intel_pm.c 225.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_device *dev)
60
{
61 62
	struct drm_i915_private *dev_priv = dev->dev_private;

63
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
64 65 66
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

67 68
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
69 70 71 72

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
73 74

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
75 76 77 78
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
79 80 81 82

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
83 84 85 86
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
87
	struct drm_i915_private *dev_priv = to_i915(dev);
88 89 90

	gen9_init_clock_gating(dev);

91 92 93 94
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

95 96
	/*
	 * FIXME:
97
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
98 99
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
100
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
101 102 103 104 105 106 107 108

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
109 110
}

111 112
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
113
	struct drm_i915_private *dev_priv = to_i915(dev);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
152
	struct drm_i915_private *dev_priv = to_i915(dev);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

178
	dev_priv->ips.r_t = dev_priv->mem_freq;
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
210
		dev_priv->ips.c_m = 0;
211
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
212
		dev_priv->ips.c_m = 1;
213
	} else {
214
		dev_priv->ips.c_m = 2;
215 216 217
	}
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

256 257
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

321
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
322
{
323
	struct drm_device *dev = &dev_priv->drm;
324
	u32 val;
325

326
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
327
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
328
		POSTING_READ(FW_BLC_SELF_VLV);
329
		dev_priv->wm.vlv.cxsr = enable;
330
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
331
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
332
		POSTING_READ(FW_BLC_SELF);
333 334 335 336
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
337
		POSTING_READ(DSPFW3);
338
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
339 340 341
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
342
		POSTING_READ(FW_BLC_SELF);
343
	} else if (IS_I915GM(dev_priv)) {
344 345 346 347 348
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
349 350 351
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
352
		POSTING_READ(INSTPM);
353 354 355
	} else {
		return;
	}
356

357 358
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
359 360
}

361

362 363 364 365 366 367 368 369 370 371 372 373 374 375
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
376
static const int pessimal_latency_ns = 5000;
377

378 379 380 381 382 383
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
384
	struct drm_i915_private *dev_priv = to_i915(dev);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

433
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
434
{
435
	struct drm_i915_private *dev_priv = to_i915(dev);
436 437 438 439 440 441 442 443 444 445 446 447 448
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

449
static int i830_get_fifo_size(struct drm_device *dev, int plane)
450
{
451
	struct drm_i915_private *dev_priv = to_i915(dev);
452 453 454 455 456 457 458 459 460 461 462 463 464 465
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

466
static int i845_get_fifo_size(struct drm_device *dev, int plane)
467
{
468
	struct drm_i915_private *dev_priv = to_i915(dev);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
484 485 486 487 488
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
489 490
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
491 492 493 494 495
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
496 497
};
static const struct intel_watermark_params pineview_cursor_wm = {
498 499 500 501 502
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
503 504
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
505 506 507 508 509
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
510 511
};
static const struct intel_watermark_params g4x_wm_info = {
512 513 514 515 516
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
517 518
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
519 520 521 522 523
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
524 525
};
static const struct intel_watermark_params i965_cursor_wm_info = {
526 527 528 529 530
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
531 532
};
static const struct intel_watermark_params i945_wm_info = {
533 534 535 536 537
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
538 539
};
static const struct intel_watermark_params i915_wm_info = {
540 541 542 543 544
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
545
};
546
static const struct intel_watermark_params i830_a_wm_info = {
547 548 549 550 551
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
552
};
553 554 555 556 557 558 559
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
560
static const struct intel_watermark_params i845_wm_info = {
561 562 563 564 565
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
566 567 568 569 570 571
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
572
 * @cpp: bytes per pixel
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
588
					int fifo_size, int cpp,
589 590 591 592 593 594 595 596 597 598
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
599
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
600 601 602 603 604 605 606 607 608 609 610 611 612 613
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
614 615 616 617 618 619 620 621 622 623 624

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

625 626 627
	return wm_size;
}

628
static struct intel_crtc *single_enabled_crtc(struct drm_device *dev)
629
{
630
	struct intel_crtc *crtc, *enabled = NULL;
631

632 633
	for_each_intel_crtc(dev, crtc) {
		if (intel_crtc_active(crtc)) {
634 635 636 637 638 639 640 641 642
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

643
static void pineview_update_wm(struct intel_crtc *unused_crtc)
644
{
645
	struct drm_device *dev = unused_crtc->base.dev;
646
	struct drm_i915_private *dev_priv = to_i915(dev);
647
	struct intel_crtc *crtc;
648 649 650 651
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

652 653 654 655
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
656 657
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
658
		intel_set_memory_cxsr(dev_priv, false);
659 660 661 662 663
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
664 665 666 667 668
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
669
		int clock = adjusted_mode->crtc_clock;
670 671 672 673

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
674
					cpp, latency->display_sr);
675 676
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
677
		reg |= FW_WM(wm, SR);
678 679 680 681 682 683
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
684
					cpp, latency->cursor_sr);
685 686
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
687
		reg |= FW_WM(wm, CURSOR_SR);
688 689 690 691 692
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
693
					cpp, latency->display_hpll_disable);
694 695
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
696
		reg |= FW_WM(wm, HPLL_SR);
697 698 699 700 701
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
702
					cpp, latency->cursor_hpll_disable);
703 704
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
705
		reg |= FW_WM(wm, HPLL_CURSOR);
706 707 708
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

709
		intel_set_memory_cxsr(dev_priv, true);
710
	} else {
711
		intel_set_memory_cxsr(dev_priv, false);
712 713 714
	}
}

715
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
716 717 718 719 720 721 722 723
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
724
	struct intel_crtc *crtc;
725
	const struct drm_display_mode *adjusted_mode;
726
	const struct drm_framebuffer *fb;
727
	int htotal, hdisplay, clock, cpp;
728 729 730
	int line_time_us, line_count;
	int entries, tlb_miss;

731
	crtc = intel_get_crtc_for_plane(&dev_priv->drm, plane);
732
	if (!intel_crtc_active(crtc)) {
733 734 735 736 737
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

738 739
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
740
	clock = adjusted_mode->crtc_clock;
741
	htotal = adjusted_mode->crtc_htotal;
742 743
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
744 745

	/* Use the small buffer method to calculate plane watermark */
746
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
747 748 749 750 751 752 753 754 755
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
756
	line_time_us = max(htotal * 1000 / clock, 1);
757
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
758
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
777
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
778 779 780 781 782 783 784 785
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
786
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
787 788 789 790 791
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
792
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
793 794 795 796 797 798 799 800 801 802 803 804
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

805
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
806 807 808 809 810 811
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
812
	struct intel_crtc *crtc;
813
	const struct drm_display_mode *adjusted_mode;
814
	const struct drm_framebuffer *fb;
815
	int hdisplay, htotal, cpp, clock;
816 817 818 819 820 821 822 823 824 825
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

826
	crtc = intel_get_crtc_for_plane(&dev_priv->drm, plane);
827 828
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
829
	clock = adjusted_mode->crtc_clock;
830
	htotal = adjusted_mode->crtc_htotal;
831 832
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
833

834
	line_time_us = max(htotal * 1000 / clock, 1);
835
	line_count = (latency_ns / line_time_us + 1000) / 1000;
836
	line_size = hdisplay * cpp;
837 838

	/* Use the minimum of the small and large buffer method for primary */
839
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
840 841 842 843 844 845
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
846
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
847 848 849
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

850
	return g4x_check_srwm(dev_priv,
851 852 853 854
			      *display_wm, *cursor_wm,
			      display, cursor);
}

855 856 857
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

858 859 860 861 862 863 864 865 866 867 868 869
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

870
	I915_WRITE(DSPFW1,
871 872 873 874
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
875
	I915_WRITE(DSPFW2,
876 877 878
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
879
	I915_WRITE(DSPFW3,
880
		   FW_WM(wm->sr.cursor, CURSOR_SR));
881 882 883

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
884 885
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
886
		I915_WRITE(DSPFW8_CHV,
887 888
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
889
		I915_WRITE(DSPFW9_CHV,
890 891
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
892
		I915_WRITE(DSPHOWM,
893 894 895 896 897 898 899 900 901 902
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
903 904
	} else {
		I915_WRITE(DSPFW7,
905 906
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
907
		I915_WRITE(DSPHOWM,
908 909 910 911 912 913 914
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
915 916
	}

917 918 919 920 921 922
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

923
	POSTING_READ(DSPFW1);
924 925
}

926 927
#undef FW_WM_VLV

928 929 930 931 932 933
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

934 935 936 937
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
938
				   unsigned int cpp,
939 940 941 942 943
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
944
	ret = (ret + 1) * horiz_pixels * cpp;
945 946 947 948 949 950 951
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
952
	struct drm_i915_private *dev_priv = to_i915(dev);
953 954 955 956

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

957 958
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

959 960 961
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
962 963

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
964 965 966 967 968 969 970 971 972
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
973
	int clock, htotal, cpp, width, wm;
974 975 976 977

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

978
	if (!state->base.visible)
979 980
		return 0;

981
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
997
		wm = vlv_wm_method2(clock, htotal, width, cpp,
998 999 1000 1001 1002 1003
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1020
		if (state->base.visible) {
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1036
		if (!state->base.visible) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1105
static void vlv_compute_wm(struct intel_crtc *crtc)
1106 1107 1108 1109 1110 1111 1112 1113 1114
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1115
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1116
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1117 1118 1119

	wm_state->num_active_planes = 0;

1120
	vlv_compute_fifo(crtc);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1136
		if (!state->base.visible)
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1177
					wm_state->wm[level].cursor;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1196
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1197 1198 1199 1200 1201 1202 1203
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1294 1295 1296 1297 1298 1299
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1300
	wm->level = to_i915(dev)->wm.max_level;
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1319 1320 1321
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

1340
static void vlv_update_wm(struct intel_crtc *crtc)
1341
{
1342
	struct drm_device *dev = crtc->base.dev;
1343
	struct drm_i915_private *dev_priv = to_i915(dev);
1344
	enum pipe pipe = crtc->pipe;
1345 1346
	struct vlv_wm_values wm = {};

1347
	vlv_compute_wm(crtc);
1348 1349
	vlv_merge_wm(dev, &wm);

1350 1351
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
1352
		vlv_pipe_set_fifo_size(crtc);
1353
		return;
1354
	}
1355 1356 1357 1358 1359 1360 1361 1362 1363

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1364
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1365 1366
		intel_set_memory_cxsr(dev_priv, false);

1367
	/* FIXME should be part of crtc atomic commit */
1368
	vlv_pipe_set_fifo_size(crtc);
1369

1370
	vlv_write_wm_values(crtc, &wm);
1371 1372 1373 1374 1375 1376 1377

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1378
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1390 1391
}

1392 1393
#define single_plane_enabled(mask) is_power_of_2(mask)

1394
static void g4x_update_wm(struct intel_crtc *crtc)
1395
{
1396
	struct drm_device *dev = crtc->base.dev;
1397
	static const int sr_latency_ns = 12000;
1398
	struct drm_i915_private *dev_priv = to_i915(dev);
1399 1400 1401
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1402
	bool cxsr_enabled;
1403

1404
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1405 1406
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1407
			    &planea_wm, &cursora_wm))
1408
		enabled |= 1 << PIPE_A;
1409

1410
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1411 1412
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1413
			    &planeb_wm, &cursorb_wm))
1414
		enabled |= 1 << PIPE_B;
1415 1416

	if (single_plane_enabled(enabled) &&
1417
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1418 1419 1420
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1421
			     &plane_sr, &cursor_sr)) {
1422
		cxsr_enabled = true;
1423
	} else {
1424
		cxsr_enabled = false;
1425
		intel_set_memory_cxsr(dev_priv, false);
1426 1427
		plane_sr = cursor_sr = 0;
	}
1428

1429 1430
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1431 1432 1433 1434 1435
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1436 1437 1438 1439
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1440
	I915_WRITE(DSPFW2,
1441
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1442
		   FW_WM(cursora_wm, CURSORA));
1443 1444
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1445
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1446
		   FW_WM(cursor_sr, CURSOR_SR));
1447 1448 1449

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1450 1451
}

1452
static void i965_update_wm(struct intel_crtc *unused_crtc)
1453
{
1454
	struct drm_device *dev = unused_crtc->base.dev;
1455
	struct drm_i915_private *dev_priv = to_i915(dev);
1456
	struct intel_crtc *crtc;
1457 1458
	int srwm = 1;
	int cursor_sr = 16;
1459
	bool cxsr_enabled;
1460 1461 1462 1463 1464 1465

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1466 1467 1468 1469
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1470
		int clock = adjusted_mode->crtc_clock;
1471
		int htotal = adjusted_mode->crtc_htotal;
1472 1473
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1474 1475 1476
		unsigned long line_time_us;
		int entries;

1477
		line_time_us = max(htotal * 1000 / clock, 1);
1478 1479 1480

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1481
			cpp * hdisplay;
1482 1483 1484 1485 1486 1487 1488 1489 1490
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1491
			cpp * crtc->base.cursor->state->crtc_w;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1503
		cxsr_enabled = true;
1504
	} else {
1505
		cxsr_enabled = false;
1506
		/* Turn off self refresh if both pipes are enabled */
1507
		intel_set_memory_cxsr(dev_priv, false);
1508 1509 1510 1511 1512 1513
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1514 1515 1516 1517 1518 1519
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1520
	/* update cursor SR watermark */
1521
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1522 1523 1524

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1525 1526
}

1527 1528
#undef FW_WM

1529
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1530
{
1531
	struct drm_device *dev = unused_crtc->base.dev;
1532
	struct drm_i915_private *dev_priv = to_i915(dev);
1533 1534 1535 1536 1537 1538
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1539
	struct intel_crtc *crtc, *enabled = NULL;
1540 1541 1542

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
1543
	else if (!IS_GEN2(dev_priv))
1544 1545
		wm_info = &i915_wm_info;
	else
1546
		wm_info = &i830_a_wm_info;
1547 1548

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1549
	crtc = intel_get_crtc_for_plane(dev, 0);
1550 1551 1552 1553 1554 1555 1556
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1557
		if (IS_GEN2(dev_priv))
1558
			cpp = 4;
1559 1560
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1561

1562
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1563
					       wm_info, fifo_size, cpp,
1564
					       pessimal_latency_ns);
1565
		enabled = crtc;
1566
	} else {
1567
		planea_wm = fifo_size - wm_info->guard_size;
1568 1569 1570 1571
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1572
	if (IS_GEN2(dev_priv))
1573
		wm_info = &i830_bc_wm_info;
1574 1575

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1576
	crtc = intel_get_crtc_for_plane(dev, 1);
1577 1578 1579 1580 1581 1582 1583
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1584
		if (IS_GEN2(dev_priv))
1585
			cpp = 4;
1586 1587
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1588

1589
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1590
					       wm_info, fifo_size, cpp,
1591
					       pessimal_latency_ns);
1592 1593 1594 1595
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1596
	} else {
1597
		planeb_wm = fifo_size - wm_info->guard_size;
1598 1599 1600
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1601 1602 1603

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1604
	if (IS_I915GM(dev_priv) && enabled) {
1605
		struct drm_i915_gem_object *obj;
1606

1607
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1608 1609

		/* self-refresh seems busted with untiled */
1610
		if (!i915_gem_object_is_tiled(obj))
1611 1612 1613
			enabled = NULL;
	}

1614 1615 1616 1617 1618 1619
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1620
	intel_set_memory_cxsr(dev_priv, false);
1621 1622 1623 1624 1625

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1626 1627 1628 1629
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1630
		int clock = adjusted_mode->crtc_clock;
1631
		int htotal = adjusted_mode->crtc_htotal;
1632 1633
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1634 1635 1636
		unsigned long line_time_us;
		int entries;

1637
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1638
			cpp = 4;
1639 1640
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1641

1642
		line_time_us = max(htotal * 1000 / clock, 1);
1643 1644 1645

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1646
			cpp * hdisplay;
1647 1648 1649 1650 1651 1652
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1653
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1654 1655
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1656
		else
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1673 1674
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1675 1676
}

1677
static void i845_update_wm(struct intel_crtc *unused_crtc)
1678
{
1679
	struct drm_device *dev = unused_crtc->base.dev;
1680
	struct drm_i915_private *dev_priv = to_i915(dev);
1681
	struct intel_crtc *crtc;
1682
	const struct drm_display_mode *adjusted_mode;
1683 1684 1685 1686 1687 1688 1689
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1690
	adjusted_mode = &crtc->config->base.adjusted_mode;
1691
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1692
				       &i845_wm_info,
1693
				       dev_priv->display.get_fifo_size(dev, 0),
1694
				       4, pessimal_latency_ns);
1695 1696 1697 1698 1699 1700 1701 1702
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1703
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1704
{
1705
	uint32_t pixel_rate;
1706

1707
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1708 1709 1710 1711

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1712
	if (pipe_config->pch_pfit.enabled) {
1713
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1714 1715 1716 1717
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1718 1719 1720 1721 1722 1723 1724 1725

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1726 1727 1728
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1729 1730 1731 1732 1733 1734 1735
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1736
/* latency must be in 0.1us units. */
1737
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1738 1739 1740
{
	uint64_t ret;

1741 1742 1743
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1744
	ret = (uint64_t) pixel_rate * cpp * latency;
1745 1746 1747 1748 1749
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1750
/* latency must be in 0.1us units. */
1751
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1752
			       uint32_t horiz_pixels, uint8_t cpp,
1753 1754 1755 1756
			       uint32_t latency)
{
	uint32_t ret;

1757 1758
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1759 1760
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1761

1762
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1763
	ret = (ret + 1) * horiz_pixels * cpp;
1764 1765 1766 1767
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1768
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1769
			   uint8_t cpp)
1770
{
1771 1772 1773 1774 1775 1776
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1777
	if (WARN_ON(!cpp))
1778 1779 1780 1781
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1782
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1783 1784
}

1785
struct ilk_wm_maximums {
1786 1787 1788 1789 1790 1791
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1792 1793 1794 1795
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1796
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1797
				   const struct intel_plane_state *pstate,
1798 1799
				   uint32_t mem_value,
				   bool is_lp)
1800
{
1801 1802
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1803 1804
	uint32_t method1, method2;

1805
	if (!cstate->base.active || !pstate->base.visible)
1806 1807
		return 0;

1808
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1809 1810 1811 1812

	if (!is_lp)
		return method1;

1813 1814
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1815
				 drm_rect_width(&pstate->base.dst),
1816
				 cpp, mem_value);
1817 1818

	return min(method1, method2);
1819 1820
}

1821 1822 1823 1824
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1825
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1826
				   const struct intel_plane_state *pstate,
1827 1828
				   uint32_t mem_value)
{
1829 1830
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1831 1832
	uint32_t method1, method2;

1833
	if (!cstate->base.active || !pstate->base.visible)
1834 1835
		return 0;

1836
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1837 1838
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1839
				 drm_rect_width(&pstate->base.dst),
1840
				 cpp, mem_value);
1841 1842 1843
	return min(method1, method2);
}

1844 1845 1846 1847
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1848
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1849
				   const struct intel_plane_state *pstate,
1850 1851
				   uint32_t mem_value)
{
1852 1853 1854 1855 1856 1857
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1858
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1859

1860
	if (!cstate->base.active)
1861 1862
		return 0;

1863 1864
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1865
			      width, cpp, mem_value);
1866 1867
}

1868
/* Only for WM_LP. */
1869
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1870
				   const struct intel_plane_state *pstate,
1871
				   uint32_t pri_val)
1872
{
1873 1874
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1875

1876
	if (!cstate->base.active || !pstate->base.visible)
1877 1878
		return 0;

1879
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1880 1881
}

1882 1883
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1884 1885 1886
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1887 1888 1889 1890 1891
		return 768;
	else
		return 512;
}

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1926 1927 1928
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1929
				     const struct intel_wm_config *config,
1930 1931 1932 1933 1934 1935
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1936
	if (is_sprite && !config->sprites_enabled)
1937 1938 1939
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1940
	if (level == 0 || config->num_pipes_active > 1) {
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1952
	if (config->sprites_enabled) {
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1964
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1965 1966 1967 1968
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1969 1970
				      int level,
				      const struct intel_wm_config *config)
1971 1972
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1973
	if (level > 0 && config->num_pipes_active > 1)
1974 1975 1976
		return 64;

	/* otherwise just report max that registers can hold */
1977
	return ilk_cursor_wm_reg_max(dev, level);
1978 1979
}

1980
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1981 1982 1983
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1984
				    struct ilk_wm_maximums *max)
1985
{
1986 1987 1988
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1989
	max->fbc = ilk_fbc_wm_reg_max(dev);
1990 1991
}

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

2002
static bool ilk_validate_wm_level(int level,
2003
				  const struct ilk_wm_maximums *max,
2004
				  struct intel_wm_level *result)
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2043
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2044
				 const struct intel_crtc *intel_crtc,
2045
				 int level,
2046
				 struct intel_crtc_state *cstate,
2047 2048 2049
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2050
				 struct intel_wm_level *result)
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2075 2076 2077
	result->enable = true;
}

2078
static uint32_t
2079
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2080
{
2081 2082
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2083 2084
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2085
	u32 linetime, ips_linetime;
2086

2087 2088 2089 2090
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2091
	if (WARN_ON(intel_state->cdclk == 0))
2092
		return 0;
2093

2094 2095 2096
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2097 2098 2099
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2100
					 intel_state->cdclk);
2101

2102 2103
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2104 2105
}

2106
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2107
{
2108
	struct drm_i915_private *dev_priv = to_i915(dev);
2109

2110
	if (IS_GEN9(dev_priv)) {
2111
		uint32_t val;
2112
		int ret, i;
2113
		int level, max_level = ilk_wm_max_level(dev_priv);
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2169
		/*
2170 2171
		 * WaWmMemoryReadLatency:skl
		 *
2172
		 * punit doesn't take into account the read latency so we need
2173 2174
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2175
		 */
2176 2177 2178 2179 2180
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2181
				wm[level] += 2;
2182
			}
2183 2184
		}

2185
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2186 2187 2188 2189 2190
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2191 2192 2193 2194
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2195 2196 2197 2198 2199 2200 2201
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2202 2203 2204 2205 2206 2207 2208
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2209 2210 2211
	}
}

2212 2213
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2214 2215
{
	/* ILK sprite LP0 latency is 1300 ns */
2216
	if (IS_GEN5(dev_priv))
2217 2218 2219
		wm[0] = 13;
}

2220 2221
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2222 2223
{
	/* ILK cursor LP0 latency is 1300 ns */
2224
	if (IS_GEN5(dev_priv))
2225 2226 2227
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2228
	if (IS_IVYBRIDGE(dev_priv))
2229 2230 2231
		wm[3] *= 2;
}

2232
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2233 2234
{
	/* how many WM levels are we expecting */
2235
	if (INTEL_GEN(dev_priv) >= 9)
2236
		return 7;
2237
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2238
		return 4;
2239
	else if (INTEL_GEN(dev_priv) >= 6)
2240
		return 3;
2241
	else
2242 2243
		return 2;
}
2244

2245
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2246
				   const char *name,
2247
				   const uint16_t wm[8])
2248
{
2249
	int level, max_level = ilk_wm_max_level(dev_priv);
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2260 2261 2262 2263
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2264
		if (IS_GEN9(dev_priv))
2265 2266
			latency *= 10;
		else if (level > 0)
2267 2268 2269 2270 2271 2272 2273 2274
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2275 2276 2277
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2278
	int level, max_level = ilk_wm_max_level(dev_priv);
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
2292
	struct drm_i915_private *dev_priv = to_i915(dev);
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2307 2308 2309
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2310 2311
}

2312
static void ilk_setup_wm_latency(struct drm_device *dev)
2313
{
2314
	struct drm_i915_private *dev_priv = to_i915(dev);
2315 2316 2317 2318 2319 2320 2321 2322

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2323
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2324
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2325

2326 2327 2328
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2329

2330
	if (IS_GEN6(dev_priv))
2331
		snb_wm_latency_quirk(dev);
2332 2333
}

2334 2335
static void skl_setup_wm_latency(struct drm_device *dev)
{
2336
	struct drm_i915_private *dev_priv = to_i915(dev);
2337 2338

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2339
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2340 2341
}

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2365
/* Compute new watermarks for the pipe */
2366
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2367
{
2368 2369
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2370
	struct intel_pipe_wm *pipe_wm;
2371
	struct drm_device *dev = state->dev;
2372
	const struct drm_i915_private *dev_priv = to_i915(dev);
2373
	struct intel_plane *intel_plane;
2374
	struct intel_plane_state *pristate = NULL;
2375
	struct intel_plane_state *sprstate = NULL;
2376
	struct intel_plane_state *curstate = NULL;
2377
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2378
	struct ilk_wm_maximums max;
2379

2380
	pipe_wm = &cstate->wm.ilk.optimal;
2381

2382
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2383 2384 2385 2386 2387 2388
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2389 2390

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2391
			pristate = ps;
2392
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2393
			sprstate = ps;
2394
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2395
			curstate = ps;
2396 2397
	}

2398
	pipe_wm->pipe_enabled = cstate->base.active;
2399
	if (sprstate) {
2400 2401 2402 2403
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2404 2405
	}

2406 2407
	usable_level = max_level;

2408
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2409
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2410
		usable_level = 1;
2411 2412

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2413
	if (pipe_wm->sprites_scaled)
2414
		usable_level = 0;
2415

2416
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2417 2418 2419 2420
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2421

2422
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2423
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2424

2425
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2426
		return -EINVAL;
2427 2428 2429 2430

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2431
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2432

2433
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2434
				     pristate, sprstate, curstate, wm);
2435 2436 2437 2438 2439 2440

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2441 2442 2443 2444 2445 2446
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2447
			usable_level = level;
2448 2449
	}

2450
	return 0;
2451 2452
}

2453 2454 2455 2456 2457 2458 2459 2460 2461
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2462
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2463
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2464
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2465 2466 2467 2468 2469 2470

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2471
	*a = newstate->wm.ilk.optimal;
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2500
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2501 2502 2503 2504 2505
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2506 2507 2508 2509 2510 2511 2512 2513 2514
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2515 2516
	ret_wm->enable = true;

2517
	for_each_intel_crtc(dev, intel_crtc) {
2518
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2519 2520 2521 2522
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2523

2524 2525 2526 2527 2528
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2529
		if (!wm->enable)
2530
			ret_wm->enable = false;
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2543
			 const struct intel_wm_config *config,
2544
			 const struct ilk_wm_maximums *max,
2545 2546
			 struct intel_pipe_wm *merged)
{
2547
	struct drm_i915_private *dev_priv = to_i915(dev);
2548
	int level, max_level = ilk_wm_max_level(dev_priv);
2549
	int last_enabled_level = max_level;
2550

2551
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2552
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2553
	    config->num_pipes_active > 1)
2554
		last_enabled_level = 0;
2555

2556 2557
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2558 2559 2560 2561 2562 2563 2564

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2565 2566 2567 2568 2569
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2570 2571 2572 2573 2574 2575

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2576 2577
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2578 2579 2580
			wm->fbc_val = 0;
		}
	}
2581 2582 2583 2584 2585 2586 2587

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2588
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2589
	    intel_fbc_is_active(dev_priv)) {
2590 2591 2592 2593 2594 2595
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2596 2597
}

2598 2599 2600 2601 2602 2603
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2604 2605 2606
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2607
	struct drm_i915_private *dev_priv = to_i915(dev);
2608

2609
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2610 2611 2612 2613 2614
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2615
static void ilk_compute_wm_results(struct drm_device *dev,
2616
				   const struct intel_pipe_wm *merged,
2617
				   enum intel_ddb_partitioning partitioning,
2618
				   struct ilk_wm_values *results)
2619
{
2620 2621
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2622

2623
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2624
	results->partitioning = partitioning;
2625

2626
	/* LP1+ register values */
2627
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2628
		const struct intel_wm_level *r;
2629

2630
		level = ilk_wm_lp_to_level(wm_lp, merged);
2631

2632
		r = &merged->wm[level];
2633

2634 2635 2636 2637 2638
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2639
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2640 2641 2642
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2643 2644 2645
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2646 2647 2648 2649 2650 2651 2652
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2653 2654 2655 2656
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2657 2658 2659 2660 2661
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2662
	}
2663

2664
	/* LP0 register values */
2665
	for_each_intel_crtc(dev, intel_crtc) {
2666
		enum pipe pipe = intel_crtc->pipe;
2667 2668
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2669 2670 2671 2672

		if (WARN_ON(!r->enable))
			continue;

2673
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2674

2675 2676 2677 2678
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2679 2680 2681
	}
}

2682 2683
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2684
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2685 2686
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2687
{
2688
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2689
	int level1 = 0, level2 = 0;
2690

2691 2692 2693 2694 2695
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2696 2697
	}

2698 2699
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2700 2701 2702
			return r2;
		else
			return r1;
2703
	} else if (level1 > level2) {
2704 2705 2706 2707 2708 2709
		return r1;
	} else {
		return r2;
	}
}

2710 2711 2712 2713 2714 2715 2716 2717
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2718
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2719 2720
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2721 2722 2723 2724 2725
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2726
	for_each_pipe(dev_priv, pipe) {
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2770 2771
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2772
{
2773
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2774
	bool changed = false;
2775

2776 2777 2778
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2779
		changed = true;
2780 2781 2782 2783
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2784
		changed = true;
2785 2786 2787 2788
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2789
		changed = true;
2790
	}
2791

2792 2793 2794 2795
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2796

2797 2798 2799 2800 2801 2802 2803
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2804 2805
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2806
{
2807
	struct drm_device *dev = &dev_priv->drm;
2808
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2809 2810 2811
	unsigned int dirty;
	uint32_t val;

2812
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2813 2814 2815 2816 2817
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2818
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2819
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2820
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2821
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2822
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2823 2824
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2825
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2826
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2827
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2828
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2829
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2830 2831
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2832
	if (dirty & WM_DIRTY_DDB) {
2833
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2848 2849
	}

2850
	if (dirty & WM_DIRTY_FBC) {
2851 2852 2853 2854 2855 2856 2857 2858
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2859 2860 2861 2862 2863
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2864 2865 2866 2867 2868
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2869

2870
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2871
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2872
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2873
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2874
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2875
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2876 2877

	dev_priv->wm.hw = *results;
2878 2879
}

2880
bool ilk_disable_lp_wm(struct drm_device *dev)
2881
{
2882
	struct drm_i915_private *dev_priv = to_i915(dev);
2883 2884 2885 2886

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2887
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2888

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2926 2927 2928
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2929 2930 2931 2932 2933 2934 2935 2936
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2937 2938
}

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2951
intel_enable_sagv(struct drm_i915_private *dev_priv)
2952 2953 2954
{
	int ret;

2955 2956 2957 2958
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2974
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2975
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2976
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2977 2978 2979 2980 2981 2982
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2983
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2984 2985 2986 2987
	return 0;
}

static int
2988
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
3002
intel_disable_sagv(struct drm_i915_private *dev_priv)
3003 3004 3005
{
	int ret, result;

3006 3007 3008 3009
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3010 3011 3012 3013 3014 3015
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3016
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3028
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
3029
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3030
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3031 3032 3033 3034 3035 3036
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

3037
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3038 3039 3040
	return 0;
}

3041
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3042 3043 3044 3045
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3046 3047
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3048 3049
	struct intel_crtc_state *cstate;
	struct skl_plane_wm *wm;
3050
	enum pipe pipe;
3051
	int level, latency;
3052

3053 3054 3055
	if (!intel_has_sagv(dev_priv))
		return false;

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3069
	crtc = dev_priv->pipe_to_crtc_mapping[pipe];
3070
	cstate = to_intel_crtc_state(crtc->base.state);
3071

3072
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3073 3074
		return false;

3075
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3076
		wm = &cstate->wm.skl.optimal.planes[skl_wm_plane_id(plane)];
3077

3078
		/* Skip this plane if it's not enabled */
3079
		if (!wm->wm[0].plane_en)
3080 3081 3082
			continue;

		/* Find the highest enabled wm level for this plane */
3083
		for (level = ilk_wm_max_level(dev_priv);
3084
		     !wm->wm[level].plane_en; --level)
3085 3086
		     { }

3087 3088 3089 3090 3091 3092 3093
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
		    plane->base.state->fb->modifier[0] ==
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3094 3095 3096 3097 3098
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3099
		if (latency < SKL_SAGV_BLOCK_TIME)
3100 3101 3102 3103 3104 3105
			return false;
	}

	return true;
}

3106 3107
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3108
				   const struct intel_crtc_state *cstate,
3109 3110
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3111
{
3112 3113 3114
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3115
	struct drm_crtc *for_crtc = cstate->base.crtc;
3116 3117
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3118

3119
	if (WARN_ON(!state) || !cstate->base.active) {
3120 3121
		alloc->start = 0;
		alloc->end = 0;
3122
		*num_active = hweight32(dev_priv->active_crtcs);
3123 3124 3125
		return;
	}

3126 3127 3128 3129 3130
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3131 3132
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3133 3134 3135

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3136
	/*
3137 3138 3139 3140 3141 3142
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3143
	 */
3144
	if (!intel_state->active_pipe_changes) {
3145
		*alloc = to_intel_crtc(for_crtc)->hw_ddb;
3146
		return;
3147
	}
3148 3149 3150 3151 3152 3153

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3154 3155
}

3156
static unsigned int skl_cursor_allocation(int num_active)
3157
{
3158
	if (num_active == 1)
3159 3160 3161 3162 3163
		return 32;

	return 8;
}

3164 3165 3166 3167
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3168 3169
	if (entry->end)
		entry->end += 1;
3170 3171
}

3172 3173
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3174 3175 3176 3177 3178
{
	enum pipe pipe;
	int plane;
	u32 val;

3179 3180
	memset(ddb, 0, sizeof(*ddb));

3181
	for_each_pipe(dev_priv, pipe) {
3182 3183 3184 3185
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3186 3187
			continue;

3188
		for_each_universal_plane(dev_priv, pipe, plane) {
3189 3190 3191 3192 3193 3194
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3195 3196
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3197 3198

		intel_display_power_put(dev_priv, power_domain);
3199 3200 3201
	}
}

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3224
	if (WARN_ON(!pstate->base.visible))
3225 3226 3227
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3228 3229 3230 3231
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3232
	if (drm_rotation_90_or_270(pstate->base.rotation))
3233 3234 3235 3236 3237 3238 3239 3240 3241
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3242
static unsigned int
3243 3244 3245
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3246
{
3247
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3248
	struct drm_framebuffer *fb = pstate->fb;
3249
	uint32_t down_scale_amount, data_rate;
3250
	uint32_t width = 0, height = 0;
3251 3252
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3253
	if (!intel_pstate->base.visible)
3254 3255 3256 3257 3258
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3259

3260 3261
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3262

3263
	if (drm_rotation_90_or_270(pstate->rotation))
3264
		swap(width, height);
3265 3266

	/* for planar format */
3267
	if (format == DRM_FORMAT_NV12) {
3268
		if (y)  /* y-plane data rate */
3269
			data_rate = width * height *
3270
				drm_format_plane_cpp(format, 0);
3271
		else    /* uv-plane data rate */
3272
			data_rate = (width / 2) * (height / 2) *
3273
				drm_format_plane_cpp(format, 1);
3274 3275 3276
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3277 3278
	}

3279 3280 3281
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3282 3283 3284 3285 3286 3287 3288 3289
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3290 3291 3292
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3293
{
3294 3295
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3296
	struct drm_plane *plane;
3297
	const struct intel_plane *intel_plane;
3298
	const struct drm_plane_state *pstate;
3299
	unsigned int rate, total_data_rate = 0;
3300
	int id;
3301 3302 3303

	if (WARN_ON(!state))
		return 0;
3304

3305
	/* Calculate and cache data rate for each plane */
3306
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3307 3308 3309 3310 3311 3312
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3313 3314 3315
		plane_data_rate[id] = rate;

		total_data_rate += rate;
3316 3317 3318 3319

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3320
		plane_y_data_rate[id] = rate;
3321

3322
		total_data_rate += rate;
3323 3324 3325 3326 3327
	}

	return total_data_rate;
}

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3350 3351
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3352

3353
	if (drm_rotation_90_or_270(pstate->rotation))
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3367
	if (drm_rotation_90_or_270(pstate->rotation)) {
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
		struct intel_plane *intel_plane = to_intel_plane(plane);
		int id = skl_wm_plane_id(intel_plane);

		if (id == PLANE_CURSOR)
			continue;

		if (!pstate->visible)
			continue;

		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3415
static int
3416
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3417 3418
		      struct skl_ddb_allocation *ddb /* out */)
{
3419
	struct drm_atomic_state *state = cstate->base.state;
3420
	struct drm_crtc *crtc = cstate->base.crtc;
3421 3422 3423
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3424
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3425
	uint16_t alloc_size, start;
3426 3427
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3428
	unsigned int total_data_rate;
3429 3430
	int num_active;
	int id, i;
3431 3432
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3433

3434 3435 3436 3437
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3438 3439 3440
	if (WARN_ON(!state))
		return 0;

3441
	if (!cstate->base.active) {
3442
		alloc->start = alloc->end = 0;
3443 3444 3445
		return 0;
	}

3446
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3447
	alloc_size = skl_ddb_entry_size(alloc);
3448 3449
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3450
		return 0;
3451 3452
	}

3453
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3454

3455 3456 3457 3458 3459
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3460

3461
	for (i = 0; i < I915_MAX_PLANES; i++) {
3462 3463
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3464 3465
	}

3466 3467 3468
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3469
	/*
3470 3471
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3472 3473 3474
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3475 3476 3477
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3478
	if (total_data_rate == 0)
3479
		return 0;
3480

3481
	start = alloc->start;
3482
	for (id = 0; id < I915_MAX_PLANES; id++) {
3483 3484
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3485

3486 3487 3488
		if (id == PLANE_CURSOR)
			continue;

3489
		data_rate = plane_data_rate[id];
3490 3491

		/*
3492
		 * allocation for (packed formats) or (uv-plane part of planar format):
3493 3494 3495
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3496
		plane_blocks = minimum[id];
3497 3498
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3499

3500 3501 3502 3503 3504
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3505 3506

		start += plane_blocks;
3507 3508 3509 3510

		/*
		 * allocation for y_plane part of planar format:
		 */
3511
		y_data_rate = plane_y_data_rate[id];
3512 3513 3514 3515

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3516

3517 3518 3519 3520
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3521 3522

		start += y_plane_blocks;
3523 3524
	}

3525
	return 0;
3526 3527
}

3528 3529
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3530
 * for the read latency) and cpp should always be <= 8, so that
3531 3532 3533
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3534
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3535 3536 3537 3538 3539 3540
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3541
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3542 3543 3544 3545 3546 3547
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3548
			       uint32_t latency, uint32_t plane_blocks_per_line)
3549
{
3550 3551
	uint32_t ret;
	uint32_t wm_intermediate_val;
3552 3553 3554 3555 3556 3557

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3558
				plane_blocks_per_line;
3559 3560 3561 3562

	return ret;
}

3563 3564 3565 3566 3567 3568 3569 3570
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3571
	if (WARN_ON(!pstate->base.visible))
3572 3573 3574 3575 3576 3577
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3578
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3579 3580 3581 3582 3583 3584 3585 3586
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3587 3588 3589 3590 3591 3592 3593 3594
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3595
{
3596 3597
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3598 3599 3600 3601 3602
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3603
	uint8_t cpp;
3604
	uint32_t width = 0, height = 0;
3605
	uint32_t plane_pixel_rate;
3606
	uint32_t y_tile_minimum, y_min_scanlines;
3607 3608 3609
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3610

3611
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3612 3613 3614
		*enabled = false;
		return 0;
	}
3615

3616 3617 3618
	if (apply_memory_bw_wa && fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
		latency += 15;

3619 3620
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3621

3622
	if (drm_rotation_90_or_270(pstate->rotation))
3623 3624
		swap(width, height);

3625
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3626 3627
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3628
	if (drm_rotation_90_or_270(pstate->rotation)) {
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3643 3644 3645
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3646 3647 3648 3649 3650
		}
	} else {
		y_min_scanlines = 4;
	}

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
	plane_bytes_per_line = width * cpp;
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3664 3665
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3666
				 cstate->base.adjusted_mode.crtc_htotal,
3667
				 latency,
3668
				 plane_blocks_per_line);
3669

3670
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3671 3672
	if (apply_memory_bw_wa)
		y_tile_minimum *= 2;
3673

3674 3675
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3676 3677
		selected_result = max(method2, y_tile_minimum);
	} else {
3678 3679 3680 3681
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3682 3683 3684 3685
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3686

3687 3688
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3689

3690
	if (level >= 1 && level <= 7) {
3691
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3692 3693
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
			res_blocks += y_tile_minimum;
3694
			res_lines += y_min_scanlines;
3695
		} else {
3696
			res_blocks++;
3697
		}
3698
	}
3699

3700 3701
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3718
	}
3719 3720 3721

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3722
	*enabled = true;
3723

3724
	return 0;
3725 3726
}

3727 3728 3729 3730
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3731
		     struct intel_plane *intel_plane,
3732 3733
		     int level,
		     struct skl_wm_level *result)
3734
{
3735
	struct drm_atomic_state *state = cstate->base.state;
3736
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3737 3738
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3739
	uint16_t ddb_blocks;
3740
	enum pipe pipe = intel_crtc->pipe;
3741
	int ret;
L
Lyude 已提交
3742 3743 3744 3745 3746 3747
	int i = skl_wm_plane_id(intel_plane);

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3748

3749
	/*
L
Lyude 已提交
3750 3751 3752 3753 3754 3755 3756 3757 3758
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3759
	 */
L
Lyude 已提交
3760 3761
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3762

L
Lyude 已提交
3763
	WARN_ON(!intel_pstate->base.fb);
3764

L
Lyude 已提交
3765
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3766

L
Lyude 已提交
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3777 3778

	return 0;
3779 3780
}

3781
static uint32_t
3782
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3783
{
3784 3785
	uint32_t pixel_rate;

3786
	if (!cstate->base.active)
3787 3788
		return 0;

3789 3790 3791
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3792
		return 0;
3793

3794
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3795
			    pixel_rate);
3796 3797
}

3798
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3799
				      struct skl_wm_level *trans_wm /* out */)
3800
{
3801
	if (!cstate->base.active)
3802
		return;
3803 3804

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3805
	trans_wm->plane_en = false;
3806 3807
}

3808 3809 3810
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3811
{
3812
	struct drm_device *dev = cstate->base.crtc->dev;
3813
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3814 3815
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3816
	int level, max_level = ilk_wm_max_level(dev_priv);
3817
	int ret;
3818

L
Lyude 已提交
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
		wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3838
	}
3839
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3840

3841
	return 0;
3842 3843
}

3844 3845
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3846 3847 3848 3849 3850 3851 3852 3853
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3869
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3870 3871
			const struct skl_plane_wm *wm,
			const struct skl_ddb_allocation *ddb,
3872 3873 3874 3875 3876
			int plane)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3877
	int level, max_level = ilk_wm_max_level(dev_priv);
3878 3879 3880
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3881 3882
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane, level),
				   &wm->wm[level]);
3883
	}
3884 3885
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane),
			   &wm->trans_wm);
3886 3887

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3888
			    &ddb->plane[pipe][plane]);
3889
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3890
			    &ddb->y_plane[pipe][plane]);
3891 3892 3893
}

void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3894 3895
			 const struct skl_plane_wm *wm,
			 const struct skl_ddb_allocation *ddb)
3896 3897 3898 3899
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3900
	int level, max_level = ilk_wm_max_level(dev_priv);
3901 3902 3903
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3904 3905
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3906
	}
3907
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3908

3909
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3910
			    &ddb->plane[pipe][PLANE_CURSOR]);
3911 3912
}

3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3927 3928
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3929
{
3930
	return a->start < b->end && b->start < a->end;
3931 3932
}

3933
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
3934
				 struct intel_crtc *intel_crtc)
3935
{
3936 3937 3938 3939 3940 3941
	struct drm_crtc *other_crtc;
	struct drm_crtc_state *other_cstate;
	struct intel_crtc *other_intel_crtc;
	const struct skl_ddb_entry *ddb =
		&to_intel_crtc_state(intel_crtc->base.state)->wm.skl.ddb;
	int i;
3942

3943 3944
	for_each_crtc_in_state(state, other_crtc, other_cstate, i) {
		other_intel_crtc = to_intel_crtc(other_crtc);
3945

3946
		if (other_intel_crtc == intel_crtc)
3947 3948
			continue;

3949
		if (skl_ddb_entries_overlap(ddb, &other_intel_crtc->hw_ddb))
3950
			return true;
3951 3952
	}

3953
	return false;
3954 3955
}

3956
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3957
			      const struct skl_pipe_wm *old_pipe_wm,
3958
			      struct skl_pipe_wm *pipe_wm, /* out */
3959
			      struct skl_ddb_allocation *ddb, /* out */
3960
			      bool *changed /* out */)
3961
{
3962
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3963
	int ret;
3964

3965 3966 3967
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3968

3969
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3970 3971 3972
		*changed = false;
	else
		*changed = true;
3973

3974
	return 0;
3975 3976
}

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3990
static int
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;
	int id;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

4008
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
		id = skl_wm_plane_id(to_intel_plane(plane));

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
					&new_ddb->plane[pipe][id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
					&new_ddb->y_plane[pipe][id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4025 4026 4027 4028 4029 4030 4031
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4032
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4033
	uint32_t realloc_pipes = pipes_modified(state);
4034 4035 4036 4037 4038 4039 4040 4041
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4042 4043 4044 4045 4046 4047
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4048 4049
		intel_state->active_pipe_changes = ~0;

4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4073
	if (intel_state->active_pipe_changes) {
4074
		realloc_pipes = ~0;
4075 4076
		intel_state->wm_results.dirty_pipes = ~0;
	}
4077

4078 4079 4080 4081 4082 4083
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4084 4085 4086 4087 4088 4089 4090
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4091
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4092 4093
		if (ret)
			return ret;
4094

4095
		ret = skl_ddb_add_affected_planes(cstate);
4096 4097
		if (ret)
			return ret;
4098 4099 4100 4101 4102
	}

	return 0;
}

4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	int id;
4127
	int i;
4128 4129

	for_each_crtc_in_state(state, crtc, cstate, i) {
4130 4131
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4132

4133
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4134 4135 4136 4137 4138 4139 4140 4141 4142
			const struct skl_ddb_entry *old, *new;

			id = skl_wm_plane_id(intel_plane);
			old = &old_ddb->plane[pipe][id];
			new = &new_ddb->plane[pipe][id];

			if (skl_ddb_entry_equal(old, new))
				continue;

4143 4144 4145 4146 4147
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4148 4149 4150 4151
		}
	}
}

4152 4153 4154 4155 4156
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4157 4158 4159
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4160
	bool changed = false;
4161
	int ret, i;
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4176 4177 4178
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4179 4180 4181 4182
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4196 4197
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4198 4199

		pipe_wm = &intel_cstate->wm.skl.optimal;
4200 4201
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4215 4216
	skl_print_wm_changes(state);

4217 4218 4219
	return 0;
}

4220
static void skl_update_wm(struct intel_crtc *intel_crtc)
4221
{
4222
	struct drm_device *dev = intel_crtc->base.dev;
4223
	struct drm_i915_private *dev_priv = to_i915(dev);
4224
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4225
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4226
	struct intel_crtc_state *cstate = to_intel_crtc_state(intel_crtc->base.state);
4227
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4228
	enum pipe pipe = intel_crtc->pipe;
4229

4230
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4231 4232
		return;

4233
	mutex_lock(&dev_priv->wm.wm_mutex);
4234

4235
	/*
4236 4237 4238 4239
	 * If this pipe isn't active already, we're going to be enabling it
	 * very soon. Since it's safe to update a pipe's ddb allocation while
	 * the pipe's shut off, just do so here. Already active pipes will have
	 * their watermarks updated once we update their planes.
4240
	 */
4241
	if (intel_crtc->base.state->active_changed) {
4242 4243
		int plane;

4244
		for_each_universal_plane(dev_priv, pipe, plane)
4245 4246
			skl_write_plane_wm(intel_crtc, &pipe_wm->planes[plane],
					   &results->ddb, plane);
4247

4248 4249
		skl_write_cursor_wm(intel_crtc, &pipe_wm->planes[PLANE_CURSOR],
				    &results->ddb);
4250 4251 4252
	}

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4253

4254 4255
	intel_crtc->hw_ddb = cstate->wm.skl.ddb;

4256
	mutex_unlock(&dev_priv->wm.wm_mutex);
4257 4258
}

4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4277
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4278
{
4279
	struct drm_device *dev = &dev_priv->drm;
4280
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4281
	struct ilk_wm_maximums max;
4282
	struct intel_wm_config config = {};
4283
	struct ilk_wm_values results = {};
4284
	enum intel_ddb_partitioning partitioning;
4285

4286 4287 4288 4289
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4290 4291

	/* 5/6 split only in single pipe config on IVB+ */
4292
	if (INTEL_INFO(dev)->gen >= 7 &&
4293 4294 4295
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4296

4297
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4298
	} else {
4299
		best_lp_wm = &lp_wm_1_2;
4300 4301
	}

4302
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4303
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4304

4305
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4306

4307
	ilk_write_wm_values(dev_priv, &results);
4308 4309
}

4310
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4311
{
4312 4313
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4314

4315
	mutex_lock(&dev_priv->wm.wm_mutex);
4316
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4317 4318 4319
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4320

4321 4322 4323 4324
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4325

4326 4327
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4328
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4329 4330 4331
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4332 4333
}

4334 4335
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4336
{
4337 4338 4339 4340
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4341 4342
}

4343 4344
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4345 4346
{
	struct drm_device *dev = crtc->dev;
4347
	struct drm_i915_private *dev_priv = to_i915(dev);
4348
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4349 4350
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4351
	enum pipe pipe = intel_crtc->pipe;
4352 4353
	int level, id, max_level;
	uint32_t val;
4354

4355
	max_level = ilk_wm_max_level(dev_priv);
4356

4357 4358
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		id = skl_wm_plane_id(intel_plane);
4359
		wm = &out->planes[id];
4360

4361 4362 4363 4364 4365
		for (level = 0; level <= max_level; level++) {
			if (id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, id, level));
			else
				val = I915_READ(CUR_WM(pipe, level));
4366

4367
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4368 4369
		}

4370 4371 4372 4373 4374 4375
		if (id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, id));
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4376 4377
	}

4378 4379
	if (!intel_crtc->active)
		return;
4380

4381
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4382 4383 4384 4385
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4386
	struct drm_i915_private *dev_priv = to_i915(dev);
4387
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4388
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4389
	struct drm_crtc *crtc;
4390 4391
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4392

4393
	skl_ddb_get_hw_state(dev_priv, ddb);
4394 4395 4396 4397 4398 4399
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4400
		if (intel_crtc->active)
4401 4402
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4403

4404 4405 4406 4407 4408 4409 4410
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4411 4412
}

4413 4414 4415
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4416
	struct drm_i915_private *dev_priv = to_i915(dev);
4417
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4418
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4419
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4420
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4421
	enum pipe pipe = intel_crtc->pipe;
4422
	static const i915_reg_t wm0_pipe_reg[] = {
4423 4424 4425 4426 4427 4428
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4429
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4430
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4431

4432 4433
	memset(active, 0, sizeof(*active));

4434
	active->pipe_enabled = intel_crtc->active;
4435 4436

	if (active->pipe_enabled) {
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4451
		int level, max_level = ilk_wm_max_level(dev_priv);
4452 4453 4454 4455 4456 4457 4458 4459 4460

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4461 4462

	intel_crtc->wm.active.ilk = *active;
4463 4464
}

4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4582 4583 4584 4585 4586 4587 4588 4589 4590
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4591
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4618 4619
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4620
	struct drm_i915_private *dev_priv = to_i915(dev);
4621
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4622 4623
	struct drm_crtc *crtc;

4624
	for_each_crtc(dev, crtc)
4625 4626 4627 4628 4629 4630 4631
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4632 4633 4634 4635
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4636

4637
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4638 4639
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4640
	else if (IS_IVYBRIDGE(dev_priv))
4641 4642
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4643 4644 4645 4646 4647

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4680
void intel_update_watermarks(struct intel_crtc *crtc)
4681
{
4682
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4683 4684

	if (dev_priv->display.update_wm)
4685
		dev_priv->display.update_wm(crtc);
4686 4687
}

4688
/*
4689 4690 4691 4692 4693 4694 4695 4696
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4697
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4698 4699 4700
{
	u16 rgvswctl;

4701 4702
	assert_spin_locked(&mchdev_lock);

4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4720
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4721
{
4722
	u32 rgvmodectl;
4723 4724
	u8 fmax, fmin, fstart, vstart;

4725 4726
	spin_lock_irq(&mchdev_lock);

4727 4728
	rgvmodectl = I915_READ(MEMMODECTL);

4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4749
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4750 4751
		PXVFREQ_PX_SHIFT;

4752 4753
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4754

4755 4756 4757
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4774
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4775
		DRM_ERROR("stuck trying to change perf mode\n");
4776
	mdelay(1);
4777

4778
	ironlake_set_drps(dev_priv, fstart);
4779

4780 4781
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4782
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4783
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4784
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4785 4786

	spin_unlock_irq(&mchdev_lock);
4787 4788
}

4789
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4790
{
4791 4792 4793 4794 4795
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4796 4797 4798 4799 4800 4801 4802 4803 4804

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4805
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4806
	mdelay(1);
4807 4808
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4809
	mdelay(1);
4810

4811
	spin_unlock_irq(&mchdev_lock);
4812 4813
}

4814 4815 4816 4817 4818
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4819
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4820
{
4821
	u32 limits;
4822

4823 4824 4825 4826 4827 4828
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4829
	if (IS_GEN9(dev_priv)) {
4830 4831 4832 4833 4834 4835 4836 4837
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4838 4839 4840 4841

	return limits;
}

4842 4843 4844
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4845 4846
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4847 4848 4849 4850

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4851 4852
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4853 4854 4855 4856
			new_power = BETWEEN;
		break;

	case BETWEEN:
4857 4858
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4859
			new_power = LOW_POWER;
4860 4861
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4862 4863 4864 4865
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4866 4867
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4868 4869 4870 4871
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4872
	if (val <= dev_priv->rps.min_freq_softlimit)
4873
		new_power = LOW_POWER;
4874
	if (val >= dev_priv->rps.max_freq_softlimit)
4875 4876 4877 4878 4879 4880 4881 4882
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4883 4884
		ei_up = 16000;
		threshold_up = 95;
4885 4886

		/* Downclock if less than 85% busy over 32ms */
4887 4888
		ei_down = 32000;
		threshold_down = 85;
4889 4890 4891 4892
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4893 4894
		ei_up = 13000;
		threshold_up = 90;
4895 4896

		/* Downclock if less than 75% busy over 32ms */
4897 4898
		ei_down = 32000;
		threshold_down = 75;
4899 4900 4901 4902
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4903 4904
		ei_up = 10000;
		threshold_up = 85;
4905 4906

		/* Downclock if less than 60% busy over 32ms */
4907 4908
		ei_down = 32000;
		threshold_down = 60;
4909 4910 4911
		break;
	}

4912
	I915_WRITE(GEN6_RP_UP_EI,
4913
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4914
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4915 4916
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4917 4918

	I915_WRITE(GEN6_RP_DOWN_EI,
4919
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4920
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4931

4932
	dev_priv->rps.power = new_power;
4933 4934
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4935 4936 4937
	dev_priv->rps.last_adj = 0;
}

4938 4939 4940 4941 4942
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4943
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4944
	if (val < dev_priv->rps.max_freq_softlimit)
4945
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4946

4947 4948
	mask &= dev_priv->pm_rps_events;

4949
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4950 4951
}

4952 4953 4954
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4955
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4956
{
4957
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4958
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4959 4960
		return;

4961
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4962 4963
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4964

C
Chris Wilson 已提交
4965 4966 4967 4968 4969
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4970

4971
		if (IS_GEN9(dev_priv))
4972 4973
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4974
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4975 4976 4977 4978 4979 4980 4981
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4982
	}
4983 4984 4985 4986

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4987
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4988
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4989

4990 4991
	POSTING_READ(GEN6_RPNSWREQ);

4992
	dev_priv->rps.cur_freq = val;
4993
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4994 4995
}

4996
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4997 4998
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4999 5000
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
5001

5002
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5003 5004 5005
		      "Odd GPU freq value\n"))
		val &= ~1;

5006 5007
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5008
	if (val != dev_priv->rps.cur_freq) {
5009
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5010 5011 5012
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
5013 5014 5015 5016 5017

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

5018
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5019 5020
 *
 * * If Gfx is Idle, then
5021 5022 5023
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5024 5025 5026
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5027
	u32 val = dev_priv->rps.idle_freq;
5028

5029
	if (dev_priv->rps.cur_freq <= val)
5030 5031
		return;

5032 5033 5034
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5035
	valleyview_set_rps(dev_priv, val);
5036
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5037 5038
}

5039 5040 5041 5042 5043 5044 5045 5046
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5047

5048 5049
		gen6_enable_rps_interrupts(dev_priv);

5050 5051 5052 5053 5054
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5055 5056 5057 5058
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5059 5060
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5061 5062 5063 5064 5065 5066 5067
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5068
	mutex_lock(&dev_priv->rps.hw_lock);
5069
	if (dev_priv->rps.enabled) {
5070
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5071
			vlv_set_rps_idle(dev_priv);
5072
		else
5073
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5074
		dev_priv->rps.last_adj = 0;
5075 5076
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5077
	}
5078
	mutex_unlock(&dev_priv->rps.hw_lock);
5079

5080
	spin_lock(&dev_priv->rps.client_lock);
5081 5082
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5083
	spin_unlock(&dev_priv->rps.client_lock);
5084 5085
}

5086
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5087 5088
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5089
{
5090 5091 5092
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5093
	if (!(dev_priv->gt.awake &&
5094
	      dev_priv->rps.enabled &&
5095
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5096
		return;
5097

5098 5099 5100
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5101
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5102 5103
		rps = NULL;

5104 5105 5106 5107 5108
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5109
			schedule_work(&dev_priv->rps.work);
5110 5111
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5112

5113 5114 5115
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5116 5117
		} else
			dev_priv->rps.boosts++;
5118
	}
5119
	spin_unlock(&dev_priv->rps.client_lock);
5120 5121
}

5122
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5123
{
5124 5125
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5126
	else
5127
		gen6_set_rps(dev_priv, val);
5128 5129
}

5130
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5131 5132
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5133
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5134 5135
}

5136
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5137 5138 5139 5140
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5141
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5142 5143
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5144
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5145
	I915_WRITE(GEN6_RP_CONTROL, 0);
5146 5147
}

5148
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5149 5150 5151 5152
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5153
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5154
{
5155 5156
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5157
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5158

5159
	I915_WRITE(GEN6_RC_CONTROL, 0);
5160

5161
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5162 5163
}

5164
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5165
{
5166
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5167 5168 5169 5170 5171
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5172
	if (HAS_RC6p(dev_priv))
5173 5174 5175 5176 5177
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5178 5179

	else
5180 5181
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5182 5183
}

5184
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5185
{
5186
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5187 5188
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5200 5201

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5202
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5203 5204 5205 5206 5207 5208 5209 5210
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5211 5212 5213
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5214
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5215 5216 5217 5218 5219 5220 5221
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5222
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5223 5224 5225
		enable_rc6 = false;
	}

5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5240 5241 5242 5243 5244 5245
		enable_rc6 = false;
	}

	return enable_rc6;
}

5246
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5247
{
5248
	/* No RC6 before Ironlake and code is gone for ilk. */
5249
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5250 5251
		return 0;

5252 5253 5254
	if (!enable_rc6)
		return 0;

5255
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5256 5257 5258 5259
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5260
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5261 5262 5263
	if (enable_rc6 >= 0) {
		int mask;

5264
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5265 5266 5267 5268 5269 5270
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5271 5272 5273
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5274 5275 5276

		return enable_rc6 & mask;
	}
5277

5278
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5279
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5280 5281

	return INTEL_RC6_ENABLE;
5282 5283
}

5284
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5285 5286
{
	/* All of these values are in units of 50MHz */
5287

5288
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5289
	if (IS_BROXTON(dev_priv)) {
5290
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5291 5292 5293 5294
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5295
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5296 5297 5298 5299
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5300
	/* hw_max = RP0 until we check for overclocking */
5301
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5302

5303
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5304 5305
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5306 5307 5308 5309 5310
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5311
			dev_priv->rps.efficient_freq =
5312 5313 5314 5315
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5316 5317
	}

5318
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5319
		/* Store the frequency values in 16.66 MHZ units, which is
5320 5321
		 * the natural hardware unit for SKL
		 */
5322 5323 5324 5325 5326 5327
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5328 5329
}

5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5342
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5343
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5344 5345 5346
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5347
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5348
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5349 5350 5351 5352 5353 5354 5355 5356 5357
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5358
		gen9_disable_rps(dev_priv);
5359 5360 5361 5362
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5363 5364 5365 5366 5367 5368 5369 5370
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5371 5372
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5373 5374 5375
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5376
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5377 5378 5379 5380

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5381
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5382
{
5383
	struct intel_engine_cs *engine;
5384
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5385 5386 5387 5388 5389 5390 5391
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5392
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5393 5394 5395 5396 5397

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5398 5399

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5400
	if (IS_SKYLAKE(dev_priv))
5401 5402 5403
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5404 5405
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5406
	for_each_engine(engine, dev_priv, id)
5407
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5408

5409
	if (HAS_GUC(dev_priv))
5410 5411
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5412 5413
	I915_WRITE(GEN6_RC_SLEEP, 0);

5414 5415 5416 5417
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5418
	/* 3a: Enable RC6 */
5419
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5420
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5421
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5422
	/* WaRsUseTimeoutMode:bxt */
5423
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5424
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5425 5426 5427
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5428 5429
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5430 5431 5432
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5433
	}
Z
Zhe Wang 已提交
5434

5435 5436
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5437
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5438
	 */
5439
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5440 5441 5442 5443
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5444

5445
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5446 5447
}

5448
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5449
{
5450
	struct intel_engine_cs *engine;
5451
	enum intel_engine_id id;
5452
	uint32_t rc6_mask = 0;
5453 5454 5455 5456 5457 5458

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5459
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5460 5461 5462 5463 5464 5465 5466 5467

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5468
	for_each_engine(engine, dev_priv, id)
5469
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5470
	I915_WRITE(GEN6_RC_SLEEP, 0);
5471
	if (IS_BROADWELL(dev_priv))
5472 5473 5474
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5475 5476

	/* 3: Enable RC6 */
5477
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5478
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5479 5480
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5481 5482 5483 5484 5485 5486 5487
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5488 5489

	/* 4 Program defaults and thresholds for RPS*/
5490 5491 5492 5493
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5508 5509

	/* 5: Enable RPS */
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5520
	reset_rps(dev_priv, gen6_set_rps);
5521

5522
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5523 5524
}

5525
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5526
{
5527
	struct intel_engine_cs *engine;
5528
	enum intel_engine_id id;
5529
	u32 rc6vids, rc6_mask = 0;
5530 5531
	u32 gtfifodbg;
	int rc6_mode;
5532
	int ret;
5533

5534
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5535

5536 5537 5538 5539 5540 5541 5542 5543 5544
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5545 5546
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5547 5548 5549 5550
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5551
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5562
	for_each_engine(engine, dev_priv, id)
5563
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5564 5565 5566

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5567
	if (IS_IVYBRIDGE(dev_priv))
5568 5569 5570
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5571
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5572 5573
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5574
	/* Check if we are enabling RC6 */
5575
	rc6_mode = intel_enable_rc6();
5576 5577 5578
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5579
	/* We don't use those on Haswell */
5580
	if (!IS_HASWELL(dev_priv)) {
5581 5582
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5583

5584 5585 5586
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5587

5588
	intel_print_rc6_info(dev_priv, rc6_mask);
5589 5590 5591 5592 5593 5594

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5595 5596
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5597 5598
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5599
	reset_rps(dev_priv, gen6_set_rps);
5600

5601 5602
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5603
	if (IS_GEN6(dev_priv) && ret) {
5604
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5605
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5606 5607 5608 5609 5610 5611 5612 5613 5614
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5615
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5616 5617
}

5618
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5619 5620
{
	int min_freq = 15;
5621 5622
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5623
	unsigned int max_gpu_freq, min_gpu_freq;
5624
	int scaling_factor = 180;
5625
	struct cpufreq_policy *policy;
5626

5627
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5628

5629 5630 5631 5632 5633 5634 5635 5636 5637
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5638
		max_ia_freq = tsc_khz;
5639
	}
5640 5641 5642 5643

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5644
	min_ring_freq = I915_READ(DCLK) & 0xf;
5645 5646
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5647

5648
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5649 5650 5651 5652 5653 5654 5655 5656
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5657 5658 5659 5660 5661
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5662 5663
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5664 5665
		unsigned int ia_freq = 0, ring_freq = 0;

5666
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5667 5668 5669 5670 5671
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5672
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5673 5674
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5675
		} else if (IS_HASWELL(dev_priv)) {
5676
			ring_freq = mult_frac(gpu_freq, 5, 4);
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5693

B
Ben Widawsky 已提交
5694 5695
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5696 5697 5698
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5699 5700 5701
	}
}

5702
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5703 5704 5705
{
	u32 val, rp0;

5706
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5707

5708
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5723
	}
5724 5725 5726

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5740 5741 5742 5743
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5744 5745 5746
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5747 5748 5749
	return rp1;
}

5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5761
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5762 5763 5764
{
	u32 val, rp0;

5765
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5778
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5779
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5780
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5781 5782 5783 5784 5785
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5786
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5787
{
5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5799 5800
}

5801 5802 5803 5804 5805 5806 5807 5808 5809
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5810 5811 5812 5813 5814 5815 5816 5817 5818

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5819
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5820
{
5821
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5822
	unsigned long pctx_paddr, paddr;
5823 5824 5825 5826 5827
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5828
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5829
		paddr = (dev_priv->mm.stolen_base +
5830
			 (ggtt->stolen_size - pctx_size));
5831 5832 5833 5834

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5835 5836

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5837 5838
}

5839
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5852
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5853
								      pcbr_offset,
5854
								      I915_GTT_OFFSET_NONE,
5855 5856 5857 5858
								      pctx_size);
		goto out;
	}

5859 5860
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5861 5862 5863 5864 5865 5866 5867 5868
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5869
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5870 5871
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5872
		goto out;
5873 5874 5875 5876 5877 5878
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5879
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5880 5881 5882
	dev_priv->vlv_pctx = pctx;
}

5883
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5884 5885 5886 5887
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5888
	i915_gem_object_put(dev_priv->vlv_pctx);
5889 5890 5891
	dev_priv->vlv_pctx = NULL;
}

5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5903
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5904
{
5905
	u32 val;
5906

5907
	valleyview_setup_pctx(dev_priv);
5908

5909 5910
	vlv_init_gpll_ref_freq(dev_priv);

5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5924
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5925

5926 5927 5928
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5929
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5930 5931 5932 5933
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5934
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5935 5936
			 dev_priv->rps.efficient_freq);

5937 5938
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5939
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5940 5941
			 dev_priv->rps.rp1_freq);

5942 5943
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5944
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5945 5946 5947
			 dev_priv->rps.min_freq);
}

5948
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5949
{
5950
	u32 val;
5951

5952
	cherryview_setup_pctx(dev_priv);
5953

5954 5955
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5956
	mutex_lock(&dev_priv->sb_lock);
5957
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5958
	mutex_unlock(&dev_priv->sb_lock);
5959

5960 5961 5962 5963
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5964
	default:
5965 5966 5967
		dev_priv->mem_freq = 1600;
		break;
	}
5968
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5969

5970 5971 5972
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5973
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5974 5975 5976 5977
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5978
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5979 5980
			 dev_priv->rps.efficient_freq);

5981 5982
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5983
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5984 5985
			 dev_priv->rps.rp1_freq);

5986 5987
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5988
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5989
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5990 5991
			 dev_priv->rps.min_freq);

5992 5993 5994 5995 5996
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5997 5998
}

5999
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6000
{
6001
	valleyview_cleanup_pctx(dev_priv);
6002 6003
}

6004
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6005
{
6006
	struct intel_engine_cs *engine;
6007
	enum intel_engine_id id;
6008
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6009 6010 6011

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6012 6013
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6024
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6025

6026 6027 6028
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6029 6030 6031 6032 6033
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6034
	for_each_engine(engine, dev_priv, id)
6035
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6036 6037
	I915_WRITE(GEN6_RC_SLEEP, 0);

6038 6039
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6051 6052
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6053
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6054 6055 6056

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6057
	/* 4 Program defaults and thresholds for RPS*/
6058
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6069
		   GEN6_RP_MEDIA_IS_GFX |
6070 6071 6072 6073
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6074 6075 6076 6077 6078 6079
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6080 6081
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6082 6083 6084
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6085
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6086 6087
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6088
	reset_rps(dev_priv, valleyview_set_rps);
6089

6090
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6091 6092
}

6093
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6094
{
6095
	struct intel_engine_cs *engine;
6096
	enum intel_engine_id id;
6097
	u32 gtfifodbg, val, rc6_mode = 0;
6098 6099 6100

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6101 6102
	valleyview_check_pctx(dev_priv);

6103 6104
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6105 6106
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6107 6108 6109
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6110
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6111
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6112

6113 6114 6115
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6116
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6136
	for_each_engine(engine, dev_priv, id)
6137
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6138

6139
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6140 6141

	/* allows RC6 residency counter to work */
6142
	I915_WRITE(VLV_COUNTER_CONTROL,
6143 6144
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6145 6146
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6147

6148
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6149
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6150

6151
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6152

6153
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6154

D
Deepak S 已提交
6155 6156 6157 6158 6159 6160
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6161
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6162

6163 6164 6165
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6166
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6167 6168
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6169
	reset_rps(dev_priv, valleyview_set_rps);
6170

6171
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6172 6173
}

6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6203
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6204 6205 6206 6207 6208 6209
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6210 6211
	assert_spin_locked(&mchdev_lock);

6212
	diff1 = now - dev_priv->ips.last_time1;
6213 6214 6215 6216 6217 6218 6219

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6220
		return dev_priv->ips.chipset_power;
6221 6222 6223 6224 6225 6226 6227 6228

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6229 6230
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6231 6232
		diff += total_count;
	} else {
6233
		diff = total_count - dev_priv->ips.last_count1;
6234 6235 6236
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6237 6238
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6249 6250
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6251

6252
	dev_priv->ips.chipset_power = ret;
6253 6254 6255 6256

	return ret;
}

6257 6258 6259 6260
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6261
	if (INTEL_INFO(dev_priv)->gen != 5)
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6300
{
6301 6302 6303
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6304
	if (INTEL_INFO(dev_priv)->is_mobile)
6305 6306 6307
		return vm > 0 ? vm : 0;

	return vd;
6308 6309
}

6310
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6311
{
6312
	u64 now, diff, diffms;
6313 6314
	u32 count;

6315
	assert_spin_locked(&mchdev_lock);
6316

6317 6318 6319
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6320 6321 6322 6323 6324 6325 6326

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6327 6328
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6329 6330
		diff += count;
	} else {
6331
		diff = count - dev_priv->ips.last_count2;
6332 6333
	}

6334 6335
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6336 6337 6338 6339

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6340
	dev_priv->ips.gfx_power = diff;
6341 6342
}

6343 6344
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6345
	if (INTEL_INFO(dev_priv)->gen != 5)
6346 6347
		return;

6348
	spin_lock_irq(&mchdev_lock);
6349 6350 6351

	__i915_update_gfx_val(dev_priv);

6352
	spin_unlock_irq(&mchdev_lock);
6353 6354
}

6355
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6356 6357 6358 6359
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6360 6361
	assert_spin_locked(&mchdev_lock);

6362
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6382
	corr2 = (corr * dev_priv->ips.corr);
6383 6384 6385 6386

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6387
	__i915_update_gfx_val(dev_priv);
6388

6389
	return dev_priv->ips.gfx_power + state2;
6390 6391
}

6392 6393 6394 6395
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6396
	if (INTEL_INFO(dev_priv)->gen != 5)
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6419
	spin_lock_irq(&mchdev_lock);
6420 6421 6422 6423
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6424 6425
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6426 6427 6428 6429

	ret = chipset_val + graphics_val;

out_unlock:
6430
	spin_unlock_irq(&mchdev_lock);
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6446
	spin_lock_irq(&mchdev_lock);
6447 6448 6449 6450 6451 6452
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6453 6454
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6455 6456

out_unlock:
6457
	spin_unlock_irq(&mchdev_lock);
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6474
	spin_lock_irq(&mchdev_lock);
6475 6476 6477 6478 6479 6480
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6481 6482
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6483 6484

out_unlock:
6485
	spin_unlock_irq(&mchdev_lock);
6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6500
	spin_lock_irq(&mchdev_lock);
6501 6502
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6503
	spin_unlock_irq(&mchdev_lock);
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6520
	spin_lock_irq(&mchdev_lock);
6521 6522 6523 6524 6525 6526
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6527
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6528

6529
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6530 6531 6532
		ret = false;

out_unlock:
6533
	spin_unlock_irq(&mchdev_lock);
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6561 6562
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6563
	spin_lock_irq(&mchdev_lock);
6564
	i915_mch_dev = dev_priv;
6565
	spin_unlock_irq(&mchdev_lock);
6566 6567 6568 6569 6570 6571

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6572
	spin_lock_irq(&mchdev_lock);
6573
	i915_mch_dev = NULL;
6574
	spin_unlock_irq(&mchdev_lock);
6575
}
6576

6577
static void intel_init_emon(struct drm_i915_private *dev_priv)
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6594
		I915_WRITE(PEW(i), 0);
6595
	for (i = 0; i < 3; i++)
6596
		I915_WRITE(DEW(i), 0);
6597 6598 6599

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6600
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6621
		I915_WRITE(PXW(i), val);
6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6637
		I915_WRITE(PXWL(i), 0);
6638 6639 6640 6641 6642 6643

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6644
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6645 6646
}

6647
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6648
{
6649 6650 6651 6652 6653 6654 6655 6656
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6657

6658
	mutex_lock(&dev_priv->drm.struct_mutex);
6659 6660 6661
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6662 6663 6664 6665
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6666
	else if (INTEL_GEN(dev_priv) >= 6)
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6696 6697 6698
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6699
	mutex_unlock(&dev_priv->rps.hw_lock);
6700
	mutex_unlock(&dev_priv->drm.struct_mutex);
6701 6702

	intel_autoenable_gt_powersave(dev_priv);
6703 6704
}

6705
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6706
{
6707
	if (IS_VALLEYVIEW(dev_priv))
6708
		valleyview_cleanup_gt_powersave(dev_priv);
6709 6710 6711

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6712 6713
}

6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6733 6734 6735 6736
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6737 6738

	gen6_reset_rps_interrupts(dev_priv);
6739 6740
}

6741
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6742
{
6743 6744
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6745

6746
	mutex_lock(&dev_priv->rps.hw_lock);
6747

6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6759
	}
6760 6761 6762

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6763 6764
}

6765
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6766
{
6767 6768 6769
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6770 6771
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6772

6773 6774 6775
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6776

6777
	mutex_lock(&dev_priv->rps.hw_lock);
6778 6779 6780 6781 6782

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6783
	} else if (INTEL_GEN(dev_priv) >= 9) {
6784 6785 6786
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6787
			gen6_update_ring_freq(dev_priv);
6788 6789
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6790
		gen6_update_ring_freq(dev_priv);
6791
	} else if (INTEL_GEN(dev_priv) >= 6) {
6792
		gen6_enable_rps(dev_priv);
6793
		gen6_update_ring_freq(dev_priv);
6794 6795 6796
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6797
	}
6798 6799 6800 6801 6802 6803 6804

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6805
	dev_priv->rps.enabled = true;
6806 6807
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6808

6809 6810 6811 6812 6813 6814 6815 6816 6817 6818
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6819
	rcs = dev_priv->engine[RCS];
6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6872 6873
static void ibx_init_clock_gating(struct drm_device *dev)
{
6874
	struct drm_i915_private *dev_priv = to_i915(dev);
6875 6876 6877 6878 6879 6880 6881 6882 6883

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6884 6885
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
6886
	struct drm_i915_private *dev_priv = to_i915(dev);
6887
	enum pipe pipe;
6888

6889
	for_each_pipe(dev_priv, pipe) {
6890 6891 6892
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6893 6894 6895

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6896 6897 6898
	}
}

6899 6900
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
6901
	struct drm_i915_private *dev_priv = to_i915(dev);
6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6913
static void ironlake_init_clock_gating(struct drm_device *dev)
6914
{
6915
	struct drm_i915_private *dev_priv = to_i915(dev);
6916
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6917

6918 6919 6920 6921
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6922 6923 6924
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6942
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6943 6944 6945
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6946 6947

	ilk_init_lp_watermarks(dev);
6948 6949 6950 6951 6952 6953 6954 6955

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6956
	if (IS_IRONLAKE_M(dev_priv)) {
6957
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6958 6959 6960 6961 6962 6963 6964 6965
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6966 6967
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6968 6969 6970 6971 6972 6973
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6974

6975
	/* WaDisableRenderCachePipelinedFlush:ilk */
6976 6977
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6978

6979 6980 6981
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6982
	g4x_disable_trickle_feed(dev);
6983

6984 6985 6986 6987 6988
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
6989
	struct drm_i915_private *dev_priv = to_i915(dev);
6990
	int pipe;
6991
	uint32_t val;
6992 6993 6994 6995 6996 6997

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6998 6999 7000
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7001 7002
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
7003 7004 7005
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
7006
	for_each_pipe(dev_priv, pipe) {
7007 7008 7009
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7010
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7011
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7012 7013 7014
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7015 7016
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7017
	/* WADP0ClockGatingDisable */
7018
	for_each_pipe(dev_priv, pipe) {
7019 7020 7021
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7022 7023
}

7024 7025
static void gen6_check_mch_setup(struct drm_device *dev)
{
7026
	struct drm_i915_private *dev_priv = to_i915(dev);
7027 7028 7029
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7030 7031 7032
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7033 7034
}

7035
static void gen6_init_clock_gating(struct drm_device *dev)
7036
{
7037
	struct drm_i915_private *dev_priv = to_i915(dev);
7038
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7039

7040
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7041 7042 7043 7044 7045

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7046
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7047 7048 7049
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7050 7051 7052
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7053 7054 7055
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7056 7057 7058 7059
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7060 7061
	 */
	I915_WRITE(GEN6_GT_MODE,
7062
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7063

7064
	ilk_init_lp_watermarks(dev);
7065 7066

	I915_WRITE(CACHE_MODE_0,
7067
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7083
	 *
7084 7085
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7086 7087 7088 7089 7090
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7091
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7092 7093
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7094

7095 7096 7097 7098 7099 7100 7101 7102
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7103 7104 7105 7106 7107 7108 7109 7110
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7111 7112
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7113 7114 7115 7116 7117 7118 7119
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7120 7121 7122 7123
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7124

7125
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
7126

7127
	cpt_init_clock_gating(dev);
7128 7129

	gen6_check_mch_setup(dev);
7130 7131 7132 7133 7134 7135
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7136
	/*
7137
	 * WaVSThreadDispatchOverride:ivb,vlv
7138 7139 7140 7141
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7142 7143 7144 7145 7146 7147 7148 7149
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7150 7151
static void lpt_init_clock_gating(struct drm_device *dev)
{
7152
	struct drm_i915_private *dev_priv = to_i915(dev);
7153 7154 7155 7156 7157

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7158
	if (HAS_PCH_LPT_LP(dev_priv))
7159 7160 7161
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7162 7163

	/* WADPOClockGatingDisable:hsw */
7164 7165
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7166
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7167 7168
}

7169 7170
static void lpt_suspend_hw(struct drm_device *dev)
{
7171
	struct drm_i915_private *dev_priv = to_i915(dev);
7172

7173
	if (HAS_PCH_LPT_LP(dev_priv)) {
7174 7175 7176 7177 7178 7179 7180
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7204 7205
static void kabylake_init_clock_gating(struct drm_device *dev)
{
7206
	struct drm_i915_private *dev_priv = dev->dev_private;
7207

7208
	gen9_init_clock_gating(dev);
7209 7210 7211 7212 7213

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7214 7215 7216 7217 7218

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7219 7220 7221 7222

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7223 7224
}

7225 7226
static void skylake_init_clock_gating(struct drm_device *dev)
{
7227
	struct drm_i915_private *dev_priv = dev->dev_private;
7228

7229
	gen9_init_clock_gating(dev);
7230 7231 7232 7233

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7234 7235 7236 7237

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7238 7239
}

7240
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7241
{
7242
	struct drm_i915_private *dev_priv = to_i915(dev);
7243
	enum pipe pipe;
B
Ben Widawsky 已提交
7244

7245
	ilk_init_lp_watermarks(dev);
7246

7247
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7248
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7249

7250
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7251 7252 7253
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7254
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7255
	for_each_pipe(dev_priv, pipe) {
7256
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7257
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7258
			   BDW_DPRS_MASK_VBLANK_SRD);
7259
	}
7260

7261 7262 7263 7264 7265
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7266

7267 7268
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7269 7270 7271 7272

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7273

7274 7275
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7276

7277 7278 7279 7280 7281 7282 7283
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7284 7285 7286 7287
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7288
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7289 7290
}

7291 7292
static void haswell_init_clock_gating(struct drm_device *dev)
{
7293
	struct drm_i915_private *dev_priv = to_i915(dev);
7294

7295
	ilk_init_lp_watermarks(dev);
7296

7297 7298 7299 7300 7301
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7302
	/* This is required by WaCatErrorRejectionIssue:hsw */
7303 7304 7305 7306
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7307 7308 7309
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7310

7311 7312 7313
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7314 7315 7316 7317
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7318
	/* WaDisable4x2SubspanOptimization:hsw */
7319 7320
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7321

7322 7323 7324
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7325 7326 7327 7328
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7329 7330
	 */
	I915_WRITE(GEN7_GT_MODE,
7331
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7332

7333 7334 7335 7336
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7337
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7338 7339
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7340 7341 7342
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7343

7344
	lpt_init_clock_gating(dev);
7345 7346
}

7347
static void ivybridge_init_clock_gating(struct drm_device *dev)
7348
{
7349
	struct drm_i915_private *dev_priv = to_i915(dev);
7350
	uint32_t snpcr;
7351

7352
	ilk_init_lp_watermarks(dev);
7353

7354
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7355

7356
	/* WaDisableEarlyCull:ivb */
7357 7358 7359
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7360
	/* WaDisableBackToBackFlipFix:ivb */
7361 7362 7363 7364
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7365
	/* WaDisablePSDDualDispatchEnable:ivb */
7366
	if (IS_IVB_GT1(dev_priv))
7367 7368 7369
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7370 7371 7372
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7373
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7374 7375 7376
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7377
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7378 7379 7380
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7381
		   GEN7_WA_L3_CHICKEN_MODE);
7382
	if (IS_IVB_GT1(dev_priv))
7383 7384
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7385 7386 7387 7388
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7389 7390
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7391
	}
7392

7393
	/* WaForceL3Serialization:ivb */
7394 7395 7396
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7397
	/*
7398
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7399
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7400 7401
	 */
	I915_WRITE(GEN6_UCGCTL2,
7402
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7403

7404
	/* This is required by WaCatErrorRejectionIssue:ivb */
7405 7406 7407 7408
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7409
	g4x_disable_trickle_feed(dev);
7410 7411

	gen7_setup_fixed_func_scheduler(dev_priv);
7412

7413 7414 7415 7416 7417
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7418

7419
	/* WaDisable4x2SubspanOptimization:ivb */
7420 7421
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7422

7423 7424 7425
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7426 7427 7428 7429
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7430 7431
	 */
	I915_WRITE(GEN7_GT_MODE,
7432
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7433

7434 7435 7436 7437
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7438

7439
	if (!HAS_PCH_NOP(dev_priv))
7440
		cpt_init_clock_gating(dev);
7441 7442

	gen6_check_mch_setup(dev);
7443 7444
}

7445
static void valleyview_init_clock_gating(struct drm_device *dev)
7446
{
7447
	struct drm_i915_private *dev_priv = to_i915(dev);
7448

7449
	/* WaDisableEarlyCull:vlv */
7450 7451 7452
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7453
	/* WaDisableBackToBackFlipFix:vlv */
7454 7455 7456 7457
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7458
	/* WaPsdDispatchEnable:vlv */
7459
	/* WaDisablePSDDualDispatchEnable:vlv */
7460
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7461 7462
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7463

7464 7465 7466
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7467
	/* WaForceL3Serialization:vlv */
7468 7469 7470
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7471
	/* WaDisableDopClockGating:vlv */
7472 7473 7474
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7475
	/* This is required by WaCatErrorRejectionIssue:vlv */
7476 7477 7478 7479
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7480 7481
	gen7_setup_fixed_func_scheduler(dev_priv);

7482
	/*
7483
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7484
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7485 7486
	 */
	I915_WRITE(GEN6_UCGCTL2,
7487
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7488

7489 7490 7491 7492 7493
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7494

7495 7496 7497 7498
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7499 7500
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7501

7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7513 7514 7515 7516 7517 7518
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7519
	/*
7520
	 * WaDisableVLVClockGating_VBIIssue:vlv
7521 7522 7523
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7524
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7525 7526
}

7527 7528
static void cherryview_init_clock_gating(struct drm_device *dev)
{
7529
	struct drm_i915_private *dev_priv = to_i915(dev);
7530

7531 7532 7533 7534 7535
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7536 7537 7538 7539

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7540 7541 7542 7543

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7544 7545 7546 7547

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7548

7549 7550 7551 7552 7553 7554 7555
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7556 7557 7558 7559 7560
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7561 7562
}

7563
static void g4x_init_clock_gating(struct drm_device *dev)
7564
{
7565
	struct drm_i915_private *dev_priv = to_i915(dev);
7566 7567 7568 7569 7570 7571 7572 7573 7574 7575
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7576
	if (IS_GM45(dev_priv))
7577 7578
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7579 7580 7581 7582

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7583

7584 7585 7586
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7587
	g4x_disable_trickle_feed(dev);
7588 7589
}

7590
static void crestline_init_clock_gating(struct drm_device *dev)
7591
{
7592
	struct drm_i915_private *dev_priv = to_i915(dev);
7593 7594 7595 7596 7597 7598

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7599 7600
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7601 7602 7603

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7604 7605
}

7606
static void broadwater_init_clock_gating(struct drm_device *dev)
7607
{
7608
	struct drm_i915_private *dev_priv = to_i915(dev);
7609 7610 7611 7612 7613 7614 7615

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7616 7617
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7618 7619 7620

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7621 7622
}

7623
static void gen3_init_clock_gating(struct drm_device *dev)
7624
{
7625
	struct drm_i915_private *dev_priv = to_i915(dev);
7626 7627 7628 7629 7630
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7631 7632 7633

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7634 7635 7636

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7637 7638

	/* interrupts should cause a wake up from C3 */
7639
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7640 7641 7642

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7643 7644 7645

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7646 7647
}

7648
static void i85x_init_clock_gating(struct drm_device *dev)
7649
{
7650
	struct drm_i915_private *dev_priv = to_i915(dev);
7651 7652

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7653 7654 7655 7656

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7657 7658 7659

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7660 7661
}

7662
static void i830_init_clock_gating(struct drm_device *dev)
7663
{
7664
	struct drm_i915_private *dev_priv = to_i915(dev);
7665 7666

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7667 7668 7669 7670

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7671 7672 7673 7674
}

void intel_init_clock_gating(struct drm_device *dev)
{
7675
	struct drm_i915_private *dev_priv = to_i915(dev);
7676

7677
	dev_priv->display.init_clock_gating(dev);
7678 7679
}

7680 7681
void intel_suspend_hw(struct drm_device *dev)
{
7682
	if (HAS_PCH_LPT(to_i915(dev)))
7683 7684 7685
		lpt_suspend_hw(dev);
}

7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7703
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7704
	else if (IS_KABYLAKE(dev_priv))
7705
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7740 7741 7742
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
7743
	struct drm_i915_private *dev_priv = to_i915(dev);
7744

7745
	intel_fbc_init(dev_priv);
7746

7747 7748 7749
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
7750
	else if (IS_GEN5(dev_priv))
7751 7752
		i915_ironlake_get_mem_freq(dev);

7753
	/* For FIFO watermark updates */
7754
	if (INTEL_INFO(dev)->gen >= 9) {
7755
		skl_setup_wm_latency(dev);
7756
		dev_priv->display.update_wm = skl_update_wm;
7757
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7758
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7759
		ilk_setup_wm_latency(dev);
7760

7761
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7762
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7763
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7764
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7765
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7766 7767 7768 7769 7770 7771
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7772 7773 7774 7775
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7776
	} else if (IS_CHERRYVIEW(dev_priv)) {
7777 7778
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7779
	} else if (IS_VALLEYVIEW(dev_priv)) {
7780 7781
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7782
	} else if (IS_PINEVIEW(dev)) {
7783
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7784 7785 7786 7787 7788 7789 7790 7791 7792
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7793
			intel_set_memory_cxsr(dev_priv, false);
7794 7795 7796
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7797
	} else if (IS_G4X(dev_priv)) {
7798
		dev_priv->display.update_wm = g4x_update_wm;
7799
	} else if (IS_GEN4(dev_priv)) {
7800
		dev_priv->display.update_wm = i965_update_wm;
7801
	} else if (IS_GEN3(dev_priv)) {
7802 7803
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7804
	} else if (IS_GEN2(dev_priv)) {
7805 7806
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7807
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7808 7809
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7810
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7811 7812 7813
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7814 7815 7816
	}
}

7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7829
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7861
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7862
{
7863 7864
	int status;

7865
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7866

7867 7868 7869 7870 7871 7872
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7873 7874 7875 7876
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7877 7878 7879
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7880

7881 7882 7883
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7884 7885 7886 7887
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7888 7889
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7890

7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7902 7903 7904
	return 0;
}

7905
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7906
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7907
{
7908 7909
	int status;

7910
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7911

7912 7913 7914 7915 7916 7917
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7918 7919 7920 7921
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7922 7923
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7924

7925 7926 7927
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7928 7929 7930 7931
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7932
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7933

7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7945 7946
	return 0;
}
7947

7948 7949
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7950 7951 7952 7953 7954
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7955 7956
}

7957
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7958
{
7959
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7960 7961
}

7962
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7963
{
7964 7965 7966 7967 7968
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7969 7970
}

7971
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7972
{
7973
	/* CHV needs even values */
7974
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7975 7976
}

7977
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7978
{
7979
	if (IS_GEN9(dev_priv))
7980 7981
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7982
	else if (IS_CHERRYVIEW(dev_priv))
7983
		return chv_gpu_freq(dev_priv, val);
7984
	else if (IS_VALLEYVIEW(dev_priv))
7985 7986 7987
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7988 7989
}

7990 7991
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7992
	if (IS_GEN9(dev_priv))
7993 7994
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7995
	else if (IS_CHERRYVIEW(dev_priv))
7996
		return chv_freq_opcode(dev_priv, val);
7997
	else if (IS_VALLEYVIEW(dev_priv))
7998 7999
		return byt_freq_opcode(dev_priv, val);
	else
8000
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8001
}
8002

8003 8004
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8005
	struct drm_i915_gem_request *req;
8006 8007 8008 8009 8010
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8011
	struct drm_i915_gem_request *req = boost->req;
8012

8013
	if (!i915_gem_request_completed(req))
8014
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8015

8016
	i915_gem_request_put(req);
8017 8018 8019
	kfree(boost);
}

8020
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8021 8022 8023
{
	struct request_boost *boost;

8024
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8025 8026
		return;

8027
	if (i915_gem_request_completed(req))
8028 8029
		return;

8030 8031 8032 8033
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8034
	boost->req = i915_gem_request_get(req);
8035 8036

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8037
	queue_work(req->i915->wq, &boost->work);
8038 8039
}

D
Daniel Vetter 已提交
8040
void intel_pm_setup(struct drm_device *dev)
8041
{
8042
	struct drm_i915_private *dev_priv = to_i915(dev);
8043

D
Daniel Vetter 已提交
8044
	mutex_init(&dev_priv->rps.hw_lock);
8045
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8046

8047 8048
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8049
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8050

8051
	dev_priv->pm.suspended = false;
8052
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8053
}