intel_pm.c 218.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34

B
Ben Widawsky 已提交
35
/**
36 37
 * DOC: RC6
 *
B
Ben Widawsky 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58
static void gen9_init_clock_gating(struct drm_device *dev)
59
{
60 61
	struct drm_i915_private *dev_priv = dev->dev_private;

62
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 64 65
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

66 67 68 69 70 71 72 73 74 75
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	gen9_init_clock_gating(dev);

76 77 78 79
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

80 81
	/*
	 * FIXME:
82
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
83 84
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
85
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
86 87 88 89 90 91 92 93

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
94 95
}

96 97
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
98
	struct drm_i915_private *dev_priv = dev->dev_private;
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
137
	struct drm_i915_private *dev_priv = dev->dev_private;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

163
	dev_priv->ips.r_t = dev_priv->mem_freq;
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
195
		dev_priv->ips.c_m = 0;
196
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
197
		dev_priv->ips.c_m = 1;
198
	} else {
199
		dev_priv->ips.c_m = 2;
200 201 202
	}
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

241
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

303 304 305
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

306
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
307
{
308 309
	struct drm_device *dev = dev_priv->dev;
	u32 val;
310

311
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
312
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
313
		POSTING_READ(FW_BLC_SELF_VLV);
314
		dev_priv->wm.vlv.cxsr = enable;
315 316
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
317
		POSTING_READ(FW_BLC_SELF);
318 319 320 321
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
322
		POSTING_READ(DSPFW3);
323 324 325 326
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
327
		POSTING_READ(FW_BLC_SELF);
328 329 330 331
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
332
		POSTING_READ(INSTPM);
333 334 335
	} else {
		return;
	}
336

337 338
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
339 340
}

341

342 343 344 345 346 347 348 349 350 351 352 353 354 355
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
356
static const int pessimal_latency_ns = 5000;
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

413
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

429
static int i830_get_fifo_size(struct drm_device *dev, int plane)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

446
static int i845_get_fifo_size(struct drm_device *dev, int plane)
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
464 465 466 467 468
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
469 470
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
471 472 473 474 475
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
476 477
};
static const struct intel_watermark_params pineview_cursor_wm = {
478 479 480 481 482
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
483 484
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
485 486 487 488 489
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
490 491
};
static const struct intel_watermark_params g4x_wm_info = {
492 493 494 495 496
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
497 498
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
499 500 501 502 503
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
504 505
};
static const struct intel_watermark_params i965_cursor_wm_info = {
506 507 508 509 510
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
511 512
};
static const struct intel_watermark_params i945_wm_info = {
513 514 515 516 517
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
518 519
};
static const struct intel_watermark_params i915_wm_info = {
520 521 522 523 524
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
525
};
526
static const struct intel_watermark_params i830_a_wm_info = {
527 528 529 530 531
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
532
};
533 534 535 536 537 538 539
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
540
static const struct intel_watermark_params i845_wm_info = {
541 542 543 544 545
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
546 547 548 549 550 551
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
552
 * @cpp: bytes per pixel
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
568
					int fifo_size, int cpp,
569 570 571 572 573 574 575 576 577 578
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
579
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
580 581 582 583 584 585 586 587 588 589 590 591 592 593
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
594 595 596 597 598 599 600 601 602 603 604

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

605 606 607 608 609 610 611
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

612
	for_each_crtc(dev, crtc) {
613
		if (intel_crtc_active(crtc)) {
614 615 616 617 618 619 620 621 622
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

623
static void pineview_update_wm(struct drm_crtc *unused_crtc)
624
{
625
	struct drm_device *dev = unused_crtc->dev;
626 627 628 629 630 631 632 633 634 635
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
636
		intel_set_memory_cxsr(dev_priv, false);
637 638 639 640 641
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
642
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
643
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
644
		int clock = adjusted_mode->crtc_clock;
645 646 647 648

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
649
					cpp, latency->display_sr);
650 651
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
652
		reg |= FW_WM(wm, SR);
653 654 655 656 657 658
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
659
					cpp, latency->cursor_sr);
660 661
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
662
		reg |= FW_WM(wm, CURSOR_SR);
663 664 665 666 667
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
668
					cpp, latency->display_hpll_disable);
669 670
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
671
		reg |= FW_WM(wm, HPLL_SR);
672 673 674 675 676
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
677
					cpp, latency->cursor_hpll_disable);
678 679
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
680
		reg |= FW_WM(wm, HPLL_CURSOR);
681 682 683
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

684
		intel_set_memory_cxsr(dev_priv, true);
685
	} else {
686
		intel_set_memory_cxsr(dev_priv, false);
687 688 689 690 691 692 693 694 695 696 697 698 699
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
700
	const struct drm_display_mode *adjusted_mode;
701
	int htotal, hdisplay, clock, cpp;
702 703 704 705
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
706
	if (!intel_crtc_active(crtc)) {
707 708 709 710 711
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

712
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
713
	clock = adjusted_mode->crtc_clock;
714
	htotal = adjusted_mode->crtc_htotal;
715
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
716
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
717 718

	/* Use the small buffer method to calculate plane watermark */
719
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
720 721 722 723 724 725 726 727 728
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
729
	line_time_us = max(htotal * 1000 / clock, 1);
730
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
731
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
786
	const struct drm_display_mode *adjusted_mode;
787
	int hdisplay, htotal, cpp, clock;
788 789 790 791 792 793 794 795 796 797 798
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
799
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
800
	clock = adjusted_mode->crtc_clock;
801
	htotal = adjusted_mode->crtc_htotal;
802
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
803
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
804

805
	line_time_us = max(htotal * 1000 / clock, 1);
806
	line_count = (latency_ns / line_time_us + 1000) / 1000;
807
	line_size = hdisplay * cpp;
808 809

	/* Use the minimum of the small and large buffer method for primary */
810
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
811 812 813 814 815 816
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
817
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
818 819 820 821 822 823 824 825
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

826 827 828
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

829 830 831 832 833 834 835 836 837 838 839 840
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

841
	I915_WRITE(DSPFW1,
842 843 844 845
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
846
	I915_WRITE(DSPFW2,
847 848 849
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
850
	I915_WRITE(DSPFW3,
851
		   FW_WM(wm->sr.cursor, CURSOR_SR));
852 853 854

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
855 856
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
857
		I915_WRITE(DSPFW8_CHV,
858 859
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
860
		I915_WRITE(DSPFW9_CHV,
861 862
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
863
		I915_WRITE(DSPHOWM,
864 865 866 867 868 869 870 871 872 873
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
874 875
	} else {
		I915_WRITE(DSPFW7,
876 877
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
878
		I915_WRITE(DSPHOWM,
879 880 881 882 883 884 885
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
886 887
	}

888 889 890 891 892 893
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

894
	POSTING_READ(DSPFW1);
895 896
}

897 898
#undef FW_WM_VLV

899 900 901 902 903 904
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

905 906 907 908
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
909
				   unsigned int cpp,
910 911 912 913 914
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
915
	ret = (ret + 1) * horiz_pixels * cpp;
916 917 918 919 920 921 922 923 924 925 926 927
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

928 929
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

930 931 932
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
933 934

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
935 936 937 938 939 940 941 942 943
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
944
	int clock, htotal, cpp, width, wm;
945 946 947 948 949 950 951

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

952
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
968
		wm = vlv_wm_method2(clock, htotal, width, cpp,
969 970 971 972 973 974
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1076
static void vlv_compute_wm(struct intel_crtc *crtc)
1077 1078 1079 1080 1081 1082 1083 1084 1085
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1086
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1087
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1088 1089 1090

	wm_state->num_active_planes = 0;

1091
	vlv_compute_fifo(crtc);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1148
					wm_state->wm[level].cursor;
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1167
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1168 1169 1170 1171 1172 1173 1174
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1265 1266 1267 1268 1269 1270
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1271
	wm->level = to_i915(dev)->wm.max_level;
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1290 1291 1292
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1319
	vlv_compute_wm(intel_crtc);
1320 1321
	vlv_merge_wm(dev, &wm);

1322 1323 1324
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1325
		return;
1326
	}
1327 1328 1329 1330 1331 1332 1333 1334 1335

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1336
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1337 1338
		intel_set_memory_cxsr(dev_priv, false);

1339 1340 1341
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1342 1343 1344 1345 1346 1347 1348 1349
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1350
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1362 1363
}

1364 1365
#define single_plane_enabled(mask) is_power_of_2(mask)

1366
static void g4x_update_wm(struct drm_crtc *crtc)
1367
{
1368
	struct drm_device *dev = crtc->dev;
1369 1370 1371 1372 1373
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1374
	bool cxsr_enabled;
1375

1376
	if (g4x_compute_wm0(dev, PIPE_A,
1377 1378
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1379
			    &planea_wm, &cursora_wm))
1380
		enabled |= 1 << PIPE_A;
1381

1382
	if (g4x_compute_wm0(dev, PIPE_B,
1383 1384
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1385
			    &planeb_wm, &cursorb_wm))
1386
		enabled |= 1 << PIPE_B;
1387 1388 1389 1390 1391 1392

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1393
			     &plane_sr, &cursor_sr)) {
1394
		cxsr_enabled = true;
1395
	} else {
1396
		cxsr_enabled = false;
1397
		intel_set_memory_cxsr(dev_priv, false);
1398 1399
		plane_sr = cursor_sr = 0;
	}
1400

1401 1402
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1403 1404 1405 1406 1407
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1408 1409 1410 1411
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1412
	I915_WRITE(DSPFW2,
1413
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1414
		   FW_WM(cursora_wm, CURSORA));
1415 1416
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1417
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1418
		   FW_WM(cursor_sr, CURSOR_SR));
1419 1420 1421

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1422 1423
}

1424
static void i965_update_wm(struct drm_crtc *unused_crtc)
1425
{
1426
	struct drm_device *dev = unused_crtc->dev;
1427 1428 1429 1430
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1431
	bool cxsr_enabled;
1432 1433 1434 1435 1436 1437

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1438
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1439
		int clock = adjusted_mode->crtc_clock;
1440
		int htotal = adjusted_mode->crtc_htotal;
1441
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1442
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1443 1444 1445
		unsigned long line_time_us;
		int entries;

1446
		line_time_us = max(htotal * 1000 / clock, 1);
1447 1448 1449

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450
			cpp * hdisplay;
1451 1452 1453 1454 1455 1456 1457 1458 1459
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460
			cpp * crtc->cursor->state->crtc_w;
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1472
		cxsr_enabled = true;
1473
	} else {
1474
		cxsr_enabled = false;
1475
		/* Turn off self refresh if both pipes are enabled */
1476
		intel_set_memory_cxsr(dev_priv, false);
1477 1478 1479 1480 1481 1482
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1483 1484 1485 1486 1487 1488
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1489
	/* update cursor SR watermark */
1490
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1491 1492 1493

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1494 1495
}

1496 1497
#undef FW_WM

1498
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1499
{
1500
	struct drm_device *dev = unused_crtc->dev;
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1515
		wm_info = &i830_a_wm_info;
1516 1517 1518

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1519
	if (intel_crtc_active(crtc)) {
1520
		const struct drm_display_mode *adjusted_mode;
1521
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1522 1523 1524
		if (IS_GEN2(dev))
			cpp = 4;

1525
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1526
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1527
					       wm_info, fifo_size, cpp,
1528
					       pessimal_latency_ns);
1529
		enabled = crtc;
1530
	} else {
1531
		planea_wm = fifo_size - wm_info->guard_size;
1532 1533 1534 1535 1536 1537
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1538 1539 1540

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1541
	if (intel_crtc_active(crtc)) {
1542
		const struct drm_display_mode *adjusted_mode;
1543
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1544 1545 1546
		if (IS_GEN2(dev))
			cpp = 4;

1547
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1548
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1549
					       wm_info, fifo_size, cpp,
1550
					       pessimal_latency_ns);
1551 1552 1553 1554
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1555
	} else {
1556
		planeb_wm = fifo_size - wm_info->guard_size;
1557 1558 1559
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1560 1561 1562

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1563
	if (IS_I915GM(dev) && enabled) {
1564
		struct drm_i915_gem_object *obj;
1565

1566
		obj = intel_fb_obj(enabled->primary->state->fb);
1567 1568

		/* self-refresh seems busted with untiled */
1569
		if (obj->tiling_mode == I915_TILING_NONE)
1570 1571 1572
			enabled = NULL;
	}

1573 1574 1575 1576 1577 1578
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1579
	intel_set_memory_cxsr(dev_priv, false);
1580 1581 1582 1583 1584

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1585
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1586
		int clock = adjusted_mode->crtc_clock;
1587
		int htotal = adjusted_mode->crtc_htotal;
1588
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1589
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1590 1591 1592
		unsigned long line_time_us;
		int entries;

1593
		line_time_us = max(htotal * 1000 / clock, 1);
1594 1595 1596

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1597
			cpp * hdisplay;
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1624 1625
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1626 1627
}

1628
static void i845_update_wm(struct drm_crtc *unused_crtc)
1629
{
1630
	struct drm_device *dev = unused_crtc->dev;
1631 1632
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1633
	const struct drm_display_mode *adjusted_mode;
1634 1635 1636 1637 1638 1639 1640
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1641
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1642
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1643
				       &i845_wm_info,
1644
				       dev_priv->display.get_fifo_size(dev, 0),
1645
				       4, pessimal_latency_ns);
1646 1647 1648 1649 1650 1651 1652 1653
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1654
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1655
{
1656
	uint32_t pixel_rate;
1657

1658
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1659 1660 1661 1662

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1663
	if (pipe_config->pch_pfit.enabled) {
1664
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1665 1666 1667 1668
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1669 1670 1671 1672 1673 1674 1675 1676

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1677 1678 1679
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1680 1681 1682 1683 1684 1685 1686
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1687
/* latency must be in 0.1us units. */
1688
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1689 1690 1691
{
	uint64_t ret;

1692 1693 1694
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1695
	ret = (uint64_t) pixel_rate * cpp * latency;
1696 1697 1698 1699 1700
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1701
/* latency must be in 0.1us units. */
1702
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1703
			       uint32_t horiz_pixels, uint8_t cpp,
1704 1705 1706 1707
			       uint32_t latency)
{
	uint32_t ret;

1708 1709
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1710 1711
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1712

1713
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1714
	ret = (ret + 1) * horiz_pixels * cpp;
1715 1716 1717 1718
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1719
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1720
			   uint8_t cpp)
1721
{
1722 1723 1724 1725 1726 1727
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1728
	if (WARN_ON(!cpp))
1729 1730 1731 1732
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1733
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1734 1735
}

1736
struct ilk_wm_maximums {
1737 1738 1739 1740 1741 1742
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1743 1744 1745 1746
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1747
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1748
				   const struct intel_plane_state *pstate,
1749 1750
				   uint32_t mem_value,
				   bool is_lp)
1751
{
1752 1753
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1754 1755
	uint32_t method1, method2;

1756
	if (!cstate->base.active || !pstate->visible)
1757 1758
		return 0;

1759
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1760 1761 1762 1763

	if (!is_lp)
		return method1;

1764 1765
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1766
				 drm_rect_width(&pstate->dst),
1767
				 cpp, mem_value);
1768 1769

	return min(method1, method2);
1770 1771
}

1772 1773 1774 1775
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1776
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1777
				   const struct intel_plane_state *pstate,
1778 1779
				   uint32_t mem_value)
{
1780 1781
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1782 1783
	uint32_t method1, method2;

1784
	if (!cstate->base.active || !pstate->visible)
1785 1786
		return 0;

1787
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1788 1789
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1790
				 drm_rect_width(&pstate->dst),
1791
				 cpp, mem_value);
1792 1793 1794
	return min(method1, method2);
}

1795 1796 1797 1798
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1799
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1800
				   const struct intel_plane_state *pstate,
1801 1802
				   uint32_t mem_value)
{
1803 1804 1805 1806 1807 1808 1809
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
	int width = pstate->visible ? pstate->base.crtc_w : 64;
1810

1811
	if (!cstate->base.active)
1812 1813
		return 0;

1814 1815
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1816
			      width, cpp, mem_value);
1817 1818
}

1819
/* Only for WM_LP. */
1820
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1821
				   const struct intel_plane_state *pstate,
1822
				   uint32_t pri_val)
1823
{
1824 1825
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1826

1827
	if (!cstate->base.active || !pstate->visible)
1828 1829
		return 0;

1830
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1831 1832
}

1833 1834
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1835 1836 1837
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1838 1839 1840 1841 1842
		return 768;
	else
		return 512;
}

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1877 1878 1879
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1880
				     const struct intel_wm_config *config,
1881 1882 1883 1884 1885 1886
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1887
	if (is_sprite && !config->sprites_enabled)
1888 1889 1890
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1891
	if (level == 0 || config->num_pipes_active > 1) {
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1903
	if (config->sprites_enabled) {
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1915
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1916 1917 1918 1919
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1920 1921
				      int level,
				      const struct intel_wm_config *config)
1922 1923
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1924
	if (level > 0 && config->num_pipes_active > 1)
1925 1926 1927
		return 64;

	/* otherwise just report max that registers can hold */
1928
	return ilk_cursor_wm_reg_max(dev, level);
1929 1930
}

1931
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1932 1933 1934
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1935
				    struct ilk_wm_maximums *max)
1936
{
1937 1938 1939
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1940
	max->fbc = ilk_fbc_wm_reg_max(dev);
1941 1942
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1953
static bool ilk_validate_wm_level(int level,
1954
				  const struct ilk_wm_maximums *max,
1955
				  struct intel_wm_level *result)
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1994
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1995
				 const struct intel_crtc *intel_crtc,
1996
				 int level,
1997
				 struct intel_crtc_state *cstate,
1998 1999 2000
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2001
				 struct intel_wm_level *result)
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2026 2027 2028
	result->enable = true;
}

2029
static uint32_t
2030
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2031
{
2032 2033
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2034 2035
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2036
	u32 linetime, ips_linetime;
2037

2038 2039 2040 2041
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2042
	if (WARN_ON(intel_state->cdclk == 0))
2043
		return 0;
2044

2045 2046 2047
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2048 2049 2050
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2051
					 intel_state->cdclk);
2052

2053 2054
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2055 2056
}

2057
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2058 2059 2060
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2061 2062
	if (IS_GEN9(dev)) {
		uint32_t val;
2063
		int ret, i;
2064
		int level, max_level = ilk_wm_max_level(dev);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2107
		/*
2108 2109
		 * WaWmMemoryReadLatency:skl
		 *
2110 2111 2112 2113 2114 2115 2116 2117
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2118 2119 2120 2121 2122
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2123 2124 2125 2126 2127
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2128 2129 2130
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2131

2132 2133
				break;
			}
2134
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2135 2136 2137 2138 2139
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2140 2141 2142 2143
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2144 2145 2146 2147 2148 2149 2150
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2151 2152 2153 2154 2155 2156 2157
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2158 2159 2160
	}
}

2161 2162 2163
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
2164
	if (IS_GEN5(dev))
2165 2166 2167 2168 2169 2170
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
2171
	if (IS_GEN5(dev))
2172 2173 2174 2175 2176 2177 2178
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2179
int ilk_wm_max_level(const struct drm_device *dev)
2180 2181
{
	/* how many WM levels are we expecting */
2182
	if (INTEL_INFO(dev)->gen >= 9)
2183 2184
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2185
		return 4;
2186
	else if (INTEL_INFO(dev)->gen >= 6)
2187
		return 3;
2188
	else
2189 2190
		return 2;
}
2191

2192 2193
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2194
				   const uint16_t wm[8])
2195 2196
{
	int level, max_level = ilk_wm_max_level(dev);
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2207 2208 2209 2210 2211 2212 2213
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2214 2215 2216 2217 2218 2219 2220 2221
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2259
static void ilk_setup_wm_latency(struct drm_device *dev)
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2272 2273 2274 2275

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2276 2277 2278

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2279 2280
}

2281 2282 2283 2284 2285 2286 2287 2288
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2312
/* Compute new watermarks for the pipe */
2313
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2314
{
2315 2316
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2317
	struct intel_pipe_wm *pipe_wm;
2318
	struct drm_device *dev = state->dev;
2319
	const struct drm_i915_private *dev_priv = dev->dev_private;
2320
	struct intel_plane *intel_plane;
2321
	struct intel_plane_state *pristate = NULL;
2322
	struct intel_plane_state *sprstate = NULL;
2323
	struct intel_plane_state *curstate = NULL;
2324
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2325
	struct ilk_wm_maximums max;
2326

2327
	pipe_wm = &cstate->wm.ilk.optimal;
2328

2329
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2330 2331 2332 2333 2334 2335
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2336 2337

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2338
			pristate = ps;
2339
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2340
			sprstate = ps;
2341
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2342
			curstate = ps;
2343 2344
	}

2345
	pipe_wm->pipe_enabled = cstate->base.active;
2346 2347 2348 2349 2350 2351 2352
	if (sprstate) {
		pipe_wm->sprites_enabled = sprstate->visible;
		pipe_wm->sprites_scaled = sprstate->visible &&
			(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
			 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
	}

2353 2354
	usable_level = max_level;

2355
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2356
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2357
		usable_level = 1;
2358 2359

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2360
	if (pipe_wm->sprites_scaled)
2361
		usable_level = 0;
2362

2363
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2364 2365 2366 2367
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2368

2369
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2370
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2371

2372
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2373
		return -EINVAL;
2374 2375 2376 2377

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2378
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2379

2380
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2381
				     pristate, sprstate, curstate, wm);
2382 2383 2384 2385 2386 2387

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2388 2389 2390 2391 2392 2393
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2394
			usable_level = level;
2395 2396
	}

2397
	return 0;
2398 2399
}

2400 2401 2402 2403 2404 2405 2406 2407 2408
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2409
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2410 2411 2412 2413 2414 2415 2416 2417
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2418
	*a = newstate->wm.ilk.optimal;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2447
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2448 2449 2450 2451 2452
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2453 2454 2455 2456 2457 2458 2459 2460 2461
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2462 2463
	ret_wm->enable = true;

2464
	for_each_intel_crtc(dev, intel_crtc) {
2465
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2466 2467 2468 2469
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2470

2471 2472 2473 2474 2475
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2476
		if (!wm->enable)
2477
			ret_wm->enable = false;
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2490
			 const struct intel_wm_config *config,
2491
			 const struct ilk_wm_maximums *max,
2492 2493
			 struct intel_pipe_wm *merged)
{
2494
	struct drm_i915_private *dev_priv = dev->dev_private;
2495
	int level, max_level = ilk_wm_max_level(dev);
2496
	int last_enabled_level = max_level;
2497

2498 2499 2500
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
2501
		last_enabled_level = 0;
2502

2503 2504
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2505 2506 2507 2508 2509 2510 2511

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2512 2513 2514 2515 2516
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2517 2518 2519 2520 2521 2522

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2523 2524
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2525 2526 2527
			wm->fbc_val = 0;
		}
	}
2528 2529 2530 2531 2532 2533 2534

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2535
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2536
	    intel_fbc_is_active(dev_priv)) {
2537 2538 2539 2540 2541 2542
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2543 2544
}

2545 2546 2547 2548 2549 2550
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2551 2552 2553 2554 2555
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2556
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2557 2558 2559 2560 2561
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2562
static void ilk_compute_wm_results(struct drm_device *dev,
2563
				   const struct intel_pipe_wm *merged,
2564
				   enum intel_ddb_partitioning partitioning,
2565
				   struct ilk_wm_values *results)
2566
{
2567 2568
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2569

2570
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2571
	results->partitioning = partitioning;
2572

2573
	/* LP1+ register values */
2574
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2575
		const struct intel_wm_level *r;
2576

2577
		level = ilk_wm_lp_to_level(wm_lp, merged);
2578

2579
		r = &merged->wm[level];
2580

2581 2582 2583 2584 2585
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2586
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2587 2588 2589
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2590 2591 2592
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2593 2594 2595 2596 2597 2598 2599
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2600 2601 2602 2603
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2604 2605 2606 2607 2608
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2609
	}
2610

2611
	/* LP0 register values */
2612
	for_each_intel_crtc(dev, intel_crtc) {
2613
		enum pipe pipe = intel_crtc->pipe;
2614 2615
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2616 2617 2618 2619

		if (WARN_ON(!r->enable))
			continue;

2620
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2621

2622 2623 2624 2625
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2626 2627 2628
	}
}

2629 2630
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2631
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2632 2633
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2634
{
2635 2636
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2637

2638 2639 2640 2641 2642
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2643 2644
	}

2645 2646
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2647 2648 2649
			return r2;
		else
			return r1;
2650
	} else if (level1 > level2) {
2651 2652 2653 2654 2655 2656
		return r1;
	} else {
		return r2;
	}
}

2657 2658 2659 2660 2661 2662 2663 2664
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2665
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2666 2667
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2668 2669 2670 2671 2672
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2673
	for_each_pipe(dev_priv, pipe) {
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2717 2718
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2719
{
2720
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2721
	bool changed = false;
2722

2723 2724 2725
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2726
		changed = true;
2727 2728 2729 2730
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2731
		changed = true;
2732 2733 2734 2735
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2736
		changed = true;
2737
	}
2738

2739 2740 2741 2742
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2743

2744 2745 2746 2747 2748 2749 2750
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2751 2752
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2753 2754
{
	struct drm_device *dev = dev_priv->dev;
2755
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2756 2757 2758
	unsigned int dirty;
	uint32_t val;

2759
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2760 2761 2762 2763 2764
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2765
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2766
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2767
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2768
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2769
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2770 2771
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2772
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2773
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2774
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2775
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2776
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2777 2778
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2779
	if (dirty & WM_DIRTY_DDB) {
2780
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2795 2796
	}

2797
	if (dirty & WM_DIRTY_FBC) {
2798 2799 2800 2801 2802 2803 2804 2805
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2806 2807 2808 2809 2810
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2811 2812 2813 2814 2815
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2816

2817
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2818
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2819
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2820
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2821
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2822
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2823 2824

	dev_priv->wm.hw = *results;
2825 2826
}

2827
bool ilk_disable_lp_wm(struct drm_device *dev)
2828 2829 2830 2831 2832 2833
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2834 2835 2836 2837 2838 2839
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2840
#define BXT_DDB_SIZE		512
2841

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2864 2865
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2866
				   const struct intel_crtc_state *cstate,
2867 2868
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
2869
{
2870 2871 2872
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
2873
	struct drm_crtc *for_crtc = cstate->base.crtc;
2874 2875
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
2876 2877
	int pipe = to_intel_crtc(for_crtc)->pipe;

2878
	if (WARN_ON(!state) || !cstate->base.active) {
2879 2880
		alloc->start = 0;
		alloc->end = 0;
2881
		*num_active = hweight32(dev_priv->active_crtcs);
2882 2883 2884
		return;
	}

2885 2886 2887 2888 2889
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

2890 2891 2892 2893
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2894 2895 2896

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

2897
	/*
2898 2899 2900 2901 2902 2903
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
2904
	 */
2905 2906 2907
	if (!intel_state->active_pipe_changes) {
		*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
		return;
2908
	}
2909 2910 2911 2912 2913 2914

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
2915 2916
}

2917
static unsigned int skl_cursor_allocation(int num_active)
2918
{
2919
	if (num_active == 1)
2920 2921 2922 2923 2924
		return 32;

	return 8;
}

2925 2926 2927 2928
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2929 2930
	if (entry->end)
		entry->end += 1;
2931 2932
}

2933 2934
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2935 2936 2937 2938 2939
{
	enum pipe pipe;
	int plane;
	u32 val;

2940 2941
	memset(ddb, 0, sizeof(*ddb));

2942
	for_each_pipe(dev_priv, pipe) {
2943 2944 2945 2946
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2947 2948
			continue;

2949
		for_each_plane(dev_priv, pipe, plane) {
2950 2951 2952 2953 2954 2955
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2956 2957
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2958 2959

		intel_display_power_put(dev_priv, power_domain);
2960 2961 2962
	}
}

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

	if (WARN_ON(!pstate->visible))
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
	src_w = drm_rect_width(&pstate->src);
	src_h = drm_rect_height(&pstate->src);
	dst_w = drm_rect_width(&pstate->dst);
	dst_h = drm_rect_height(&pstate->dst);
	if (intel_rotation_90_or_270(pstate->base.rotation))
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3003
static unsigned int
3004 3005 3006
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3007
{
3008
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3009
	struct drm_framebuffer *fb = pstate->fb;
3010
	uint32_t down_scale_amount, data_rate;
3011
	uint32_t width = 0, height = 0;
3012 3013 3014 3015 3016 3017 3018 3019
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

	if (!intel_pstate->visible)
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3020 3021 3022 3023 3024 3025

	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
3026 3027

	/* for planar format */
3028
	if (format == DRM_FORMAT_NV12) {
3029
		if (y)  /* y-plane data rate */
3030
			data_rate = width * height *
3031
				drm_format_plane_cpp(format, 0);
3032
		else    /* uv-plane data rate */
3033
			data_rate = (width / 2) * (height / 2) *
3034
				drm_format_plane_cpp(format, 1);
3035 3036 3037
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3038 3039
	}

3040 3041 3042
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3043 3044 3045 3046 3047 3048 3049 3050
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3051
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3052
{
3053 3054 3055 3056 3057
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3058
	const struct drm_plane *plane;
3059
	const struct intel_plane *intel_plane;
3060
	struct drm_plane_state *pstate;
3061
	unsigned int rate, total_data_rate = 0;
3062
	int id;
3063 3064 3065 3066
	int i;

	if (WARN_ON(!state))
		return 0;
3067

3068
	/* Calculate and cache data rate for each plane */
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
	for_each_plane_in_state(state, plane, pstate, i) {
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe != intel_crtc->pipe)
			continue;

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3085
	}
3086

3087 3088 3089
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3090

3091
		/* packed/uv */
3092 3093
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3094 3095
	}

3096 3097
	WARN_ON(cstate->plane_mask && total_data_rate == 0);

3098 3099 3100
	return total_data_rate;
}

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

	src_w = drm_rect_width(&intel_pstate->src) >> 16;
	src_h = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

	if (intel_rotation_90_or_270(pstate->rotation)) {
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3164
static int
3165
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3166 3167
		      struct skl_ddb_allocation *ddb /* out */)
{
3168
	struct drm_atomic_state *state = cstate->base.state;
3169
	struct drm_crtc *crtc = cstate->base.crtc;
3170 3171
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3172
	struct intel_plane *intel_plane;
3173 3174
	struct drm_plane *plane;
	struct drm_plane_state *pstate;
3175
	enum pipe pipe = intel_crtc->pipe;
3176
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3177
	uint16_t alloc_size, start, cursor_blocks;
3178 3179
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3180
	unsigned int total_data_rate;
3181 3182
	int num_active;
	int id, i;
3183

3184 3185 3186
	if (WARN_ON(!state))
		return 0;

3187 3188 3189 3190 3191 3192 3193
	if (!cstate->base.active) {
		ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
		return 0;
	}

3194
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3195
	alloc_size = skl_ddb_entry_size(alloc);
3196 3197
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3198
		return 0;
3199 3200
	}

3201
	cursor_blocks = skl_cursor_allocation(num_active);
3202 3203
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3204 3205 3206

	alloc_size -= cursor_blocks;

3207
	/* 1. Allocate the mininum required blocks for each active plane */
3208 3209 3210
	for_each_plane_in_state(state, plane, pstate, i) {
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3211

3212 3213
		if (intel_plane->pipe != pipe)
			continue;
3214

3215 3216 3217 3218 3219 3220 3221 3222 3223
		if (!to_intel_plane_state(pstate)->visible) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3224
		}
3225

3226 3227
		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3228
	}
3229

3230 3231 3232
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3233 3234
	}

3235
	/*
3236 3237
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3238 3239 3240
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3241
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3242
	if (total_data_rate == 0)
3243
		return 0;
3244

3245
	start = alloc->start;
3246
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3247 3248
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3249
		int id = skl_wm_plane_id(intel_plane);
3250

3251
		data_rate = cstate->wm.skl.plane_data_rate[id];
3252 3253

		/*
3254
		 * allocation for (packed formats) or (uv-plane part of planar format):
3255 3256 3257
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3258
		plane_blocks = minimum[id];
3259 3260
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3261

3262 3263 3264 3265 3266
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3267 3268

		start += plane_blocks;
3269 3270 3271 3272

		/*
		 * allocation for y_plane part of planar format:
		 */
3273 3274 3275 3276 3277
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3278

3279 3280 3281 3282
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3283 3284

		start += y_plane_blocks;
3285 3286
	}

3287
	return 0;
3288 3289
}

3290
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3291 3292
{
	/* TODO: Take into account the scalers once we support them */
3293
	return config->base.adjusted_mode.crtc_clock;
3294 3295 3296 3297
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3298
 * for the read latency) and cpp should always be <= 8, so that
3299 3300 3301
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3302
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3303 3304 3305 3306 3307 3308
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3309
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3310 3311 3312 3313 3314 3315
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3316
			       uint32_t horiz_pixels, uint8_t cpp,
3317
			       uint64_t tiling, uint32_t latency)
3318
{
3319 3320 3321
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3322 3323 3324 3325

	if (latency == 0)
		return UINT_MAX;

3326
	plane_bytes_per_line = horiz_pixels * cpp;
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3337 3338
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3339
				plane_blocks_per_line;
3340 3341 3342 3343

	return ret;
}

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
	if (WARN_ON(!pstate->visible))
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
	adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3368 3369 3370 3371 3372 3373 3374 3375
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3376
{
3377 3378
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3379 3380 3381 3382 3383
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3384
	uint8_t cpp;
3385
	uint32_t width = 0, height = 0;
3386
	uint32_t plane_pixel_rate;
3387

3388 3389 3390 3391
	if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
		*enabled = false;
		return 0;
	}
3392

3393 3394 3395
	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

3396
	if (intel_rotation_90_or_270(pstate->rotation))
3397 3398
		swap(width, height);

3399
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3400 3401 3402 3403
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3404
				 cstate->base.adjusted_mode.crtc_htotal,
3405 3406 3407
				 width,
				 cpp,
				 fb->modifier[0],
3408
				 latency);
3409

3410
	plane_bytes_per_line = width * cpp;
3411
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3412

3413 3414
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3415 3416
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3417
		if (intel_rotation_90_or_270(pstate->rotation)) {
3418
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3419 3420 3421
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3422
			switch (cpp) {
3423 3424 3425 3426 3427 3428 3429 3430
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3431
			}
3432 3433
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3434 3435 3436 3437 3438 3439 3440
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3441

3442 3443
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3444

3445
	if (level >= 1 && level <= 7) {
3446 3447
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3448 3449 3450 3451
			res_lines += 4;
		else
			res_blocks++;
	}
3452

3453 3454
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3471
	}
3472 3473 3474

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3475
	*enabled = true;
3476

3477
	return 0;
3478 3479
}

3480 3481 3482 3483 3484 3485
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
		     int level,
		     struct skl_wm_level *result)
3486
{
3487
	struct drm_device *dev = dev_priv->dev;
3488
	struct drm_atomic_state *state = cstate->base.state;
3489
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3490
	struct drm_plane *plane;
3491
	struct intel_plane *intel_plane;
3492
	struct intel_plane_state *intel_pstate;
3493
	uint16_t ddb_blocks;
3494
	enum pipe pipe = intel_crtc->pipe;
3495
	int ret;
3496

3497 3498 3499 3500 3501 3502 3503
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(result, 0, sizeof(*result));

	for_each_intel_plane_mask(dev, intel_plane, cstate->base.plane_mask) {
3504
		int i = skl_wm_plane_id(intel_plane);
3505

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
		plane = &intel_plane->base;
		intel_pstate = NULL;
		if (state)
			intel_pstate =
				intel_atomic_get_existing_plane_state(state,
								      intel_plane);

		/*
		 * Note: If we start supporting multiple pending atomic commits
		 * against the same planes/CRTC's in the future, plane->state
		 * will no longer be the correct pre-state to use for the
		 * calculations here and we'll need to change where we get the
		 * 'unchanged' plane data from.
		 *
		 * For now this is fine because we only allow one queued commit
		 * against a CRTC.  Even if the plane isn't modified by this
		 * transaction and we don't have a plane lock, we still have
		 * the CRTC's lock, so we know that no other transactions are
		 * racing with us to update it.
		 */
		if (!intel_pstate)
			intel_pstate = to_intel_plane_state(plane->state);

		WARN_ON(!intel_pstate->base.fb);

3531 3532
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
					   ddb_blocks,
					   level,
					   &result->plane_res_b[i],
					   &result->plane_res_l[i],
					   &result->plane_en[i]);
		if (ret)
			return ret;
3543
	}
3544 3545

	return 0;
3546 3547
}

3548
static uint32_t
3549
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3550
{
3551
	if (!cstate->base.active)
3552 3553
		return 0;

3554
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3555
		return 0;
3556

3557 3558
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3559 3560
}

3561
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3562
				      struct skl_wm_level *trans_wm /* out */)
3563
{
3564
	struct drm_crtc *crtc = cstate->base.crtc;
3565
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3566
	struct intel_plane *intel_plane;
3567

3568
	if (!cstate->base.active)
3569
		return;
3570 3571

	/* Until we know more, just disable transition WMs */
3572 3573 3574
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3575
		trans_wm->plane_en[i] = false;
3576
	}
3577 3578
}

3579 3580 3581
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3582
{
3583
	struct drm_device *dev = cstate->base.crtc->dev;
3584 3585
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);
3586
	int ret;
3587 3588

	for (level = 0; level <= max_level; level++) {
3589 3590 3591 3592
		ret = skl_compute_wm_level(dev_priv, ddb, cstate,
					   level, &pipe_wm->wm[level]);
		if (ret)
			return ret;
3593
	}
3594
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3595

3596
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3597 3598

	return 0;
3599 3600 3601 3602 3603 3604 3605 3606 3607
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3608 3609
	uint32_t temp;
	int i;
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3626 3627
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3628

3629
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3630 3631
			temp |= PLANE_WM_EN;

3632
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3633 3634 3635

	}

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3648 3649 3650
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3651 3652
		temp |= PLANE_WM_EN;

3653
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3654

3655 3656 3657
	r->wm_linetime[pipe] = p_wm->linetime;
}

3658 3659
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3660 3661 3662 3663 3664 3665 3666 3667
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3668 3669 3670 3671 3672 3673
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

3674
	for_each_intel_crtc(dev, crtc) {
3675 3676 3677
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3678
		if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3679
			continue;
3680 3681
		if (!crtc->active)
			continue;
3682

3683
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3684

3685 3686 3687 3688 3689
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3690
				   new->plane[pipe][PLANE_CURSOR][level]);
3691
		}
3692 3693 3694
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3695 3696
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3697

3698
		for (i = 0; i < intel_num_planes(crtc); i++) {
3699 3700 3701
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3702 3703 3704 3705
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3706 3707

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3708
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3709 3710 3711
	}
}

3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3736 3737
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3738 3739 3740
{
	int plane;

3741 3742
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3743
	for_each_plane(dev_priv, pipe, plane) {
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3770
	bool reallocated[I915_MAX_PIPES] = {};
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3793
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3818
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3819
			intel_wait_for_vblank(dev, pipe);
3820
			reallocated[pipe] = true;
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3843
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3844 3845 3846
	}
}

3847 3848 3849 3850
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3851
{
3852 3853
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3854
	int ret;
3855

3856 3857 3858
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3859

3860
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3861 3862 3863
		*changed = false;
	else
		*changed = true;
3864

3865
	return 0;
3866 3867
}

3868 3869 3870 3871 3872 3873 3874
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3875
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	unsigned realloc_pipes = dev_priv->active_crtcs;
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm)
		intel_state->active_pipe_changes = ~0;

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
3901
	if (intel_state->active_pipe_changes) {
3902
		realloc_pipes = ~0;
3903 3904
		intel_state->wm_results.dirty_pipes = ~0;
	}
3905 3906 3907 3908 3909 3910 3911 3912

	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

3913
		ret = skl_allocate_pipe_ddb(cstate, ddb);
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
		if (ret)
			return ret;
	}

	return 0;
}

static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
3926 3927 3928
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
3929
	bool changed = false;
3930
	int ret, i;
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

3945 3946 3947
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

3948 3949 3950 3951
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
	}

3984 3985 3986
	return 0;
}

3987 3988 3989 3990 3991 3992
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3993
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3994
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
3995

3996
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
3997 3998
		return;

3999 4000 4001
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
4002 4003

	skl_write_wm_values(dev_priv, results);
4004
	skl_flush_wm_values(dev_priv, results);
4005 4006 4007

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
4008 4009

	mutex_unlock(&dev_priv->wm.wm_mutex);
4010 4011
}

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4030
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4031
{
4032
	struct drm_device *dev = dev_priv->dev;
4033
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4034
	struct ilk_wm_maximums max;
4035
	struct intel_wm_config config = {};
4036
	struct ilk_wm_values results = {};
4037
	enum intel_ddb_partitioning partitioning;
4038

4039 4040 4041 4042
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4043 4044

	/* 5/6 split only in single pipe config on IVB+ */
4045
	if (INTEL_INFO(dev)->gen >= 7 &&
4046 4047 4048
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4049

4050
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4051
	} else {
4052
		best_lp_wm = &lp_wm_1_2;
4053 4054
	}

4055
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4056
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4057

4058
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4059

4060
	ilk_write_wm_values(dev_priv, &results);
4061 4062
}

4063
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4064
{
4065 4066
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4067

4068
	mutex_lock(&dev_priv->wm.wm_mutex);
4069
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4070 4071 4072
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4073

4074 4075 4076 4077
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4078

4079 4080
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4081
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4082 4083 4084
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4085 4086
}

4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4105 4106
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
4107
					val & PLANE_WM_BLOCKS_MASK;
4108
			active->wm[level].plane_res_l[PLANE_CURSOR] =
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4121 4122
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
4123
					val & PLANE_WM_BLOCKS_MASK;
4124
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4137
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4138
	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
4151
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4152 4153 4154 4155
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4156
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4157

4158
	if (!intel_crtc->active)
4159 4160
		return;

4161
	hw->dirty_pipes |= drm_crtc_mask(crtc);
4162 4163 4164 4165 4166 4167 4168 4169 4170

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
4171
		temp = hw->plane[pipe][PLANE_CURSOR][level];
4172 4173 4174 4175 4176 4177 4178 4179
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

4180
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4181
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4182 4183

	intel_crtc->wm.active.skl = *active;
4184 4185 4186 4187
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4188 4189
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4190 4191
	struct drm_crtc *crtc;

4192
	skl_ddb_get_hw_state(dev_priv, ddb);
4193 4194
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
4195

4196 4197 4198 4199 4200 4201 4202
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4203 4204
}

4205 4206 4207 4208
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
4209
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4210
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4211
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4212
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4213
	enum pipe pipe = intel_crtc->pipe;
4214
	static const i915_reg_t wm0_pipe_reg[] = {
4215 4216 4217 4218 4219 4220
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4221
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4222
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4223

4224 4225
	memset(active, 0, sizeof(*active));

4226
	active->pipe_enabled = intel_crtc->active;
4227 4228

	if (active->pipe_enabled) {
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4253 4254

	intel_crtc->wm.active.ilk = *active;
4255 4256
}

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4374 4375 4376 4377 4378 4379 4380 4381 4382
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4383
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4410 4411 4412
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4413
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4414 4415
	struct drm_crtc *crtc;

4416
	for_each_crtc(dev, crtc)
4417 4418 4419 4420 4421 4422 4423
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4424 4425 4426 4427
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4428

4429
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4430 4431 4432 4433 4434
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4435 4436 4437 4438 4439

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4472
void intel_update_watermarks(struct drm_crtc *crtc)
4473
{
4474
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4475 4476

	if (dev_priv->display.update_wm)
4477
		dev_priv->display.update_wm(crtc);
4478 4479
}

4480
/*
4481 4482 4483 4484 4485 4486 4487 4488
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4489
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4490 4491 4492
{
	u16 rgvswctl;

4493 4494
	assert_spin_locked(&mchdev_lock);

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4512
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4513
{
4514
	u32 rgvmodectl;
4515 4516
	u8 fmax, fmin, fstart, vstart;

4517 4518
	spin_lock_irq(&mchdev_lock);

4519 4520
	rgvmodectl = I915_READ(MEMMODECTL);

4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4541
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4542 4543
		PXVFREQ_PX_SHIFT;

4544 4545
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4546

4547 4548 4549
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4566
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4567
		DRM_ERROR("stuck trying to change perf mode\n");
4568
	mdelay(1);
4569

4570
	ironlake_set_drps(dev_priv, fstart);
4571

4572 4573
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4574
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4575
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4576
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4577 4578

	spin_unlock_irq(&mchdev_lock);
4579 4580
}

4581
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4582
{
4583 4584 4585 4586 4587
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4588 4589 4590 4591 4592 4593 4594 4595 4596

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4597
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4598
	mdelay(1);
4599 4600
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4601
	mdelay(1);
4602

4603
	spin_unlock_irq(&mchdev_lock);
4604 4605
}

4606 4607 4608 4609 4610
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4611
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4612
{
4613
	u32 limits;
4614

4615 4616 4617 4618 4619 4620
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4621
	if (IS_GEN9(dev_priv)) {
4622 4623 4624 4625 4626 4627 4628 4629
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4630 4631 4632 4633

	return limits;
}

4634 4635 4636
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4637 4638
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4639 4640 4641 4642

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4643
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4644 4645 4646 4647
			new_power = BETWEEN;
		break;

	case BETWEEN:
4648
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4649
			new_power = LOW_POWER;
4650
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4651 4652 4653 4654
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4655
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4656 4657 4658 4659
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4660
	if (val <= dev_priv->rps.min_freq_softlimit)
4661
		new_power = LOW_POWER;
4662
	if (val >= dev_priv->rps.max_freq_softlimit)
4663 4664 4665 4666 4667 4668 4669 4670
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4671 4672
		ei_up = 16000;
		threshold_up = 95;
4673 4674

		/* Downclock if less than 85% busy over 32ms */
4675 4676
		ei_down = 32000;
		threshold_down = 85;
4677 4678 4679 4680
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4681 4682
		ei_up = 13000;
		threshold_up = 90;
4683 4684

		/* Downclock if less than 75% busy over 32ms */
4685 4686
		ei_down = 32000;
		threshold_down = 75;
4687 4688 4689 4690
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4691 4692
		ei_up = 10000;
		threshold_up = 85;
4693 4694

		/* Downclock if less than 60% busy over 32ms */
4695 4696
		ei_down = 32000;
		threshold_down = 60;
4697 4698 4699
		break;
	}

4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4718
	dev_priv->rps.power = new_power;
4719 4720
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4721 4722 4723
	dev_priv->rps.last_adj = 0;
}

4724 4725 4726 4727 4728
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4729
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4730
	if (val < dev_priv->rps.max_freq_softlimit)
4731
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4732

4733 4734
	mask &= dev_priv->pm_rps_events;

4735
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4736 4737
}

4738 4739 4740
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4741
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4742
{
4743
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4744
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4745 4746
		return;

4747
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4748 4749
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4750

C
Chris Wilson 已提交
4751 4752 4753 4754 4755
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4756

4757
		if (IS_GEN9(dev_priv))
4758 4759
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4760
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4761 4762 4763 4764 4765 4766 4767
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4768
	}
4769 4770 4771 4772

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4773
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4774
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4775

4776 4777
	POSTING_READ(GEN6_RPNSWREQ);

4778
	dev_priv->rps.cur_freq = val;
4779
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4780 4781
}

4782
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4783 4784
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4785 4786
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4787

4788
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4789 4790 4791
		      "Odd GPU freq value\n"))
		val &= ~1;

4792 4793
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4794
	if (val != dev_priv->rps.cur_freq) {
4795
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4796 4797 4798
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4799 4800 4801 4802 4803

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4804
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4805 4806
 *
 * * If Gfx is Idle, then
4807 4808 4809
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4810 4811 4812
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4813
	u32 val = dev_priv->rps.idle_freq;
4814

4815
	if (dev_priv->rps.cur_freq <= val)
4816 4817
		return;

4818 4819 4820
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4821
	valleyview_set_rps(dev_priv, val);
4822
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4823 4824
}

4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4837 4838 4839
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
4840
	if (dev_priv->rps.enabled) {
4841
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4842
			vlv_set_rps_idle(dev_priv);
4843
		else
4844
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4845
		dev_priv->rps.last_adj = 0;
4846
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4847
	}
4848
	mutex_unlock(&dev_priv->rps.hw_lock);
4849

4850
	spin_lock(&dev_priv->rps.client_lock);
4851 4852
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4853
	spin_unlock(&dev_priv->rps.client_lock);
4854 4855
}

4856
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4857 4858
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4859
{
4860 4861 4862 4863 4864 4865 4866
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4867

4868 4869 4870
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4871
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4872 4873
		rps = NULL;

4874 4875 4876 4877 4878 4879 4880 4881
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4882

4883 4884 4885
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4886 4887
		} else
			dev_priv->rps.boosts++;
4888
	}
4889
	spin_unlock(&dev_priv->rps.client_lock);
4890 4891
}

4892
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4893
{
4894 4895
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
4896
	else
4897
		gen6_set_rps(dev_priv, val);
4898 4899
}

4900
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
4901 4902
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4903
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4904 4905
}

4906
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4907 4908 4909 4910
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

4911
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4912 4913
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4914
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4915
	I915_WRITE(GEN6_RP_CONTROL, 0);
4916 4917
}

4918
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4919 4920 4921 4922
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4923
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4924
{
4925 4926
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4927
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4928

4929
	I915_WRITE(GEN6_RC_CONTROL, 0);
4930

4931
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4932 4933
}

4934
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
4935
{
4936
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4937 4938 4939 4940 4941
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4942
	if (HAS_RC6p(dev_priv))
4943
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4944 4945 4946
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4947 4948 4949

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4950
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
4951 4952
}

4953
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
4954
{
4955
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4969 4970 4971
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
		enable_rc6 = false;
	}

	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
					    GEN6_RC_CTL_HW_ENABLE)) &&
	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
		enable_rc6 = false;
	}

	return enable_rc6;
}

4995
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
4996
{
4997
	/* No RC6 before Ironlake and code is gone for ilk. */
4998
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
4999 5000
		return 0;

5001 5002 5003
	if (!enable_rc6)
		return 0;

5004
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5005 5006 5007 5008
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5009
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5010 5011 5012
	if (enable_rc6 >= 0) {
		int mask;

5013
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5014 5015 5016 5017 5018 5019
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5020 5021
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5022 5023 5024

		return enable_rc6 & mask;
	}
5025

5026
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5027
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5028 5029

	return INTEL_RC6_ENABLE;
5030 5031
}

5032
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5033
{
5034 5035 5036 5037
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

5038 5039
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
5040
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5041
	if (IS_BROXTON(dev_priv)) {
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

5053 5054 5055
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

5056
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5057 5058
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5059 5060 5061 5062 5063
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
5064 5065 5066 5067
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5068 5069
	}

5070
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5071 5072 5073 5074 5075 5076 5077 5078 5079
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

5080 5081
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5082 5083 5084 5085
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

5086
	if (dev_priv->rps.min_freq_softlimit == 0) {
5087
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5088
			dev_priv->rps.min_freq_softlimit =
5089 5090
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
5091 5092 5093 5094
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
5095 5096
}

J
Jesse Barnes 已提交
5097
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5098
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5099 5100 5101
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5102
	gen6_init_rps_frequencies(dev_priv);
5103

5104
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5105
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5106 5107 5108 5109 5110 5111 5112 5113 5114
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5115
		gen9_disable_rps(dev_priv);
5116 5117 5118 5119
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5120 5121 5122 5123 5124 5125 5126 5127
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5128 5129
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5130 5131 5132 5133
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5134
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
J
Jesse Barnes 已提交
5135 5136 5137 5138

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5139
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5140
{
5141
	struct intel_engine_cs *engine;
Z
Zhe Wang 已提交
5142 5143 5144 5145 5146 5147 5148
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5149
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5150 5151 5152 5153 5154

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5155 5156

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5157
	if (IS_SKYLAKE(dev_priv))
5158 5159 5160
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5161 5162
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5163
	for_each_engine(engine, dev_priv)
5164
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5165

5166
	if (HAS_GUC(dev_priv))
5167 5168
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5169 5170
	I915_WRITE(GEN6_RC_SLEEP, 0);

5171 5172 5173 5174
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5175
	/* 3a: Enable RC6 */
5176
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5177
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5178
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5179
	/* WaRsUseTimeoutMode */
5180 5181
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5182
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5183 5184 5185
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5186 5187
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5188 5189 5190
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5191
	}
Z
Zhe Wang 已提交
5192

5193 5194
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5195
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5196
	 */
5197
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5198 5199 5200 5201
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5202

5203
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5204 5205
}

5206
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5207
{
5208
	struct intel_engine_cs *engine;
5209
	uint32_t rc6_mask = 0;
5210 5211 5212 5213 5214 5215

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5216
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5217 5218 5219 5220

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5221
	/* Initialize rps frequencies */
5222
	gen6_init_rps_frequencies(dev_priv);
5223 5224 5225 5226 5227

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5228
	for_each_engine(engine, dev_priv)
5229
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5230
	I915_WRITE(GEN6_RC_SLEEP, 0);
5231
	if (IS_BROADWELL(dev_priv))
5232 5233 5234
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5235 5236

	/* 3: Enable RC6 */
5237
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5238
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5239 5240
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5241 5242 5243 5244 5245 5246 5247
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5248 5249

	/* 4 Program defaults and thresholds for RPS*/
5250 5251 5252 5253
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5268 5269

	/* 5: Enable RPS */
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5280
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5281
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5282

5283
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5284 5285
}

5286
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5287
{
5288
	struct intel_engine_cs *engine;
5289
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5290 5291
	u32 gtfifodbg;
	int rc6_mode;
5292
	int ret;
5293

5294
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5295

5296 5297 5298 5299 5300 5301 5302 5303 5304
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5305 5306
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5307 5308 5309 5310
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5311
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5312

5313
	/* Initialize rps frequencies */
5314
	gen6_init_rps_frequencies(dev_priv);
J
Jeff McGee 已提交
5315

5316 5317 5318 5319 5320 5321 5322 5323 5324
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5325
	for_each_engine(engine, dev_priv)
5326
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5327 5328 5329

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5330
	if (IS_IVYBRIDGE(dev_priv))
5331 5332 5333
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5334
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5335 5336
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5337
	/* Check if we are enabling RC6 */
5338
	rc6_mode = intel_enable_rc6();
5339 5340 5341
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5342
	/* We don't use those on Haswell */
5343
	if (!IS_HASWELL(dev_priv)) {
5344 5345
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5346

5347 5348 5349
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5350

5351
	intel_print_rc6_info(dev_priv, rc6_mask);
5352 5353 5354 5355 5356 5357

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5358 5359
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5360 5361
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5362
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5363
	if (ret)
B
Ben Widawsky 已提交
5364
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5365 5366 5367 5368

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5369
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5370
				 (pcu_mbox & 0xff) * 50);
5371
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5372 5373
	}

5374
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5375
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5376

5377 5378
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5379
	if (IS_GEN6(dev_priv) && ret) {
5380
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5381
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5382 5383 5384 5385 5386 5387 5388 5389 5390
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5391
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5392 5393
}

5394
static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5395 5396
{
	int min_freq = 15;
5397 5398
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5399
	unsigned int max_gpu_freq, min_gpu_freq;
5400
	int scaling_factor = 180;
5401
	struct cpufreq_policy *policy;
5402

5403
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5404

5405 5406 5407 5408 5409 5410 5411 5412 5413
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5414
		max_ia_freq = tsc_khz;
5415
	}
5416 5417 5418 5419

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5420
	min_ring_freq = I915_READ(DCLK) & 0xf;
5421 5422
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5423

5424
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5425 5426 5427 5428 5429 5430 5431 5432
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5433 5434 5435 5436 5437
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5438 5439
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5440 5441
		unsigned int ia_freq = 0, ring_freq = 0;

5442
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5443 5444 5445 5446 5447
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5448
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5449 5450
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5451
		} else if (IS_HASWELL(dev_priv)) {
5452
			ring_freq = mult_frac(gpu_freq, 5, 4);
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5469

B
Ben Widawsky 已提交
5470 5471
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5472 5473 5474
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5475 5476 5477
	}
}

5478
void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5479
{
5480
	if (!HAS_CORE_RING_FREQ(dev_priv))
5481 5482 5483
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
5484
	__gen6_update_ring_freq(dev_priv);
5485 5486 5487
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5488
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5489 5490 5491
{
	u32 val, rp0;

5492
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5493

5494
	switch (INTEL_INFO(dev_priv)->eu_total) {
5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5509
	}
5510 5511 5512

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5526 5527 5528 5529
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5530 5531 5532
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5533 5534 5535
	return rp1;
}

5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5547
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5548 5549 5550
{
	u32 val, rp0;

5551
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5564
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5565
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5566
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5567 5568 5569 5570 5571
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5572
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5573
{
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5585 5586
}

5587 5588 5589 5590 5591 5592 5593 5594 5595
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5596 5597 5598 5599 5600 5601 5602 5603 5604

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5605
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5606
{
5607
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5608
	unsigned long pctx_paddr, paddr;
5609 5610 5611 5612 5613
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5614
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5615
		paddr = (dev_priv->mm.stolen_base +
5616
			 (ggtt->stolen_size - pctx_size));
5617 5618 5619 5620

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5621 5622

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5623 5624
}

5625
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5626 5627 5628 5629 5630 5631
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5632
	mutex_lock(&dev_priv->dev->struct_mutex);
5633

5634 5635 5636 5637 5638 5639 5640 5641
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5642
								      I915_GTT_OFFSET_NONE,
5643 5644 5645 5646
								      pctx_size);
		goto out;
	}

5647 5648
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5649 5650 5651 5652 5653 5654 5655 5656
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5657
	pctx = i915_gem_object_create_stolen(dev_priv->dev, pctx_size);
5658 5659
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5660
		goto out;
5661 5662 5663 5664 5665 5666
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5667
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5668
	dev_priv->vlv_pctx = pctx;
5669
	mutex_unlock(&dev_priv->dev->struct_mutex);
5670 5671
}

5672
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5673 5674 5675 5676
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5677
	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5678 5679 5680
	dev_priv->vlv_pctx = NULL;
}

5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5692
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5693
{
5694
	u32 val;
5695

5696
	valleyview_setup_pctx(dev_priv);
5697

5698 5699
	vlv_init_gpll_ref_freq(dev_priv);

5700 5701
	mutex_lock(&dev_priv->rps.hw_lock);

5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5715
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5716

5717 5718 5719
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5720
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5721 5722 5723 5724
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5725
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5726 5727
			 dev_priv->rps.efficient_freq);

5728 5729
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5730
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5731 5732
			 dev_priv->rps.rp1_freq);

5733 5734
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5735
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5736 5737
			 dev_priv->rps.min_freq);

5738 5739
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5750
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5751
{
5752
	u32 val;
5753

5754
	cherryview_setup_pctx(dev_priv);
5755

5756 5757
	vlv_init_gpll_ref_freq(dev_priv);

5758 5759
	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5760
	mutex_lock(&dev_priv->sb_lock);
5761
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5762
	mutex_unlock(&dev_priv->sb_lock);
5763

5764 5765 5766 5767
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5768
	default:
5769 5770 5771
		dev_priv->mem_freq = 1600;
		break;
	}
5772
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5773

5774 5775 5776
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5777
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5778 5779 5780 5781
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5782
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5783 5784
			 dev_priv->rps.efficient_freq);

5785 5786
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5787
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5788 5789
			 dev_priv->rps.rp1_freq);

5790 5791
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5792
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5793
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5794 5795
			 dev_priv->rps.min_freq);

5796 5797 5798 5799 5800 5801
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5802 5803
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5804 5805 5806 5807 5808 5809 5810 5811
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5812 5813
}

5814
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5815
{
5816
	valleyview_cleanup_pctx(dev_priv);
5817 5818
}

5819
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5820
{
5821
	struct intel_engine_cs *engine;
5822
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5823 5824 5825

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5826 5827
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5838
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5839

5840 5841 5842
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5843 5844 5845 5846 5847
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5848
	for_each_engine(engine, dev_priv)
5849
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5850 5851
	I915_WRITE(GEN6_RC_SLEEP, 0);

5852 5853
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
5865 5866
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
5867
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5868 5869 5870

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5871
	/* 4 Program defaults and thresholds for RPS*/
5872
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5883
		   GEN6_RP_MEDIA_IS_GFX |
5884 5885 5886 5887
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5888 5889 5890 5891 5892 5893
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5894 5895
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5896 5897 5898
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5899
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5900 5901 5902 5903
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5904
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5905 5906 5907
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5908 5909
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5910

5911
	valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5912

5913
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5914 5915
}

5916
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5917
{
5918
	struct intel_engine_cs *engine;
5919
	u32 gtfifodbg, val, rc6_mode = 0;
5920 5921 5922

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5923 5924
	valleyview_check_pctx(dev_priv);

5925 5926
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5927 5928
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5929 5930 5931
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5932
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5933
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5934

5935 5936 5937
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5938
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5958
	for_each_engine(engine, dev_priv)
5959
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5960

5961
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5962 5963

	/* allows RC6 residency counter to work */
5964
	I915_WRITE(VLV_COUNTER_CONTROL,
5965 5966
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5967 5968
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5969

5970
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5971
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5972

5973
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
5974

5975
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5976

D
Deepak S 已提交
5977 5978 5979 5980 5981 5982
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5983
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5984

5985 5986 5987
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5988
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5989 5990
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5991
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5992
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5993
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5994
			 dev_priv->rps.cur_freq);
5995

5996
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5997 5998
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5999

6000
	valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
6001

6002
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6003 6004
}

6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6034
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6035 6036 6037 6038 6039 6040
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6041 6042
	assert_spin_locked(&mchdev_lock);

6043
	diff1 = now - dev_priv->ips.last_time1;
6044 6045 6046 6047 6048 6049 6050

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6051
		return dev_priv->ips.chipset_power;
6052 6053 6054 6055 6056 6057 6058 6059

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6060 6061
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6062 6063
		diff += total_count;
	} else {
6064
		diff = total_count - dev_priv->ips.last_count1;
6065 6066 6067
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6068 6069
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6080 6081
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6082

6083
	dev_priv->ips.chipset_power = ret;
6084 6085 6086 6087

	return ret;
}

6088 6089 6090 6091
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6092
	if (INTEL_INFO(dev_priv)->gen != 5)
6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6131
{
6132 6133 6134
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6135
	if (INTEL_INFO(dev_priv)->is_mobile)
6136 6137 6138
		return vm > 0 ? vm : 0;

	return vd;
6139 6140
}

6141
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6142
{
6143
	u64 now, diff, diffms;
6144 6145
	u32 count;

6146
	assert_spin_locked(&mchdev_lock);
6147

6148 6149 6150
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6151 6152 6153 6154 6155 6156 6157

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6158 6159
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6160 6161
		diff += count;
	} else {
6162
		diff = count - dev_priv->ips.last_count2;
6163 6164
	}

6165 6166
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6167 6168 6169 6170

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6171
	dev_priv->ips.gfx_power = diff;
6172 6173
}

6174 6175
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6176
	if (INTEL_INFO(dev_priv)->gen != 5)
6177 6178
		return;

6179
	spin_lock_irq(&mchdev_lock);
6180 6181 6182

	__i915_update_gfx_val(dev_priv);

6183
	spin_unlock_irq(&mchdev_lock);
6184 6185
}

6186
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6187 6188 6189 6190
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6191 6192
	assert_spin_locked(&mchdev_lock);

6193
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6213
	corr2 = (corr * dev_priv->ips.corr);
6214 6215 6216 6217

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6218
	__i915_update_gfx_val(dev_priv);
6219

6220
	return dev_priv->ips.gfx_power + state2;
6221 6222
}

6223 6224 6225 6226
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6227
	if (INTEL_INFO(dev_priv)->gen != 5)
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6250
	spin_lock_irq(&mchdev_lock);
6251 6252 6253 6254
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6255 6256
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6257 6258 6259 6260

	ret = chipset_val + graphics_val;

out_unlock:
6261
	spin_unlock_irq(&mchdev_lock);
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6277
	spin_lock_irq(&mchdev_lock);
6278 6279 6280 6281 6282 6283
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6284 6285
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6286 6287

out_unlock:
6288
	spin_unlock_irq(&mchdev_lock);
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6305
	spin_lock_irq(&mchdev_lock);
6306 6307 6308 6309 6310 6311
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6312 6313
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6314 6315

out_unlock:
6316
	spin_unlock_irq(&mchdev_lock);
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
6330
	struct intel_engine_cs *engine;
6331 6332
	bool ret = false;

6333
	spin_lock_irq(&mchdev_lock);
6334 6335 6336 6337
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6338
	for_each_engine(engine, dev_priv)
6339
		ret |= !list_empty(&engine->request_list);
6340 6341

out_unlock:
6342
	spin_unlock_irq(&mchdev_lock);
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6359
	spin_lock_irq(&mchdev_lock);
6360 6361 6362 6363 6364 6365
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6366
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6367

6368
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6369 6370 6371
		ret = false;

out_unlock:
6372
	spin_unlock_irq(&mchdev_lock);
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6400 6401
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6402
	spin_lock_irq(&mchdev_lock);
6403
	i915_mch_dev = dev_priv;
6404
	spin_unlock_irq(&mchdev_lock);
6405 6406 6407 6408 6409 6410

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6411
	spin_lock_irq(&mchdev_lock);
6412
	i915_mch_dev = NULL;
6413
	spin_unlock_irq(&mchdev_lock);
6414
}
6415

6416
static void intel_init_emon(struct drm_i915_private *dev_priv)
6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6433
		I915_WRITE(PEW(i), 0);
6434
	for (i = 0; i < 3; i++)
6435
		I915_WRITE(DEW(i), 0);
6436 6437 6438

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6439
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6460
		I915_WRITE(PXW(i), val);
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6476
		I915_WRITE(PXWL(i), 0);
6477 6478 6479 6480 6481 6482

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6483
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6484 6485
}

6486
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6487
{
6488 6489 6490 6491 6492 6493 6494 6495
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6496

6497 6498 6499 6500
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6501 6502
}

6503
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6504
{
6505
	if (IS_CHERRYVIEW(dev_priv))
6506
		return;
6507 6508
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_cleanup_gt_powersave(dev_priv);
6509 6510 6511

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6512 6513
}

6514
static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6515 6516 6517
{
	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6518
	gen6_disable_rps_interrupts(dev_priv);
6519 6520
}

6521 6522
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
6523
 * @dev_priv: i915 device
6524 6525 6526 6527 6528
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
6529
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6530
{
6531
	if (INTEL_GEN(dev_priv) < 6)
I
Imre Deak 已提交
6532 6533
		return;

6534
	gen6_suspend_rps(dev_priv);
6535 6536 6537

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6538 6539
}

6540
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6541
{
6542
	if (IS_IRONLAKE_M(dev_priv)) {
6543
		ironlake_disable_drps(dev_priv);
6544 6545
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		intel_suspend_gt_powersave(dev_priv);
6546

6547
		mutex_lock(&dev_priv->rps.hw_lock);
6548 6549 6550 6551 6552 6553 6554
		if (INTEL_INFO(dev_priv)->gen >= 9) {
			gen9_disable_rc6(dev_priv);
			gen9_disable_rps(dev_priv);
		} else if (IS_CHERRYVIEW(dev_priv))
			cherryview_disable_rps(dev_priv);
		else if (IS_VALLEYVIEW(dev_priv))
			valleyview_disable_rps(dev_priv);
6555
		else
6556
			gen6_disable_rps(dev_priv);
6557

6558
		dev_priv->rps.enabled = false;
6559
		mutex_unlock(&dev_priv->rps.hw_lock);
6560
	}
6561 6562
}

6563 6564 6565 6566 6567 6568
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);

6569
	mutex_lock(&dev_priv->rps.hw_lock);
6570

6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
	gen6_reset_rps_interrupts(dev_priv);

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 9) {
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
			__gen6_update_ring_freq(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
		__gen6_update_ring_freq(dev_priv);
6585
	} else {
6586 6587
		gen6_enable_rps(dev_priv);
		__gen6_update_ring_freq(dev_priv);
6588
	}
6589 6590 6591 6592 6593 6594 6595

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6596
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6597

6598
	gen6_enable_rps_interrupts(dev_priv);
I
Imre Deak 已提交
6599

6600
	mutex_unlock(&dev_priv->rps.hw_lock);
6601 6602

	intel_runtime_pm_put(dev_priv);
6603 6604
}

6605
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6606
{
6607
	/* Powersaving is controlled by the host when inside a VM */
6608
	if (intel_vgpu_active(dev_priv))
6609 6610
		return;

6611
	if (IS_IRONLAKE_M(dev_priv)) {
6612
		ironlake_enable_drps(dev_priv);
6613 6614 6615 6616
		mutex_lock(&dev_priv->dev->struct_mutex);
		intel_init_emon(dev_priv);
		mutex_unlock(&dev_priv->dev->struct_mutex);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
6617 6618 6619 6620
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6621 6622 6623 6624 6625 6626 6627
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6628
		 */
6629 6630 6631
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6632 6633 6634
	}
}

6635
void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6636
{
6637
	if (INTEL_INFO(dev_priv)->gen < 6)
6638 6639
		return;

6640
	gen6_suspend_rps(dev_priv);
6641 6642 6643
	dev_priv->rps.enabled = false;
}

6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6656 6657 6658
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6659
	enum pipe pipe;
6660

6661
	for_each_pipe(dev_priv, pipe) {
6662 6663 6664
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6665 6666 6667

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6668 6669 6670
	}
}

6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6685
static void ironlake_init_clock_gating(struct drm_device *dev)
6686 6687
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6688
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6689

6690 6691 6692 6693
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6694 6695 6696
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6714
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6715 6716 6717
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6718 6719

	ilk_init_lp_watermarks(dev);
6720 6721 6722 6723 6724 6725 6726 6727 6728

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6729
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6730 6731 6732 6733 6734 6735 6736 6737
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6738 6739
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6740 6741 6742 6743 6744 6745
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6746

6747
	/* WaDisableRenderCachePipelinedFlush:ilk */
6748 6749
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6750

6751 6752 6753
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6754
	g4x_disable_trickle_feed(dev);
6755

6756 6757 6758 6759 6760 6761 6762
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6763
	uint32_t val;
6764 6765 6766 6767 6768 6769

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6770 6771 6772
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6773 6774
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6775 6776 6777
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6778
	for_each_pipe(dev_priv, pipe) {
6779 6780 6781
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6782
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6783
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6784 6785 6786
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6787 6788
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6789
	/* WADP0ClockGatingDisable */
6790
	for_each_pipe(dev_priv, pipe) {
6791 6792 6793
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6794 6795
}

6796 6797 6798 6799 6800 6801
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6802 6803 6804
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6805 6806
}

6807
static void gen6_init_clock_gating(struct drm_device *dev)
6808 6809
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6810
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6811

6812
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6813 6814 6815 6816 6817

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6818
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6819 6820 6821
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6822 6823 6824
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6825 6826 6827
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6828 6829 6830 6831
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6832 6833
	 */
	I915_WRITE(GEN6_GT_MODE,
6834
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6835

6836
	ilk_init_lp_watermarks(dev);
6837 6838

	I915_WRITE(CACHE_MODE_0,
6839
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6855
	 *
6856 6857
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6858 6859 6860 6861 6862
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6863
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6864 6865
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6866

6867 6868 6869 6870 6871 6872 6873 6874
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6875 6876 6877 6878 6879 6880 6881 6882
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6883 6884
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6885 6886 6887 6888 6889 6890 6891
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6892 6893 6894 6895
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6896

6897
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6898

6899
	cpt_init_clock_gating(dev);
6900 6901

	gen6_check_mch_setup(dev);
6902 6903 6904 6905 6906 6907
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6908
	/*
6909
	 * WaVSThreadDispatchOverride:ivb,vlv
6910 6911 6912 6913
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6914 6915 6916 6917 6918 6919 6920 6921
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6922 6923 6924 6925 6926 6927 6928 6929
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6930
	if (HAS_PCH_LPT_LP(dev))
6931 6932 6933
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6934 6935

	/* WADPOClockGatingDisable:hsw */
6936 6937
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6938
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6939 6940
}

6941 6942 6943 6944
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6945
	if (HAS_PCH_LPT_LP(dev)) {
6946 6947 6948 6949 6950 6951 6952
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

6976 6977 6978 6979
static void kabylake_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6980
	gen9_init_clock_gating(dev);
6981 6982 6983 6984 6985

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6986 6987 6988 6989 6990

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6991 6992
}

6993 6994
static void skylake_init_clock_gating(struct drm_device *dev)
{
6995
	gen9_init_clock_gating(dev);
6996 6997
}

6998
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6999 7000
{
	struct drm_i915_private *dev_priv = dev->dev_private;
7001
	enum pipe pipe;
B
Ben Widawsky 已提交
7002

7003
	ilk_init_lp_watermarks(dev);
7004

7005
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7006
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7007

7008
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7009 7010 7011
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7012
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7013
	for_each_pipe(dev_priv, pipe) {
7014
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7015
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7016
			   BDW_DPRS_MASK_VBLANK_SRD);
7017
	}
7018

7019 7020 7021 7022 7023
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7024

7025 7026
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7027 7028 7029 7030

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7031

7032 7033
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7034

7035 7036 7037 7038 7039 7040 7041
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7042 7043 7044 7045
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7046
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7047 7048
}

7049 7050 7051 7052
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7053
	ilk_init_lp_watermarks(dev);
7054

7055 7056 7057 7058 7059
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7060
	/* This is required by WaCatErrorRejectionIssue:hsw */
7061 7062 7063 7064
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7065 7066 7067
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7068

7069 7070 7071
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7072 7073 7074 7075
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7076
	/* WaDisable4x2SubspanOptimization:hsw */
7077 7078
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7079

7080 7081 7082
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7083 7084 7085 7086
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7087 7088
	 */
	I915_WRITE(GEN7_GT_MODE,
7089
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7090

7091 7092 7093 7094
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7095
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7096 7097
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7098 7099 7100
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7101

7102
	lpt_init_clock_gating(dev);
7103 7104
}

7105
static void ivybridge_init_clock_gating(struct drm_device *dev)
7106 7107
{
	struct drm_i915_private *dev_priv = dev->dev_private;
7108
	uint32_t snpcr;
7109

7110
	ilk_init_lp_watermarks(dev);
7111

7112
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7113

7114
	/* WaDisableEarlyCull:ivb */
7115 7116 7117
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7118
	/* WaDisableBackToBackFlipFix:ivb */
7119 7120 7121 7122
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7123
	/* WaDisablePSDDualDispatchEnable:ivb */
7124 7125 7126 7127
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7128 7129 7130
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7131
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7132 7133 7134
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7135
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7136 7137 7138
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7139 7140 7141 7142
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7143 7144 7145 7146
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7147 7148
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7149
	}
7150

7151
	/* WaForceL3Serialization:ivb */
7152 7153 7154
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7155
	/*
7156
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7157
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7158 7159
	 */
	I915_WRITE(GEN6_UCGCTL2,
7160
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7161

7162
	/* This is required by WaCatErrorRejectionIssue:ivb */
7163 7164 7165 7166
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7167
	g4x_disable_trickle_feed(dev);
7168 7169

	gen7_setup_fixed_func_scheduler(dev_priv);
7170

7171 7172 7173 7174 7175
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7176

7177
	/* WaDisable4x2SubspanOptimization:ivb */
7178 7179
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7180

7181 7182 7183
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7184 7185 7186 7187
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7188 7189
	 */
	I915_WRITE(GEN7_GT_MODE,
7190
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7191

7192 7193 7194 7195
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7196

7197 7198
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
7199 7200

	gen6_check_mch_setup(dev);
7201 7202
}

7203
static void valleyview_init_clock_gating(struct drm_device *dev)
7204 7205 7206
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7207
	/* WaDisableEarlyCull:vlv */
7208 7209 7210
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7211
	/* WaDisableBackToBackFlipFix:vlv */
7212 7213 7214 7215
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7216
	/* WaPsdDispatchEnable:vlv */
7217
	/* WaDisablePSDDualDispatchEnable:vlv */
7218
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7219 7220
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7221

7222 7223 7224
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7225
	/* WaForceL3Serialization:vlv */
7226 7227 7228
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7229
	/* WaDisableDopClockGating:vlv */
7230 7231 7232
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7233
	/* This is required by WaCatErrorRejectionIssue:vlv */
7234 7235 7236 7237
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7238 7239
	gen7_setup_fixed_func_scheduler(dev_priv);

7240
	/*
7241
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7242
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7243 7244
	 */
	I915_WRITE(GEN6_UCGCTL2,
7245
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7246

7247 7248 7249 7250 7251
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7252

7253 7254 7255 7256
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7257 7258
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7259

7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7271 7272 7273 7274 7275 7276
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7277
	/*
7278
	 * WaDisableVLVClockGating_VBIIssue:vlv
7279 7280 7281
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7282
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7283 7284
}

7285 7286 7287 7288
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7289 7290 7291 7292 7293
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7294 7295 7296 7297

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7298 7299 7300 7301

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7302 7303 7304 7305

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7306

7307 7308 7309 7310 7311 7312 7313
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7314 7315 7316 7317 7318
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7319 7320
}

7321
static void g4x_init_clock_gating(struct drm_device *dev)
7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7337 7338 7339 7340

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7341

7342 7343 7344
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7345
	g4x_disable_trickle_feed(dev);
7346 7347
}

7348
static void crestline_init_clock_gating(struct drm_device *dev)
7349 7350 7351 7352 7353 7354 7355 7356
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7357 7358
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7359 7360 7361

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7362 7363
}

7364
static void broadwater_init_clock_gating(struct drm_device *dev)
7365 7366 7367 7368 7369 7370 7371 7372 7373
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7374 7375
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7376 7377 7378

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7379 7380
}

7381
static void gen3_init_clock_gating(struct drm_device *dev)
7382 7383 7384 7385 7386 7387 7388
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7389 7390 7391

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7392 7393 7394

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7395 7396

	/* interrupts should cause a wake up from C3 */
7397
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7398 7399 7400

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7401 7402 7403

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7404 7405
}

7406
static void i85x_init_clock_gating(struct drm_device *dev)
7407 7408 7409 7410
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7411 7412 7413 7414

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7415 7416 7417

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7418 7419
}

7420
static void i830_init_clock_gating(struct drm_device *dev)
7421 7422 7423 7424
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7425 7426 7427 7428

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7429 7430 7431 7432 7433 7434
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7435
	dev_priv->display.init_clock_gating(dev);
7436 7437
}

7438 7439 7440 7441 7442 7443
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7461
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7462
	else if (IS_KABYLAKE(dev_priv))
7463
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7498 7499 7500 7501 7502
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7503
	intel_fbc_init(dev_priv);
7504

7505 7506 7507 7508 7509 7510
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7511
	/* For FIFO watermark updates */
7512
	if (INTEL_INFO(dev)->gen >= 9) {
7513
		skl_setup_wm_latency(dev);
7514
		dev_priv->display.update_wm = skl_update_wm;
7515
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7516
	} else if (HAS_PCH_SPLIT(dev)) {
7517
		ilk_setup_wm_latency(dev);
7518

7519 7520 7521 7522
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7523
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7524 7525 7526 7527 7528 7529
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7530 7531 7532 7533
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7534
	} else if (IS_CHERRYVIEW(dev)) {
7535 7536
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7537
	} else if (IS_VALLEYVIEW(dev)) {
7538 7539
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7551
			intel_set_memory_cxsr(dev_priv, false);
7552 7553 7554 7555 7556 7557 7558 7559 7560 7561
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7562 7563 7564
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7565
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7566 7567
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7568
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7569 7570 7571
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7572 7573 7574
	}
}

7575
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7576
{
7577
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7578 7579 7580 7581 7582 7583 7584

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7585
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7600
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7601
{
7602
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7622

7623 7624
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7625 7626 7627 7628 7629
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7630 7631
}

7632
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7633
{
7634
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7635 7636
}

7637
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7638
{
7639 7640 7641 7642 7643
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7644 7645
}

7646
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7647
{
7648
	/* CHV needs even values */
7649
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7650 7651
}

7652
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7653
{
7654
	if (IS_GEN9(dev_priv))
7655 7656
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7657
	else if (IS_CHERRYVIEW(dev_priv))
7658
		return chv_gpu_freq(dev_priv, val);
7659
	else if (IS_VALLEYVIEW(dev_priv))
7660 7661 7662
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7663 7664
}

7665 7666
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7667
	if (IS_GEN9(dev_priv))
7668 7669
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7670
	else if (IS_CHERRYVIEW(dev_priv))
7671
		return chv_freq_opcode(dev_priv, val);
7672
	else if (IS_VALLEYVIEW(dev_priv))
7673 7674
		return byt_freq_opcode(dev_priv, val);
	else
7675
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7676
}
7677

7678 7679
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7680
	struct drm_i915_gem_request *req;
7681 7682 7683 7684 7685
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7686
	struct drm_i915_gem_request *req = boost->req;
7687

7688
	if (!i915_gem_request_completed(req, true))
7689
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7690

7691
	i915_gem_request_unreference(req);
7692 7693 7694
	kfree(boost);
}

7695
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7696 7697 7698
{
	struct request_boost *boost;

7699
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7700 7701
		return;

7702 7703 7704
	if (i915_gem_request_completed(req, true))
		return;

7705 7706 7707 7708
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7709 7710
	i915_gem_request_reference(req);
	boost->req = req;
7711 7712

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7713
	queue_work(req->i915->wq, &boost->work);
7714 7715
}

D
Daniel Vetter 已提交
7716
void intel_pm_setup(struct drm_device *dev)
7717 7718 7719
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7720
	mutex_init(&dev_priv->rps.hw_lock);
7721
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7722

7723 7724
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7725
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7726 7727
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7728

7729
	dev_priv->pm.suspended = false;
7730
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7731
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7732
}