intel_pm.c 224.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67 68 69 70

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 74 75 76
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101 102 103 104

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
105 106
}

107
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

145
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

172
	dev_priv->ips.r_t = dev_priv->mem_freq;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
204
		dev_priv->ips.c_m = 0;
205
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206
		dev_priv->ips.c_m = 1;
207
	} else {
208
		dev_priv->ips.c_m = 2;
209 210 211
	}
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

250 251
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

312 313 314
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

315
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316
{
317
	bool was_enabled;
318
	u32 val;
319

320
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
321
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
322
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
323
		POSTING_READ(FW_BLC_SELF_VLV);
324
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
325
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
326
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
327
		POSTING_READ(FW_BLC_SELF);
328
	} else if (IS_PINEVIEW(dev_priv)) {
329 330 331 332 333 334
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
335
		I915_WRITE(DSPFW3, val);
336
		POSTING_READ(DSPFW3);
337
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
338
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
339 340 341
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
342
		POSTING_READ(FW_BLC_SELF);
343
	} else if (IS_I915GM(dev_priv)) {
344 345 346 347 348
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
349
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
350 351 352
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
353
		POSTING_READ(INSTPM);
354
	} else {
355
		return false;
356
	}
357

358 359 360 361 362
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
363 364
}

365
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
366
{
367 368
	bool ret;

369
	mutex_lock(&dev_priv->wm.wm_mutex);
370
	ret = _intel_set_memory_cxsr(dev_priv, enable);
371 372
	dev_priv->wm.vlv.cxsr = enable;
	mutex_unlock(&dev_priv->wm.wm_mutex);
373 374

	return ret;
375
}
376

377 378 379 380 381 382 383 384 385 386 387 388 389 390
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
391
static const int pessimal_latency_ns = 5000;
392

393 394 395
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

396
static int vlv_get_fifo_size(struct intel_plane *plane)
397
{
398
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
399 400
	int sprite0_start, sprite1_start, size;

401 402 403 404
	if (plane->id == PLANE_CURSOR)
		return 63;

	switch (plane->pipe) {
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

428 429
	switch (plane->id) {
	case PLANE_PRIMARY:
430 431
		size = sprite0_start;
		break;
432
	case PLANE_SPRITE0:
433 434
		size = sprite1_start - sprite0_start;
		break;
435
	case PLANE_SPRITE1:
436 437 438 439 440 441
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

442
	DRM_DEBUG_KMS("%s FIFO size: %d\n", plane->base.name, size);
443 444 445 446

	return size;
}

447
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
448 449 450 451 452 453 454 455 456 457 458 459 460 461
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

462
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

478
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
495 496 497 498 499
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
500 501
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
502 503 504 505 506
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
507 508
};
static const struct intel_watermark_params pineview_cursor_wm = {
509 510 511 512 513
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
514 515
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
516 517 518 519 520
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
521 522
};
static const struct intel_watermark_params g4x_wm_info = {
523 524 525 526 527
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
528 529
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
530 531 532 533 534
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
535 536
};
static const struct intel_watermark_params i965_cursor_wm_info = {
537 538 539 540 541
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
542 543
};
static const struct intel_watermark_params i945_wm_info = {
544 545 546 547 548
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
549 550
};
static const struct intel_watermark_params i915_wm_info = {
551 552 553 554 555
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
556
};
557
static const struct intel_watermark_params i830_a_wm_info = {
558 559 560 561 562
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
563
};
564 565 566 567 568 569 570
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
571
static const struct intel_watermark_params i845_wm_info = {
572 573 574 575 576
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
577 578 579 580 581 582
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
583
 * @cpp: bytes per pixel
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
599
					int fifo_size, int cpp,
600 601 602 603 604 605 606 607 608 609
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
610
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
611 612 613 614 615 616 617 618 619 620 621 622 623 624
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
625 626 627 628 629 630 631 632 633 634 635

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

636 637 638
	return wm_size;
}

639
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
640
{
641
	struct intel_crtc *crtc, *enabled = NULL;
642

643
	for_each_intel_crtc(&dev_priv->drm, crtc) {
644
		if (intel_crtc_active(crtc)) {
645 646 647 648 649 650 651 652 653
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

654
static void pineview_update_wm(struct intel_crtc *unused_crtc)
655
{
656
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
657
	struct intel_crtc *crtc;
658 659 660 661
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

662 663 664 665
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
666 667
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
668
		intel_set_memory_cxsr(dev_priv, false);
669 670 671
		return;
	}

672
	crtc = single_enabled_crtc(dev_priv);
673
	if (crtc) {
674 675 676 677 678
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
679
		int clock = adjusted_mode->crtc_clock;
680 681 682 683

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
684
					cpp, latency->display_sr);
685 686
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
687
		reg |= FW_WM(wm, SR);
688 689 690 691 692 693
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
694
					cpp, latency->cursor_sr);
695 696
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
697
		reg |= FW_WM(wm, CURSOR_SR);
698 699 700 701 702
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
703
					cpp, latency->display_hpll_disable);
704 705
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
706
		reg |= FW_WM(wm, HPLL_SR);
707 708 709 710 711
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
712
					cpp, latency->cursor_hpll_disable);
713 714
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
715
		reg |= FW_WM(wm, HPLL_CURSOR);
716 717 718
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

719
		intel_set_memory_cxsr(dev_priv, true);
720
	} else {
721
		intel_set_memory_cxsr(dev_priv, false);
722 723 724
	}
}

725
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
726 727 728 729 730 731 732 733
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
734
	struct intel_crtc *crtc;
735
	const struct drm_display_mode *adjusted_mode;
736
	const struct drm_framebuffer *fb;
737
	int htotal, hdisplay, clock, cpp;
738 739 740
	int line_time_us, line_count;
	int entries, tlb_miss;

741
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
742
	if (!intel_crtc_active(crtc)) {
743 744 745 746 747
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

748 749
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
750
	clock = adjusted_mode->crtc_clock;
751
	htotal = adjusted_mode->crtc_htotal;
752 753
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
754 755

	/* Use the small buffer method to calculate plane watermark */
756
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
757 758 759 760 761 762 763 764 765
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
766
	line_time_us = max(htotal * 1000 / clock, 1);
767
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
768
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
787
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
788 789 790 791 792 793 794 795
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
796
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
797 798 799 800 801
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
802
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
803 804 805 806 807 808 809 810 811 812 813 814
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

815
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
816 817 818 819 820 821
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
822
	struct intel_crtc *crtc;
823
	const struct drm_display_mode *adjusted_mode;
824
	const struct drm_framebuffer *fb;
825
	int hdisplay, htotal, cpp, clock;
826 827 828 829 830 831 832 833 834 835
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

836
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
837 838
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
839
	clock = adjusted_mode->crtc_clock;
840
	htotal = adjusted_mode->crtc_htotal;
841 842
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
843

844
	line_time_us = max(htotal * 1000 / clock, 1);
845
	line_count = (latency_ns / line_time_us + 1000) / 1000;
846
	line_size = hdisplay * cpp;
847 848

	/* Use the minimum of the small and large buffer method for primary */
849
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
850 851 852 853 854 855
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
856
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
857 858 859
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

860
	return g4x_check_srwm(dev_priv,
861 862 863 864
			      *display_wm, *cursor_wm,
			      display, cursor);
}

865 866 867
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

868
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
869 870
				const struct vlv_wm_values *wm)
{
871 872 873 874 875 876 877 878 879
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
880

881 882 883 884 885 886 887 888 889 890 891
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

892
	I915_WRITE(DSPFW1,
893
		   FW_WM(wm->sr.plane, SR) |
894 895 896
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
897
	I915_WRITE(DSPFW2,
898 899 900
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
901
	I915_WRITE(DSPFW3,
902
		   FW_WM(wm->sr.cursor, CURSOR_SR));
903 904 905

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
906 907
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
908
		I915_WRITE(DSPFW8_CHV,
909 910
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
911
		I915_WRITE(DSPFW9_CHV,
912 913
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
914
		I915_WRITE(DSPHOWM,
915
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
916 917 918 919 920 921 922 923 924
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
925 926
	} else {
		I915_WRITE(DSPFW7,
927 928
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
929
		I915_WRITE(DSPHOWM,
930
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
931 932 933 934 935 936
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
937 938 939
	}

	POSTING_READ(DSPFW1);
940 941
}

942 943
#undef FW_WM_VLV

944 945 946 947 948 949
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

950 951 952 953
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
954
				   unsigned int cpp,
955 956 957 958 959
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
960
	ret = (ret + 1) * horiz_pixels * cpp;
961 962 963 964 965
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

966
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
967 968 969 970
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

971 972
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

973 974 975
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
976 977

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
978 979 980
	}
}

981 982
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
983 984
				     int level)
{
985
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
986
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
987 988
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
989
	int clock, htotal, cpp, width, wm;
990 991 992 993

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

994
	if (!plane_state->base.visible)
995 996
		return 0;

997 998 999 1000
	cpp = drm_format_plane_cpp(plane_state->base.fb->pixel_format, 0);
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1013
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1014 1015 1016 1017 1018 1019
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1036
		if (state->base.visible) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1052
		if (!state->base.visible) {
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1087 1088 1089 1090 1091 1092 1093 1094
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1095 1096 1097 1098 1099 1100
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
1101
		struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1102
		const int sr_fifo_size =
1103
			INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1104 1105
		struct intel_plane *plane;

1106 1107 1108 1109 1110 1111
		wm_state->sr[level].plane =
			vlv_invert_wm_value(wm_state->sr[level].plane,
					    sr_fifo_size);
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(wm_state->sr[level].cursor,
					    63);
1112

1113
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1114 1115 1116
			wm_state->wm[level].plane[plane->id] =
				vlv_invert_wm_value(wm_state->wm[level].plane[plane->id],
						    plane->wm.fifo_size);
1117 1118 1119 1120
		}
	}
}

1121
static void vlv_compute_wm(struct intel_crtc *crtc)
1122
{
1123
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1124 1125 1126 1127 1128 1129
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1130
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1131
	wm_state->num_levels = dev_priv->wm.max_level + 1;
1132 1133 1134

	wm_state->num_active_planes = 0;

1135
	vlv_compute_fifo(crtc);
1136 1137 1138 1139

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

1140
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1141 1142
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
1143
		int level;
1144

1145
		if (!state->base.visible)
1146 1147 1148 1149
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
1150
			int wm = vlv_compute_wm_level(crtc->config, state, level);
1151
			int max_wm = plane->wm.fifo_size;
1152 1153 1154 1155 1156

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

1157
			if (wm > max_wm)
1158 1159
				break;

1160
			wm_state->wm[level].plane[plane->id] = wm;
1161 1162 1163 1164 1165 1166 1167 1168
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
1169
		if (plane->id == PLANE_CURSOR) {
1170 1171
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1172 1173
					wm_state->wm[level].plane[PLANE_CURSOR];
		} else {
1174 1175
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
1176
					max(wm_state->sr[level].plane,
1177
					    wm_state->wm[level].plane[plane->id]);
1178 1179 1180 1181
		}
	}

	/* clear any (partially) filled invalid levels */
1182
	for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1183 1184 1185 1186 1187 1188 1189
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1201 1202
		switch (plane->id) {
		case PLANE_PRIMARY:
1203
			sprite0_start = plane->wm.fifo_size;
1204 1205
			break;
		case PLANE_SPRITE0:
1206
			sprite1_start = sprite0_start + plane->wm.fifo_size;
1207 1208
			break;
		case PLANE_SPRITE1:
1209
			fifo_size = sprite1_start + plane->wm.fifo_size;
1210 1211 1212 1213 1214 1215 1216 1217
			break;
		case PLANE_CURSOR:
			WARN_ON(plane->wm.fifo_size != 63);
			break;
		default:
			MISSING_CASE(plane->id);
			break;
		}
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1286
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1287 1288 1289 1290 1291
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1292
	wm->level = dev_priv->wm.max_level;
1293 1294
	wm->cxsr = true;

1295
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1311 1312 1313
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1314
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

1325 1326 1327 1328
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1329 1330 1331
	}
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

1342
static void vlv_update_wm(struct intel_crtc *crtc)
1343
{
1344
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1345
	enum pipe pipe = crtc->pipe;
1346 1347
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
1348

1349
	vlv_compute_wm(crtc);
1350
	vlv_merge_wm(dev_priv, &new_wm);
1351

1352
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) {
1353
		/* FIXME should be part of crtc atomic commit */
1354
		vlv_pipe_set_fifo_size(crtc);
1355

1356
		return;
1357
	}
1358

1359
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1360 1361
		chv_set_memory_dvfs(dev_priv, false);

1362
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1363 1364
		chv_set_memory_pm5(dev_priv, false);

1365
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1366
		_intel_set_memory_cxsr(dev_priv, false);
1367

1368
	/* FIXME should be part of crtc atomic commit */
1369
	vlv_pipe_set_fifo_size(crtc);
1370

1371
	vlv_write_wm_values(dev_priv, &new_wm);
1372 1373 1374

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1375 1376 1377
		      pipe_name(pipe), new_wm.pipe[pipe].plane[PLANE_PRIMARY], new_wm.pipe[pipe].plane[PLANE_CURSOR],
		      new_wm.pipe[pipe].plane[PLANE_SPRITE0], new_wm.pipe[pipe].plane[PLANE_SPRITE1],
		      new_wm.sr.plane, new_wm.sr.cursor, new_wm.level, new_wm.cxsr);
1378

1379
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1380
		_intel_set_memory_cxsr(dev_priv, true);
1381

1382
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1383 1384
		chv_set_memory_pm5(dev_priv, true);

1385
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1386 1387
		chv_set_memory_dvfs(dev_priv, true);

1388
	*old_wm = new_wm;
1389 1390
}

1391 1392
#define single_plane_enabled(mask) is_power_of_2(mask)

1393
static void g4x_update_wm(struct intel_crtc *crtc)
1394
{
1395
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1396 1397 1398 1399
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1400
	bool cxsr_enabled;
1401

1402
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1403 1404
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1405
			    &planea_wm, &cursora_wm))
1406
		enabled |= 1 << PIPE_A;
1407

1408
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1409 1410
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1411
			    &planeb_wm, &cursorb_wm))
1412
		enabled |= 1 << PIPE_B;
1413 1414

	if (single_plane_enabled(enabled) &&
1415
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1416 1417 1418
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1419
			     &plane_sr, &cursor_sr)) {
1420
		cxsr_enabled = true;
1421
	} else {
1422
		cxsr_enabled = false;
1423
		intel_set_memory_cxsr(dev_priv, false);
1424 1425
		plane_sr = cursor_sr = 0;
	}
1426

1427 1428
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1429 1430 1431 1432 1433
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1434 1435 1436 1437
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1438
	I915_WRITE(DSPFW2,
1439
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1440
		   FW_WM(cursora_wm, CURSORA));
1441 1442
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1443
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1444
		   FW_WM(cursor_sr, CURSOR_SR));
1445 1446 1447

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1448 1449
}

1450
static void i965_update_wm(struct intel_crtc *unused_crtc)
1451
{
1452
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1453
	struct intel_crtc *crtc;
1454 1455
	int srwm = 1;
	int cursor_sr = 16;
1456
	bool cxsr_enabled;
1457 1458

	/* Calc sr entries for one plane configs */
1459
	crtc = single_enabled_crtc(dev_priv);
1460 1461 1462
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1463 1464 1465 1466
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1467
		int clock = adjusted_mode->crtc_clock;
1468
		int htotal = adjusted_mode->crtc_htotal;
1469 1470
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1471 1472 1473
		unsigned long line_time_us;
		int entries;

1474
		line_time_us = max(htotal * 1000 / clock, 1);
1475 1476 1477

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1478
			cpp * hdisplay;
1479 1480 1481 1482 1483 1484 1485 1486 1487
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1488
			cpp * crtc->base.cursor->state->crtc_w;
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1500
		cxsr_enabled = true;
1501
	} else {
1502
		cxsr_enabled = false;
1503
		/* Turn off self refresh if both pipes are enabled */
1504
		intel_set_memory_cxsr(dev_priv, false);
1505 1506 1507 1508 1509 1510
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1511 1512 1513 1514 1515 1516
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1517
	/* update cursor SR watermark */
1518
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1519 1520 1521

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1522 1523
}

1524 1525
#undef FW_WM

1526
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1527
{
1528
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1529 1530 1531 1532 1533 1534
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1535
	struct intel_crtc *crtc, *enabled = NULL;
1536

1537
	if (IS_I945GM(dev_priv))
1538
		wm_info = &i945_wm_info;
1539
	else if (!IS_GEN2(dev_priv))
1540 1541
		wm_info = &i915_wm_info;
	else
1542
		wm_info = &i830_a_wm_info;
1543

1544
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1545
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1546 1547 1548 1549 1550 1551 1552
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1553
		if (IS_GEN2(dev_priv))
1554
			cpp = 4;
1555 1556
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1557

1558
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1559
					       wm_info, fifo_size, cpp,
1560
					       pessimal_latency_ns);
1561
		enabled = crtc;
1562
	} else {
1563
		planea_wm = fifo_size - wm_info->guard_size;
1564 1565 1566 1567
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1568
	if (IS_GEN2(dev_priv))
1569
		wm_info = &i830_bc_wm_info;
1570

1571
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1572
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1573 1574 1575 1576 1577 1578 1579
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1580
		if (IS_GEN2(dev_priv))
1581
			cpp = 4;
1582 1583
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1584

1585
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1586
					       wm_info, fifo_size, cpp,
1587
					       pessimal_latency_ns);
1588 1589 1590 1591
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1592
	} else {
1593
		planeb_wm = fifo_size - wm_info->guard_size;
1594 1595 1596
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1597 1598 1599

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1600
	if (IS_I915GM(dev_priv) && enabled) {
1601
		struct drm_i915_gem_object *obj;
1602

1603
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1604 1605

		/* self-refresh seems busted with untiled */
1606
		if (!i915_gem_object_is_tiled(obj))
1607 1608 1609
			enabled = NULL;
	}

1610 1611 1612 1613 1614 1615
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1616
	intel_set_memory_cxsr(dev_priv, false);
1617 1618

	/* Calc sr entries for one plane configs */
1619
	if (HAS_FW_BLC(dev_priv) && enabled) {
1620 1621
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1622 1623 1624 1625
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1626
		int clock = adjusted_mode->crtc_clock;
1627
		int htotal = adjusted_mode->crtc_htotal;
1628 1629
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1630 1631 1632
		unsigned long line_time_us;
		int entries;

1633
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1634
			cpp = 4;
1635 1636
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1637

1638
		line_time_us = max(htotal * 1000 / clock, 1);
1639 1640 1641

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1642
			cpp * hdisplay;
1643 1644 1645 1646 1647 1648
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1649
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1650 1651
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1652
		else
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1669 1670
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1671 1672
}

1673
static void i845_update_wm(struct intel_crtc *unused_crtc)
1674
{
1675
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1676
	struct intel_crtc *crtc;
1677
	const struct drm_display_mode *adjusted_mode;
1678 1679 1680
	uint32_t fwater_lo;
	int planea_wm;

1681
	crtc = single_enabled_crtc(dev_priv);
1682 1683 1684
	if (crtc == NULL)
		return;

1685
	adjusted_mode = &crtc->config->base.adjusted_mode;
1686
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1687
				       &i845_wm_info,
1688
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1689
				       4, pessimal_latency_ns);
1690 1691 1692 1693 1694 1695 1696 1697
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1698
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1699
{
1700
	uint32_t pixel_rate;
1701

1702
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1703 1704 1705 1706

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1707
	if (pipe_config->pch_pfit.enabled) {
1708
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1709 1710 1711 1712
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1713 1714 1715 1716 1717 1718 1719 1720

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1721 1722 1723
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1724 1725 1726 1727 1728 1729 1730
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1731
/* latency must be in 0.1us units. */
1732
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1733 1734 1735
{
	uint64_t ret;

1736 1737 1738
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1739
	ret = (uint64_t) pixel_rate * cpp * latency;
1740 1741 1742 1743 1744
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1745
/* latency must be in 0.1us units. */
1746
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1747
			       uint32_t horiz_pixels, uint8_t cpp,
1748 1749 1750 1751
			       uint32_t latency)
{
	uint32_t ret;

1752 1753
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1754 1755
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1756

1757
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1758
	ret = (ret + 1) * horiz_pixels * cpp;
1759 1760 1761 1762
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1763
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1764
			   uint8_t cpp)
1765
{
1766 1767 1768 1769 1770 1771
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1772
	if (WARN_ON(!cpp))
1773 1774 1775 1776
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1777
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1778 1779
}

1780
struct ilk_wm_maximums {
1781 1782 1783 1784 1785 1786
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1787 1788 1789 1790
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1791
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1792
				   const struct intel_plane_state *pstate,
1793 1794
				   uint32_t mem_value,
				   bool is_lp)
1795
{
1796 1797
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1798 1799
	uint32_t method1, method2;

1800
	if (!cstate->base.active || !pstate->base.visible)
1801 1802
		return 0;

1803
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1804 1805 1806 1807

	if (!is_lp)
		return method1;

1808 1809
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1810
				 drm_rect_width(&pstate->base.dst),
1811
				 cpp, mem_value);
1812 1813

	return min(method1, method2);
1814 1815
}

1816 1817 1818 1819
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1820
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1821
				   const struct intel_plane_state *pstate,
1822 1823
				   uint32_t mem_value)
{
1824 1825
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1826 1827
	uint32_t method1, method2;

1828
	if (!cstate->base.active || !pstate->base.visible)
1829 1830
		return 0;

1831
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1832 1833
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1834
				 drm_rect_width(&pstate->base.dst),
1835
				 cpp, mem_value);
1836 1837 1838
	return min(method1, method2);
}

1839 1840 1841 1842
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1843
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1844
				   const struct intel_plane_state *pstate,
1845 1846
				   uint32_t mem_value)
{
1847 1848 1849 1850 1851 1852
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1853
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1854

1855
	if (!cstate->base.active)
1856 1857
		return 0;

1858 1859
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1860
			      width, cpp, mem_value);
1861 1862
}

1863
/* Only for WM_LP. */
1864
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1865
				   const struct intel_plane_state *pstate,
1866
				   uint32_t pri_val)
1867
{
1868 1869
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1870

1871
	if (!cstate->base.active || !pstate->base.visible)
1872 1873
		return 0;

1874
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1875 1876
}

1877 1878
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1879
{
1880
	if (INTEL_GEN(dev_priv) >= 8)
1881
		return 3072;
1882
	else if (INTEL_GEN(dev_priv) >= 7)
1883 1884 1885 1886 1887
		return 768;
	else
		return 512;
}

1888 1889 1890
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
1891
{
1892
	if (INTEL_GEN(dev_priv) >= 8)
1893 1894
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
1895
	else if (INTEL_GEN(dev_priv) >= 7)
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

1906 1907
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1908
{
1909
	if (INTEL_GEN(dev_priv) >= 7)
1910 1911 1912 1913 1914
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

1915
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1916
{
1917
	if (INTEL_GEN(dev_priv) >= 8)
1918 1919 1920 1921 1922
		return 31;
	else
		return 15;
}

1923 1924 1925
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1926
				     const struct intel_wm_config *config,
1927 1928 1929
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
1930 1931
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1932 1933

	/* if sprites aren't enabled, sprites get nothing */
1934
	if (is_sprite && !config->sprites_enabled)
1935 1936 1937
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1938
	if (level == 0 || config->num_pipes_active > 1) {
1939
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1940 1941 1942 1943 1944 1945

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
1946
		if (INTEL_GEN(dev_priv) <= 6)
1947 1948 1949
			fifo_size /= 2;
	}

1950
	if (config->sprites_enabled) {
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1962
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1963 1964 1965 1966
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1967 1968
				      int level,
				      const struct intel_wm_config *config)
1969 1970
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1971
	if (level > 0 && config->num_pipes_active > 1)
1972 1973 1974
		return 64;

	/* otherwise just report max that registers can hold */
1975
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
1976 1977
}

1978
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1979 1980 1981
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1982
				    struct ilk_wm_maximums *max)
1983
{
1984 1985 1986
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1987
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1988 1989
}

1990
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
1991 1992 1993
					int level,
					struct ilk_wm_maximums *max)
{
1994 1995 1996 1997
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
1998 1999
}

2000
static bool ilk_validate_wm_level(int level,
2001
				  const struct ilk_wm_maximums *max,
2002
				  struct intel_wm_level *result)
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2041
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2042
				 const struct intel_crtc *intel_crtc,
2043
				 int level,
2044
				 struct intel_crtc_state *cstate,
2045 2046 2047
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2048
				 struct intel_wm_level *result)
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2073 2074 2075
	result->enable = true;
}

2076
static uint32_t
2077
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2078
{
2079 2080
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2081 2082
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2083
	u32 linetime, ips_linetime;
2084

2085 2086 2087 2088
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2089
	if (WARN_ON(intel_state->cdclk == 0))
2090
		return 0;
2091

2092 2093 2094
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2095 2096 2097
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2098
					 intel_state->cdclk);
2099

2100 2101
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2102 2103
}

2104 2105
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2106
{
2107
	if (IS_GEN9(dev_priv)) {
2108
		uint32_t val;
2109
		int ret, i;
2110
		int level, max_level = ilk_wm_max_level(dev_priv);
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2166
		/*
2167 2168
		 * WaWmMemoryReadLatency:skl
		 *
2169
		 * punit doesn't take into account the read latency so we need
2170 2171
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2172
		 */
2173 2174 2175 2176 2177
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2178
				wm[level] += 2;
2179
			}
2180 2181
		}

2182
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2183 2184 2185 2186 2187
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2188 2189 2190 2191
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2192
	} else if (INTEL_GEN(dev_priv) >= 6) {
2193 2194 2195 2196 2197 2198
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2199
	} else if (INTEL_GEN(dev_priv) >= 5) {
2200 2201 2202 2203 2204 2205
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2206 2207 2208
	}
}

2209 2210
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2211 2212
{
	/* ILK sprite LP0 latency is 1300 ns */
2213
	if (IS_GEN5(dev_priv))
2214 2215 2216
		wm[0] = 13;
}

2217 2218
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2219 2220
{
	/* ILK cursor LP0 latency is 1300 ns */
2221
	if (IS_GEN5(dev_priv))
2222 2223 2224
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2225
	if (IS_IVYBRIDGE(dev_priv))
2226 2227 2228
		wm[3] *= 2;
}

2229
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2230 2231
{
	/* how many WM levels are we expecting */
2232
	if (INTEL_GEN(dev_priv) >= 9)
2233
		return 7;
2234
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2235
		return 4;
2236
	else if (INTEL_GEN(dev_priv) >= 6)
2237
		return 3;
2238
	else
2239 2240
		return 2;
}
2241

2242
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2243
				   const char *name,
2244
				   const uint16_t wm[8])
2245
{
2246
	int level, max_level = ilk_wm_max_level(dev_priv);
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2257 2258 2259 2260
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2261
		if (IS_GEN9(dev_priv))
2262 2263
			latency *= 10;
		else if (level > 0)
2264 2265 2266 2267 2268 2269 2270 2271
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2272 2273 2274
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2275
	int level, max_level = ilk_wm_max_level(dev_priv);
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2287
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2303 2304 2305
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2306 2307
}

2308
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2309
{
2310
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2311 2312 2313 2314 2315 2316

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2317
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2318
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2319

2320 2321 2322
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2323

2324
	if (IS_GEN6(dev_priv))
2325
		snb_wm_latency_quirk(dev_priv);
2326 2327
}

2328
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2329
{
2330
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2331
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2332 2333
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2357
/* Compute new watermarks for the pipe */
2358
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2359
{
2360 2361
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2362
	struct intel_pipe_wm *pipe_wm;
2363
	struct drm_device *dev = state->dev;
2364
	const struct drm_i915_private *dev_priv = to_i915(dev);
2365
	struct intel_plane *intel_plane;
2366
	struct intel_plane_state *pristate = NULL;
2367
	struct intel_plane_state *sprstate = NULL;
2368
	struct intel_plane_state *curstate = NULL;
2369
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2370
	struct ilk_wm_maximums max;
2371

2372
	pipe_wm = &cstate->wm.ilk.optimal;
2373

2374
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2375 2376 2377 2378 2379 2380
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2381 2382

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2383
			pristate = ps;
2384
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2385
			sprstate = ps;
2386
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2387
			curstate = ps;
2388 2389
	}

2390
	pipe_wm->pipe_enabled = cstate->base.active;
2391
	if (sprstate) {
2392 2393 2394 2395
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2396 2397
	}

2398 2399
	usable_level = max_level;

2400
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2401
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2402
		usable_level = 1;
2403 2404

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2405
	if (pipe_wm->sprites_scaled)
2406
		usable_level = 0;
2407

2408
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2409 2410 2411 2412
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2413

2414
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2415
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2416

2417
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2418
		return -EINVAL;
2419

2420
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2421 2422

	for (level = 1; level <= max_level; level++) {
2423
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2424

2425
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2426
				     pristate, sprstate, curstate, wm);
2427 2428 2429 2430 2431 2432

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2433 2434 2435 2436 2437 2438
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2439
			usable_level = level;
2440 2441
	}

2442
	return 0;
2443 2444
}

2445 2446 2447 2448 2449 2450 2451 2452 2453
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2454
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2455
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2456
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2457 2458 2459 2460 2461 2462

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2463
	*a = newstate->wm.ilk.optimal;
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2492
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2493 2494 2495 2496 2497
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2498 2499 2500 2501 2502 2503 2504 2505 2506
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2507 2508
	ret_wm->enable = true;

2509
	for_each_intel_crtc(dev, intel_crtc) {
2510
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2511 2512 2513 2514
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2515

2516 2517 2518 2519 2520
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2521
		if (!wm->enable)
2522
			ret_wm->enable = false;
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2535
			 const struct intel_wm_config *config,
2536
			 const struct ilk_wm_maximums *max,
2537 2538
			 struct intel_pipe_wm *merged)
{
2539
	struct drm_i915_private *dev_priv = to_i915(dev);
2540
	int level, max_level = ilk_wm_max_level(dev_priv);
2541
	int last_enabled_level = max_level;
2542

2543
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2544
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2545
	    config->num_pipes_active > 1)
2546
		last_enabled_level = 0;
2547

2548
	/* ILK: FBC WM must be disabled always */
2549
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2550 2551 2552 2553 2554 2555 2556

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2557 2558 2559 2560 2561
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2562 2563 2564 2565 2566 2567

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2568 2569
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2570 2571 2572
			wm->fbc_val = 0;
		}
	}
2573 2574 2575 2576 2577 2578 2579

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2580
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2581
	    intel_fbc_is_active(dev_priv)) {
2582 2583 2584 2585 2586 2587
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2588 2589
}

2590 2591 2592 2593 2594 2595
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2596 2597 2598
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2599
	struct drm_i915_private *dev_priv = to_i915(dev);
2600

2601
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2602 2603 2604 2605 2606
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2607
static void ilk_compute_wm_results(struct drm_device *dev,
2608
				   const struct intel_pipe_wm *merged,
2609
				   enum intel_ddb_partitioning partitioning,
2610
				   struct ilk_wm_values *results)
2611
{
2612
	struct drm_i915_private *dev_priv = to_i915(dev);
2613 2614
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2615

2616
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2617
	results->partitioning = partitioning;
2618

2619
	/* LP1+ register values */
2620
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2621
		const struct intel_wm_level *r;
2622

2623
		level = ilk_wm_lp_to_level(wm_lp, merged);
2624

2625
		r = &merged->wm[level];
2626

2627 2628 2629 2630 2631
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2632
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2633 2634 2635
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2636 2637 2638
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2639
		if (INTEL_GEN(dev_priv) >= 8)
2640 2641 2642 2643 2644 2645
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2646 2647 2648 2649
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2650
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2651 2652 2653 2654
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2655
	}
2656

2657
	/* LP0 register values */
2658
	for_each_intel_crtc(dev, intel_crtc) {
2659
		enum pipe pipe = intel_crtc->pipe;
2660 2661
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2662 2663 2664 2665

		if (WARN_ON(!r->enable))
			continue;

2666
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2667

2668 2669 2670 2671
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2672 2673 2674
	}
}

2675 2676
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2677
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2678 2679
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2680
{
2681
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2682
	int level1 = 0, level2 = 0;
2683

2684 2685 2686 2687 2688
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2689 2690
	}

2691 2692
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2693 2694 2695
			return r2;
		else
			return r1;
2696
	} else if (level1 > level2) {
2697 2698 2699 2700 2701 2702
		return r1;
	} else {
		return r2;
	}
}

2703 2704 2705 2706 2707 2708 2709 2710
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2711
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2712 2713
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2714 2715 2716 2717 2718
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2719
	for_each_pipe(dev_priv, pipe) {
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2763 2764
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2765
{
2766
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2767
	bool changed = false;
2768

2769 2770 2771
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2772
		changed = true;
2773 2774 2775 2776
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2777
		changed = true;
2778 2779 2780 2781
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2782
		changed = true;
2783
	}
2784

2785 2786 2787 2788
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2789

2790 2791 2792 2793 2794 2795 2796
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2797 2798
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2799
{
2800
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2801 2802 2803
	unsigned int dirty;
	uint32_t val;

2804
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2805 2806 2807 2808 2809
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2810
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2811
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2812
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2813
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2814
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2815 2816
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2817
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2818
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2819
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2820
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2821
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2822 2823
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2824
	if (dirty & WM_DIRTY_DDB) {
2825
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2840 2841
	}

2842
	if (dirty & WM_DIRTY_FBC) {
2843 2844 2845 2846 2847 2848 2849 2850
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2851 2852 2853 2854
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

2855
	if (INTEL_GEN(dev_priv) >= 7) {
2856 2857 2858 2859 2860
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2861

2862
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2863
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2864
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2865
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2866
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2867
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2868 2869

	dev_priv->wm.hw = *results;
2870 2871
}

2872
bool ilk_disable_lp_wm(struct drm_device *dev)
2873
{
2874
	struct drm_i915_private *dev_priv = to_i915(dev);
2875 2876 2877 2878

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2879
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2880

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2896 2897 2898
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2899 2900 2901 2902 2903 2904 2905 2906
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2907 2908
}

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2921
intel_enable_sagv(struct drm_i915_private *dev_priv)
2922 2923 2924
{
	int ret;

2925 2926 2927 2928
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2944
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2945
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2946
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2947 2948 2949 2950 2951 2952
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2953
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2954 2955 2956 2957
	return 0;
}

static int
2958
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2972
intel_disable_sagv(struct drm_i915_private *dev_priv)
2973 2974 2975
{
	int ret, result;

2976 2977 2978 2979
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2980 2981 2982 2983 2984 2985
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2986
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2998
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
2999
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3000
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3001 3002 3003 3004 3005 3006
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

3007
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3008 3009 3010
	return 0;
}

3011
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3012 3013 3014 3015
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3016 3017
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3018
	struct intel_crtc_state *cstate;
3019
	enum pipe pipe;
3020
	int level, latency;
3021

3022 3023 3024
	if (!intel_has_sagv(dev_priv))
		return false;

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3038
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3039
	cstate = to_intel_crtc_state(crtc->base.state);
3040

3041
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3042 3043
		return false;

3044
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3045 3046
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3047

3048
		/* Skip this plane if it's not enabled */
3049
		if (!wm->wm[0].plane_en)
3050 3051 3052
			continue;

		/* Find the highest enabled wm level for this plane */
3053
		for (level = ilk_wm_max_level(dev_priv);
3054
		     !wm->wm[level].plane_en; --level)
3055 3056
		     { }

3057 3058 3059
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3060
		    plane->base.state->fb->modifier ==
3061 3062 3063
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3064 3065 3066 3067 3068
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3069
		if (latency < SKL_SAGV_BLOCK_TIME)
3070 3071 3072 3073 3074 3075
			return false;
	}

	return true;
}

3076 3077
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3078
				   const struct intel_crtc_state *cstate,
3079 3080
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3081
{
3082 3083 3084
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3085
	struct drm_crtc *for_crtc = cstate->base.crtc;
3086 3087
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3088

3089
	if (WARN_ON(!state) || !cstate->base.active) {
3090 3091
		alloc->start = 0;
		alloc->end = 0;
3092
		*num_active = hweight32(dev_priv->active_crtcs);
3093 3094 3095
		return;
	}

3096 3097 3098 3099 3100
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3101 3102
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3103 3104 3105

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3106
	/*
3107 3108 3109 3110 3111 3112
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3113
	 */
3114
	if (!intel_state->active_pipe_changes) {
3115 3116 3117 3118 3119
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3120
		return;
3121
	}
3122 3123 3124 3125 3126 3127

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3128 3129
}

3130
static unsigned int skl_cursor_allocation(int num_active)
3131
{
3132
	if (num_active == 1)
3133 3134 3135 3136 3137
		return 32;

	return 8;
}

3138 3139 3140 3141
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3142 3143
	if (entry->end)
		entry->end += 1;
3144 3145
}

3146 3147
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3148
{
3149
	struct intel_crtc *crtc;
3150

3151 3152
	memset(ddb, 0, sizeof(*ddb));

3153
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3154
		enum intel_display_power_domain power_domain;
3155 3156
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3157 3158 3159

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3160 3161
			continue;

3162 3163 3164 3165 3166 3167 3168
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3169

3170 3171
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3172 3173

		intel_display_power_put(dev_priv, power_domain);
3174 3175 3176
	}
}

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3199
	if (WARN_ON(!pstate->base.visible))
3200 3201 3202
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3203 3204 3205 3206
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3207
	if (drm_rotation_90_or_270(pstate->base.rotation))
3208 3209 3210 3211 3212 3213 3214 3215 3216
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3217
static unsigned int
3218 3219 3220
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3221
{
3222
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3223
	struct drm_framebuffer *fb = pstate->fb;
3224
	uint32_t down_scale_amount, data_rate;
3225
	uint32_t width = 0, height = 0;
3226 3227
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3228
	if (!intel_pstate->base.visible)
3229 3230 3231 3232 3233
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3234

3235 3236
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3237

3238
	if (drm_rotation_90_or_270(pstate->rotation))
3239
		swap(width, height);
3240 3241

	/* for planar format */
3242
	if (format == DRM_FORMAT_NV12) {
3243
		if (y)  /* y-plane data rate */
3244
			data_rate = width * height *
3245
				drm_format_plane_cpp(format, 0);
3246
		else    /* uv-plane data rate */
3247
			data_rate = (width / 2) * (height / 2) *
3248
				drm_format_plane_cpp(format, 1);
3249 3250 3251
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3252 3253
	}

3254 3255 3256
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3257 3258 3259 3260 3261 3262 3263 3264
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3265 3266 3267
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3268
{
3269 3270
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3271 3272
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3273
	unsigned int total_data_rate = 0;
3274 3275 3276

	if (WARN_ON(!state))
		return 0;
3277

3278
	/* Calculate and cache data rate for each plane */
3279
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3280 3281
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3282 3283 3284 3285

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3286
		plane_data_rate[plane_id] = rate;
3287 3288

		total_data_rate += rate;
3289 3290 3291 3292

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3293
		plane_y_data_rate[plane_id] = rate;
3294

3295
		total_data_rate += rate;
3296 3297 3298 3299 3300
	}

	return total_data_rate;
}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3319 3320
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3321 3322
		return 8;

3323 3324
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3325

3326
	if (drm_rotation_90_or_270(pstate->rotation))
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3340
	if (drm_rotation_90_or_270(pstate->rotation)) {
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3364 3365 3366 3367 3368 3369 3370 3371
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3372
		enum plane_id plane_id = to_intel_plane(plane)->id;
3373

3374
		if (plane_id == PLANE_CURSOR)
3375 3376 3377 3378 3379
			continue;

		if (!pstate->visible)
			continue;

3380 3381
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3382 3383 3384 3385 3386
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3387
static int
3388
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3389 3390
		      struct skl_ddb_allocation *ddb /* out */)
{
3391
	struct drm_atomic_state *state = cstate->base.state;
3392
	struct drm_crtc *crtc = cstate->base.crtc;
3393 3394 3395
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3396
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3397
	uint16_t alloc_size, start;
3398 3399
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3400
	unsigned int total_data_rate;
3401
	enum plane_id plane_id;
3402
	int num_active;
3403 3404
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3405

3406 3407 3408 3409
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3410 3411 3412
	if (WARN_ON(!state))
		return 0;

3413
	if (!cstate->base.active) {
3414
		alloc->start = alloc->end = 0;
3415 3416 3417
		return 0;
	}

3418
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3419
	alloc_size = skl_ddb_entry_size(alloc);
3420 3421
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3422
		return 0;
3423 3424
	}

3425
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3426

3427 3428 3429 3430 3431
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3432

3433 3434 3435
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3436 3437
	}

3438 3439 3440
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3441
	/*
3442 3443
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3444 3445 3446
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3447 3448 3449
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3450
	if (total_data_rate == 0)
3451
		return 0;
3452

3453
	start = alloc->start;
3454
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3455 3456
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3457

3458
		if (plane_id == PLANE_CURSOR)
3459 3460
			continue;

3461
		data_rate = plane_data_rate[plane_id];
3462 3463

		/*
3464
		 * allocation for (packed formats) or (uv-plane part of planar format):
3465 3466 3467
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3468
		plane_blocks = minimum[plane_id];
3469 3470
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3471

3472 3473
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3474 3475
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3476
		}
3477 3478

		start += plane_blocks;
3479 3480 3481 3482

		/*
		 * allocation for y_plane part of planar format:
		 */
3483
		y_data_rate = plane_y_data_rate[plane_id];
3484

3485
		y_plane_blocks = y_minimum[plane_id];
3486 3487
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3488

3489
		if (y_data_rate) {
3490 3491
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3492
		}
3493 3494

		start += y_plane_blocks;
3495 3496
	}

3497
	return 0;
3498 3499
}

3500 3501
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3502
 * for the read latency) and cpp should always be <= 8, so that
3503 3504 3505
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3506
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3507 3508 3509 3510 3511 3512
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3513
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3514 3515 3516 3517 3518 3519
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3520
			       uint32_t latency, uint32_t plane_blocks_per_line)
3521
{
3522 3523
	uint32_t ret;
	uint32_t wm_intermediate_val;
3524 3525 3526 3527 3528 3529

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3530
				plane_blocks_per_line;
3531 3532 3533 3534

	return ret;
}

3535 3536 3537 3538 3539 3540 3541 3542
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3543
	if (WARN_ON(!pstate->base.visible))
3544 3545 3546 3547 3548 3549
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3550
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3551 3552 3553 3554 3555 3556 3557 3558
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3559 3560 3561 3562 3563 3564 3565 3566
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3567
{
3568 3569
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3570 3571 3572 3573 3574
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3575
	uint8_t cpp;
3576
	uint32_t width = 0, height = 0;
3577
	uint32_t plane_pixel_rate;
3578
	uint32_t y_tile_minimum, y_min_scanlines;
3579 3580 3581
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3582

3583
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3584 3585 3586
		*enabled = false;
		return 0;
	}
3587

V
Ville Syrjälä 已提交
3588
	if (apply_memory_bw_wa && fb->modifier == I915_FORMAT_MOD_X_TILED)
3589 3590
		latency += 15;

3591 3592
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3593

3594
	if (drm_rotation_90_or_270(pstate->rotation))
3595 3596
		swap(width, height);

3597
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3598 3599
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3600
	if (drm_rotation_90_or_270(pstate->rotation)) {
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3615 3616 3617
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3618 3619 3620 3621 3622
		}
	} else {
		y_min_scanlines = 4;
	}

3623 3624 3625
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3626
	plane_bytes_per_line = width * cpp;
V
Ville Syrjälä 已提交
3627 3628
	if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3629 3630 3631
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
V
Ville Syrjälä 已提交
3632
	} else if (fb->modifier == DRM_FORMAT_MOD_NONE) {
3633 3634 3635 3636 3637 3638
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3639 3640
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3641
				 cstate->base.adjusted_mode.crtc_htotal,
3642
				 latency,
3643
				 plane_blocks_per_line);
3644

3645 3646
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;

V
Ville Syrjälä 已提交
3647 3648
	if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3649 3650
		selected_result = max(method2, y_tile_minimum);
	} else {
3651 3652 3653 3654
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3655 3656 3657 3658
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3659

3660 3661
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3662

3663
	if (level >= 1 && level <= 7) {
V
Ville Syrjälä 已提交
3664 3665
		if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3666
			res_blocks += y_tile_minimum;
3667
			res_lines += y_min_scanlines;
3668
		} else {
3669
			res_blocks++;
3670
		}
3671
	}
3672

3673 3674
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3675 3676 3677 3678 3679 3680 3681 3682

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3683 3684
			struct drm_plane *plane = pstate->plane;

3685
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3686 3687
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3688 3689 3690
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3691
	}
3692 3693 3694

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3695
	*enabled = true;
3696

3697
	return 0;
3698 3699
}

3700 3701 3702 3703
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3704
		     struct intel_plane *intel_plane,
3705 3706
		     int level,
		     struct skl_wm_level *result)
3707
{
3708
	struct drm_atomic_state *state = cstate->base.state;
3709
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3710 3711
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3712
	uint16_t ddb_blocks;
3713
	enum pipe pipe = intel_crtc->pipe;
3714
	int ret;
L
Lyude 已提交
3715 3716 3717 3718 3719

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3720

3721
	/*
L
Lyude 已提交
3722 3723 3724 3725 3726 3727 3728 3729 3730
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3731
	 */
L
Lyude 已提交
3732 3733
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3734

L
Lyude 已提交
3735
	WARN_ON(!intel_pstate->base.fb);
3736

3737
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3738

L
Lyude 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3749 3750

	return 0;
3751 3752
}

3753
static uint32_t
3754
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3755
{
3756 3757
	uint32_t pixel_rate;

3758
	if (!cstate->base.active)
3759 3760
		return 0;

3761 3762 3763
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3764
		return 0;
3765

3766
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3767
			    pixel_rate);
3768 3769
}

3770
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3771
				      struct skl_wm_level *trans_wm /* out */)
3772
{
3773
	if (!cstate->base.active)
3774
		return;
3775 3776

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3777
	trans_wm->plane_en = false;
3778 3779
}

3780 3781 3782
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3783
{
3784
	struct drm_device *dev = cstate->base.crtc->dev;
3785
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3786 3787
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3788
	int level, max_level = ilk_wm_max_level(dev_priv);
3789
	int ret;
3790

L
Lyude 已提交
3791 3792 3793 3794 3795 3796 3797 3798 3799
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3800
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3810
	}
3811
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3812

3813
	return 0;
3814 3815
}

3816 3817
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3818 3819 3820 3821 3822 3823 3824 3825
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3841 3842 3843
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
3844
			       enum plane_id plane_id)
3845 3846 3847 3848
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3849
	int level, max_level = ilk_wm_max_level(dev_priv);
3850 3851 3852
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3853
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
3854
				   &wm->wm[level]);
3855
	}
3856
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
3857
			   &wm->trans_wm);
3858

3859 3860 3861 3862
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
3863 3864
}

3865 3866 3867
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
3868 3869 3870 3871
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3872
	int level, max_level = ilk_wm_max_level(dev_priv);
3873 3874 3875
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3876 3877
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3878
	}
3879
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3880

3881
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3882
			    &ddb->plane[pipe][PLANE_CURSOR]);
3883 3884
}

3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3899 3900
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3901
{
3902
	return a->start < b->end && b->start < a->end;
3903 3904
}

3905 3906 3907
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
3908
{
3909
	int i;
3910

3911 3912 3913
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
3914
			return true;
3915

3916
	return false;
3917 3918
}

3919
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3920
			      const struct skl_pipe_wm *old_pipe_wm,
3921
			      struct skl_pipe_wm *pipe_wm, /* out */
3922
			      struct skl_ddb_allocation *ddb, /* out */
3923
			      bool *changed /* out */)
3924
{
3925
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3926
	int ret;
3927

3928 3929 3930
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3931

3932
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3933 3934 3935
		*changed = false;
	else
		*changed = true;
3936

3937
	return 0;
3938 3939
}

3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3953
static int
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

3970
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3971
		enum plane_id plane_id = to_intel_plane(plane)->id;
3972

3973 3974 3975 3976
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

3987 3988 3989 3990 3991 3992 3993
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3994
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3995
	uint32_t realloc_pipes = pipes_modified(state);
3996 3997 3998 3999 4000 4001 4002 4003
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4004 4005 4006 4007 4008 4009
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4010 4011
		intel_state->active_pipe_changes = ~0;

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4035
	if (intel_state->active_pipe_changes) {
4036
		realloc_pipes = ~0;
4037 4038
		intel_state->wm_results.dirty_pipes = ~0;
	}
4039

4040 4041 4042 4043 4044 4045
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4046 4047 4048 4049 4050 4051 4052
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4053
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4054 4055
		if (ret)
			return ret;
4056

4057
		ret = skl_ddb_add_affected_planes(cstate);
4058 4059
		if (ret)
			return ret;
4060 4061 4062 4063 4064
	}

	return 0;
}

4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4088
	int i;
4089 4090

	for_each_crtc_in_state(state, crtc, cstate, i) {
4091 4092
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4093

4094
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4095
			enum plane_id plane_id = intel_plane->id;
4096 4097
			const struct skl_ddb_entry *old, *new;

4098 4099
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4100 4101 4102 4103

			if (skl_ddb_entry_equal(old, new))
				continue;

4104 4105 4106 4107 4108
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4109 4110 4111 4112
		}
	}
}

4113 4114 4115 4116 4117
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4118 4119 4120
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4121
	bool changed = false;
4122
	int ret, i;
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4137 4138 4139
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4140 4141 4142 4143
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4157 4158
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4159 4160

		pipe_wm = &intel_cstate->wm.skl.optimal;
4161 4162
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4176 4177
	skl_print_wm_changes(state);

4178 4179 4180
	return 0;
}

4181 4182 4183 4184 4185 4186
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4187
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4188
	enum pipe pipe = crtc->pipe;
4189
	enum plane_id plane_id;
4190 4191 4192

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4193 4194

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4195

4196 4197 4198 4199 4200 4201 4202 4203
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4204 4205
}

4206 4207
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4208
{
4209
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4210
	struct drm_device *dev = intel_crtc->base.dev;
4211
	struct drm_i915_private *dev_priv = to_i915(dev);
4212
	struct skl_wm_values *results = &state->wm_results;
4213
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4214
	enum pipe pipe = intel_crtc->pipe;
4215

4216
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4217 4218
		return;

4219
	mutex_lock(&dev_priv->wm.wm_mutex);
4220

4221 4222
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4223 4224

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4225 4226

	mutex_unlock(&dev_priv->wm.wm_mutex);
4227 4228
}

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4247
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4248
{
4249
	struct drm_device *dev = &dev_priv->drm;
4250
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4251
	struct ilk_wm_maximums max;
4252
	struct intel_wm_config config = {};
4253
	struct ilk_wm_values results = {};
4254
	enum intel_ddb_partitioning partitioning;
4255

4256 4257 4258 4259
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4260 4261

	/* 5/6 split only in single pipe config on IVB+ */
4262
	if (INTEL_GEN(dev_priv) >= 7 &&
4263 4264 4265
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4266

4267
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4268
	} else {
4269
		best_lp_wm = &lp_wm_1_2;
4270 4271
	}

4272
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4273
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4274

4275
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4276

4277
	ilk_write_wm_values(dev_priv, &results);
4278 4279
}

4280 4281
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4282
{
4283 4284
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4285

4286
	mutex_lock(&dev_priv->wm.wm_mutex);
4287
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4288 4289 4290
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4291

4292 4293
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4294 4295 4296
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4297

4298 4299
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4300
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4301 4302 4303
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4304 4305
}

4306 4307
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4308
{
4309 4310 4311 4312
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4313 4314
}

4315 4316
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4317
{
4318
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4319 4320
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4321 4322
	int level, max_level;
	enum plane_id plane_id;
4323
	uint32_t val;
4324

4325
	max_level = ilk_wm_max_level(dev_priv);
4326

4327 4328
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4329

4330
		for (level = 0; level <= max_level; level++) {
4331 4332
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4333 4334
			else
				val = I915_READ(CUR_WM(pipe, level));
4335

4336
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4337 4338
		}

4339 4340
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4341 4342 4343 4344
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4345 4346
	}

4347 4348
	if (!intel_crtc->active)
		return;
4349

4350
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4351 4352 4353 4354
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4355
	struct drm_i915_private *dev_priv = to_i915(dev);
4356
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4357
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4358
	struct drm_crtc *crtc;
4359 4360
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4361

4362
	skl_ddb_get_hw_state(dev_priv, ddb);
4363 4364 4365 4366 4367 4368
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4369
		if (intel_crtc->active)
4370 4371
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4372

4373 4374 4375 4376 4377 4378 4379
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4380 4381
}

4382 4383 4384
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4385
	struct drm_i915_private *dev_priv = to_i915(dev);
4386
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4387
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4388
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4389
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4390
	enum pipe pipe = intel_crtc->pipe;
4391
	static const i915_reg_t wm0_pipe_reg[] = {
4392 4393 4394 4395 4396 4397
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4398
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4399
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4400

4401 4402
	memset(active, 0, sizeof(*active));

4403
	active->pipe_enabled = intel_crtc->active;
4404 4405

	if (active->pipe_enabled) {
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4420
		int level, max_level = ilk_wm_max_level(dev_priv);
4421 4422 4423 4424 4425 4426 4427 4428 4429

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4430 4431

	intel_crtc->wm.active.ilk = *active;
4432 4433
}

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

4448
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
4449
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4450
		wm->ddl[pipe].plane[PLANE_CURSOR] =
4451
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4452
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
4453
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4454
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
4455 4456 4457 4458 4459
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
4460 4461 4462
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4463 4464

	tmp = I915_READ(DSPFW2);
4465 4466 4467
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4468 4469 4470 4471 4472 4473

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
4474 4475
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4476 4477

		tmp = I915_READ(DSPFW8_CHV);
4478 4479
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4480 4481

		tmp = I915_READ(DSPFW9_CHV);
4482 4483
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4484 4485 4486

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4487 4488 4489 4490 4491 4492 4493 4494 4495
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4496 4497
	} else {
		tmp = I915_READ(DSPFW7);
4498 4499
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4500 4501 4502

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4503 4504 4505 4506 4507 4508
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

4525 4526
	for_each_intel_plane(dev, plane)
		plane->wm.fifo_size = vlv_get_fifo_size(plane);
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4538 4539 4540 4541 4542 4543 4544 4545 4546
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4547
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4561 4562 4563 4564 4565 4566

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4567 4568 4569 4570 4571
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
4572 4573 4574 4575 4576

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4577 4578
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4579
	struct drm_i915_private *dev_priv = to_i915(dev);
4580
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4581 4582
	struct drm_crtc *crtc;

4583
	for_each_crtc(dev, crtc)
4584 4585 4586 4587 4588 4589 4590
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4591
	if (INTEL_GEN(dev_priv) >= 7) {
4592 4593 4594
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4595

4596
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4597 4598
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4599
	else if (IS_IVYBRIDGE(dev_priv))
4600 4601
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4602 4603 4604 4605 4606

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4639
void intel_update_watermarks(struct intel_crtc *crtc)
4640
{
4641
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4642 4643

	if (dev_priv->display.update_wm)
4644
		dev_priv->display.update_wm(crtc);
4645 4646
}

4647
/*
4648 4649 4650 4651 4652 4653 4654 4655
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4656
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4657 4658 4659
{
	u16 rgvswctl;

4660 4661
	assert_spin_locked(&mchdev_lock);

4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4679
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4680
{
4681
	u32 rgvmodectl;
4682 4683
	u8 fmax, fmin, fstart, vstart;

4684 4685
	spin_lock_irq(&mchdev_lock);

4686 4687
	rgvmodectl = I915_READ(MEMMODECTL);

4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4708
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4709 4710
		PXVFREQ_PX_SHIFT;

4711 4712
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4713

4714 4715 4716
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4733
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4734
		DRM_ERROR("stuck trying to change perf mode\n");
4735
	mdelay(1);
4736

4737
	ironlake_set_drps(dev_priv, fstart);
4738

4739 4740
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4741
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4742
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4743
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4744 4745

	spin_unlock_irq(&mchdev_lock);
4746 4747
}

4748
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4749
{
4750 4751 4752 4753 4754
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4755 4756 4757 4758 4759 4760 4761 4762 4763

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4764
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4765
	mdelay(1);
4766 4767
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4768
	mdelay(1);
4769

4770
	spin_unlock_irq(&mchdev_lock);
4771 4772
}

4773 4774 4775 4776 4777
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4778
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4779
{
4780
	u32 limits;
4781

4782 4783 4784 4785 4786 4787
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4788
	if (IS_GEN9(dev_priv)) {
4789 4790 4791 4792 4793 4794 4795 4796
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4797 4798 4799 4800

	return limits;
}

4801 4802 4803
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4804 4805
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4806 4807 4808 4809

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4810 4811
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4812 4813 4814 4815
			new_power = BETWEEN;
		break;

	case BETWEEN:
4816 4817
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4818
			new_power = LOW_POWER;
4819 4820
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4821 4822 4823 4824
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4825 4826
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4827 4828 4829 4830
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4831
	if (val <= dev_priv->rps.min_freq_softlimit)
4832
		new_power = LOW_POWER;
4833
	if (val >= dev_priv->rps.max_freq_softlimit)
4834 4835 4836 4837 4838 4839 4840 4841
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4842 4843
		ei_up = 16000;
		threshold_up = 95;
4844 4845

		/* Downclock if less than 85% busy over 32ms */
4846 4847
		ei_down = 32000;
		threshold_down = 85;
4848 4849 4850 4851
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4852 4853
		ei_up = 13000;
		threshold_up = 90;
4854 4855

		/* Downclock if less than 75% busy over 32ms */
4856 4857
		ei_down = 32000;
		threshold_down = 75;
4858 4859 4860 4861
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4862 4863
		ei_up = 10000;
		threshold_up = 85;
4864 4865

		/* Downclock if less than 60% busy over 32ms */
4866 4867
		ei_down = 32000;
		threshold_down = 60;
4868 4869 4870
		break;
	}

4871
	I915_WRITE(GEN6_RP_UP_EI,
4872
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4873
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4874 4875
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4876 4877

	I915_WRITE(GEN6_RP_DOWN_EI,
4878
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4879
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4890

4891
	dev_priv->rps.power = new_power;
4892 4893
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4894 4895 4896
	dev_priv->rps.last_adj = 0;
}

4897 4898 4899 4900 4901
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4902
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4903
	if (val < dev_priv->rps.max_freq_softlimit)
4904
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4905

4906 4907
	mask &= dev_priv->pm_rps_events;

4908
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4909 4910
}

4911 4912 4913
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4914
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4915
{
4916
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4917
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4918 4919
		return;

4920
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4921 4922
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4923

C
Chris Wilson 已提交
4924 4925 4926 4927 4928
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4929

4930
		if (IS_GEN9(dev_priv))
4931 4932
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4933
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4934 4935 4936 4937 4938 4939 4940
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4941
	}
4942 4943 4944 4945

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4946
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4947
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4948

4949 4950
	POSTING_READ(GEN6_RPNSWREQ);

4951
	dev_priv->rps.cur_freq = val;
4952
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4953 4954
}

4955
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4956 4957
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4958 4959
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4960

4961
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4962 4963 4964
		      "Odd GPU freq value\n"))
		val &= ~1;

4965 4966
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4967
	if (val != dev_priv->rps.cur_freq) {
4968
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4969 4970 4971
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4972 4973 4974 4975 4976

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4977
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4978 4979
 *
 * * If Gfx is Idle, then
4980 4981 4982
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4983 4984 4985
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4986
	u32 val = dev_priv->rps.idle_freq;
4987

4988
	if (dev_priv->rps.cur_freq <= val)
4989 4990
		return;

4991 4992 4993
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4994
	valleyview_set_rps(dev_priv, val);
4995
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4996 4997
}

4998 4999 5000 5001 5002 5003 5004 5005
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5006

5007 5008
		gen6_enable_rps_interrupts(dev_priv);

5009 5010 5011 5012 5013
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5014 5015 5016 5017
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5018 5019
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5020 5021 5022 5023 5024 5025 5026
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5027
	mutex_lock(&dev_priv->rps.hw_lock);
5028
	if (dev_priv->rps.enabled) {
5029
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5030
			vlv_set_rps_idle(dev_priv);
5031
		else
5032
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5033
		dev_priv->rps.last_adj = 0;
5034 5035
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5036
	}
5037
	mutex_unlock(&dev_priv->rps.hw_lock);
5038

5039
	spin_lock(&dev_priv->rps.client_lock);
5040 5041
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5042
	spin_unlock(&dev_priv->rps.client_lock);
5043 5044
}

5045
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5046 5047
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5048
{
5049 5050 5051
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5052
	if (!(dev_priv->gt.awake &&
5053
	      dev_priv->rps.enabled &&
5054
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5055
		return;
5056

5057 5058 5059
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5060
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5061 5062
		rps = NULL;

5063 5064 5065 5066 5067
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5068
			schedule_work(&dev_priv->rps.work);
5069 5070
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5071

5072 5073 5074
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5075 5076
		} else
			dev_priv->rps.boosts++;
5077
	}
5078
	spin_unlock(&dev_priv->rps.client_lock);
5079 5080
}

5081
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5082
{
5083 5084
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5085
	else
5086
		gen6_set_rps(dev_priv, val);
5087 5088
}

5089
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5090 5091
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5092
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5093 5094
}

5095
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5096 5097 5098 5099
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5100
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5101 5102
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5103
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5104
	I915_WRITE(GEN6_RP_CONTROL, 0);
5105 5106
}

5107
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5108 5109 5110 5111
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5112
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5113
{
5114 5115
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5116
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5117

5118
	I915_WRITE(GEN6_RC_CONTROL, 0);
5119

5120
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5121 5122
}

5123
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5124
{
5125
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5126 5127 5128 5129 5130
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5131
	if (HAS_RC6p(dev_priv))
5132 5133 5134 5135 5136
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5137 5138

	else
5139 5140
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5141 5142
}

5143
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5144
{
5145
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5146 5147
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5159 5160

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5161
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5162 5163 5164 5165 5166 5167 5168 5169
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5170 5171 5172
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5173
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5174 5175 5176 5177 5178 5179 5180
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5181
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5182 5183 5184
		enable_rc6 = false;
	}

5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5199 5200 5201 5202 5203 5204
		enable_rc6 = false;
	}

	return enable_rc6;
}

5205
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5206
{
5207
	/* No RC6 before Ironlake and code is gone for ilk. */
5208
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5209 5210
		return 0;

5211 5212 5213
	if (!enable_rc6)
		return 0;

5214
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5215 5216 5217 5218
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5219
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5220 5221 5222
	if (enable_rc6 >= 0) {
		int mask;

5223
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5224 5225 5226 5227 5228 5229
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5230 5231 5232
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5233 5234 5235

		return enable_rc6 & mask;
	}
5236

5237
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5238
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5239 5240

	return INTEL_RC6_ENABLE;
5241 5242
}

5243
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5244 5245
{
	/* All of these values are in units of 50MHz */
5246

5247
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5248
	if (IS_GEN9_LP(dev_priv)) {
5249
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5250 5251 5252 5253
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5254
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5255 5256 5257 5258
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5259
	/* hw_max = RP0 until we check for overclocking */
5260
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5261

5262
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5263 5264
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5265 5266 5267 5268 5269
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5270
			dev_priv->rps.efficient_freq =
5271 5272 5273 5274
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5275 5276
	}

5277
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5278
		/* Store the frequency values in 16.66 MHZ units, which is
5279 5280
		 * the natural hardware unit for SKL
		 */
5281 5282 5283 5284 5285 5286
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5287 5288
}

5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5301
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5302
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5303 5304 5305
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5306
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5307
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5308 5309 5310 5311 5312 5313 5314 5315 5316
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5317
		gen9_disable_rps(dev_priv);
5318 5319 5320 5321
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5322 5323 5324 5325 5326 5327 5328 5329
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5330 5331
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5332 5333 5334
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5335
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5336 5337 5338 5339

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5340
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5341
{
5342
	struct intel_engine_cs *engine;
5343
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5344 5345 5346 5347 5348 5349 5350
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5351
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5352 5353 5354 5355 5356

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5357 5358

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5359
	if (IS_SKYLAKE(dev_priv))
5360 5361 5362
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5363 5364
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5365
	for_each_engine(engine, dev_priv, id)
5366
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5367

5368
	if (HAS_GUC(dev_priv))
5369 5370
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5371 5372
	I915_WRITE(GEN6_RC_SLEEP, 0);

5373 5374 5375 5376
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5377
	/* 3a: Enable RC6 */
5378
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5379
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5380
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5381
	/* WaRsUseTimeoutMode:bxt */
5382
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5383
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5384 5385 5386
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5387 5388
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5389 5390 5391
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5392
	}
Z
Zhe Wang 已提交
5393

5394 5395
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5396
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5397
	 */
5398
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5399 5400 5401 5402
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5403

5404
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5405 5406
}

5407
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5408
{
5409
	struct intel_engine_cs *engine;
5410
	enum intel_engine_id id;
5411
	uint32_t rc6_mask = 0;
5412 5413 5414 5415 5416 5417

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5418
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5419 5420 5421 5422 5423 5424 5425 5426

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5427
	for_each_engine(engine, dev_priv, id)
5428
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5429
	I915_WRITE(GEN6_RC_SLEEP, 0);
5430
	if (IS_BROADWELL(dev_priv))
5431 5432 5433
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5434 5435

	/* 3: Enable RC6 */
5436
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5437
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5438 5439
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5440 5441 5442 5443 5444 5445 5446
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5447 5448

	/* 4 Program defaults and thresholds for RPS*/
5449 5450 5451 5452
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5467 5468

	/* 5: Enable RPS */
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5479
	reset_rps(dev_priv, gen6_set_rps);
5480

5481
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5482 5483
}

5484
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5485
{
5486
	struct intel_engine_cs *engine;
5487
	enum intel_engine_id id;
5488
	u32 rc6vids, rc6_mask = 0;
5489 5490
	u32 gtfifodbg;
	int rc6_mode;
5491
	int ret;
5492

5493
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5494

5495 5496 5497 5498 5499 5500 5501 5502 5503
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5504 5505
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5506 5507 5508 5509
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5510
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5521
	for_each_engine(engine, dev_priv, id)
5522
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5523 5524 5525

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5526
	if (IS_IVYBRIDGE(dev_priv))
5527 5528 5529
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5530
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5531 5532
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5533
	/* Check if we are enabling RC6 */
5534
	rc6_mode = intel_enable_rc6();
5535 5536 5537
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5538
	/* We don't use those on Haswell */
5539
	if (!IS_HASWELL(dev_priv)) {
5540 5541
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5542

5543 5544 5545
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5546

5547
	intel_print_rc6_info(dev_priv, rc6_mask);
5548 5549 5550 5551 5552 5553

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5554 5555
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5556 5557
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5558
	reset_rps(dev_priv, gen6_set_rps);
5559

5560 5561
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5562
	if (IS_GEN6(dev_priv) && ret) {
5563
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5564
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5565 5566 5567 5568 5569 5570 5571 5572 5573
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5574
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5575 5576
}

5577
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5578 5579
{
	int min_freq = 15;
5580 5581
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5582
	unsigned int max_gpu_freq, min_gpu_freq;
5583
	int scaling_factor = 180;
5584
	struct cpufreq_policy *policy;
5585

5586
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5587

5588 5589 5590 5591 5592 5593 5594 5595 5596
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5597
		max_ia_freq = tsc_khz;
5598
	}
5599 5600 5601 5602

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5603
	min_ring_freq = I915_READ(DCLK) & 0xf;
5604 5605
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5606

5607
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5608 5609 5610 5611 5612 5613 5614 5615
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5616 5617 5618 5619 5620
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5621 5622
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5623 5624
		unsigned int ia_freq = 0, ring_freq = 0;

5625
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5626 5627 5628 5629 5630
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5631
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5632 5633
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5634
		} else if (IS_HASWELL(dev_priv)) {
5635
			ring_freq = mult_frac(gpu_freq, 5, 4);
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5652

B
Ben Widawsky 已提交
5653 5654
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5655 5656 5657
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5658 5659 5660
	}
}

5661
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5662 5663 5664
{
	u32 val, rp0;

5665
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5666

5667
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5682
	}
5683 5684 5685

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5699 5700 5701 5702
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5703 5704 5705
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5706 5707 5708
	return rp1;
}

5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5720
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5721 5722 5723
{
	u32 val, rp0;

5724
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5737
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5738
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5739
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5740 5741 5742 5743 5744
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5745
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5746
{
5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5758 5759
}

5760 5761 5762 5763 5764 5765 5766 5767 5768
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5769 5770 5771 5772 5773 5774 5775 5776 5777

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5778
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5779
{
5780
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5781
	unsigned long pctx_paddr, paddr;
5782 5783 5784 5785 5786
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5787
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5788
		paddr = (dev_priv->mm.stolen_base +
5789
			 (ggtt->stolen_size - pctx_size));
5790 5791 5792 5793

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5794 5795

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5796 5797
}

5798
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5811
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
5812
								      pcbr_offset,
5813
								      I915_GTT_OFFSET_NONE,
5814 5815 5816 5817
								      pctx_size);
		goto out;
	}

5818 5819
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5820 5821 5822 5823 5824 5825 5826 5827
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5828
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
5829 5830
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5831
		goto out;
5832 5833 5834 5835 5836 5837
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5838
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5839 5840 5841
	dev_priv->vlv_pctx = pctx;
}

5842
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5843 5844 5845 5846
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5847
	i915_gem_object_put(dev_priv->vlv_pctx);
5848 5849 5850
	dev_priv->vlv_pctx = NULL;
}

5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5862
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5863
{
5864
	u32 val;
5865

5866
	valleyview_setup_pctx(dev_priv);
5867

5868 5869
	vlv_init_gpll_ref_freq(dev_priv);

5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5883
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5884

5885 5886 5887
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5888
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5889 5890 5891 5892
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5893
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5894 5895
			 dev_priv->rps.efficient_freq);

5896 5897
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5898
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5899 5900
			 dev_priv->rps.rp1_freq);

5901 5902
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5903
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5904 5905 5906
			 dev_priv->rps.min_freq);
}

5907
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5908
{
5909
	u32 val;
5910

5911
	cherryview_setup_pctx(dev_priv);
5912

5913 5914
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5915
	mutex_lock(&dev_priv->sb_lock);
5916
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5917
	mutex_unlock(&dev_priv->sb_lock);
5918

5919 5920 5921 5922
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5923
	default:
5924 5925 5926
		dev_priv->mem_freq = 1600;
		break;
	}
5927
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5928

5929 5930 5931
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5932
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5933 5934 5935 5936
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5937
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5938 5939
			 dev_priv->rps.efficient_freq);

5940 5941
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5942
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5943 5944
			 dev_priv->rps.rp1_freq);

5945 5946
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5947
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5948
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5949 5950
			 dev_priv->rps.min_freq);

5951 5952 5953 5954 5955
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5956 5957
}

5958
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5959
{
5960
	valleyview_cleanup_pctx(dev_priv);
5961 5962
}

5963
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5964
{
5965
	struct intel_engine_cs *engine;
5966
	enum intel_engine_id id;
5967
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5968 5969 5970

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5971 5972
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5983
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5984

5985 5986 5987
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5988 5989 5990 5991 5992
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5993
	for_each_engine(engine, dev_priv, id)
5994
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5995 5996
	I915_WRITE(GEN6_RC_SLEEP, 0);

5997 5998
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6010 6011
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6012
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6013 6014 6015

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6016
	/* 4 Program defaults and thresholds for RPS*/
6017
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6028
		   GEN6_RP_MEDIA_IS_GFX |
6029 6030 6031 6032
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6033 6034 6035 6036 6037 6038
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6039 6040
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6041 6042 6043
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6044
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6045 6046
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6047
	reset_rps(dev_priv, valleyview_set_rps);
6048

6049
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6050 6051
}

6052
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6053
{
6054
	struct intel_engine_cs *engine;
6055
	enum intel_engine_id id;
6056
	u32 gtfifodbg, val, rc6_mode = 0;
6057 6058 6059

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6060 6061
	valleyview_check_pctx(dev_priv);

6062 6063
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6064 6065
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6066 6067 6068
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6069
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6070
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6071

6072 6073 6074
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6075
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6095
	for_each_engine(engine, dev_priv, id)
6096
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6097

6098
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6099 6100

	/* allows RC6 residency counter to work */
6101
	I915_WRITE(VLV_COUNTER_CONTROL,
6102 6103
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6104 6105
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6106

6107
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6108
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6109

6110
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6111

6112
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6113

D
Deepak S 已提交
6114 6115 6116 6117 6118 6119
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6120
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6121

6122 6123 6124
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6125
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6126 6127
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6128
	reset_rps(dev_priv, valleyview_set_rps);
6129

6130
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6131 6132
}

6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6162
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6163 6164 6165 6166 6167 6168
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6169 6170
	assert_spin_locked(&mchdev_lock);

6171
	diff1 = now - dev_priv->ips.last_time1;
6172 6173 6174 6175 6176 6177 6178

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6179
		return dev_priv->ips.chipset_power;
6180 6181 6182 6183 6184 6185 6186 6187

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6188 6189
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6190 6191
		diff += total_count;
	} else {
6192
		diff = total_count - dev_priv->ips.last_count1;
6193 6194 6195
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6196 6197
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6208 6209
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6210

6211
	dev_priv->ips.chipset_power = ret;
6212 6213 6214 6215

	return ret;
}

6216 6217 6218 6219
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6220
	if (INTEL_INFO(dev_priv)->gen != 5)
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6259
{
6260 6261 6262
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6263
	if (INTEL_INFO(dev_priv)->is_mobile)
6264 6265 6266
		return vm > 0 ? vm : 0;

	return vd;
6267 6268
}

6269
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6270
{
6271
	u64 now, diff, diffms;
6272 6273
	u32 count;

6274
	assert_spin_locked(&mchdev_lock);
6275

6276 6277 6278
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6279 6280 6281 6282 6283 6284 6285

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6286 6287
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6288 6289
		diff += count;
	} else {
6290
		diff = count - dev_priv->ips.last_count2;
6291 6292
	}

6293 6294
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6295 6296 6297 6298

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6299
	dev_priv->ips.gfx_power = diff;
6300 6301
}

6302 6303
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6304
	if (INTEL_INFO(dev_priv)->gen != 5)
6305 6306
		return;

6307
	spin_lock_irq(&mchdev_lock);
6308 6309 6310

	__i915_update_gfx_val(dev_priv);

6311
	spin_unlock_irq(&mchdev_lock);
6312 6313
}

6314
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6315 6316 6317 6318
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6319 6320
	assert_spin_locked(&mchdev_lock);

6321
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6341
	corr2 = (corr * dev_priv->ips.corr);
6342 6343 6344 6345

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6346
	__i915_update_gfx_val(dev_priv);
6347

6348
	return dev_priv->ips.gfx_power + state2;
6349 6350
}

6351 6352 6353 6354
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6355
	if (INTEL_INFO(dev_priv)->gen != 5)
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6378
	spin_lock_irq(&mchdev_lock);
6379 6380 6381 6382
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6383 6384
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6385 6386 6387 6388

	ret = chipset_val + graphics_val;

out_unlock:
6389
	spin_unlock_irq(&mchdev_lock);
6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6405
	spin_lock_irq(&mchdev_lock);
6406 6407 6408 6409 6410 6411
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6412 6413
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6414 6415

out_unlock:
6416
	spin_unlock_irq(&mchdev_lock);
6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6433
	spin_lock_irq(&mchdev_lock);
6434 6435 6436 6437 6438 6439
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6440 6441
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6442 6443

out_unlock:
6444
	spin_unlock_irq(&mchdev_lock);
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6459
	spin_lock_irq(&mchdev_lock);
6460 6461
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6462
	spin_unlock_irq(&mchdev_lock);
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6479
	spin_lock_irq(&mchdev_lock);
6480 6481 6482 6483 6484 6485
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6486
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6487

6488
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6489 6490 6491
		ret = false;

out_unlock:
6492
	spin_unlock_irq(&mchdev_lock);
6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6520 6521
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6522
	spin_lock_irq(&mchdev_lock);
6523
	i915_mch_dev = dev_priv;
6524
	spin_unlock_irq(&mchdev_lock);
6525 6526 6527 6528 6529 6530

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6531
	spin_lock_irq(&mchdev_lock);
6532
	i915_mch_dev = NULL;
6533
	spin_unlock_irq(&mchdev_lock);
6534
}
6535

6536
static void intel_init_emon(struct drm_i915_private *dev_priv)
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6553
		I915_WRITE(PEW(i), 0);
6554
	for (i = 0; i < 3; i++)
6555
		I915_WRITE(DEW(i), 0);
6556 6557 6558

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6559
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6580
		I915_WRITE(PXW(i), val);
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6596
		I915_WRITE(PXWL(i), 0);
6597 6598 6599 6600 6601 6602

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6603
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6604 6605
}

6606
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6607
{
6608 6609 6610 6611 6612 6613 6614 6615
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6616

6617
	mutex_lock(&dev_priv->drm.struct_mutex);
6618 6619 6620
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6621 6622 6623 6624
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6625
	else if (INTEL_GEN(dev_priv) >= 6)
6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6655 6656 6657
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6658
	mutex_unlock(&dev_priv->rps.hw_lock);
6659
	mutex_unlock(&dev_priv->drm.struct_mutex);
6660 6661

	intel_autoenable_gt_powersave(dev_priv);
6662 6663
}

6664
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6665
{
6666
	if (IS_VALLEYVIEW(dev_priv))
6667
		valleyview_cleanup_gt_powersave(dev_priv);
6668 6669 6670

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6671 6672
}

6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6692 6693 6694 6695
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6696 6697

	gen6_reset_rps_interrupts(dev_priv);
6698 6699
}

6700
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6701
{
6702 6703
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6704

6705
	mutex_lock(&dev_priv->rps.hw_lock);
6706

6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6718
	}
6719 6720 6721

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6722 6723
}

6724
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6725
{
6726 6727 6728
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6729 6730
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6731

6732 6733 6734
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6735

6736
	mutex_lock(&dev_priv->rps.hw_lock);
6737 6738 6739 6740 6741

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6742
	} else if (INTEL_GEN(dev_priv) >= 9) {
6743 6744 6745
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6746
			gen6_update_ring_freq(dev_priv);
6747 6748
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6749
		gen6_update_ring_freq(dev_priv);
6750
	} else if (INTEL_GEN(dev_priv) >= 6) {
6751
		gen6_enable_rps(dev_priv);
6752
		gen6_update_ring_freq(dev_priv);
6753 6754 6755
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6756
	}
6757 6758 6759 6760 6761 6762 6763

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6764
	dev_priv->rps.enabled = true;
6765 6766
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6767

6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6778
	rcs = dev_priv->engine[RCS];
6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6831
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6832 6833 6834 6835 6836 6837 6838 6839 6840
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6841
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6842
{
6843
	enum pipe pipe;
6844

6845
	for_each_pipe(dev_priv, pipe) {
6846 6847 6848
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6849 6850 6851

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6852 6853 6854
	}
}

6855
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6867
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6868
{
6869
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6870

6871 6872 6873 6874
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6875 6876 6877
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6895
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6896 6897 6898
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6899

6900
	ilk_init_lp_watermarks(dev_priv);
6901 6902 6903 6904 6905 6906 6907 6908

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6909
	if (IS_IRONLAKE_M(dev_priv)) {
6910
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6911 6912 6913 6914 6915 6916 6917 6918
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6919 6920
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6921 6922 6923 6924 6925 6926
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6927

6928
	/* WaDisableRenderCachePipelinedFlush:ilk */
6929 6930
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6931

6932 6933 6934
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6935
	g4x_disable_trickle_feed(dev_priv);
6936

6937
	ibx_init_clock_gating(dev_priv);
6938 6939
}

6940
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6941 6942
{
	int pipe;
6943
	uint32_t val;
6944 6945 6946 6947 6948 6949

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6950 6951 6952
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6953 6954
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6955 6956 6957
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6958
	for_each_pipe(dev_priv, pipe) {
6959 6960 6961
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6962
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6963
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6964 6965 6966
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6967 6968
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6969
	/* WADP0ClockGatingDisable */
6970
	for_each_pipe(dev_priv, pipe) {
6971 6972 6973
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6974 6975
}

6976
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6977 6978 6979 6980
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6981 6982 6983
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6984 6985
}

6986
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6987
{
6988
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6989

6990
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6991 6992 6993 6994 6995

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6996
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6997 6998 6999
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7000 7001 7002
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7003 7004 7005
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7006 7007 7008 7009
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7010 7011
	 */
	I915_WRITE(GEN6_GT_MODE,
7012
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7013

7014
	ilk_init_lp_watermarks(dev_priv);
7015 7016

	I915_WRITE(CACHE_MODE_0,
7017
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7033
	 *
7034 7035
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7036 7037 7038 7039 7040
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7041
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7042 7043
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7044

7045 7046 7047 7048 7049 7050 7051 7052
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7053 7054 7055 7056 7057 7058 7059 7060
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7061 7062
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7063 7064 7065 7066 7067 7068 7069
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7070 7071 7072 7073
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7074

7075
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7076

7077
	cpt_init_clock_gating(dev_priv);
7078

7079
	gen6_check_mch_setup(dev_priv);
7080 7081 7082 7083 7084 7085
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7086
	/*
7087
	 * WaVSThreadDispatchOverride:ivb,vlv
7088 7089 7090 7091
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7092 7093 7094 7095 7096 7097 7098 7099
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7100
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7101 7102 7103 7104 7105
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7106
	if (HAS_PCH_LPT_LP(dev_priv))
7107 7108 7109
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7110 7111

	/* WADPOClockGatingDisable:hsw */
7112 7113
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7114
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7115 7116
}

7117
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7118
{
7119
	if (HAS_PCH_LPT_LP(dev_priv)) {
7120 7121 7122 7123 7124 7125 7126
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7150
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7151
{
7152
	gen9_init_clock_gating(dev_priv);
7153 7154 7155 7156 7157

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7158 7159 7160 7161 7162

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7163 7164 7165 7166

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7167 7168
}

7169
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7170
{
7171
	gen9_init_clock_gating(dev_priv);
7172 7173 7174 7175

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7176 7177 7178 7179

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7180 7181
}

7182
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7183
{
7184
	enum pipe pipe;
B
Ben Widawsky 已提交
7185

7186
	ilk_init_lp_watermarks(dev_priv);
7187

7188
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7189
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7190

7191
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7192 7193 7194
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7195
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7196
	for_each_pipe(dev_priv, pipe) {
7197
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7198
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7199
			   BDW_DPRS_MASK_VBLANK_SRD);
7200
	}
7201

7202 7203 7204 7205 7206
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7207

7208 7209
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7210 7211 7212 7213

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7214

7215 7216
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7217

7218 7219 7220 7221 7222 7223 7224
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7225 7226 7227 7228
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7229
	lpt_init_clock_gating(dev_priv);
B
Ben Widawsky 已提交
7230 7231
}

7232
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7233
{
7234
	ilk_init_lp_watermarks(dev_priv);
7235

7236 7237 7238 7239 7240
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7241
	/* This is required by WaCatErrorRejectionIssue:hsw */
7242 7243 7244 7245
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7246 7247 7248
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7249

7250 7251 7252
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7253 7254 7255 7256
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7257
	/* WaDisable4x2SubspanOptimization:hsw */
7258 7259
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7260

7261 7262 7263
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7264 7265 7266 7267
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7268 7269
	 */
	I915_WRITE(GEN7_GT_MODE,
7270
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7271

7272 7273 7274 7275
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7276
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7277 7278
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7279 7280 7281
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7282

7283
	lpt_init_clock_gating(dev_priv);
7284 7285
}

7286
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7287
{
7288
	uint32_t snpcr;
7289

7290
	ilk_init_lp_watermarks(dev_priv);
7291

7292
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7293

7294
	/* WaDisableEarlyCull:ivb */
7295 7296 7297
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7298
	/* WaDisableBackToBackFlipFix:ivb */
7299 7300 7301 7302
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7303
	/* WaDisablePSDDualDispatchEnable:ivb */
7304
	if (IS_IVB_GT1(dev_priv))
7305 7306 7307
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7308 7309 7310
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7311
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7312 7313 7314
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7315
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7316 7317 7318
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7319
		   GEN7_WA_L3_CHICKEN_MODE);
7320
	if (IS_IVB_GT1(dev_priv))
7321 7322
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7323 7324 7325 7326
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7327 7328
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7329
	}
7330

7331
	/* WaForceL3Serialization:ivb */
7332 7333 7334
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7335
	/*
7336
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7337
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7338 7339
	 */
	I915_WRITE(GEN6_UCGCTL2,
7340
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7341

7342
	/* This is required by WaCatErrorRejectionIssue:ivb */
7343 7344 7345 7346
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7347
	g4x_disable_trickle_feed(dev_priv);
7348 7349

	gen7_setup_fixed_func_scheduler(dev_priv);
7350

7351 7352 7353 7354 7355
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7356

7357
	/* WaDisable4x2SubspanOptimization:ivb */
7358 7359
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7360

7361 7362 7363
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7364 7365 7366 7367
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7368 7369
	 */
	I915_WRITE(GEN7_GT_MODE,
7370
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7371

7372 7373 7374 7375
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7376

7377
	if (!HAS_PCH_NOP(dev_priv))
7378
		cpt_init_clock_gating(dev_priv);
7379

7380
	gen6_check_mch_setup(dev_priv);
7381 7382
}

7383
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7384
{
7385
	/* WaDisableEarlyCull:vlv */
7386 7387 7388
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7389
	/* WaDisableBackToBackFlipFix:vlv */
7390 7391 7392 7393
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7394
	/* WaPsdDispatchEnable:vlv */
7395
	/* WaDisablePSDDualDispatchEnable:vlv */
7396
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7397 7398
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7399

7400 7401 7402
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7403
	/* WaForceL3Serialization:vlv */
7404 7405 7406
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7407
	/* WaDisableDopClockGating:vlv */
7408 7409 7410
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7411
	/* This is required by WaCatErrorRejectionIssue:vlv */
7412 7413 7414 7415
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7416 7417
	gen7_setup_fixed_func_scheduler(dev_priv);

7418
	/*
7419
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7420
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7421 7422
	 */
	I915_WRITE(GEN6_UCGCTL2,
7423
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7424

7425 7426 7427 7428 7429
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7430

7431 7432 7433 7434
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7435 7436
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7437

7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7449 7450 7451 7452 7453 7454
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7455
	/*
7456
	 * WaDisableVLVClockGating_VBIIssue:vlv
7457 7458 7459
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7460
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7461 7462
}

7463
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7464
{
7465 7466 7467 7468 7469
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7470 7471 7472 7473

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7474 7475 7476 7477

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7478 7479 7480 7481

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7482

7483 7484 7485 7486 7487 7488 7489
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7490 7491 7492 7493 7494
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7495 7496
}

7497
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7509
	if (IS_GM45(dev_priv))
7510 7511
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7512 7513 7514 7515

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7516

7517 7518 7519
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7520
	g4x_disable_trickle_feed(dev_priv);
7521 7522
}

7523
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7524 7525 7526 7527 7528 7529
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7530 7531
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7532 7533 7534

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7535 7536
}

7537
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7538 7539 7540 7541 7542 7543 7544
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7545 7546
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7547 7548 7549

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7550 7551
}

7552
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7553 7554 7555 7556 7557 7558
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7559

7560
	if (IS_PINEVIEW(dev_priv))
7561
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7562 7563 7564

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7565 7566

	/* interrupts should cause a wake up from C3 */
7567
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7568 7569 7570

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7571 7572 7573

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7574 7575
}

7576
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7577 7578
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7579 7580 7581 7582

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7583 7584 7585

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7586 7587
}

7588
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7589 7590
{
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7591 7592 7593 7594

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7595 7596
}

7597
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7598
{
7599
	dev_priv->display.init_clock_gating(dev_priv);
7600 7601
}

7602
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7603
{
7604 7605
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7606 7607
}

7608
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7625
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7626
	else if (IS_KABYLAKE(dev_priv))
7627
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7628
	else if (IS_GEN9_LP(dev_priv))
7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7646
	else if (IS_I965GM(dev_priv))
7647
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7648
	else if (IS_I965G(dev_priv))
7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7662
/* Set up chip specific power management-related functions */
7663
void intel_init_pm(struct drm_i915_private *dev_priv)
7664
{
7665
	intel_fbc_init(dev_priv);
7666

7667
	/* For cxsr */
7668
	if (IS_PINEVIEW(dev_priv))
7669
		i915_pineview_get_mem_freq(dev_priv);
7670
	else if (IS_GEN5(dev_priv))
7671
		i915_ironlake_get_mem_freq(dev_priv);
7672

7673
	/* For FIFO watermark updates */
7674
	if (INTEL_GEN(dev_priv) >= 9) {
7675
		skl_setup_wm_latency(dev_priv);
7676
		dev_priv->display.initial_watermarks = skl_initial_wm;
7677
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7678
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7679
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7680
		ilk_setup_wm_latency(dev_priv);
7681

7682
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7683
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7684
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7685
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7686
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7687 7688 7689 7690 7691 7692
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7693 7694 7695 7696
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7697
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7698
		vlv_setup_wm_latency(dev_priv);
7699
		dev_priv->display.update_wm = vlv_update_wm;
7700
	} else if (IS_PINEVIEW(dev_priv)) {
7701
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7702 7703 7704 7705 7706 7707 7708 7709 7710
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7711
			intel_set_memory_cxsr(dev_priv, false);
7712 7713 7714
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7715
	} else if (IS_G4X(dev_priv)) {
7716
		dev_priv->display.update_wm = g4x_update_wm;
7717
	} else if (IS_GEN4(dev_priv)) {
7718
		dev_priv->display.update_wm = i965_update_wm;
7719
	} else if (IS_GEN3(dev_priv)) {
7720 7721
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7722
	} else if (IS_GEN2(dev_priv)) {
7723
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7724
			dev_priv->display.update_wm = i845_update_wm;
7725
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7726 7727
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7728
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7729 7730 7731
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7732 7733 7734
	}
}

7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7747
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7779
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7780
{
7781 7782
	int status;

7783
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7784

7785 7786 7787 7788 7789 7790
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7791 7792 7793 7794
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7795 7796 7797
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7798

7799 7800 7801
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7802 7803 7804 7805
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7806 7807
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7808

7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7820 7821 7822
	return 0;
}

7823
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7824
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7825
{
7826 7827
	int status;

7828
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7829

7830 7831 7832 7833 7834 7835
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7836 7837 7838 7839
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7840
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
7841
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7842
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7843

7844 7845 7846
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7847 7848 7849 7850
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7851
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7852

7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7864 7865
	return 0;
}
7866

7867 7868
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7869 7870 7871 7872 7873
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7874 7875
}

7876
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7877
{
7878
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7879 7880
}

7881
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7882
{
7883 7884 7885 7886 7887
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7888 7889
}

7890
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7891
{
7892
	/* CHV needs even values */
7893
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7894 7895
}

7896
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7897
{
7898
	if (IS_GEN9(dev_priv))
7899 7900
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7901
	else if (IS_CHERRYVIEW(dev_priv))
7902
		return chv_gpu_freq(dev_priv, val);
7903
	else if (IS_VALLEYVIEW(dev_priv))
7904 7905 7906
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7907 7908
}

7909 7910
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7911
	if (IS_GEN9(dev_priv))
7912 7913
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7914
	else if (IS_CHERRYVIEW(dev_priv))
7915
		return chv_freq_opcode(dev_priv, val);
7916
	else if (IS_VALLEYVIEW(dev_priv))
7917 7918
		return byt_freq_opcode(dev_priv, val);
	else
7919
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7920
}
7921

7922 7923
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7924
	struct drm_i915_gem_request *req;
7925 7926 7927 7928 7929
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7930
	struct drm_i915_gem_request *req = boost->req;
7931

7932
	if (!i915_gem_request_completed(req))
7933
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7934

7935
	i915_gem_request_put(req);
7936 7937 7938
	kfree(boost);
}

7939
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7940 7941 7942
{
	struct request_boost *boost;

7943
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7944 7945
		return;

7946
	if (i915_gem_request_completed(req))
7947 7948
		return;

7949 7950 7951 7952
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

7953
	boost->req = i915_gem_request_get(req);
7954 7955

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7956
	queue_work(req->i915->wq, &boost->work);
7957 7958
}

7959
void intel_pm_setup(struct drm_i915_private *dev_priv)
7960
{
D
Daniel Vetter 已提交
7961
	mutex_init(&dev_priv->rps.hw_lock);
7962
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7963

7964 7965
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
7966
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7967

7968
	dev_priv->pm.suspended = false;
7969
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7970
}