intel_pm.c 219.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34

B
Ben Widawsky 已提交
35
/**
36 37
 * DOC: RC6
 *
B
Ben Widawsky 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58
static void gen9_init_clock_gating(struct drm_device *dev)
59
{
60 61
	struct drm_i915_private *dev_priv = dev->dev_private;

62
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 64 65
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

66 67
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68 69 70 71

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72 73

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74 75 76 77
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
78 79 80 81 82 83 84 85
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	gen9_init_clock_gating(dev);

86 87 88 89
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

90 91
	/*
	 * FIXME:
92
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
93 94
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
95
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
96 97 98 99 100 101 102 103

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
104 105
}

106 107
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
108
	struct drm_i915_private *dev_priv = dev->dev_private;
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
147
	struct drm_i915_private *dev_priv = dev->dev_private;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

173
	dev_priv->ips.r_t = dev_priv->mem_freq;
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
205
		dev_priv->ips.c_m = 0;
206
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
207
		dev_priv->ips.c_m = 1;
208
	} else {
209
		dev_priv->ips.c_m = 2;
210 211 212
	}
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

251
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

313 314 315
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

316
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
317
{
318 319
	struct drm_device *dev = dev_priv->dev;
	u32 val;
320

321
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
322
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
323
		POSTING_READ(FW_BLC_SELF_VLV);
324
		dev_priv->wm.vlv.cxsr = enable;
325 326
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
327
		POSTING_READ(FW_BLC_SELF);
328 329 330 331
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
332
		POSTING_READ(DSPFW3);
333 334 335 336
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
337
		POSTING_READ(FW_BLC_SELF);
338 339 340 341
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
342
		POSTING_READ(INSTPM);
343 344 345
	} else {
		return;
	}
346

347 348
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
349 350
}

351

352 353 354 355 356 357 358 359 360 361 362 363 364 365
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
366
static const int pessimal_latency_ns = 5000;
367

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

423
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

439
static int i830_get_fifo_size(struct drm_device *dev, int plane)
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

456
static int i845_get_fifo_size(struct drm_device *dev, int plane)
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
474 475 476 477 478
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
479 480
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
481 482 483 484 485
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
486 487
};
static const struct intel_watermark_params pineview_cursor_wm = {
488 489 490 491 492
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
493 494
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
495 496 497 498 499
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
500 501
};
static const struct intel_watermark_params g4x_wm_info = {
502 503 504 505 506
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
507 508
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
509 510 511 512 513
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
514 515
};
static const struct intel_watermark_params i965_cursor_wm_info = {
516 517 518 519 520
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
521 522
};
static const struct intel_watermark_params i945_wm_info = {
523 524 525 526 527
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
528 529
};
static const struct intel_watermark_params i915_wm_info = {
530 531 532 533 534
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
535
};
536
static const struct intel_watermark_params i830_a_wm_info = {
537 538 539 540 541
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
542
};
543 544 545 546 547 548 549
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
550
static const struct intel_watermark_params i845_wm_info = {
551 552 553 554 555
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
556 557 558 559 560 561
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
562
 * @cpp: bytes per pixel
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
578
					int fifo_size, int cpp,
579 580 581 582 583 584 585 586 587 588
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
589
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
590 591 592 593 594 595 596 597 598 599 600 601 602 603
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
604 605 606 607 608 609 610 611 612 613 614

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

615 616 617 618 619 620 621
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

622
	for_each_crtc(dev, crtc) {
623
		if (intel_crtc_active(crtc)) {
624 625 626 627 628 629 630 631 632
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

633
static void pineview_update_wm(struct drm_crtc *unused_crtc)
634
{
635
	struct drm_device *dev = unused_crtc->dev;
636 637 638 639 640 641 642 643 644 645
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
646
		intel_set_memory_cxsr(dev_priv, false);
647 648 649 650 651
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
652
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
653
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
654
		int clock = adjusted_mode->crtc_clock;
655 656 657 658

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
659
					cpp, latency->display_sr);
660 661
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
662
		reg |= FW_WM(wm, SR);
663 664 665 666 667 668
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
669
					cpp, latency->cursor_sr);
670 671
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
672
		reg |= FW_WM(wm, CURSOR_SR);
673 674 675 676 677
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
678
					cpp, latency->display_hpll_disable);
679 680
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
681
		reg |= FW_WM(wm, HPLL_SR);
682 683 684 685 686
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
687
					cpp, latency->cursor_hpll_disable);
688 689
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
690
		reg |= FW_WM(wm, HPLL_CURSOR);
691 692 693
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

694
		intel_set_memory_cxsr(dev_priv, true);
695
	} else {
696
		intel_set_memory_cxsr(dev_priv, false);
697 698 699 700 701 702 703 704 705 706 707 708 709
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
710
	const struct drm_display_mode *adjusted_mode;
711
	int htotal, hdisplay, clock, cpp;
712 713 714 715
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
716
	if (!intel_crtc_active(crtc)) {
717 718 719 720 721
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

722
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
723
	clock = adjusted_mode->crtc_clock;
724
	htotal = adjusted_mode->crtc_htotal;
725
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
726
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
727 728

	/* Use the small buffer method to calculate plane watermark */
729
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
730 731 732 733 734 735 736 737 738
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
739
	line_time_us = max(htotal * 1000 / clock, 1);
740
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
741
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
796
	const struct drm_display_mode *adjusted_mode;
797
	int hdisplay, htotal, cpp, clock;
798 799 800 801 802 803 804 805 806 807 808
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
809
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
810
	clock = adjusted_mode->crtc_clock;
811
	htotal = adjusted_mode->crtc_htotal;
812
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
813
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
814

815
	line_time_us = max(htotal * 1000 / clock, 1);
816
	line_count = (latency_ns / line_time_us + 1000) / 1000;
817
	line_size = hdisplay * cpp;
818 819

	/* Use the minimum of the small and large buffer method for primary */
820
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
821 822 823 824 825 826
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
827
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
828 829 830 831 832 833 834 835
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

836 837 838
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

839 840 841 842 843 844 845 846 847 848 849 850
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

851
	I915_WRITE(DSPFW1,
852 853 854 855
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
856
	I915_WRITE(DSPFW2,
857 858 859
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
860
	I915_WRITE(DSPFW3,
861
		   FW_WM(wm->sr.cursor, CURSOR_SR));
862 863 864

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
865 866
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
867
		I915_WRITE(DSPFW8_CHV,
868 869
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
870
		I915_WRITE(DSPFW9_CHV,
871 872
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
873
		I915_WRITE(DSPHOWM,
874 875 876 877 878 879 880 881 882 883
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
884 885
	} else {
		I915_WRITE(DSPFW7,
886 887
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
888
		I915_WRITE(DSPHOWM,
889 890 891 892 893 894 895
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
896 897
	}

898 899 900 901 902 903
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

904
	POSTING_READ(DSPFW1);
905 906
}

907 908
#undef FW_WM_VLV

909 910 911 912 913 914
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

915 916 917 918
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
919
				   unsigned int cpp,
920 921 922 923 924
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
925
	ret = (ret + 1) * horiz_pixels * cpp;
926 927 928 929 930 931 932 933 934 935 936 937
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

938 939
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

940 941 942
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
943 944

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
945 946 947 948 949 950 951 952 953
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
954
	int clock, htotal, cpp, width, wm;
955 956 957 958 959 960 961

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

962
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
978
		wm = vlv_wm_method2(clock, htotal, width, cpp,
979 980 981 982 983 984
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1086
static void vlv_compute_wm(struct intel_crtc *crtc)
1087 1088 1089 1090 1091 1092 1093 1094 1095
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1096
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1097
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1098 1099 1100

	wm_state->num_active_planes = 0;

1101
	vlv_compute_fifo(crtc);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1158
					wm_state->wm[level].cursor;
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1177
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1178 1179 1180 1181 1182 1183 1184
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1275 1276 1277 1278 1279 1280
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1281
	wm->level = to_i915(dev)->wm.max_level;
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1300 1301 1302
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1329
	vlv_compute_wm(intel_crtc);
1330 1331
	vlv_merge_wm(dev, &wm);

1332 1333 1334
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1335
		return;
1336
	}
1337 1338 1339 1340 1341 1342 1343 1344 1345

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1346
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1347 1348
		intel_set_memory_cxsr(dev_priv, false);

1349 1350 1351
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1352 1353 1354 1355 1356 1357 1358 1359
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1360
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1372 1373
}

1374 1375
#define single_plane_enabled(mask) is_power_of_2(mask)

1376
static void g4x_update_wm(struct drm_crtc *crtc)
1377
{
1378
	struct drm_device *dev = crtc->dev;
1379 1380 1381 1382 1383
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1384
	bool cxsr_enabled;
1385

1386
	if (g4x_compute_wm0(dev, PIPE_A,
1387 1388
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1389
			    &planea_wm, &cursora_wm))
1390
		enabled |= 1 << PIPE_A;
1391

1392
	if (g4x_compute_wm0(dev, PIPE_B,
1393 1394
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1395
			    &planeb_wm, &cursorb_wm))
1396
		enabled |= 1 << PIPE_B;
1397 1398 1399 1400 1401 1402

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1403
			     &plane_sr, &cursor_sr)) {
1404
		cxsr_enabled = true;
1405
	} else {
1406
		cxsr_enabled = false;
1407
		intel_set_memory_cxsr(dev_priv, false);
1408 1409
		plane_sr = cursor_sr = 0;
	}
1410

1411 1412
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1413 1414 1415 1416 1417
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1418 1419 1420 1421
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1422
	I915_WRITE(DSPFW2,
1423
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1424
		   FW_WM(cursora_wm, CURSORA));
1425 1426
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1427
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1428
		   FW_WM(cursor_sr, CURSOR_SR));
1429 1430 1431

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1432 1433
}

1434
static void i965_update_wm(struct drm_crtc *unused_crtc)
1435
{
1436
	struct drm_device *dev = unused_crtc->dev;
1437 1438 1439 1440
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1441
	bool cxsr_enabled;
1442 1443 1444 1445 1446 1447

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1448
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1449
		int clock = adjusted_mode->crtc_clock;
1450
		int htotal = adjusted_mode->crtc_htotal;
1451
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1452
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1453 1454 1455
		unsigned long line_time_us;
		int entries;

1456
		line_time_us = max(htotal * 1000 / clock, 1);
1457 1458 1459

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460
			cpp * hdisplay;
1461 1462 1463 1464 1465 1466 1467 1468 1469
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1470
			cpp * crtc->cursor->state->crtc_w;
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1482
		cxsr_enabled = true;
1483
	} else {
1484
		cxsr_enabled = false;
1485
		/* Turn off self refresh if both pipes are enabled */
1486
		intel_set_memory_cxsr(dev_priv, false);
1487 1488 1489 1490 1491 1492
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1493 1494 1495 1496 1497 1498
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1499
	/* update cursor SR watermark */
1500
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1501 1502 1503

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1504 1505
}

1506 1507
#undef FW_WM

1508
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1509
{
1510
	struct drm_device *dev = unused_crtc->dev;
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1525
		wm_info = &i830_a_wm_info;
1526 1527 1528

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1529
	if (intel_crtc_active(crtc)) {
1530
		const struct drm_display_mode *adjusted_mode;
1531
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1532 1533 1534
		if (IS_GEN2(dev))
			cpp = 4;

1535
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1536
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1537
					       wm_info, fifo_size, cpp,
1538
					       pessimal_latency_ns);
1539
		enabled = crtc;
1540
	} else {
1541
		planea_wm = fifo_size - wm_info->guard_size;
1542 1543 1544 1545 1546 1547
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1548 1549 1550

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1551
	if (intel_crtc_active(crtc)) {
1552
		const struct drm_display_mode *adjusted_mode;
1553
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1554 1555 1556
		if (IS_GEN2(dev))
			cpp = 4;

1557
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1558
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1559
					       wm_info, fifo_size, cpp,
1560
					       pessimal_latency_ns);
1561 1562 1563 1564
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1565
	} else {
1566
		planeb_wm = fifo_size - wm_info->guard_size;
1567 1568 1569
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1570 1571 1572

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1573
	if (IS_I915GM(dev) && enabled) {
1574
		struct drm_i915_gem_object *obj;
1575

1576
		obj = intel_fb_obj(enabled->primary->state->fb);
1577 1578

		/* self-refresh seems busted with untiled */
1579
		if (obj->tiling_mode == I915_TILING_NONE)
1580 1581 1582
			enabled = NULL;
	}

1583 1584 1585 1586 1587 1588
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1589
	intel_set_memory_cxsr(dev_priv, false);
1590 1591 1592 1593 1594

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1595
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1596
		int clock = adjusted_mode->crtc_clock;
1597
		int htotal = adjusted_mode->crtc_htotal;
1598
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1599
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1600 1601 1602
		unsigned long line_time_us;
		int entries;

1603
		line_time_us = max(htotal * 1000 / clock, 1);
1604 1605 1606

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1607
			cpp * hdisplay;
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1634 1635
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1636 1637
}

1638
static void i845_update_wm(struct drm_crtc *unused_crtc)
1639
{
1640
	struct drm_device *dev = unused_crtc->dev;
1641 1642
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1643
	const struct drm_display_mode *adjusted_mode;
1644 1645 1646 1647 1648 1649 1650
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1651
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1652
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1653
				       &i845_wm_info,
1654
				       dev_priv->display.get_fifo_size(dev, 0),
1655
				       4, pessimal_latency_ns);
1656 1657 1658 1659 1660 1661 1662 1663
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1664
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1665
{
1666
	uint32_t pixel_rate;
1667

1668
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1669 1670 1671 1672

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1673
	if (pipe_config->pch_pfit.enabled) {
1674
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1675 1676 1677 1678
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1679 1680 1681 1682 1683 1684 1685 1686

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1687 1688 1689
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1690 1691 1692 1693 1694 1695 1696
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1697
/* latency must be in 0.1us units. */
1698
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1699 1700 1701
{
	uint64_t ret;

1702 1703 1704
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1705
	ret = (uint64_t) pixel_rate * cpp * latency;
1706 1707 1708 1709 1710
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1711
/* latency must be in 0.1us units. */
1712
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1713
			       uint32_t horiz_pixels, uint8_t cpp,
1714 1715 1716 1717
			       uint32_t latency)
{
	uint32_t ret;

1718 1719
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1720 1721
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1722

1723
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1724
	ret = (ret + 1) * horiz_pixels * cpp;
1725 1726 1727 1728
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1729
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1730
			   uint8_t cpp)
1731
{
1732 1733 1734 1735 1736 1737
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1738
	if (WARN_ON(!cpp))
1739 1740 1741 1742
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1743
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1744 1745
}

1746
struct ilk_wm_maximums {
1747 1748 1749 1750 1751 1752
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1753 1754 1755 1756
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1757
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1758
				   const struct intel_plane_state *pstate,
1759 1760
				   uint32_t mem_value,
				   bool is_lp)
1761
{
1762 1763
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1764 1765
	uint32_t method1, method2;

1766
	if (!cstate->base.active || !pstate->visible)
1767 1768
		return 0;

1769
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1770 1771 1772 1773

	if (!is_lp)
		return method1;

1774 1775
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1776
				 drm_rect_width(&pstate->dst),
1777
				 cpp, mem_value);
1778 1779

	return min(method1, method2);
1780 1781
}

1782 1783 1784 1785
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1786
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1787
				   const struct intel_plane_state *pstate,
1788 1789
				   uint32_t mem_value)
{
1790 1791
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1792 1793
	uint32_t method1, method2;

1794
	if (!cstate->base.active || !pstate->visible)
1795 1796
		return 0;

1797
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1798 1799
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1800
				 drm_rect_width(&pstate->dst),
1801
				 cpp, mem_value);
1802 1803 1804
	return min(method1, method2);
}

1805 1806 1807 1808
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1809
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1810
				   const struct intel_plane_state *pstate,
1811 1812
				   uint32_t mem_value)
{
1813 1814 1815 1816 1817 1818 1819
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
	int width = pstate->visible ? pstate->base.crtc_w : 64;
1820

1821
	if (!cstate->base.active)
1822 1823
		return 0;

1824 1825
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1826
			      width, cpp, mem_value);
1827 1828
}

1829
/* Only for WM_LP. */
1830
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1831
				   const struct intel_plane_state *pstate,
1832
				   uint32_t pri_val)
1833
{
1834 1835
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1836

1837
	if (!cstate->base.active || !pstate->visible)
1838 1839
		return 0;

1840
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1841 1842
}

1843 1844
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1845 1846 1847
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1848 1849 1850 1851 1852
		return 768;
	else
		return 512;
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1887 1888 1889
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1890
				     const struct intel_wm_config *config,
1891 1892 1893 1894 1895 1896
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1897
	if (is_sprite && !config->sprites_enabled)
1898 1899 1900
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1901
	if (level == 0 || config->num_pipes_active > 1) {
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1913
	if (config->sprites_enabled) {
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1925
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1926 1927 1928 1929
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1930 1931
				      int level,
				      const struct intel_wm_config *config)
1932 1933
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1934
	if (level > 0 && config->num_pipes_active > 1)
1935 1936 1937
		return 64;

	/* otherwise just report max that registers can hold */
1938
	return ilk_cursor_wm_reg_max(dev, level);
1939 1940
}

1941
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1942 1943 1944
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1945
				    struct ilk_wm_maximums *max)
1946
{
1947 1948 1949
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1950
	max->fbc = ilk_fbc_wm_reg_max(dev);
1951 1952
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1963
static bool ilk_validate_wm_level(int level,
1964
				  const struct ilk_wm_maximums *max,
1965
				  struct intel_wm_level *result)
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2004
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2005
				 const struct intel_crtc *intel_crtc,
2006
				 int level,
2007
				 struct intel_crtc_state *cstate,
2008 2009 2010
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2011
				 struct intel_wm_level *result)
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2036 2037 2038
	result->enable = true;
}

2039
static uint32_t
2040
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2041
{
2042 2043
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2044 2045
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2046
	u32 linetime, ips_linetime;
2047

2048 2049 2050 2051
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2052
	if (WARN_ON(intel_state->cdclk == 0))
2053
		return 0;
2054

2055 2056 2057
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2058 2059 2060
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2061
					 intel_state->cdclk);
2062

2063 2064
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2065 2066
}

2067
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2068 2069 2070
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2071 2072
	if (IS_GEN9(dev)) {
		uint32_t val;
2073
		int ret, i;
2074
		int level, max_level = ilk_wm_max_level(dev);
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2117
		/*
2118 2119
		 * WaWmMemoryReadLatency:skl
		 *
2120 2121 2122 2123 2124 2125 2126 2127
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2128 2129 2130 2131 2132
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2133 2134 2135 2136 2137
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2138 2139 2140
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2141

2142 2143
				break;
			}
2144
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2145 2146 2147 2148 2149
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2150 2151 2152 2153
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2154 2155 2156 2157 2158 2159 2160
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2161 2162 2163 2164 2165 2166 2167
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2168 2169 2170
	}
}

2171 2172 2173
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
2174
	if (IS_GEN5(dev))
2175 2176 2177 2178 2179 2180
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
2181
	if (IS_GEN5(dev))
2182 2183 2184 2185 2186 2187 2188
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2189
int ilk_wm_max_level(const struct drm_device *dev)
2190 2191
{
	/* how many WM levels are we expecting */
2192
	if (INTEL_INFO(dev)->gen >= 9)
2193 2194
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2195
		return 4;
2196
	else if (INTEL_INFO(dev)->gen >= 6)
2197
		return 3;
2198
	else
2199 2200
		return 2;
}
2201

2202 2203
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2204
				   const uint16_t wm[8])
2205 2206
{
	int level, max_level = ilk_wm_max_level(dev);
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2217 2218 2219 2220 2221 2222 2223
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2224 2225 2226 2227 2228 2229 2230 2231
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2269
static void ilk_setup_wm_latency(struct drm_device *dev)
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2282 2283 2284 2285

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2286 2287 2288

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2289 2290
}

2291 2292 2293 2294 2295 2296 2297 2298
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2322
/* Compute new watermarks for the pipe */
2323
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2324
{
2325 2326
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2327
	struct intel_pipe_wm *pipe_wm;
2328
	struct drm_device *dev = state->dev;
2329
	const struct drm_i915_private *dev_priv = dev->dev_private;
2330
	struct intel_plane *intel_plane;
2331
	struct intel_plane_state *pristate = NULL;
2332
	struct intel_plane_state *sprstate = NULL;
2333
	struct intel_plane_state *curstate = NULL;
2334
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2335
	struct ilk_wm_maximums max;
2336

2337
	pipe_wm = &cstate->wm.ilk.optimal;
2338

2339
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2340 2341 2342 2343 2344 2345
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2346 2347

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2348
			pristate = ps;
2349
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2350
			sprstate = ps;
2351
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2352
			curstate = ps;
2353 2354
	}

2355
	pipe_wm->pipe_enabled = cstate->base.active;
2356 2357 2358 2359 2360 2361 2362
	if (sprstate) {
		pipe_wm->sprites_enabled = sprstate->visible;
		pipe_wm->sprites_scaled = sprstate->visible &&
			(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
			 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
	}

2363 2364
	usable_level = max_level;

2365
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2366
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2367
		usable_level = 1;
2368 2369

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2370
	if (pipe_wm->sprites_scaled)
2371
		usable_level = 0;
2372

2373
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2374 2375 2376 2377
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2378

2379
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2380
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2381

2382
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2383
		return -EINVAL;
2384 2385 2386 2387

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2388
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2389

2390
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2391
				     pristate, sprstate, curstate, wm);
2392 2393 2394 2395 2396 2397

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2398 2399 2400 2401 2402 2403
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2404
			usable_level = level;
2405 2406
	}

2407
	return 0;
2408 2409
}

2410 2411 2412 2413 2414 2415 2416 2417 2418
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2419
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2420 2421 2422 2423 2424 2425 2426 2427
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2428
	*a = newstate->wm.ilk.optimal;
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2457
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2458 2459 2460 2461 2462
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2463 2464 2465 2466 2467 2468 2469 2470 2471
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2472 2473
	ret_wm->enable = true;

2474
	for_each_intel_crtc(dev, intel_crtc) {
2475
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2476 2477 2478 2479
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2480

2481 2482 2483 2484 2485
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2486
		if (!wm->enable)
2487
			ret_wm->enable = false;
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2500
			 const struct intel_wm_config *config,
2501
			 const struct ilk_wm_maximums *max,
2502 2503
			 struct intel_pipe_wm *merged)
{
2504
	struct drm_i915_private *dev_priv = dev->dev_private;
2505
	int level, max_level = ilk_wm_max_level(dev);
2506
	int last_enabled_level = max_level;
2507

2508 2509 2510
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
2511
		last_enabled_level = 0;
2512

2513 2514
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2515 2516 2517 2518 2519 2520 2521

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2522 2523 2524 2525 2526
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2527 2528 2529 2530 2531 2532

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2533 2534
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2535 2536 2537
			wm->fbc_val = 0;
		}
	}
2538 2539 2540 2541 2542 2543 2544

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2545
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2546
	    intel_fbc_is_active(dev_priv)) {
2547 2548 2549 2550 2551 2552
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2553 2554
}

2555 2556 2557 2558 2559 2560
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2561 2562 2563 2564 2565
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2566
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2567 2568 2569 2570 2571
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2572
static void ilk_compute_wm_results(struct drm_device *dev,
2573
				   const struct intel_pipe_wm *merged,
2574
				   enum intel_ddb_partitioning partitioning,
2575
				   struct ilk_wm_values *results)
2576
{
2577 2578
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2579

2580
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2581
	results->partitioning = partitioning;
2582

2583
	/* LP1+ register values */
2584
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2585
		const struct intel_wm_level *r;
2586

2587
		level = ilk_wm_lp_to_level(wm_lp, merged);
2588

2589
		r = &merged->wm[level];
2590

2591 2592 2593 2594 2595
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2596
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2597 2598 2599
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2600 2601 2602
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2603 2604 2605 2606 2607 2608 2609
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2610 2611 2612 2613
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2614 2615 2616 2617 2618
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2619
	}
2620

2621
	/* LP0 register values */
2622
	for_each_intel_crtc(dev, intel_crtc) {
2623
		enum pipe pipe = intel_crtc->pipe;
2624 2625
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2626 2627 2628 2629

		if (WARN_ON(!r->enable))
			continue;

2630
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2631

2632 2633 2634 2635
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2636 2637 2638
	}
}

2639 2640
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2641
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2642 2643
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2644
{
2645 2646
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2647

2648 2649 2650 2651 2652
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2653 2654
	}

2655 2656
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2657 2658 2659
			return r2;
		else
			return r1;
2660
	} else if (level1 > level2) {
2661 2662 2663 2664 2665 2666
		return r1;
	} else {
		return r2;
	}
}

2667 2668 2669 2670 2671 2672 2673 2674
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2675
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2676 2677
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2678 2679 2680 2681 2682
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2683
	for_each_pipe(dev_priv, pipe) {
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2727 2728
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2729
{
2730
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2731
	bool changed = false;
2732

2733 2734 2735
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2736
		changed = true;
2737 2738 2739 2740
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2741
		changed = true;
2742 2743 2744 2745
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2746
		changed = true;
2747
	}
2748

2749 2750 2751 2752
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2753

2754 2755 2756 2757 2758 2759 2760
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2761 2762
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2763 2764
{
	struct drm_device *dev = dev_priv->dev;
2765
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2766 2767 2768
	unsigned int dirty;
	uint32_t val;

2769
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2770 2771 2772 2773 2774
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2775
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2776
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2777
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2778
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2779
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2780 2781
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2782
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2783
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2784
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2785
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2786
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2787 2788
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2789
	if (dirty & WM_DIRTY_DDB) {
2790
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2805 2806
	}

2807
	if (dirty & WM_DIRTY_FBC) {
2808 2809 2810 2811 2812 2813 2814 2815
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2816 2817 2818 2819 2820
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2821 2822 2823 2824 2825
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2826

2827
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2828
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2829
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2830
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2831
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2832
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2833 2834

	dev_priv->wm.hw = *results;
2835 2836
}

2837
bool ilk_disable_lp_wm(struct drm_device *dev)
2838 2839 2840 2841 2842 2843
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2844 2845 2846 2847 2848 2849
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2850
#define BXT_DDB_SIZE		512
2851

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2874 2875
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2876
				   const struct intel_crtc_state *cstate,
2877 2878
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
2879
{
2880 2881 2882
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
2883
	struct drm_crtc *for_crtc = cstate->base.crtc;
2884 2885
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
2886 2887
	int pipe = to_intel_crtc(for_crtc)->pipe;

2888
	if (WARN_ON(!state) || !cstate->base.active) {
2889 2890
		alloc->start = 0;
		alloc->end = 0;
2891
		*num_active = hweight32(dev_priv->active_crtcs);
2892 2893 2894
		return;
	}

2895 2896 2897 2898 2899
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

2900 2901 2902 2903
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2904 2905 2906

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

2907
	/*
2908 2909 2910 2911 2912 2913
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
2914
	 */
2915 2916 2917
	if (!intel_state->active_pipe_changes) {
		*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
		return;
2918
	}
2919 2920 2921 2922 2923 2924

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
2925 2926
}

2927
static unsigned int skl_cursor_allocation(int num_active)
2928
{
2929
	if (num_active == 1)
2930 2931 2932 2933 2934
		return 32;

	return 8;
}

2935 2936 2937 2938
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2939 2940
	if (entry->end)
		entry->end += 1;
2941 2942
}

2943 2944
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2945 2946 2947 2948 2949
{
	enum pipe pipe;
	int plane;
	u32 val;

2950 2951
	memset(ddb, 0, sizeof(*ddb));

2952
	for_each_pipe(dev_priv, pipe) {
2953 2954 2955 2956
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2957 2958
			continue;

2959
		for_each_plane(dev_priv, pipe, plane) {
2960 2961 2962 2963 2964 2965
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2966 2967
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2968 2969

		intel_display_power_put(dev_priv, power_domain);
2970 2971 2972
	}
}

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

	if (WARN_ON(!pstate->visible))
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
	src_w = drm_rect_width(&pstate->src);
	src_h = drm_rect_height(&pstate->src);
	dst_w = drm_rect_width(&pstate->dst);
	dst_h = drm_rect_height(&pstate->dst);
	if (intel_rotation_90_or_270(pstate->base.rotation))
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3013
static unsigned int
3014 3015 3016
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3017
{
3018
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3019
	struct drm_framebuffer *fb = pstate->fb;
3020
	uint32_t down_scale_amount, data_rate;
3021
	uint32_t width = 0, height = 0;
3022 3023 3024 3025 3026 3027 3028 3029
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

	if (!intel_pstate->visible)
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3030 3031 3032 3033 3034 3035

	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
3036 3037

	/* for planar format */
3038
	if (format == DRM_FORMAT_NV12) {
3039
		if (y)  /* y-plane data rate */
3040
			data_rate = width * height *
3041
				drm_format_plane_cpp(format, 0);
3042
		else    /* uv-plane data rate */
3043
			data_rate = (width / 2) * (height / 2) *
3044
				drm_format_plane_cpp(format, 1);
3045 3046 3047
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3048 3049
	}

3050 3051 3052
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3053 3054 3055 3056 3057 3058 3059 3060
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3061
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3062
{
3063 3064 3065 3066 3067
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3068
	const struct drm_plane *plane;
3069
	const struct intel_plane *intel_plane;
3070
	struct drm_plane_state *pstate;
3071
	unsigned int rate, total_data_rate = 0;
3072
	int id;
3073 3074 3075 3076
	int i;

	if (WARN_ON(!state))
		return 0;
3077

3078
	/* Calculate and cache data rate for each plane */
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	for_each_plane_in_state(state, plane, pstate, i) {
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe != intel_crtc->pipe)
			continue;

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3095
	}
3096

3097 3098 3099
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3100

3101
		/* packed/uv */
3102 3103
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3104 3105
	}

3106 3107
	WARN_ON(cstate->plane_mask && total_data_rate == 0);

3108 3109 3110
	return total_data_rate;
}

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

	src_w = drm_rect_width(&intel_pstate->src) >> 16;
	src_h = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

	if (intel_rotation_90_or_270(pstate->rotation)) {
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3174
static int
3175
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3176 3177
		      struct skl_ddb_allocation *ddb /* out */)
{
3178
	struct drm_atomic_state *state = cstate->base.state;
3179
	struct drm_crtc *crtc = cstate->base.crtc;
3180 3181
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3182
	struct intel_plane *intel_plane;
3183 3184
	struct drm_plane *plane;
	struct drm_plane_state *pstate;
3185
	enum pipe pipe = intel_crtc->pipe;
3186
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3187
	uint16_t alloc_size, start, cursor_blocks;
3188 3189
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3190
	unsigned int total_data_rate;
3191 3192
	int num_active;
	int id, i;
3193

3194 3195 3196
	if (WARN_ON(!state))
		return 0;

3197 3198 3199 3200 3201 3202 3203
	if (!cstate->base.active) {
		ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
		return 0;
	}

3204
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3205
	alloc_size = skl_ddb_entry_size(alloc);
3206 3207
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3208
		return 0;
3209 3210
	}

3211
	cursor_blocks = skl_cursor_allocation(num_active);
3212 3213
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3214 3215 3216

	alloc_size -= cursor_blocks;

3217
	/* 1. Allocate the mininum required blocks for each active plane */
3218 3219 3220
	for_each_plane_in_state(state, plane, pstate, i) {
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3221

3222 3223
		if (intel_plane->pipe != pipe)
			continue;
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233
		if (!to_intel_plane_state(pstate)->visible) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3234
		}
3235

3236 3237
		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3238
	}
3239

3240 3241 3242
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3243 3244
	}

3245
	/*
3246 3247
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3248 3249 3250
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3251
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3252
	if (total_data_rate == 0)
3253
		return 0;
3254

3255
	start = alloc->start;
3256
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3257 3258
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3259
		int id = skl_wm_plane_id(intel_plane);
3260

3261
		data_rate = cstate->wm.skl.plane_data_rate[id];
3262 3263

		/*
3264
		 * allocation for (packed formats) or (uv-plane part of planar format):
3265 3266 3267
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3268
		plane_blocks = minimum[id];
3269 3270
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3271

3272 3273 3274 3275 3276
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3277 3278

		start += plane_blocks;
3279 3280 3281 3282

		/*
		 * allocation for y_plane part of planar format:
		 */
3283 3284 3285 3286 3287
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3288

3289 3290 3291 3292
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3293 3294

		start += y_plane_blocks;
3295 3296
	}

3297
	return 0;
3298 3299
}

3300
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3301 3302
{
	/* TODO: Take into account the scalers once we support them */
3303
	return config->base.adjusted_mode.crtc_clock;
3304 3305 3306 3307
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3308
 * for the read latency) and cpp should always be <= 8, so that
3309 3310 3311
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3312
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3313 3314 3315 3316 3317 3318
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3319
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3320 3321 3322 3323 3324 3325
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3326
			       uint32_t horiz_pixels, uint8_t cpp,
3327
			       uint64_t tiling, uint32_t latency)
3328
{
3329 3330 3331
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3332 3333 3334 3335

	if (latency == 0)
		return UINT_MAX;

3336
	plane_bytes_per_line = horiz_pixels * cpp;
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3347 3348
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3349
				plane_blocks_per_line;
3350 3351 3352 3353

	return ret;
}

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
	if (WARN_ON(!pstate->visible))
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
	adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3378 3379 3380 3381 3382 3383 3384 3385
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3386
{
3387 3388
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3389 3390 3391 3392 3393
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3394
	uint8_t cpp;
3395
	uint32_t width = 0, height = 0;
3396
	uint32_t plane_pixel_rate;
3397

3398 3399 3400 3401
	if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
		*enabled = false;
		return 0;
	}
3402

3403 3404 3405
	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

3406
	if (intel_rotation_90_or_270(pstate->rotation))
3407 3408
		swap(width, height);

3409
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3410 3411 3412 3413
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3414
				 cstate->base.adjusted_mode.crtc_htotal,
3415 3416 3417
				 width,
				 cpp,
				 fb->modifier[0],
3418
				 latency);
3419

3420
	plane_bytes_per_line = width * cpp;
3421
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3422

3423 3424
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3425 3426
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3427
		if (intel_rotation_90_or_270(pstate->rotation)) {
3428
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3429 3430 3431
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3432
			switch (cpp) {
3433 3434 3435 3436 3437 3438 3439 3440
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3441
			}
3442 3443
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3444 3445 3446 3447 3448 3449 3450
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3451

3452 3453
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3454

3455
	if (level >= 1 && level <= 7) {
3456 3457
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3458 3459 3460 3461
			res_lines += 4;
		else
			res_blocks++;
	}
3462

3463 3464
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3481
	}
3482 3483 3484

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3485
	*enabled = true;
3486

3487
	return 0;
3488 3489
}

3490 3491 3492 3493 3494 3495
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
		     int level,
		     struct skl_wm_level *result)
3496
{
3497
	struct drm_device *dev = dev_priv->dev;
3498
	struct drm_atomic_state *state = cstate->base.state;
3499
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3500
	struct drm_plane *plane;
3501
	struct intel_plane *intel_plane;
3502
	struct intel_plane_state *intel_pstate;
3503
	uint16_t ddb_blocks;
3504
	enum pipe pipe = intel_crtc->pipe;
3505
	int ret;
3506

3507 3508 3509 3510 3511 3512 3513
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(result, 0, sizeof(*result));

	for_each_intel_plane_mask(dev, intel_plane, cstate->base.plane_mask) {
3514
		int i = skl_wm_plane_id(intel_plane);
3515

3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
		plane = &intel_plane->base;
		intel_pstate = NULL;
		if (state)
			intel_pstate =
				intel_atomic_get_existing_plane_state(state,
								      intel_plane);

		/*
		 * Note: If we start supporting multiple pending atomic commits
		 * against the same planes/CRTC's in the future, plane->state
		 * will no longer be the correct pre-state to use for the
		 * calculations here and we'll need to change where we get the
		 * 'unchanged' plane data from.
		 *
		 * For now this is fine because we only allow one queued commit
		 * against a CRTC.  Even if the plane isn't modified by this
		 * transaction and we don't have a plane lock, we still have
		 * the CRTC's lock, so we know that no other transactions are
		 * racing with us to update it.
		 */
		if (!intel_pstate)
			intel_pstate = to_intel_plane_state(plane->state);

		WARN_ON(!intel_pstate->base.fb);

3541 3542
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
					   ddb_blocks,
					   level,
					   &result->plane_res_b[i],
					   &result->plane_res_l[i],
					   &result->plane_en[i]);
		if (ret)
			return ret;
3553
	}
3554 3555

	return 0;
3556 3557
}

3558
static uint32_t
3559
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3560
{
3561
	if (!cstate->base.active)
3562 3563
		return 0;

3564
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3565
		return 0;
3566

3567 3568
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3569 3570
}

3571
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3572
				      struct skl_wm_level *trans_wm /* out */)
3573
{
3574
	struct drm_crtc *crtc = cstate->base.crtc;
3575
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3576
	struct intel_plane *intel_plane;
3577

3578
	if (!cstate->base.active)
3579
		return;
3580 3581

	/* Until we know more, just disable transition WMs */
3582 3583 3584
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3585
		trans_wm->plane_en[i] = false;
3586
	}
3587 3588
}

3589 3590 3591
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3592
{
3593
	struct drm_device *dev = cstate->base.crtc->dev;
3594 3595
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);
3596
	int ret;
3597 3598

	for (level = 0; level <= max_level; level++) {
3599 3600 3601 3602
		ret = skl_compute_wm_level(dev_priv, ddb, cstate,
					   level, &pipe_wm->wm[level]);
		if (ret)
			return ret;
3603
	}
3604
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3605

3606
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3607 3608

	return 0;
3609 3610 3611 3612 3613 3614 3615 3616 3617
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3618 3619
	uint32_t temp;
	int i;
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3636 3637
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3638

3639
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3640 3641
			temp |= PLANE_WM_EN;

3642
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3643 3644 3645

	}

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3658 3659 3660
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3661 3662
		temp |= PLANE_WM_EN;

3663
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3664

3665 3666 3667
	r->wm_linetime[pipe] = p_wm->linetime;
}

3668 3669
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3670 3671 3672 3673 3674 3675 3676 3677
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3678 3679 3680 3681 3682 3683
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

3684
	for_each_intel_crtc(dev, crtc) {
3685 3686 3687
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3688
		if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3689
			continue;
3690 3691
		if (!crtc->active)
			continue;
3692

3693
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3694

3695 3696 3697 3698 3699
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3700
				   new->plane[pipe][PLANE_CURSOR][level]);
3701
		}
3702 3703 3704
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3705 3706
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3707

3708
		for (i = 0; i < intel_num_planes(crtc); i++) {
3709 3710 3711
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3712 3713 3714 3715
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3716 3717

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3718
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3719 3720 3721
	}
}

3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3746 3747
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3748 3749 3750
{
	int plane;

3751 3752
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3753
	for_each_plane(dev_priv, pipe, plane) {
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3780
	bool reallocated[I915_MAX_PIPES] = {};
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3803
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3828
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3829
			intel_wait_for_vblank(dev, pipe);
3830
			reallocated[pipe] = true;
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3853
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3854 3855 3856
	}
}

3857 3858 3859 3860
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3861
{
3862 3863
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3864
	int ret;
3865

3866 3867 3868
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3869

3870
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3871 3872 3873
		*changed = false;
	else
		*changed = true;
3874

3875
	return 0;
3876 3877
}

3878 3879 3880 3881 3882 3883 3884
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3885
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
	unsigned realloc_pipes = dev_priv->active_crtcs;
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm)
		intel_state->active_pipe_changes = ~0;

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
3911
	if (intel_state->active_pipe_changes) {
3912
		realloc_pipes = ~0;
3913 3914
		intel_state->wm_results.dirty_pipes = ~0;
	}
3915 3916 3917 3918 3919 3920 3921 3922

	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

3923
		ret = skl_allocate_pipe_ddb(cstate, ddb);
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
		if (ret)
			return ret;
	}

	return 0;
}

static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
3936 3937 3938
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
3939
	bool changed = false;
3940
	int ret, i;
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

3955 3956 3957
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

3958 3959 3960 3961
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
	}

3994 3995 3996
	return 0;
}

3997 3998 3999 4000 4001 4002
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4003
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4004
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4005

4006
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4007 4008
		return;

4009 4010 4011
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
4012 4013

	skl_write_wm_values(dev_priv, results);
4014
	skl_flush_wm_values(dev_priv, results);
4015 4016 4017

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
4018 4019

	mutex_unlock(&dev_priv->wm.wm_mutex);
4020 4021
}

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4040
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4041
{
4042
	struct drm_device *dev = dev_priv->dev;
4043
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4044
	struct ilk_wm_maximums max;
4045
	struct intel_wm_config config = {};
4046
	struct ilk_wm_values results = {};
4047
	enum intel_ddb_partitioning partitioning;
4048

4049 4050 4051 4052
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4053 4054

	/* 5/6 split only in single pipe config on IVB+ */
4055
	if (INTEL_INFO(dev)->gen >= 7 &&
4056 4057 4058
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4059

4060
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4061
	} else {
4062
		best_lp_wm = &lp_wm_1_2;
4063 4064
	}

4065
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4066
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4067

4068
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4069

4070
	ilk_write_wm_values(dev_priv, &results);
4071 4072
}

4073
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4074
{
4075 4076
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4077

4078
	mutex_lock(&dev_priv->wm.wm_mutex);
4079
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4080 4081 4082
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4083

4084 4085 4086 4087
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4088

4089 4090
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4091
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4092 4093 4094
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4095 4096
}

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4115 4116
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
4117
					val & PLANE_WM_BLOCKS_MASK;
4118
			active->wm[level].plane_res_l[PLANE_CURSOR] =
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4131 4132
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
4133
					val & PLANE_WM_BLOCKS_MASK;
4134
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4147
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4148
	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
4161
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4162 4163 4164 4165
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4166
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4167

4168
	if (!intel_crtc->active)
4169 4170
		return;

4171
	hw->dirty_pipes |= drm_crtc_mask(crtc);
4172 4173 4174 4175 4176 4177 4178 4179 4180

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
4181
		temp = hw->plane[pipe][PLANE_CURSOR][level];
4182 4183 4184 4185 4186 4187 4188 4189
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

4190
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4191
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4192 4193

	intel_crtc->wm.active.skl = *active;
4194 4195 4196 4197
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4198 4199
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4200 4201
	struct drm_crtc *crtc;

4202
	skl_ddb_get_hw_state(dev_priv, ddb);
4203 4204
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
4205

4206 4207 4208 4209 4210 4211 4212
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4213 4214
}

4215 4216 4217 4218
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
4219
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4220
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4221
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4222
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4223
	enum pipe pipe = intel_crtc->pipe;
4224
	static const i915_reg_t wm0_pipe_reg[] = {
4225 4226 4227 4228 4229 4230
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4231
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4232
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4233

4234 4235
	memset(active, 0, sizeof(*active));

4236
	active->pipe_enabled = intel_crtc->active;
4237 4238

	if (active->pipe_enabled) {
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4263 4264

	intel_crtc->wm.active.ilk = *active;
4265 4266
}

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4384 4385 4386 4387 4388 4389 4390 4391 4392
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4393
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4420 4421 4422
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4423
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4424 4425
	struct drm_crtc *crtc;

4426
	for_each_crtc(dev, crtc)
4427 4428 4429 4430 4431 4432 4433
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4434 4435 4436 4437
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4438

4439
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4440 4441 4442 4443 4444
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4445 4446 4447 4448 4449

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4482
void intel_update_watermarks(struct drm_crtc *crtc)
4483
{
4484
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4485 4486

	if (dev_priv->display.update_wm)
4487
		dev_priv->display.update_wm(crtc);
4488 4489
}

4490
/*
4491 4492 4493 4494 4495 4496 4497 4498
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4499
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4500 4501 4502
{
	u16 rgvswctl;

4503 4504
	assert_spin_locked(&mchdev_lock);

4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4522
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4523
{
4524
	u32 rgvmodectl;
4525 4526
	u8 fmax, fmin, fstart, vstart;

4527 4528
	spin_lock_irq(&mchdev_lock);

4529 4530
	rgvmodectl = I915_READ(MEMMODECTL);

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4551
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4552 4553
		PXVFREQ_PX_SHIFT;

4554 4555
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4556

4557 4558 4559
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4576
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4577
		DRM_ERROR("stuck trying to change perf mode\n");
4578
	mdelay(1);
4579

4580
	ironlake_set_drps(dev_priv, fstart);
4581

4582 4583
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4584
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4585
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4586
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4587 4588

	spin_unlock_irq(&mchdev_lock);
4589 4590
}

4591
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4592
{
4593 4594 4595 4596 4597
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4598 4599 4600 4601 4602 4603 4604 4605 4606

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4607
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4608
	mdelay(1);
4609 4610
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4611
	mdelay(1);
4612

4613
	spin_unlock_irq(&mchdev_lock);
4614 4615
}

4616 4617 4618 4619 4620
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4621
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4622
{
4623
	u32 limits;
4624

4625 4626 4627 4628 4629 4630
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4631
	if (IS_GEN9(dev_priv)) {
4632 4633 4634 4635 4636 4637 4638 4639
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4640 4641 4642 4643

	return limits;
}

4644 4645 4646
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4647 4648
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4649 4650 4651 4652

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4653
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4654 4655 4656 4657
			new_power = BETWEEN;
		break;

	case BETWEEN:
4658
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4659
			new_power = LOW_POWER;
4660
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4661 4662 4663 4664
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4665
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4666 4667 4668 4669
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4670
	if (val <= dev_priv->rps.min_freq_softlimit)
4671
		new_power = LOW_POWER;
4672
	if (val >= dev_priv->rps.max_freq_softlimit)
4673 4674 4675 4676 4677 4678 4679 4680
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4681 4682
		ei_up = 16000;
		threshold_up = 95;
4683 4684

		/* Downclock if less than 85% busy over 32ms */
4685 4686
		ei_down = 32000;
		threshold_down = 85;
4687 4688 4689 4690
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4691 4692
		ei_up = 13000;
		threshold_up = 90;
4693 4694

		/* Downclock if less than 75% busy over 32ms */
4695 4696
		ei_down = 32000;
		threshold_down = 75;
4697 4698 4699 4700
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4701 4702
		ei_up = 10000;
		threshold_up = 85;
4703 4704

		/* Downclock if less than 60% busy over 32ms */
4705 4706
		ei_down = 32000;
		threshold_down = 60;
4707 4708 4709
		break;
	}

4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4728
	dev_priv->rps.power = new_power;
4729 4730
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4731 4732 4733
	dev_priv->rps.last_adj = 0;
}

4734 4735 4736 4737 4738
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4739
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4740
	if (val < dev_priv->rps.max_freq_softlimit)
4741
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4742

4743 4744
	mask &= dev_priv->pm_rps_events;

4745
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4746 4747
}

4748 4749 4750
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4751
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4752
{
4753
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4754
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4755 4756
		return;

4757
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4758 4759
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4760

C
Chris Wilson 已提交
4761 4762 4763 4764 4765
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4766

4767
		if (IS_GEN9(dev_priv))
4768 4769
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4770
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4771 4772 4773 4774 4775 4776 4777
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4778
	}
4779 4780 4781 4782

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4783
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4784
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4785

4786 4787
	POSTING_READ(GEN6_RPNSWREQ);

4788
	dev_priv->rps.cur_freq = val;
4789
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4790 4791
}

4792
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4793 4794
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4795 4796
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4797

4798
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4799 4800 4801
		      "Odd GPU freq value\n"))
		val &= ~1;

4802 4803
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4804
	if (val != dev_priv->rps.cur_freq) {
4805
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4806 4807 4808
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4809 4810 4811 4812 4813

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4814
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4815 4816
 *
 * * If Gfx is Idle, then
4817 4818 4819
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4820 4821 4822
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4823
	u32 val = dev_priv->rps.idle_freq;
4824

4825
	if (dev_priv->rps.cur_freq <= val)
4826 4827
		return;

4828 4829 4830
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4831
	valleyview_set_rps(dev_priv, val);
4832
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4833 4834
}

4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4847 4848 4849
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
4850
	if (dev_priv->rps.enabled) {
4851
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4852
			vlv_set_rps_idle(dev_priv);
4853
		else
4854
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4855
		dev_priv->rps.last_adj = 0;
4856
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4857
	}
4858
	mutex_unlock(&dev_priv->rps.hw_lock);
4859

4860
	spin_lock(&dev_priv->rps.client_lock);
4861 4862
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4863
	spin_unlock(&dev_priv->rps.client_lock);
4864 4865
}

4866
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4867 4868
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4869
{
4870 4871 4872 4873 4874 4875 4876
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4877

4878 4879 4880
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4881
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4882 4883
		rps = NULL;

4884 4885 4886 4887 4888 4889 4890 4891
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4892

4893 4894 4895
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4896 4897
		} else
			dev_priv->rps.boosts++;
4898
	}
4899
	spin_unlock(&dev_priv->rps.client_lock);
4900 4901
}

4902
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4903
{
4904 4905
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
4906
	else
4907
		gen6_set_rps(dev_priv, val);
4908 4909
}

4910
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
4911 4912
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4913
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4914 4915
}

4916
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4917 4918 4919 4920
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

4921
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4922 4923
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4924
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4925
	I915_WRITE(GEN6_RP_CONTROL, 0);
4926 4927
}

4928
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4929 4930 4931 4932
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4933
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4934
{
4935 4936
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4937
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4938

4939
	I915_WRITE(GEN6_RC_CONTROL, 0);
4940

4941
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4942 4943
}

4944
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
4945
{
4946
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4947 4948 4949 4950 4951
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4952
	if (HAS_RC6p(dev_priv))
4953
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4954 4955 4956
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4957 4958 4959

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4960
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
4961 4962
}

4963
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
4964
{
4965
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4979 4980 4981
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
		enable_rc6 = false;
	}

	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
					    GEN6_RC_CTL_HW_ENABLE)) &&
	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
		enable_rc6 = false;
	}

	return enable_rc6;
}

5005
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5006
{
5007
	/* No RC6 before Ironlake and code is gone for ilk. */
5008
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5009 5010
		return 0;

5011 5012 5013
	if (!enable_rc6)
		return 0;

5014
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5015 5016 5017 5018
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5019
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5020 5021 5022
	if (enable_rc6 >= 0) {
		int mask;

5023
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5024 5025 5026 5027 5028 5029
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5030 5031
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5032 5033 5034

		return enable_rc6 & mask;
	}
5035

5036
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5037
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5038 5039

	return INTEL_RC6_ENABLE;
5040 5041
}

5042
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5043
{
5044 5045 5046 5047
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

5048 5049
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
5050
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5051
	if (IS_BROXTON(dev_priv)) {
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

5063 5064 5065
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

5066
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5067 5068
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5069 5070 5071 5072 5073
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
5074 5075 5076 5077
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5078 5079
	}

5080
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5081 5082 5083 5084 5085 5086 5087 5088 5089
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

5090 5091
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5092 5093 5094 5095
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

5096
	if (dev_priv->rps.min_freq_softlimit == 0) {
5097
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5098
			dev_priv->rps.min_freq_softlimit =
5099 5100
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
5101 5102 5103 5104
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
5105 5106
}

J
Jesse Barnes 已提交
5107
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5108
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5109 5110 5111
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5112
	gen6_init_rps_frequencies(dev_priv);
5113

5114
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5115
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5116 5117 5118 5119 5120 5121 5122 5123 5124
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5125
		gen9_disable_rps(dev_priv);
5126 5127 5128 5129
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5130 5131 5132 5133 5134 5135 5136 5137
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5138 5139
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5140 5141 5142 5143
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5144
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
J
Jesse Barnes 已提交
5145 5146 5147 5148

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5149
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5150
{
5151
	struct intel_engine_cs *engine;
Z
Zhe Wang 已提交
5152 5153 5154 5155 5156 5157 5158
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5159
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5160 5161 5162 5163 5164

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5165 5166

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5167
	if (IS_SKYLAKE(dev_priv))
5168 5169 5170
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5171 5172
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5173
	for_each_engine(engine, dev_priv)
5174
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5175

5176
	if (HAS_GUC(dev_priv))
5177 5178
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5179 5180
	I915_WRITE(GEN6_RC_SLEEP, 0);

5181 5182 5183 5184
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5185
	/* 3a: Enable RC6 */
5186
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5187
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5188
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5189
	/* WaRsUseTimeoutMode */
5190 5191
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5192
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5193 5194 5195
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5196 5197
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5198 5199 5200
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5201
	}
Z
Zhe Wang 已提交
5202

5203 5204
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5205
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5206
	 */
5207
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5208 5209 5210 5211
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5212

5213
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5214 5215
}

5216
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5217
{
5218
	struct intel_engine_cs *engine;
5219
	uint32_t rc6_mask = 0;
5220 5221 5222 5223 5224 5225

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5226
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5227 5228 5229 5230

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5231
	/* Initialize rps frequencies */
5232
	gen6_init_rps_frequencies(dev_priv);
5233 5234 5235 5236 5237

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5238
	for_each_engine(engine, dev_priv)
5239
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5240
	I915_WRITE(GEN6_RC_SLEEP, 0);
5241
	if (IS_BROADWELL(dev_priv))
5242 5243 5244
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5245 5246

	/* 3: Enable RC6 */
5247
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5248
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5249 5250
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5251 5252 5253 5254 5255 5256 5257
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5258 5259

	/* 4 Program defaults and thresholds for RPS*/
5260 5261 5262 5263
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5278 5279

	/* 5: Enable RPS */
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5290
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5291
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5292

5293
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5294 5295
}

5296
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5297
{
5298
	struct intel_engine_cs *engine;
5299
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5300 5301
	u32 gtfifodbg;
	int rc6_mode;
5302
	int ret;
5303

5304
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5305

5306 5307 5308 5309 5310 5311 5312 5313 5314
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5315 5316
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5317 5318 5319 5320
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5321
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5322

5323
	/* Initialize rps frequencies */
5324
	gen6_init_rps_frequencies(dev_priv);
J
Jeff McGee 已提交
5325

5326 5327 5328 5329 5330 5331 5332 5333 5334
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5335
	for_each_engine(engine, dev_priv)
5336
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5337 5338 5339

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5340
	if (IS_IVYBRIDGE(dev_priv))
5341 5342 5343
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5344
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5345 5346
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5347
	/* Check if we are enabling RC6 */
5348
	rc6_mode = intel_enable_rc6();
5349 5350 5351
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5352
	/* We don't use those on Haswell */
5353
	if (!IS_HASWELL(dev_priv)) {
5354 5355
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5356

5357 5358 5359
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5360

5361
	intel_print_rc6_info(dev_priv, rc6_mask);
5362 5363 5364 5365 5366 5367

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5368 5369
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5370 5371
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5372
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5373
	if (ret)
B
Ben Widawsky 已提交
5374
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5375 5376 5377 5378

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5379
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5380
				 (pcu_mbox & 0xff) * 50);
5381
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5382 5383
	}

5384
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5385
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5386

5387 5388
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5389
	if (IS_GEN6(dev_priv) && ret) {
5390
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5391
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5392 5393 5394 5395 5396 5397 5398 5399 5400
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5401
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5402 5403
}

5404
static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5405 5406
{
	int min_freq = 15;
5407 5408
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5409
	unsigned int max_gpu_freq, min_gpu_freq;
5410
	int scaling_factor = 180;
5411
	struct cpufreq_policy *policy;
5412

5413
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5414

5415 5416 5417 5418 5419 5420 5421 5422 5423
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5424
		max_ia_freq = tsc_khz;
5425
	}
5426 5427 5428 5429

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5430
	min_ring_freq = I915_READ(DCLK) & 0xf;
5431 5432
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5433

5434
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5435 5436 5437 5438 5439 5440 5441 5442
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5443 5444 5445 5446 5447
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5448 5449
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5450 5451
		unsigned int ia_freq = 0, ring_freq = 0;

5452
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5453 5454 5455 5456 5457
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5458
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5459 5460
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5461
		} else if (IS_HASWELL(dev_priv)) {
5462
			ring_freq = mult_frac(gpu_freq, 5, 4);
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5479

B
Ben Widawsky 已提交
5480 5481
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5482 5483 5484
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5485 5486 5487
	}
}

5488
void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5489
{
5490
	if (!HAS_CORE_RING_FREQ(dev_priv))
5491 5492 5493
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
5494
	__gen6_update_ring_freq(dev_priv);
5495 5496 5497
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5498
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5499 5500 5501
{
	u32 val, rp0;

5502
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5503

5504
	switch (INTEL_INFO(dev_priv)->eu_total) {
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5519
	}
5520 5521 5522

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5536 5537 5538 5539
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5540 5541 5542
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5543 5544 5545
	return rp1;
}

5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5557
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5558 5559 5560
{
	u32 val, rp0;

5561
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5574
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5575
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5576
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5577 5578 5579 5580 5581
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5582
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5583
{
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5595 5596
}

5597 5598 5599 5600 5601 5602 5603 5604 5605
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5606 5607 5608 5609 5610 5611 5612 5613 5614

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5615
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5616
{
5617
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5618
	unsigned long pctx_paddr, paddr;
5619 5620 5621 5622 5623
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5624
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5625
		paddr = (dev_priv->mm.stolen_base +
5626
			 (ggtt->stolen_size - pctx_size));
5627 5628 5629 5630

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5631 5632

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5633 5634
}

5635
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5636 5637 5638 5639 5640 5641
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5642
	mutex_lock(&dev_priv->dev->struct_mutex);
5643

5644 5645 5646 5647 5648 5649 5650 5651
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5652
								      I915_GTT_OFFSET_NONE,
5653 5654 5655 5656
								      pctx_size);
		goto out;
	}

5657 5658
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5659 5660 5661 5662 5663 5664 5665 5666
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5667
	pctx = i915_gem_object_create_stolen(dev_priv->dev, pctx_size);
5668 5669
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5670
		goto out;
5671 5672 5673 5674 5675 5676
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5677
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5678
	dev_priv->vlv_pctx = pctx;
5679
	mutex_unlock(&dev_priv->dev->struct_mutex);
5680 5681
}

5682
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5683 5684 5685 5686
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5687
	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5688 5689 5690
	dev_priv->vlv_pctx = NULL;
}

5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5702
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5703
{
5704
	u32 val;
5705

5706
	valleyview_setup_pctx(dev_priv);
5707

5708 5709
	vlv_init_gpll_ref_freq(dev_priv);

5710 5711
	mutex_lock(&dev_priv->rps.hw_lock);

5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5725
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5726

5727 5728 5729
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5730
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5731 5732 5733 5734
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5735
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5736 5737
			 dev_priv->rps.efficient_freq);

5738 5739
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5740
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5741 5742
			 dev_priv->rps.rp1_freq);

5743 5744
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5745
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5746 5747
			 dev_priv->rps.min_freq);

5748 5749
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5760
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5761
{
5762
	u32 val;
5763

5764
	cherryview_setup_pctx(dev_priv);
5765

5766 5767
	vlv_init_gpll_ref_freq(dev_priv);

5768 5769
	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5770
	mutex_lock(&dev_priv->sb_lock);
5771
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5772
	mutex_unlock(&dev_priv->sb_lock);
5773

5774 5775 5776 5777
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5778
	default:
5779 5780 5781
		dev_priv->mem_freq = 1600;
		break;
	}
5782
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5783

5784 5785 5786
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5787
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5788 5789 5790 5791
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5792
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5793 5794
			 dev_priv->rps.efficient_freq);

5795 5796
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5797
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5798 5799
			 dev_priv->rps.rp1_freq);

5800 5801
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5802
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5803
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5804 5805
			 dev_priv->rps.min_freq);

5806 5807 5808 5809 5810 5811
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5812 5813
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5814 5815 5816 5817 5818 5819 5820 5821
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5822 5823
}

5824
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5825
{
5826
	valleyview_cleanup_pctx(dev_priv);
5827 5828
}

5829
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5830
{
5831
	struct intel_engine_cs *engine;
5832
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5833 5834 5835

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5836 5837
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5848
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5849

5850 5851 5852
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5853 5854 5855 5856 5857
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5858
	for_each_engine(engine, dev_priv)
5859
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5860 5861
	I915_WRITE(GEN6_RC_SLEEP, 0);

5862 5863
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
5875 5876
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
5877
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5878 5879 5880

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5881
	/* 4 Program defaults and thresholds for RPS*/
5882
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5893
		   GEN6_RP_MEDIA_IS_GFX |
5894 5895 5896 5897
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5898 5899 5900 5901 5902 5903
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5904 5905
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5906 5907 5908
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5909
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5910 5911 5912 5913
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5914
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5915 5916 5917
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5918 5919
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5920

5921
	valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5922

5923
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5924 5925
}

5926
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5927
{
5928
	struct intel_engine_cs *engine;
5929
	u32 gtfifodbg, val, rc6_mode = 0;
5930 5931 5932

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5933 5934
	valleyview_check_pctx(dev_priv);

5935 5936
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5937 5938
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5939 5940 5941
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5942
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5943
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5944

5945 5946 5947
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5948
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5968
	for_each_engine(engine, dev_priv)
5969
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5970

5971
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5972 5973

	/* allows RC6 residency counter to work */
5974
	I915_WRITE(VLV_COUNTER_CONTROL,
5975 5976
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5977 5978
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5979

5980
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5981
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5982

5983
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
5984

5985
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5986

D
Deepak S 已提交
5987 5988 5989 5990 5991 5992
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5993
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5994

5995 5996 5997
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5998
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5999 6000
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6001
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
6002
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6003
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
6004
			 dev_priv->rps.cur_freq);
6005

6006
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6007 6008
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
6009

6010
	valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
6011

6012
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6013 6014
}

6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6044
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6045 6046 6047 6048 6049 6050
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6051 6052
	assert_spin_locked(&mchdev_lock);

6053
	diff1 = now - dev_priv->ips.last_time1;
6054 6055 6056 6057 6058 6059 6060

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6061
		return dev_priv->ips.chipset_power;
6062 6063 6064 6065 6066 6067 6068 6069

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6070 6071
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6072 6073
		diff += total_count;
	} else {
6074
		diff = total_count - dev_priv->ips.last_count1;
6075 6076 6077
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6078 6079
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6090 6091
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6092

6093
	dev_priv->ips.chipset_power = ret;
6094 6095 6096 6097

	return ret;
}

6098 6099 6100 6101
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6102
	if (INTEL_INFO(dev_priv)->gen != 5)
6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6141
{
6142 6143 6144
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6145
	if (INTEL_INFO(dev_priv)->is_mobile)
6146 6147 6148
		return vm > 0 ? vm : 0;

	return vd;
6149 6150
}

6151
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6152
{
6153
	u64 now, diff, diffms;
6154 6155
	u32 count;

6156
	assert_spin_locked(&mchdev_lock);
6157

6158 6159 6160
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6161 6162 6163 6164 6165 6166 6167

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6168 6169
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6170 6171
		diff += count;
	} else {
6172
		diff = count - dev_priv->ips.last_count2;
6173 6174
	}

6175 6176
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6177 6178 6179 6180

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6181
	dev_priv->ips.gfx_power = diff;
6182 6183
}

6184 6185
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6186
	if (INTEL_INFO(dev_priv)->gen != 5)
6187 6188
		return;

6189
	spin_lock_irq(&mchdev_lock);
6190 6191 6192

	__i915_update_gfx_val(dev_priv);

6193
	spin_unlock_irq(&mchdev_lock);
6194 6195
}

6196
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6197 6198 6199 6200
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6201 6202
	assert_spin_locked(&mchdev_lock);

6203
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6223
	corr2 = (corr * dev_priv->ips.corr);
6224 6225 6226 6227

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6228
	__i915_update_gfx_val(dev_priv);
6229

6230
	return dev_priv->ips.gfx_power + state2;
6231 6232
}

6233 6234 6235 6236
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6237
	if (INTEL_INFO(dev_priv)->gen != 5)
6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6260
	spin_lock_irq(&mchdev_lock);
6261 6262 6263 6264
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6265 6266
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6267 6268 6269 6270

	ret = chipset_val + graphics_val;

out_unlock:
6271
	spin_unlock_irq(&mchdev_lock);
6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6287
	spin_lock_irq(&mchdev_lock);
6288 6289 6290 6291 6292 6293
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6294 6295
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6296 6297

out_unlock:
6298
	spin_unlock_irq(&mchdev_lock);
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6315
	spin_lock_irq(&mchdev_lock);
6316 6317 6318 6319 6320 6321
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6322 6323
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6324 6325

out_unlock:
6326
	spin_unlock_irq(&mchdev_lock);
6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
6340
	struct intel_engine_cs *engine;
6341 6342
	bool ret = false;

6343
	spin_lock_irq(&mchdev_lock);
6344 6345 6346 6347
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6348
	for_each_engine(engine, dev_priv)
6349
		ret |= !list_empty(&engine->request_list);
6350 6351

out_unlock:
6352
	spin_unlock_irq(&mchdev_lock);
6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6369
	spin_lock_irq(&mchdev_lock);
6370 6371 6372 6373 6374 6375
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6376
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6377

6378
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6379 6380 6381
		ret = false;

out_unlock:
6382
	spin_unlock_irq(&mchdev_lock);
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6410 6411
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6412
	spin_lock_irq(&mchdev_lock);
6413
	i915_mch_dev = dev_priv;
6414
	spin_unlock_irq(&mchdev_lock);
6415 6416 6417 6418 6419 6420

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6421
	spin_lock_irq(&mchdev_lock);
6422
	i915_mch_dev = NULL;
6423
	spin_unlock_irq(&mchdev_lock);
6424
}
6425

6426
static void intel_init_emon(struct drm_i915_private *dev_priv)
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6443
		I915_WRITE(PEW(i), 0);
6444
	for (i = 0; i < 3; i++)
6445
		I915_WRITE(DEW(i), 0);
6446 6447 6448

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6449
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6470
		I915_WRITE(PXW(i), val);
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6486
		I915_WRITE(PXWL(i), 0);
6487 6488 6489 6490 6491 6492

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6493
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6494 6495
}

6496
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6497
{
6498 6499 6500 6501 6502 6503 6504 6505
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6506

6507 6508 6509 6510
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6511 6512
}

6513
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6514
{
6515
	if (IS_CHERRYVIEW(dev_priv))
6516
		return;
6517 6518
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_cleanup_gt_powersave(dev_priv);
6519 6520 6521

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6522 6523
}

6524
static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6525 6526 6527
{
	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6528
	gen6_disable_rps_interrupts(dev_priv);
6529 6530
}

6531 6532
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
6533
 * @dev_priv: i915 device
6534 6535 6536 6537 6538
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
6539
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6540
{
6541
	if (INTEL_GEN(dev_priv) < 6)
I
Imre Deak 已提交
6542 6543
		return;

6544
	gen6_suspend_rps(dev_priv);
6545 6546 6547

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6548 6549
}

6550
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6551
{
6552
	if (IS_IRONLAKE_M(dev_priv)) {
6553
		ironlake_disable_drps(dev_priv);
6554 6555
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		intel_suspend_gt_powersave(dev_priv);
6556

6557
		mutex_lock(&dev_priv->rps.hw_lock);
6558 6559 6560 6561 6562 6563 6564
		if (INTEL_INFO(dev_priv)->gen >= 9) {
			gen9_disable_rc6(dev_priv);
			gen9_disable_rps(dev_priv);
		} else if (IS_CHERRYVIEW(dev_priv))
			cherryview_disable_rps(dev_priv);
		else if (IS_VALLEYVIEW(dev_priv))
			valleyview_disable_rps(dev_priv);
6565
		else
6566
			gen6_disable_rps(dev_priv);
6567

6568
		dev_priv->rps.enabled = false;
6569
		mutex_unlock(&dev_priv->rps.hw_lock);
6570
	}
6571 6572
}

6573 6574 6575 6576 6577 6578
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);

6579
	mutex_lock(&dev_priv->rps.hw_lock);
6580

6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
	gen6_reset_rps_interrupts(dev_priv);

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 9) {
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
			__gen6_update_ring_freq(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
		__gen6_update_ring_freq(dev_priv);
6595
	} else {
6596 6597
		gen6_enable_rps(dev_priv);
		__gen6_update_ring_freq(dev_priv);
6598
	}
6599 6600 6601 6602 6603 6604 6605

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6606
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6607

6608
	gen6_enable_rps_interrupts(dev_priv);
I
Imre Deak 已提交
6609

6610
	mutex_unlock(&dev_priv->rps.hw_lock);
6611 6612

	intel_runtime_pm_put(dev_priv);
6613 6614
}

6615
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6616
{
6617
	/* Powersaving is controlled by the host when inside a VM */
6618
	if (intel_vgpu_active(dev_priv))
6619 6620
		return;

6621
	if (IS_IRONLAKE_M(dev_priv)) {
6622
		ironlake_enable_drps(dev_priv);
6623 6624 6625 6626
		mutex_lock(&dev_priv->dev->struct_mutex);
		intel_init_emon(dev_priv);
		mutex_unlock(&dev_priv->dev->struct_mutex);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
6627 6628 6629 6630
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6631 6632 6633 6634 6635 6636 6637
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6638
		 */
6639 6640 6641
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6642 6643 6644
	}
}

6645
void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6646
{
6647
	if (INTEL_INFO(dev_priv)->gen < 6)
6648 6649
		return;

6650
	gen6_suspend_rps(dev_priv);
6651 6652 6653
	dev_priv->rps.enabled = false;
}

6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6666 6667 6668
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6669
	enum pipe pipe;
6670

6671
	for_each_pipe(dev_priv, pipe) {
6672 6673 6674
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6675 6676 6677

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6678 6679 6680
	}
}

6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6695
static void ironlake_init_clock_gating(struct drm_device *dev)
6696 6697
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6698
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6699

6700 6701 6702 6703
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6704 6705 6706
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6724
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6725 6726 6727
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6728 6729

	ilk_init_lp_watermarks(dev);
6730 6731 6732 6733 6734 6735 6736 6737 6738

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6739
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6740 6741 6742 6743 6744 6745 6746 6747
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6748 6749
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6750 6751 6752 6753 6754 6755
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6756

6757
	/* WaDisableRenderCachePipelinedFlush:ilk */
6758 6759
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6760

6761 6762 6763
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6764
	g4x_disable_trickle_feed(dev);
6765

6766 6767 6768 6769 6770 6771 6772
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6773
	uint32_t val;
6774 6775 6776 6777 6778 6779

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6780 6781 6782
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6783 6784
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6785 6786 6787
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6788
	for_each_pipe(dev_priv, pipe) {
6789 6790 6791
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6792
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6793
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6794 6795 6796
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6797 6798
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6799
	/* WADP0ClockGatingDisable */
6800
	for_each_pipe(dev_priv, pipe) {
6801 6802 6803
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6804 6805
}

6806 6807 6808 6809 6810 6811
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6812 6813 6814
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6815 6816
}

6817
static void gen6_init_clock_gating(struct drm_device *dev)
6818 6819
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6820
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6821

6822
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6823 6824 6825 6826 6827

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6828
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6829 6830 6831
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6832 6833 6834
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6835 6836 6837
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6838 6839 6840 6841
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6842 6843
	 */
	I915_WRITE(GEN6_GT_MODE,
6844
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6845

6846
	ilk_init_lp_watermarks(dev);
6847 6848

	I915_WRITE(CACHE_MODE_0,
6849
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6865
	 *
6866 6867
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6868 6869 6870 6871 6872
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6873
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6874 6875
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6876

6877 6878 6879 6880 6881 6882 6883 6884
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6885 6886 6887 6888 6889 6890 6891 6892
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6893 6894
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6895 6896 6897 6898 6899 6900 6901
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6902 6903 6904 6905
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6906

6907
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6908

6909
	cpt_init_clock_gating(dev);
6910 6911

	gen6_check_mch_setup(dev);
6912 6913 6914 6915 6916 6917
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6918
	/*
6919
	 * WaVSThreadDispatchOverride:ivb,vlv
6920 6921 6922 6923
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6924 6925 6926 6927 6928 6929 6930 6931
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6932 6933 6934 6935 6936 6937 6938 6939
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6940
	if (HAS_PCH_LPT_LP(dev))
6941 6942 6943
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6944 6945

	/* WADPOClockGatingDisable:hsw */
6946 6947
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6948
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6949 6950
}

6951 6952 6953 6954
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6955
	if (HAS_PCH_LPT_LP(dev)) {
6956 6957 6958 6959 6960 6961 6962
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

6986 6987 6988 6989
static void kabylake_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6990
	gen9_init_clock_gating(dev);
6991 6992 6993 6994 6995

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6996 6997 6998 6999 7000

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7001 7002 7003 7004

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7005 7006
}

7007 7008
static void skylake_init_clock_gating(struct drm_device *dev)
{
7009 7010
	struct drm_i915_private *dev_priv = dev->dev_private;

7011
	gen9_init_clock_gating(dev);
7012 7013 7014 7015

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7016 7017 7018 7019

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7020 7021
}

7022
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7023 7024
{
	struct drm_i915_private *dev_priv = dev->dev_private;
7025
	enum pipe pipe;
B
Ben Widawsky 已提交
7026

7027
	ilk_init_lp_watermarks(dev);
7028

7029
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7030
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7031

7032
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7033 7034 7035
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7036
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7037
	for_each_pipe(dev_priv, pipe) {
7038
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7039
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7040
			   BDW_DPRS_MASK_VBLANK_SRD);
7041
	}
7042

7043 7044 7045 7046 7047
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7048

7049 7050
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7051 7052 7053 7054

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7055

7056 7057
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7058

7059 7060 7061 7062 7063 7064 7065
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7066 7067 7068 7069
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7070
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7071 7072
}

7073 7074 7075 7076
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7077
	ilk_init_lp_watermarks(dev);
7078

7079 7080 7081 7082 7083
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7084
	/* This is required by WaCatErrorRejectionIssue:hsw */
7085 7086 7087 7088
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7089 7090 7091
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7092

7093 7094 7095
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7096 7097 7098 7099
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7100
	/* WaDisable4x2SubspanOptimization:hsw */
7101 7102
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7103

7104 7105 7106
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7107 7108 7109 7110
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7111 7112
	 */
	I915_WRITE(GEN7_GT_MODE,
7113
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7114

7115 7116 7117 7118
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7119
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7120 7121
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7122 7123 7124
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7125

7126
	lpt_init_clock_gating(dev);
7127 7128
}

7129
static void ivybridge_init_clock_gating(struct drm_device *dev)
7130 7131
{
	struct drm_i915_private *dev_priv = dev->dev_private;
7132
	uint32_t snpcr;
7133

7134
	ilk_init_lp_watermarks(dev);
7135

7136
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7137

7138
	/* WaDisableEarlyCull:ivb */
7139 7140 7141
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7142
	/* WaDisableBackToBackFlipFix:ivb */
7143 7144 7145 7146
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7147
	/* WaDisablePSDDualDispatchEnable:ivb */
7148 7149 7150 7151
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7152 7153 7154
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7155
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7156 7157 7158
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7159
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7160 7161 7162
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7163 7164 7165 7166
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7167 7168 7169 7170
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7171 7172
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7173
	}
7174

7175
	/* WaForceL3Serialization:ivb */
7176 7177 7178
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7179
	/*
7180
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7181
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7182 7183
	 */
	I915_WRITE(GEN6_UCGCTL2,
7184
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7185

7186
	/* This is required by WaCatErrorRejectionIssue:ivb */
7187 7188 7189 7190
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7191
	g4x_disable_trickle_feed(dev);
7192 7193

	gen7_setup_fixed_func_scheduler(dev_priv);
7194

7195 7196 7197 7198 7199
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7200

7201
	/* WaDisable4x2SubspanOptimization:ivb */
7202 7203
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7204

7205 7206 7207
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7208 7209 7210 7211
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7212 7213
	 */
	I915_WRITE(GEN7_GT_MODE,
7214
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7215

7216 7217 7218 7219
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7220

7221 7222
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
7223 7224

	gen6_check_mch_setup(dev);
7225 7226
}

7227
static void valleyview_init_clock_gating(struct drm_device *dev)
7228 7229 7230
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7231
	/* WaDisableEarlyCull:vlv */
7232 7233 7234
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7235
	/* WaDisableBackToBackFlipFix:vlv */
7236 7237 7238 7239
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7240
	/* WaPsdDispatchEnable:vlv */
7241
	/* WaDisablePSDDualDispatchEnable:vlv */
7242
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7243 7244
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7245

7246 7247 7248
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7249
	/* WaForceL3Serialization:vlv */
7250 7251 7252
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7253
	/* WaDisableDopClockGating:vlv */
7254 7255 7256
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7257
	/* This is required by WaCatErrorRejectionIssue:vlv */
7258 7259 7260 7261
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7262 7263
	gen7_setup_fixed_func_scheduler(dev_priv);

7264
	/*
7265
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7266
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7267 7268
	 */
	I915_WRITE(GEN6_UCGCTL2,
7269
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7270

7271 7272 7273 7274 7275
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7276

7277 7278 7279 7280
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7281 7282
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7283

7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7295 7296 7297 7298 7299 7300
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7301
	/*
7302
	 * WaDisableVLVClockGating_VBIIssue:vlv
7303 7304 7305
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7306
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7307 7308
}

7309 7310 7311 7312
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7313 7314 7315 7316 7317
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7318 7319 7320 7321

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7322 7323 7324 7325

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7326 7327 7328 7329

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7330

7331 7332 7333 7334 7335 7336 7337
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7338 7339 7340 7341 7342
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7343 7344
}

7345
static void g4x_init_clock_gating(struct drm_device *dev)
7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7361 7362 7363 7364

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7365

7366 7367 7368
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7369
	g4x_disable_trickle_feed(dev);
7370 7371
}

7372
static void crestline_init_clock_gating(struct drm_device *dev)
7373 7374 7375 7376 7377 7378 7379 7380
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7381 7382
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7383 7384 7385

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7386 7387
}

7388
static void broadwater_init_clock_gating(struct drm_device *dev)
7389 7390 7391 7392 7393 7394 7395 7396 7397
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7398 7399
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7400 7401 7402

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7403 7404
}

7405
static void gen3_init_clock_gating(struct drm_device *dev)
7406 7407 7408 7409 7410 7411 7412
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7413 7414 7415

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7416 7417 7418

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7419 7420

	/* interrupts should cause a wake up from C3 */
7421
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7422 7423 7424

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7425 7426 7427

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7428 7429
}

7430
static void i85x_init_clock_gating(struct drm_device *dev)
7431 7432 7433 7434
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7435 7436 7437 7438

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7439 7440 7441

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7442 7443
}

7444
static void i830_init_clock_gating(struct drm_device *dev)
7445 7446 7447 7448
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7449 7450 7451 7452

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7453 7454 7455 7456 7457 7458
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7459
	dev_priv->display.init_clock_gating(dev);
7460 7461
}

7462 7463 7464 7465 7466 7467
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7485
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7486
	else if (IS_KABYLAKE(dev_priv))
7487
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7522 7523 7524 7525 7526
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7527
	intel_fbc_init(dev_priv);
7528

7529 7530 7531 7532 7533 7534
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7535
	/* For FIFO watermark updates */
7536
	if (INTEL_INFO(dev)->gen >= 9) {
7537
		skl_setup_wm_latency(dev);
7538
		dev_priv->display.update_wm = skl_update_wm;
7539
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7540
	} else if (HAS_PCH_SPLIT(dev)) {
7541
		ilk_setup_wm_latency(dev);
7542

7543 7544 7545 7546
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7547
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7548 7549 7550 7551 7552 7553
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7554 7555 7556 7557
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7558
	} else if (IS_CHERRYVIEW(dev)) {
7559 7560
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7561
	} else if (IS_VALLEYVIEW(dev)) {
7562 7563
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7575
			intel_set_memory_cxsr(dev_priv, false);
7576 7577 7578 7579 7580 7581 7582 7583 7584 7585
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7586 7587 7588
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7589
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7590 7591
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7592
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7593 7594 7595
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7596 7597 7598
	}
}

7599
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7600
{
7601
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7602 7603 7604 7605 7606 7607 7608

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7609
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7624
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7625
{
7626
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7646

7647 7648
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7649 7650 7651 7652 7653
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7654 7655
}

7656
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7657
{
7658
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7659 7660
}

7661
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7662
{
7663 7664 7665 7666 7667
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7668 7669
}

7670
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7671
{
7672
	/* CHV needs even values */
7673
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7674 7675
}

7676
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7677
{
7678
	if (IS_GEN9(dev_priv))
7679 7680
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7681
	else if (IS_CHERRYVIEW(dev_priv))
7682
		return chv_gpu_freq(dev_priv, val);
7683
	else if (IS_VALLEYVIEW(dev_priv))
7684 7685 7686
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7687 7688
}

7689 7690
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7691
	if (IS_GEN9(dev_priv))
7692 7693
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7694
	else if (IS_CHERRYVIEW(dev_priv))
7695
		return chv_freq_opcode(dev_priv, val);
7696
	else if (IS_VALLEYVIEW(dev_priv))
7697 7698
		return byt_freq_opcode(dev_priv, val);
	else
7699
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7700
}
7701

7702 7703
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7704
	struct drm_i915_gem_request *req;
7705 7706 7707 7708 7709
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7710
	struct drm_i915_gem_request *req = boost->req;
7711

7712
	if (!i915_gem_request_completed(req, true))
7713
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7714

7715
	i915_gem_request_unreference(req);
7716 7717 7718
	kfree(boost);
}

7719
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7720 7721 7722
{
	struct request_boost *boost;

7723
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7724 7725
		return;

7726 7727 7728
	if (i915_gem_request_completed(req, true))
		return;

7729 7730 7731 7732
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7733 7734
	i915_gem_request_reference(req);
	boost->req = req;
7735 7736

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7737
	queue_work(req->i915->wq, &boost->work);
7738 7739
}

D
Daniel Vetter 已提交
7740
void intel_pm_setup(struct drm_device *dev)
7741 7742 7743
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7744
	mutex_init(&dev_priv->rps.hw_lock);
7745
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7746

7747 7748
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7749
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7750 7751
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7752

7753
	dev_priv->pm.suspended = false;
7754
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7755
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7756
}