706
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3707
		     struct intel_plane *intel_plane,
3708 3709
		     int level,
		     struct skl_wm_level *result)
3710
{
3711
	struct drm_atomic_state *state = cstate->base.state;
3712
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3713 3714
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3715
	uint16_t ddb_blocks;
3716
	enum pipe pipe = intel_crtc->pipe;
3717
	int ret;
L
Lyude 已提交
3718 3719 3720 3721 3722 3723
	int i = skl_wm_plane_id(intel_plane);

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3724

3725
	/*
L
Lyude 已提交
3726 3727 3728 3729 3730 3731 3732 3733 3734
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3735
	 */
L
Lyude 已提交
3736 3737
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3738

L
Lyude 已提交
3739
	WARN_ON(!intel_pstate->base.fb);
3740

L
Lyude 已提交
3741
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3742

L
Lyude 已提交
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3753 3754

	return 0;
3755 3756
}

3757
static uint32_t
3758
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3759
{
3760 3761
	uint32_t pixel_rate;

3762
	if (!cstate->base.active)
3763 3764
		return 0;

3765 3766 3767
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3768
		return 0;
3769

3770
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3771
			    pixel_rate);
3772 3773
}

3774
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3775
				      struct skl_wm_level *trans_wm /* out */)
3776
{
3777
	if (!cstate->base.active)
3778
		return;
3779 3780

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3781
	trans_wm->plane_en = false;
3782 3783
}

3784 3785 3786
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3787
{
3788
	struct drm_device *dev = cstate->base.crtc->dev;
3789
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3790 3791
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3792
	int level, max_level = ilk_wm_max_level(dev_priv);
3793
	int ret;
3794

L
Lyude 已提交
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
		wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3814
	}
3815
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3816

3817
	return 0;
3818 3819
}

3820 3821
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3822 3823 3824 3825 3826 3827 3828 3829
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3845
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3846 3847
			const struct skl_plane_wm *wm,
			const struct skl_ddb_allocation *ddb,
3848 3849 3850 3851 3852
			int plane)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3853
	int level, max_level = ilk_wm_max_level(dev_priv);
3854 3855 3856
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3857 3858
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane, level),
				   &wm->wm[level]);
3859
	}
3860 3861
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane),
			   &wm->trans_wm);
3862 3863

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3864
			    &ddb->plane[pipe][plane]);
3865
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3866
			    &ddb->y_plane[pipe][plane]);
3867 3868 3869
}

void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3870 3871
			 const struct skl_plane_wm *wm,
			 const struct skl_ddb_allocation *ddb)
3872 3873 3874 3875
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3876
	int level, max_level = ilk_wm_max_level(dev_priv);
3877 3878 3879
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3880 3881
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3882
	}
3883
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3884

3885
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3886
			    &ddb->plane[pipe][PLANE_CURSOR]);
3887 3888
}

3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3903 3904
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3905
{
3906
	return a->start < b->end && b->start < a->end;
3907 3908
}

3909
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
3910
				 struct intel_crtc *intel_crtc)
3911
{
3912 3913 3914 3915 3916 3917
	struct drm_crtc *other_crtc;
	struct drm_crtc_state *other_cstate;
	struct intel_crtc *other_intel_crtc;
	const struct skl_ddb_entry *ddb =
		&to_intel_crtc_state(intel_crtc->base.state)->wm.skl.ddb;
	int i;
3918

3919 3920
	for_each_crtc_in_state(state, other_crtc, other_cstate, i) {
		other_intel_crtc = to_intel_crtc(other_crtc);
3921

3922
		if (other_intel_crtc == intel_crtc)
3923 3924
			continue;

3925
		if (skl_ddb_entries_overlap(ddb, &other_intel_crtc->hw_ddb))
3926
			return true;
3927 3928
	}

3929
	return false;
3930 3931
}

3932
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3933
			      const struct skl_pipe_wm *old_pipe_wm,
3934
			      struct skl_pipe_wm *pipe_wm, /* out */
3935
			      struct skl_ddb_allocation *ddb, /* out */
3936
			      bool *changed /* out */)
3937
{
3938
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3939
	int ret;
3940

3941 3942 3943
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3944

3945
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3946 3947 3948
		*changed = false;
	else
		*changed = true;
3949

3950
	return 0;
3951 3952
}

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3966
static int
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;
	int id;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

3984
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
		id = skl_wm_plane_id(to_intel_plane(plane));

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
					&new_ddb->plane[pipe][id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
					&new_ddb->y_plane[pipe][id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4001 4002 4003 4004 4005 4006 4007
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4008
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4009
	uint32_t realloc_pipes = pipes_modified(state);
4010 4011 4012 4013 4014 4015 4016 4017
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4018 4019 4020 4021 4022 4023
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4024 4025
		intel_state->active_pipe_changes = ~0;

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4049
	if (intel_state->active_pipe_changes) {
4050
		realloc_pipes = ~0;
4051 4052
		intel_state->wm_results.dirty_pipes = ~0;
	}
4053

4054 4055 4056 4057 4058 4059
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4060 4061 4062 4063 4064 4065 4066
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4067
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4068 4069
		if (ret)
			return ret;
4070

4071
		ret = skl_ddb_add_affected_planes(cstate);
4072 4073
		if (ret)
			return ret;
4074 4075 4076 4077 4078
	}

	return 0;
}

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	int id;
4103
	int i;
4104 4105

	for_each_crtc_in_state(state, crtc, cstate, i) {
4106 4107
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4108

4109
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4110 4111 4112 4113 4114 4115 4116 4117 4118
			const struct skl_ddb_entry *old, *new;

			id = skl_wm_plane_id(intel_plane);
			old = &old_ddb->plane[pipe][id];
			new = &new_ddb->plane[pipe][id];

			if (skl_ddb_entry_equal(old, new))
				continue;

4119 4120 4121 4122 4123
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4124 4125 4126 4127
		}
	}
}

4128 4129 4130 4131 4132
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4133 4134 4135
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4136
	bool changed = false;
4137
	int ret, i;
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4152 4153 4154
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4155 4156 4157 4158
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4172 4173
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4174 4175

		pipe_wm = &intel_cstate->wm.skl.optimal;
4176 4177
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4191 4192
	skl_print_wm_changes(state);

4193 4194 4195
	return 0;
}

4196
static void skl_update_wm(struct intel_crtc *intel_crtc)
4197
{
4198
	struct drm_device *dev = intel_crtc->base.dev;
4199
	struct drm_i915_private *dev_priv = to_i915(dev);
4200
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4201
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4202
	struct intel_crtc_state *cstate = to_intel_crtc_state(intel_crtc->base.state);
4203
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4204
	enum pipe pipe = intel_crtc->pipe;
4205

4206
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4207 4208
		return;

4209
	mutex_lock(&dev_priv->wm.wm_mutex);
4210

4211
	/*
4212 4213 4214 4215
	 * If this pipe isn't active already, we're going to be enabling it
	 * very soon. Since it's safe to update a pipe's ddb allocation while
	 * the pipe's shut off, just do so here. Already active pipes will have
	 * their watermarks updated once we update their planes.
4216
	 */
4217
	if (intel_crtc->base.state->active_changed) {
4218 4219
		int plane;

4220
		for_each_universal_plane(dev_priv, pipe, plane)
4221 4222
			skl_write_plane_wm(intel_crtc, &pipe_wm->planes[plane],
					   &results->ddb, plane);
4223

4224 4225
		skl_write_cursor_wm(intel_crtc, &pipe_wm->planes[PLANE_CURSOR],
				    &results->ddb);
4226 4227 4228
	}

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4229

4230 4231
	intel_crtc->hw_ddb = cstate->wm.skl.ddb;

4232
	mutex_unlock(&dev_priv->wm.wm_mutex);
4233 4234
}

4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4253
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4254
{
4255
	struct drm_device *dev = &dev_priv->drm;
4256
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4257
	struct ilk_wm_maximums max;
4258
	struct intel_wm_config config = {};
4259
	struct ilk_wm_values results = {};
4260
	enum intel_ddb_partitioning partitioning;
4261

4262 4263 4264 4265
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4266 4267

	/* 5/6 split only in single pipe config on IVB+ */
4268
	if (INTEL_INFO(dev)->gen >= 7 &&
4269 4270 4271
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4272

4273
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4274
	} else {
4275
		best_lp_wm = &lp_wm_1_2;
4276 4277
	}

4278
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4279
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4280

4281
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4282

4283
	ilk_write_wm_values(dev_priv, &results);
4284 4285
}

4286
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4287
{
4288 4289
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4290

4291
	mutex_lock(&dev_priv->wm.wm_mutex);
4292
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4293 4294 4295
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4296

4297 4298 4299 4300
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4301

4302 4303
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4304
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4305 4306 4307
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4308 4309
}

4310 4311
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4312
{
4313 4314 4315 4316
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4317 4318
}

4319 4320
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4321 4322
{
	struct drm_device *dev = crtc->dev;
4323
	struct drm_i915_private *dev_priv = to_i915(dev);
4324
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4325 4326
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4327
	enum pipe pipe = intel_crtc->pipe;
4328 4329
	int level, id, max_level;
	uint32_t val;
4330

4331
	max_level = ilk_wm_max_level(dev_priv);
4332

4333 4334
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		id = skl_wm_plane_id(intel_plane);
4335
		wm = &out->planes[id];
4336

4337 4338 4339 4340 4341
		for (level = 0; level <= max_level; level++) {
			if (id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, id, level));
			else
				val = I915_READ(CUR_WM(pipe, level));
4342

4343
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4344 4345
		}

4346 4347 4348 4349 4350 4351
		if (id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, id));
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4352 4353
	}

4354 4355
	if (!intel_crtc->active)
		return;
4356

4357
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4358 4359 4360 4361
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4362
	struct drm_i915_private *dev_priv = to_i915(dev);
4363
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4364
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4365
	struct drm_crtc *crtc;
4366 4367
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4368

4369
	skl_ddb_get_hw_state(dev_priv, ddb);
4370 4371 4372 4373 4374 4375
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4376
		if (intel_crtc->active)
4377 4378
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4379

4380 4381 4382 4383 4384 4385 4386
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4387 4388
}

4389 4390 4391
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4392
	struct drm_i915_private *dev_priv = to_i915(dev);
4393
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4394
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4395
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4396
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4397
	enum pipe pipe = intel_crtc->pipe;
4398
	static const i915_reg_t wm0_pipe_reg[] = {
4399 4400 4401 4402 4403 4404
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4405
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4406
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4407

4408 4409
	memset(active, 0, sizeof(*active));

4410
	active->pipe_enabled = intel_crtc->active;
4411 4412

	if (active->pipe_enabled) {
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4427
		int level, max_level = ilk_wm_max_level(dev_priv);
4428 4429 4430 4431 4432 4433 4434 4435 4436

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4437 4438

	intel_crtc->wm.active.ilk = *active;
4439 4440
}

4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
4539
			plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, 0);
4540 4541 4542
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
4543
			plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, sprite + 1);
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4558 4559 4560 4561 4562 4563 4564 4565 4566
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4567
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4594 4595
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4596
	struct drm_i915_private *dev_priv = to_i915(dev);
4597
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4598 4599
	struct drm_crtc *crtc;

4600
	for_each_crtc(dev, crtc)
4601 4602 4603 4604 4605 4606 4607
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4608 4609 4610 4611
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4612

4613
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4614 4615
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4616
	else if (IS_IVYBRIDGE(dev_priv))
4617 4618
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4619 4620 4621 4622 4623

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4656
void intel_update_watermarks(struct intel_crtc *crtc)
4657
{
4658
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4659 4660

	if (dev_priv->display.update_wm)
4661
		dev_priv->display.update_wm(crtc);
4662 4663
}

4664
/*
4665 4666 4667 4668 4669 4670 4671 4672
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4673
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4674 4675 4676
{
	u16 rgvswctl;

4677 4678
	assert_spin_locked(&mchdev_lock);

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4696
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4697
{
4698
	u32 rgvmodectl;
4699 4700
	u8 fmax, fmin, fstart, vstart;

4701 4702
	spin_lock_irq(&mchdev_lock);

4703 4704
	rgvmodectl = I915_READ(MEMMODECTL);

4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4725
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4726 4727
		PXVFREQ_PX_SHIFT;

4728 4729
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4730

4731 4732 4733
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4750
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4751
		DRM_ERROR("stuck trying to change perf mode\n");
4752
	mdelay(1);
4753

4754
	ironlake_set_drps(dev_priv, fstart);
4755

4756 4757
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4758
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4759
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4760
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4761 4762

	spin_unlock_irq(&mchdev_lock);
4763 4764
}

4765
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4766
{
4767 4768 4769 4770 4771
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4772 4773 4774 4775 4776 4777 4778 4779 4780

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4781
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4782
	mdelay(1);
4783 4784
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4785
	mdelay(1);
4786

4787
	spin_unlock_irq(&mchdev_lock);
4788 4789
}

4790 4791 4792 4793 4794
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4795
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4796
{
4797
	u32 limits;
4798

4799 4800 4801 4802 4803 4804
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4805
	if (IS_GEN9(dev_priv)) {
4806 4807 4808 4809 4810 4811 4812 4813
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4814 4815 4816 4817

	return limits;
}

4818 4819 4820
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4821 4822
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4823 4824 4825 4826

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4827 4828
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4829 4830 4831 4832
			new_power = BETWEEN;
		break;

	case BETWEEN:
4833 4834
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4835
			new_power = LOW_POWER;
4836 4837
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4838 4839 4840 4841
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4842 4843
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4844 4845 4846 4847
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4848
	if (val <= dev_priv->rps.min_freq_softlimit)
4849
		new_power = LOW_POWER;
4850
	if (val >= dev_priv->rps.max_freq_softlimit)
4851 4852 4853 4854 4855 4856 4857 4858
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4859 4860
		ei_up = 16000;
		threshold_up = 95;
4861 4862

		/* Downclock if less than 85% busy over 32ms */
4863 4864
		ei_down = 32000;
		threshold_down = 85;
4865 4866 4867 4868
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4869 4870
		ei_up = 13000;
		threshold_up = 90;
4871 4872

		/* Downclock if less than 75% busy over 32ms */
4873 4874
		ei_down = 32000;
		threshold_down = 75;
4875 4876 4877 4878
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4879 4880
		ei_up = 10000;
		threshold_up = 85;
4881 4882

		/* Downclock if less than 60% busy over 32ms */
4883 4884
		ei_down = 32000;
		threshold_down = 60;
4885 4886 4887
		break;
	}

4888
	I915_WRITE(GEN6_RP_UP_EI,
4889
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4890
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4891 4892
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4893 4894

	I915_WRITE(GEN6_RP_DOWN_EI,
4895
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4896
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4907

4908
	dev_priv->rps.power = new_power;
4909 4910
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4911 4912 4913
	dev_priv->rps.last_adj = 0;
}

4914 4915 4916 4917 4918
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4919
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4920
	if (val < dev_priv->rps.max_freq_softlimit)
4921
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4922

4923 4924
	mask &= dev_priv->pm_rps_events;

4925
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4926 4927
}

4928 4929 4930
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4931
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4932
{
4933
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4934
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4935 4936
		return;

4937
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4938 4939
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4940

C
Chris Wilson 已提交
4941 4942 4943 4944 4945
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4946

4947
		if (IS_GEN9(dev_priv))
4948 4949
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4950
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4951 4952 4953 4954 4955 4956 4957
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4958
	}
4959 4960 4961 4962

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4963
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4964
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4965

4966 4967
	POSTING_READ(GEN6_RPNSWREQ);

4968
	dev_priv->rps.cur_freq = val;
4969
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4970 4971
}

4972
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4973 4974
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4975 4976
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4977

4978
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4979 4980 4981
		      "Odd GPU freq value\n"))
		val &= ~1;

4982 4983
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4984
	if (val != dev_priv->rps.cur_freq) {
4985
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4986 4987 4988
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4989 4990 4991 4992 4993

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4994
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4995 4996
 *
 * * If Gfx is Idle, then
4997 4998 4999
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5000 5001 5002
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5003
	u32 val = dev_priv->rps.idle_freq;
5004

5005
	if (dev_priv->rps.cur_freq <= val)
5006 5007
		return;

5008 5009 5010
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5011
	valleyview_set_rps(dev_priv, val);
5012
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5013 5014
}

5015 5016 5017 5018 5019 5020 5021 5022
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5023

5024 5025
		gen6_enable_rps_interrupts(dev_priv);

5026 5027 5028 5029 5030
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5031 5032 5033 5034
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5035 5036
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5037 5038 5039 5040 5041 5042 5043
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5044
	mutex_lock(&dev_priv->rps.hw_lock);
5045
	if (dev_priv->rps.enabled) {
5046
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5047
			vlv_set_rps_idle(dev_priv);
5048
		else
5049
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5050
		dev_priv->rps.last_adj = 0;
5051 5052
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5053
	}
5054
	mutex_unlock(&dev_priv->rps.hw_lock);
5055

5056
	spin_lock(&dev_priv->rps.client_lock);
5057 5058
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5059
	spin_unlock(&dev_priv->rps.client_lock);
5060 5061
}

5062
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5063 5064
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5065
{
5066 5067 5068
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5069
	if (!(dev_priv->gt.awake &&
5070
	      dev_priv->rps.enabled &&
5071
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5072
		return;
5073

5074 5075 5076
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5077
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5078 5079
		rps = NULL;

5080 5081 5082 5083 5084
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5085
			schedule_work(&dev_priv->rps.work);
5086 5087
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5088

5089 5090 5091
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5092 5093
		} else
			dev_priv->rps.boosts++;
5094
	}
5095
	spin_unlock(&dev_priv->rps.client_lock);
5096 5097
}

5098
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5099
{
5100 5101
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5102
	else
5103
		gen6_set_rps(dev_priv, val);
5104 5105
}

5106
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5107 5108
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5109
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5110 5111
}

5112
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5113 5114 5115 5116
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5117
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5118 5119
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5120
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5121
	I915_WRITE(GEN6_RP_CONTROL, 0);
5122 5123
}

5124
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5125 5126 5127 5128
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5129
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5130
{
5131 5132
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5133
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5134

5135
	I915_WRITE(GEN6_RC_CONTROL, 0);
5136

5137
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5138 5139
}

5140
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5141
{
5142
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5143 5144 5145 5146 5147
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5148
	if (HAS_RC6p(dev_priv))
5149 5150 5151 5152 5153
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5154 5155

	else
5156 5157
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5158 5159
}

5160
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5161
{
5162
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5163 5164
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5176 5177

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5178
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5179 5180 5181 5182 5183 5184 5185 5186
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5187 5188 5189
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5190
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5191 5192 5193 5194 5195 5196 5197
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5198
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5199 5200 5201
		enable_rc6 = false;
	}

5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5216 5217 5218 5219 5220 5221
		enable_rc6 = false;
	}

	return enable_rc6;
}

5222
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5223
{
5224
	/* No RC6 before Ironlake and code is gone for ilk. */
5225
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5226 5227
		return 0;

5228 5229 5230
	if (!enable_rc6)
		return 0;

5231
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5232 5233 5234 5235
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5236
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5237 5238 5239
	if (enable_rc6 >= 0) {
		int mask;

5240
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5241 5242 5243 5244 5245 5246
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5247 5248 5249
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5250 5251 5252

		return enable_rc6 & mask;
	}
5253

5254
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5255
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5256 5257

	return INTEL_RC6_ENABLE;
5258 5259
}

5260
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5261 5262
{
	/* All of these values are in units of 50MHz */
5263

5264
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5265
	if (IS_BROXTON(dev_priv)) {
5266
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5267 5268 5269 5270
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5271
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5272 5273 5274 5275
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5276
	/* hw_max = RP0 until we check for overclocking */
5277
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5278

5279
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5280 5281
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5282 5283 5284 5285 5286
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5287
			dev_priv->rps.efficient_freq =
5288 5289 5290 5291
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5292 5293
	}

5294
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5295
		/* Store the frequency values in 16.66 MHZ units, which is
5296 5297
		 * the natural hardware unit for SKL
		 */
5298 5299 5300 5301 5302 5303
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5304 5305
}

5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5318
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5319
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5320 5321 5322
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5323
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5324
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5325 5326 5327 5328 5329 5330 5331 5332 5333
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5334
		gen9_disable_rps(dev_priv);
5335 5336 5337 5338
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5339 5340 5341 5342 5343 5344 5345 5346
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5347 5348
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5349 5350 5351
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5352
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5353 5354 5355 5356

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5357
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5358
{
5359
	struct intel_engine_cs *engine;
5360
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5361 5362 5363 5364 5365 5366 5367
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5368
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5369 5370 5371 5372 5373

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5374 5375

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5376
	if (IS_SKYLAKE(dev_priv))
5377 5378 5379
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5380 5381
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5382
	for_each_engine(engine, dev_priv, id)
5383
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5384

5385
	if (HAS_GUC(dev_priv))
5386 5387
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5388 5389
	I915_WRITE(GEN6_RC_SLEEP, 0);

5390 5391 5392 5393
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5394
	/* 3a: Enable RC6 */
5395
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5396
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5397
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5398
	/* WaRsUseTimeoutMode:bxt */
5399
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5400
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5401 5402 5403
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5404 5405
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5406 5407 5408
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5409
	}
Z
Zhe Wang 已提交
5410

5411 5412
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5413
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5414
	 */
5415
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5416 5417 5418 5419
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5420

5421
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5422 5423
}

5424
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5425
{
5426
	struct intel_engine_cs *engine;
5427
	enum intel_engine_id id;
5428
	uint32_t rc6_mask = 0;
5429 5430 5431 5432 5433 5434

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5435
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5436 5437 5438 5439 5440 5441 5442 5443

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5444
	for_each_engine(engine, dev_priv, id)
5445
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5446
	I915_WRITE(GEN6_RC_SLEEP, 0);
5447
	if (IS_BROADWELL(dev_priv))
5448 5449 5450
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5451 5452

	/* 3: Enable RC6 */
5453
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5454
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5455 5456
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5457 5458 5459 5460 5461 5462 5463
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5464 5465

	/* 4 Program defaults and thresholds for RPS*/
5466 5467 5468 5469
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5484 5485

	/* 5: Enable RPS */
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5496
	reset_rps(dev_priv, gen6_set_rps);
5497

5498
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5499 5500
}

5501
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5502
{
5503
	struct intel_engine_cs *engine;
5504
	enum intel_engine_id id;
5505
	u32 rc6vids, rc6_mask = 0;
5506 5507
	u32 gtfifodbg;
	int rc6_mode;
5508
	int ret;
5509

5510
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5511

5512 5513 5514 5515 5516 5517 5518 5519 5520
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5521 5522
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5523 5524 5525 5526
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5527
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5538
	for_each_engine(engine, dev_priv, id)
5539
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5540 5541 5542

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5543
	if (IS_IVYBRIDGE(dev_priv))
5544 5545 5546
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5547
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5548 5549
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5550
	/* Check if we are enabling RC6 */
5551
	rc6_mode = intel_enable_rc6();
5552 5553 5554
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5555
	/* We don't use those on Haswell */
5556
	if (!IS_HASWELL(dev_priv)) {
5557 5558
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5559

5560 5561 5562
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5563

5564
	intel_print_rc6_info(dev_priv, rc6_mask);
5565 5566 5567 5568 5569 5570

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5571 5572
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5573 5574
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5575
	reset_rps(dev_priv, gen6_set_rps);
5576

5577 5578
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5579
	if (IS_GEN6(dev_priv) && ret) {
5580
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5581
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5582 5583 5584 5585 5586 5587 5588 5589 5590
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5591
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5592 5593
}

5594
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5595 5596
{
	int min_freq = 15;
5597 5598
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5599
	unsigned int max_gpu_freq, min_gpu_freq;
5600
	int scaling_factor = 180;
5601
	struct cpufreq_policy *policy;
5602

5603
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5604

5605 5606 5607 5608 5609 5610 5611 5612 5613
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5614
		max_ia_freq = tsc_khz;
5615
	}
5616 5617 5618 5619

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5620
	min_ring_freq = I915_READ(DCLK) & 0xf;
5621 5622
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5623

5624
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5625 5626 5627 5628 5629 5630 5631 5632
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5633 5634 5635 5636 5637
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5638 5639
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5640 5641
		unsigned int ia_freq = 0, ring_freq = 0;

5642
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5643 5644 5645 5646 5647
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5648
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5649 5650
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5651
		} else if (IS_HASWELL(dev_priv)) {
5652
			ring_freq = mult_frac(gpu_freq, 5, 4);
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5669

B
Ben Widawsky 已提交
5670 5671
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5672 5673 5674
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5675 5676 5677
	}
}

5678
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5679 5680 5681
{
	u32 val, rp0;

5682
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5683

5684
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5699
	}
5700 5701 5702

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5716 5717 5718 5719
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5720 5721 5722
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5723 5724 5725
	return rp1;
}

5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5737
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5738 5739 5740
{
	u32 val, rp0;

5741
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5754
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5755
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5756
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5757 5758 5759 5760 5761
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5762
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5763
{
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5775 5776
}

5777 5778 5779 5780 5781 5782 5783 5784 5785
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5786 5787 5788 5789 5790 5791 5792 5793 5794

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5795
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5796
{
5797
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5798
	unsigned long pctx_paddr, paddr;
5799 5800 5801 5802 5803
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5804
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5805
		paddr = (dev_priv->mm.stolen_base +
5806
			 (ggtt->stolen_size - pctx_size));
5807 5808 5809 5810

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5811 5812

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5813 5814
}

5815
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5828
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5829
								      pcbr_offset,
5830
								      I915_GTT_OFFSET_NONE,
5831 5832 5833 5834
								      pctx_size);
		goto out;
	}

5835 5836
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5837 5838 5839 5840 5841 5842 5843 5844
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5845
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5846 5847
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5848
		goto out;
5849 5850 5851 5852 5853 5854
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5855
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5856 5857 5858
	dev_priv->vlv_pctx = pctx;
}

5859
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5860 5861 5862 5863
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5864
	i915_gem_object_put(dev_priv->vlv_pctx);
5865 5866 5867
	dev_priv->vlv_pctx = NULL;
}

5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5879
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5880
{
5881
	u32 val;
5882

5883
	valleyview_setup_pctx(dev_priv);
5884

5885 5886
	vlv_init_gpll_ref_freq(dev_priv);

5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5900
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5901

5902 5903 5904
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5905
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5906 5907 5908 5909
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5910
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5911 5912
			 dev_priv->rps.efficient_freq);

5913 5914
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5915
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5916 5917
			 dev_priv->rps.rp1_freq);

5918 5919
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5920
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5921 5922 5923
			 dev_priv->rps.min_freq);
}

5924
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5925
{
5926
	u32 val;
5927

5928
	cherryview_setup_pctx(dev_priv);
5929

5930 5931
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5932
	mutex_lock(&dev_priv->sb_lock);
5933
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5934
	mutex_unlock(&dev_priv->sb_lock);
5935

5936 5937 5938 5939
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5940
	default:
5941 5942 5943
		dev_priv->mem_freq = 1600;
		break;
	}
5944
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5945

5946 5947 5948
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5949
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5950 5951 5952 5953
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5954
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5955 5956
			 dev_priv->rps.efficient_freq);

5957 5958
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5959
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5960 5961
			 dev_priv->rps.rp1_freq);

5962 5963
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5964
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5965
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5966 5967
			 dev_priv->rps.min_freq);

5968 5969 5970 5971 5972
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5973 5974
}

5975
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5976
{
5977
	valleyview_cleanup_pctx(dev_priv);
5978 5979
}

5980
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5981
{
5982
	struct intel_engine_cs *engine;
5983
	enum intel_engine_id id;
5984
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5985 5986 5987

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5988 5989
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6000
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6001

6002 6003 6004
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6005 6006 6007 6008 6009
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6010
	for_each_engine(engine, dev_priv, id)
6011
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6012 6013
	I915_WRITE(GEN6_RC_SLEEP, 0);

6014 6015
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6027 6028
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6029
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6030 6031 6032

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6033
	/* 4 Program defaults and thresholds for RPS*/
6034
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6045
		   GEN6_RP_MEDIA_IS_GFX |
6046 6047 6048 6049
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6050 6051 6052 6053 6054 6055
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6056 6057
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6058 6059 6060
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6061
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6062 6063
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6064
	reset_rps(dev_priv, valleyview_set_rps);
6065

6066
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6067 6068
}

6069
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6070
{
6071
	struct intel_engine_cs *engine;
6072
	enum intel_engine_id id;
6073
	u32 gtfifodbg, val, rc6_mode = 0;
6074 6075 6076

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6077 6078
	valleyview_check_pctx(dev_priv);

6079 6080
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6081 6082
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6083 6084 6085
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6086
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6087
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6088

6089 6090 6091
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6092
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6112
	for_each_engine(engine, dev_priv, id)
6113
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6114

6115
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6116 6117

	/* allows RC6 residency counter to work */
6118
	I915_WRITE(VLV_COUNTER_CONTROL,
6119 6120
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6121 6122
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6123

6124
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6125
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6126

6127
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6128

6129
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6130

D
Deepak S 已提交
6131 6132 6133 6134 6135 6136
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6137
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6138

6139 6140 6141
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6142
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6143 6144
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6145
	reset_rps(dev_priv, valleyview_set_rps);
6146

6147
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6148 6149
}

6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6179
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6180 6181 6182 6183 6184 6185
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6186 6187
	assert_spin_locked(&mchdev_lock);

6188
	diff1 = now - dev_priv->ips.last_time1;
6189 6190 6191 6192 6193 6194 6195

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6196
		return dev_priv->ips.chipset_power;
6197 6198 6199 6200 6201 6202 6203 6204

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6205 6206
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6207 6208
		diff += total_count;
	} else {
6209
		diff = total_count - dev_priv->ips.last_count1;
6210 6211 6212
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6213 6214
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6225 6226
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6227

6228
	dev_priv->ips.chipset_power = ret;
6229 6230 6231 6232

	return ret;
}

6233 6234 6235 6236
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6237
	if (INTEL_INFO(dev_priv)->gen != 5)
6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6276
{
6277 6278 6279
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6280
	if (INTEL_INFO(dev_priv)->is_mobile)
6281 6282 6283
		return vm > 0 ? vm : 0;

	return vd;
6284 6285
}

6286
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6287
{
6288
	u64 now, diff, diffms;
6289 6290
	u32 count;

6291
	assert_spin_locked(&mchdev_lock);
6292

6293 6294 6295
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6296 6297 6298 6299 6300 6301 6302

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6303 6304
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6305 6306
		diff += count;
	} else {
6307
		diff = count - dev_priv->ips.last_count2;
6308 6309
	}

6310 6311
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6312 6313 6314 6315

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6316
	dev_priv->ips.gfx_power = diff;
6317 6318
}

6319 6320
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6321
	if (INTEL_INFO(dev_priv)->gen != 5)
6322 6323
		return;

6324
	spin_lock_irq(&mchdev_lock);
6325 6326 6327

	__i915_update_gfx_val(dev_priv);

6328
	spin_unlock_irq(&mchdev_lock);
6329 6330
}

6331
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6332 6333 6334 6335
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6336 6337
	assert_spin_locked(&mchdev_lock);

6338
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6358
	corr2 = (corr * dev_priv->ips.corr);
6359 6360 6361 6362

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6363
	__i915_update_gfx_val(dev_priv);
6364

6365
	return dev_priv->ips.gfx_power + state2;
6366 6367
}

6368 6369 6370 6371
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6372
	if (INTEL_INFO(dev_priv)->gen != 5)
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6395
	spin_lock_irq(&mchdev_lock);
6396 6397 6398 6399
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6400 6401
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6402 6403 6404 6405

	ret = chipset_val + graphics_val;

out_unlock:
6406
	spin_unlock_irq(&mchdev_lock);
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6422
	spin_lock_irq(&mchdev_lock);
6423 6424 6425 6426 6427 6428
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6429 6430
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6431 6432

out_unlock:
6433
	spin_unlock_irq(&mchdev_lock);
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6450
	spin_lock_irq(&mchdev_lock);
6451 6452 6453 6454 6455 6456
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6457 6458
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6459 6460

out_unlock:
6461
	spin_unlock_irq(&mchdev_lock);
6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6476
	spin_lock_irq(&mchdev_lock);
6477 6478
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6479
	spin_unlock_irq(&mchdev_lock);
6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6496
	spin_lock_irq(&mchdev_lock);
6497 6498 6499 6500 6501 6502
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6503
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6504

6505
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6506 6507 6508
		ret = false;

out_unlock:
6509
	spin_unlock_irq(&mchdev_lock);
6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6537 6538
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6539
	spin_lock_irq(&mchdev_lock);
6540
	i915_mch_dev = dev_priv;
6541
	spin_unlock_irq(&mchdev_lock);
6542 6543 6544 6545 6546 6547

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6548
	spin_lock_irq(&mchdev_lock);
6549
	i915_mch_dev = NULL;
6550
	spin_unlock_irq(&mchdev_lock);
6551
}
6552

6553
static void intel_init_emon(struct drm_i915_private *dev_priv)
6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6570
		I915_WRITE(PEW(i), 0);
6571
	for (i = 0; i < 3; i++)
6572
		I915_WRITE(DEW(i), 0);
6573 6574 6575

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6576
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6597
		I915_WRITE(PXW(i), val);
6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6613
		I915_WRITE(PXWL(i), 0);
6614 6615 6616 6617 6618 6619

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6620
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6621 6622
}

6623
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6624
{
6625 6626 6627 6628 6629 6630 6631 6632
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6633

6634
	mutex_lock(&dev_priv->drm.struct_mutex);
6635 6636 6637
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6638 6639 6640 6641
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6642
	else if (INTEL_GEN(dev_priv) >= 6)
6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6672 6673 6674
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6675
	mutex_unlock(&dev_priv->rps.hw_lock);
6676
	mutex_unlock(&dev_priv->drm.struct_mutex);
6677 6678

	intel_autoenable_gt_powersave(dev_priv);
6679 6680
}

6681
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6682
{
6683
	if (IS_VALLEYVIEW(dev_priv))
6684
		valleyview_cleanup_gt_powersave(dev_priv);
6685 6686 6687

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6688 6689
}

6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6709 6710 6711 6712
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6713 6714

	gen6_reset_rps_interrupts(dev_priv);
6715 6716
}

6717
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6718
{
6719 6720
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6721

6722
	mutex_lock(&dev_priv->rps.hw_lock);
6723

6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6735
	}
6736 6737 6738

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6739 6740
}

6741
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6742
{
6743 6744 6745
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6746 6747
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6748

6749 6750 6751
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6752

6753
	mutex_lock(&dev_priv->rps.hw_lock);
6754 6755 6756 6757 6758

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6759
	} else if (INTEL_GEN(dev_priv) >= 9) {
6760 6761 6762
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6763
			gen6_update_ring_freq(dev_priv);
6764 6765
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6766
		gen6_update_ring_freq(dev_priv);
6767
	} else if (INTEL_GEN(dev_priv) >= 6) {
6768
		gen6_enable_rps(dev_priv);
6769
		gen6_update_ring_freq(dev_priv);
6770 6771 6772
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6773
	}
6774 6775 6776 6777 6778 6779 6780

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6781
	dev_priv->rps.enabled = true;
6782 6783
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6784

6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6795
	rcs = dev_priv->engine[RCS];
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6848
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6849 6850 6851 6852 6853 6854 6855 6856 6857
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6858
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6859
{
6860
	enum pipe pipe;
6861

6862
	for_each_pipe(dev_priv, pipe) {
6863 6864 6865
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6866 6867 6868

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6869 6870 6871
	}
}

6872
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6884
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6885
{
6886
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6887

6888 6889 6890 6891
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6892 6893 6894
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6912
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6913 6914 6915
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6916

6917
	ilk_init_lp_watermarks(dev_priv);
6918 6919 6920 6921 6922 6923 6924 6925

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6926
	if (IS_IRONLAKE_M(dev_priv)) {
6927
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6928 6929 6930 6931 6932 6933 6934 6935
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6936 6937
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6938 6939 6940 6941 6942 6943
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6944

6945
	/* WaDisableRenderCachePipelinedFlush:ilk */
6946 6947
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6948

6949 6950 6951
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6952
	g4x_disable_trickle_feed(dev_priv);
6953

6954
	ibx_init_clock_gating(dev_priv);
6955 6956
}

6957
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6958 6959
{
	int pipe;
6960
	uint32_t val;
6961 6962 6963 6964 6965 6966

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6967 6968 6969
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6970 6971
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6972 6973 6974
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6975
	for_each_pipe(dev_priv, pipe) {
6976 6977 6978
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6979
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6980
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6981 6982 6983
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6984 6985
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6986
	/* WADP0ClockGatingDisable */
6987
	for_each_pipe(dev_priv, pipe) {
6988 6989 6990
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6991 6992
}

6993
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6994 6995 6996 6997
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6998 6999 7000
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7001 7002
}

7003
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7004
{
7005
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7006

7007
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7008 7009 7010 7011 7012

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7013
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7014 7015 7016
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7017 7018 7019
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7020 7021 7022
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7023 7024 7025 7026
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7027 7028
	 */
	I915_WRITE(GEN6_GT_MODE,
7029
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7030

7031
	ilk_init_lp_watermarks(dev_priv);
7032 7033

	I915_WRITE(CACHE_MODE_0,
7034
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7050
	 *
7051 7052
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7053 7054 7055 7056 7057
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7058
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7059 7060
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7061

7062 7063 7064 7065 7066 7067 7068 7069
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7070 7071 7072 7073 7074 7075 7076 7077
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7078 7079
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7080 7081 7082 7083 7084 7085 7086
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7087 7088 7089 7090
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7091

7092
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7093

7094
	cpt_init_clock_gating(dev_priv);
7095

7096
	gen6_check_mch_setup(dev_priv);
7097 7098 7099 7100 7101 7102
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7103
	/*
7104
	 * WaVSThreadDispatchOverride:ivb,vlv
7105 7106 7107 7108
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7109 7110 7111 7112 7113 7114 7115 7116
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7117
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7118 7119 7120 7121 7122
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7123
	if (HAS_PCH_LPT_LP(dev_priv))
7124 7125 7126
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7127 7128

	/* WADPOClockGatingDisable:hsw */
7129 7130
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7131
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7132 7133
}

7134
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7135
{
7136
	if (HAS_PCH_LPT_LP(dev_priv)) {
7137 7138 7139 7140 7141 7142 7143
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7167
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7168
{
7169
	gen9_init_clock_gating(dev_priv);
7170 7171 7172 7173 7174

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7175 7176 7177 7178 7179

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7180 7181 7182 7183

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7184 7185
}

7186
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7187
{
7188
	gen9_init_clock_gating(dev_priv);
7189 7190 7191 7192

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7193 7194 7195 7196

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7197 7198
}

7199
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7200
{
7201
	enum pipe pipe;
B
Ben Widawsky 已提交
7202

7203
	ilk_init_lp_watermarks(dev_priv);
7204

7205
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7206
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7207

7208
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7209 7210 7211
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7212
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7213
	for_each_pipe(dev_priv, pipe) {
7214
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7215
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7216
			   BDW_DPRS_MASK_VBLANK_SRD);
7217
	}
7218

7219 7220 7221 7222 7223
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7224

7225 7226
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7227 7228 7229 7230

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7231

7232 7233
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7234

7235 7236 7237 7238 7239 7240 7241
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7242 7243 7244 7245
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7246
	lpt_init_clock_gating(dev_priv);
B
Ben Widawsky 已提交
7247 7248
}

7249
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7250
{
7251
	ilk_init_lp_watermarks(dev_priv);
7252

7253 7254 7255 7256 7257
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7258
	/* This is required by WaCatErrorRejectionIssue:hsw */
7259 7260 7261 7262
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7263 7264 7265
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7266

7267 7268 7269
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7270 7271 7272 7273
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7274
	/* WaDisable4x2SubspanOptimization:hsw */
7275 7276
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7277

7278 7279 7280
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7281 7282 7283 7284
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7285 7286
	 */
	I915_WRITE(GEN7_GT_MODE,
7287
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7288

7289 7290 7291 7292
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7293
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7294 7295
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7296 7297 7298
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7299

7300
	lpt_init_clock_gating(dev_priv);
7301 7302
}

7303
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7304
{
7305
	uint32_t snpcr;
7306

7307
	ilk_init_lp_watermarks(dev_priv);
7308

7309
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7310

7311
	/* WaDisableEarlyCull:ivb */
7312 7313 7314
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7315
	/* WaDisableBackToBackFlipFix:ivb */
7316 7317 7318 7319
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7320
	/* WaDisablePSDDualDispatchEnable:ivb */
7321
	if (IS_IVB_GT1(dev_priv))
7322 7323 7324
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7325 7326 7327
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7328
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7329 7330 7331
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7332
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7333 7334 7335
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7336
		   GEN7_WA_L3_CHICKEN_MODE);
7337
	if (IS_IVB_GT1(dev_priv))
7338 7339
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7340 7341 7342 7343
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7344 7345
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7346
	}
7347

7348
	/* WaForceL3Serialization:ivb */
7349 7350 7351
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7352
	/*
7353
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7354
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7355 7356
	 */
	I915_WRITE(GEN6_UCGCTL2,
7357
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7358

7359
	/* This is required by WaCatErrorRejectionIssue:ivb */
7360 7361 7362 7363
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7364
	g4x_disable_trickle_feed(dev_priv);
7365 7366

	gen7_setup_fixed_func_scheduler(dev_priv);
7367

7368 7369 7370 7371 7372
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7373

7374
	/* WaDisable4x2SubspanOptimization:ivb */
7375 7376
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7377

7378 7379 7380
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7381 7382 7383 7384
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7385 7386
	 */
	I915_WRITE(GEN7_GT_MODE,
7387
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7388

7389 7390 7391 7392
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7393

7394
	if (!HAS_PCH_NOP(dev_priv))
7395
		cpt_init_clock_gating(dev_priv);
7396

7397
	gen6_check_mch_setup(dev_priv);
7398 7399
}

7400
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7401
{
7402
	/* WaDisableEarlyCull:vlv */
7403 7404 7405
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7406
	/* WaDisableBackToBackFlipFix:vlv */
7407 7408 7409 7410
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7411
	/* WaPsdDispatchEnable:vlv */
7412
	/* WaDisablePSDDualDispatchEnable:vlv */
7413
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7414 7415
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7416

7417 7418 7419
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7420
	/* WaForceL3Serialization:vlv */
7421 7422 7423
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7424
	/* WaDisableDopClockGating:vlv */
7425 7426 7427
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7428
	/* This is required by WaCatErrorRejectionIssue:vlv */
7429 7430 7431 7432
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7433 7434
	gen7_setup_fixed_func_scheduler(dev_priv);

7435
	/*
7436
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7437
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7438 7439
	 */
	I915_WRITE(GEN6_UCGCTL2,
7440
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7441

7442 7443 7444 7445 7446
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7447

7448 7449 7450 7451
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7452 7453
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7454

7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7466 7467 7468 7469 7470 7471
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7472
	/*
7473
	 * WaDisableVLVClockGating_VBIIssue:vlv
7474 7475 7476
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7477
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7478 7479
}

7480
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7481
{
7482 7483 7484 7485 7486
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7487 7488 7489 7490

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7491 7492 7493 7494

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7495 7496 7497 7498

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7499

7500 7501 7502 7503 7504 7505 7506
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7507 7508 7509 7510 7511
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7512 7513
}

7514
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7526
	if (IS_GM45(dev_priv))
7527 7528
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7529 7530 7531 7532

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7533

7534 7535 7536
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7537
	g4x_disable_trickle_feed(dev_priv);
7538 7539
}

7540
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7541 7542 7543 7544 7545 7546
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7547 7548
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7549 7550 7551

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7552 7553
}

7554
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7555 7556 7557 7558 7559 7560 7561
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7562 7563
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7564 7565 7566

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7567 7568
}

7569
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7570 7571 7572 7573 7574 7575
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7576

7577
	if (IS_PINEVIEW(dev_priv))
7578
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7579 7580 7581

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7582 7583

	/* interrupts should cause a wake up from C3 */
7584
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7585 7586 7587

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7588 7589 7590

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7591 7592
}

7593
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7594 7595
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7596 7597 7598 7599

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7600 7601 7602

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7603 7604
}

7605
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7606 7607
{
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7608 7609 7610 7611

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7612 7613
}

7614
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7615
{
7616
	dev_priv->display.init_clock_gating(dev_priv);
7617 7618
}

7619
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7620
{
7621 7622
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7623 7624
}

7625
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7642
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7643
	else if (IS_KABYLAKE(dev_priv))
7644
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7679
/* Set up chip specific power management-related functions */
7680
void intel_init_pm(struct drm_i915_private *dev_priv)
7681
{
7682
	intel_fbc_init(dev_priv);
7683

7684
	/* For cxsr */
7685
	if (IS_PINEVIEW(dev_priv))
7686
		i915_pineview_get_mem_freq(dev_priv);
7687
	else if (IS_GEN5(dev_priv))
7688
		i915_ironlake_get_mem_freq(dev_priv);
7689

7690
	/* For FIFO watermark updates */
7691
	if (INTEL_GEN(dev_priv) >= 9) {
7692
		skl_setup_wm_latency(dev_priv);
7693
		dev_priv->display.update_wm = skl_update_wm;
7694
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7695
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7696
		ilk_setup_wm_latency(dev_priv);
7697

7698
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7699
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7700
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7701
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7702
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7703 7704 7705 7706 7707 7708
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7709 7710 7711 7712
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7713
	} else if (IS_CHERRYVIEW(dev_priv)) {
7714
		vlv_setup_wm_latency(dev_priv);
7715
		dev_priv->display.update_wm = vlv_update_wm;
7716
	} else if (IS_VALLEYVIEW(dev_priv)) {
7717
		vlv_setup_wm_latency(dev_priv);
7718
		dev_priv->display.update_wm = vlv_update_wm;
7719
	} else if (IS_PINEVIEW(dev_priv)) {
7720
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7721 7722 7723 7724 7725 7726 7727 7728 7729
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7730
			intel_set_memory_cxsr(dev_priv, false);
7731 7732 7733
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7734
	} else if (IS_G4X(dev_priv)) {
7735
		dev_priv->display.update_wm = g4x_update_wm;
7736
	} else if (IS_GEN4(dev_priv)) {
7737
		dev_priv->display.update_wm = i965_update_wm;
7738
	} else if (IS_GEN3(dev_priv)) {
7739 7740
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7741
	} else if (IS_GEN2(dev_priv)) {
7742
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7743
			dev_priv->display.update_wm = i845_update_wm;
7744
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7745 7746
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7747
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7748 7749 7750
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7751 7752 7753
	}
}

7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7766
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7798
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7799
{
7800 7801
	int status;

7802
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7803

7804 7805 7806 7807 7808 7809
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7810 7811 7812 7813
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7814 7815 7816
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7817

7818 7819 7820
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7821 7822 7823 7824
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7825 7826
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7827

7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7839 7840 7841
	return 0;
}

7842
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7843
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7844
{
7845 7846
	int status;

7847
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7848

7849 7850 7851 7852 7853 7854
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7855 7856 7857 7858
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7859 7860
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7861

7862 7863 7864
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7865 7866 7867 7868
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7869
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7870

7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7882 7883
	return 0;
}
7884

7885 7886
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7887 7888 7889 7890 7891
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7892 7893
}

7894
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7895
{
7896
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7897 7898
}

7899
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7900
{
7901 7902 7903 7904 7905
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7906 7907
}

7908
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7909
{
7910
	/* CHV needs even values */
7911
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7912 7913
}

7914
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7915
{
7916
	if (IS_GEN9(dev_priv))
7917 7918
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7919
	else if (IS_CHERRYVIEW(dev_priv))
7920
		return chv_gpu_freq(dev_priv, val);
7921
	else if (IS_VALLEYVIEW(dev_priv))
7922 7923 7924
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7925 7926
}

7927 7928
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7929
	if (IS_GEN9(dev_priv))
7930 7931
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7932
	else if (IS_CHERRYVIEW(dev_priv))
7933
		return chv_freq_opcode(dev_priv, val);
7934
	else if (IS_VALLEYVIEW(dev_priv))
7935 7936
		return byt_freq_opcode(dev_priv, val);
	else
7937
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7938
}
7939

7940 7941
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7942
	struct drm_i915_gem_request *req;
7943 7944 7945 7946 7947
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7948
	struct drm_i915_gem_request *req = boost->req;
7949

7950
	if (!i915_gem_request_completed(req))
7951
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7952

7953
	i915_gem_request_put(req);
7954 7955 7956
	kfree(boost);
}

7957
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7958 7959 7960
{
	struct request_boost *boost;

7961
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7962 7963
		return;

7964
	if (i915_gem_request_completed(req))
7965 7966
		return;

7967 7968 7969 7970
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

7971
	boost->req = i915_gem_request_get(req);
7972 7973

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7974
	queue_work(req->i915->wq, &boost->work);
7975 7976
}

D
Daniel Vetter 已提交
7977
void intel_pm_setup(struct drm_device *dev)
7978
{
7979
	struct drm_i915_private *dev_priv = to_i915(dev);
7980

D
Daniel Vetter 已提交
7981
	mutex_init(&dev_priv->rps.hw_lock);
7982
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7983

7984 7985
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
7986
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7987

7988
	dev_priv->pm.suspended = false;
7989
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7990
}