intel_pm.c 223.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67 68 69 70

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 74 75 76
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101 102 103 104

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
105 106
}

107
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

145
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

172
	dev_priv->ips.r_t = dev_priv->mem_freq;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
204
		dev_priv->ips.c_m = 0;
205
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206
		dev_priv->ips.c_m = 1;
207
	} else {
208
		dev_priv->ips.c_m = 2;
209 210 211
	}
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

250 251
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

312 313 314
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

315
static void _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316
{
317
	u32 val;
318

319
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
320
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
321
		POSTING_READ(FW_BLC_SELF_VLV);
322
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
323
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
324
		POSTING_READ(FW_BLC_SELF);
325
	} else if (IS_PINEVIEW(dev_priv)) {
326 327 328
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
329
		POSTING_READ(DSPFW3);
330
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
331 332 333
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
334
		POSTING_READ(FW_BLC_SELF);
335
	} else if (IS_I915GM(dev_priv)) {
336 337 338 339 340
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
341 342 343
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
344
		POSTING_READ(INSTPM);
345 346 347
	} else {
		return;
	}
348

349
	DRM_DEBUG_KMS("memory self-refresh is %s\n", enableddisabled(enable));
350 351
}

352 353 354 355 356 357 358
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
{
	mutex_lock(&dev_priv->wm.wm_mutex);
	_intel_set_memory_cxsr(dev_priv, enable);
	dev_priv->wm.vlv.cxsr = enable;
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
374
static const int pessimal_latency_ns = 5000;
375

376 377 378
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

379
static int vlv_get_fifo_size(struct intel_plane *plane)
380
{
381
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
382 383
	int sprite0_start, sprite1_start, size;

384 385 386 387
	if (plane->id == PLANE_CURSOR)
		return 63;

	switch (plane->pipe) {
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

411 412
	switch (plane->id) {
	case PLANE_PRIMARY:
413 414
		size = sprite0_start;
		break;
415
	case PLANE_SPRITE0:
416 417
		size = sprite1_start - sprite0_start;
		break;
418
	case PLANE_SPRITE1:
419 420 421 422 423 424
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

425
	DRM_DEBUG_KMS("%s FIFO size: %d\n", plane->base.name, size);
426 427 428 429

	return size;
}

430
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
431 432 433 434 435 436 437 438 439 440 441 442 443 444
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

445
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

461
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
478 479 480 481 482
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
483 484
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
485 486 487 488 489
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
490 491
};
static const struct intel_watermark_params pineview_cursor_wm = {
492 493 494 495 496
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
497 498
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
499 500 501 502 503
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
504 505
};
static const struct intel_watermark_params g4x_wm_info = {
506 507 508 509 510
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
511 512
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
513 514 515 516 517
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
518 519
};
static const struct intel_watermark_params i965_cursor_wm_info = {
520 521 522 523 524
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
525 526
};
static const struct intel_watermark_params i945_wm_info = {
527 528 529 530 531
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
532 533
};
static const struct intel_watermark_params i915_wm_info = {
534 535 536 537 538
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
539
};
540
static const struct intel_watermark_params i830_a_wm_info = {
541 542 543 544 545
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
546
};
547 548 549 550 551 552 553
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
554
static const struct intel_watermark_params i845_wm_info = {
555 556 557 558 559
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
560 561 562 563 564 565
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
566
 * @cpp: bytes per pixel
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
582
					int fifo_size, int cpp,
583 584 585 586 587 588 589 590 591 592
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
593
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
594 595 596 597 598 599 600 601 602 603 604 605 606 607
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
608 609 610 611 612 613 614 615 616 617 618

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

619 620 621
	return wm_size;
}

622
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
623
{
624
	struct intel_crtc *crtc, *enabled = NULL;
625

626
	for_each_intel_crtc(&dev_priv->drm, crtc) {
627
		if (intel_crtc_active(crtc)) {
628 629 630 631 632 633 634 635 636
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

637
static void pineview_update_wm(struct intel_crtc *unused_crtc)
638
{
639
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
640
	struct intel_crtc *crtc;
641 642 643 644
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

645 646 647 648
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
649 650
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
651
		intel_set_memory_cxsr(dev_priv, false);
652 653 654
		return;
	}

655
	crtc = single_enabled_crtc(dev_priv);
656
	if (crtc) {
657 658 659 660 661
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
662
		int clock = adjusted_mode->crtc_clock;
663 664 665 666

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
667
					cpp, latency->display_sr);
668 669
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
670
		reg |= FW_WM(wm, SR);
671 672 673 674 675 676
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
677
					cpp, latency->cursor_sr);
678 679
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
680
		reg |= FW_WM(wm, CURSOR_SR);
681 682 683 684 685
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
686
					cpp, latency->display_hpll_disable);
687 688
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
689
		reg |= FW_WM(wm, HPLL_SR);
690 691 692 693 694
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
695
					cpp, latency->cursor_hpll_disable);
696 697
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
698
		reg |= FW_WM(wm, HPLL_CURSOR);
699 700 701
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

702
		intel_set_memory_cxsr(dev_priv, true);
703
	} else {
704
		intel_set_memory_cxsr(dev_priv, false);
705 706 707
	}
}

708
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
709 710 711 712 713 714 715 716
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
717
	struct intel_crtc *crtc;
718
	const struct drm_display_mode *adjusted_mode;
719
	const struct drm_framebuffer *fb;
720
	int htotal, hdisplay, clock, cpp;
721 722 723
	int line_time_us, line_count;
	int entries, tlb_miss;

724
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
725
	if (!intel_crtc_active(crtc)) {
726 727 728 729 730
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

731 732
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
733
	clock = adjusted_mode->crtc_clock;
734
	htotal = adjusted_mode->crtc_htotal;
735 736
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
737 738

	/* Use the small buffer method to calculate plane watermark */
739
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
740 741 742 743 744 745 746 747 748
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
749
	line_time_us = max(htotal * 1000 / clock, 1);
750
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
751
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
770
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
771 772 773 774 775 776 777 778
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
779
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
780 781 782 783 784
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
785
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
786 787 788 789 790 791 792 793 794 795 796 797
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

798
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
799 800 801 802 803 804
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
805
	struct intel_crtc *crtc;
806
	const struct drm_display_mode *adjusted_mode;
807
	const struct drm_framebuffer *fb;
808
	int hdisplay, htotal, cpp, clock;
809 810 811 812 813 814 815 816 817 818
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

819
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
820 821
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
822
	clock = adjusted_mode->crtc_clock;
823
	htotal = adjusted_mode->crtc_htotal;
824 825
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
826

827
	line_time_us = max(htotal * 1000 / clock, 1);
828
	line_count = (latency_ns / line_time_us + 1000) / 1000;
829
	line_size = hdisplay * cpp;
830 831

	/* Use the minimum of the small and large buffer method for primary */
832
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
833 834 835 836 837 838
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
839
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
840 841 842
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

843
	return g4x_check_srwm(dev_priv,
844 845 846 847
			      *display_wm, *cursor_wm,
			      display, cursor);
}

848 849 850
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

851 852 853 854 855 856 857
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
858 859 860 861
		   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
862

863
	I915_WRITE(DSPFW1,
864
		   FW_WM(wm->sr.plane, SR) |
865 866 867
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
868
	I915_WRITE(DSPFW2,
869 870 871
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
872
	I915_WRITE(DSPFW3,
873
		   FW_WM(wm->sr.cursor, CURSOR_SR));
874 875 876

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
877 878
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
879
		I915_WRITE(DSPFW8_CHV,
880 881
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
882
		I915_WRITE(DSPFW9_CHV,
883 884
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
885
		I915_WRITE(DSPHOWM,
886
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
887 888 889 890 891 892 893 894 895
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
896 897
	} else {
		I915_WRITE(DSPFW7,
898 899
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
900
		I915_WRITE(DSPHOWM,
901
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
902 903 904 905 906 907
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
908 909
	}

910 911 912 913 914 915
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

916
	POSTING_READ(DSPFW1);
917 918
}

919 920
#undef FW_WM_VLV

921 922 923 924 925 926
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

927 928 929 930
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
931
				   unsigned int cpp,
932 933 934 935 936
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
937
	ret = (ret + 1) * horiz_pixels * cpp;
938 939 940 941 942
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

943
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
944 945 946 947
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

948 949
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

950 951 952
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
953 954

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
955 956 957 958 959 960 961 962 963
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
964
	int clock, htotal, cpp, width, wm;
965 966 967 968

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

969
	if (!state->base.visible)
970 971
		return 0;

972
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
988
		wm = vlv_wm_method2(clock, htotal, width, cpp,
989 990 991 992 993 994
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1011
		if (state->base.visible) {
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1027
		if (!state->base.visible) {
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1062 1063 1064 1065 1066 1067 1068 1069
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1070 1071 1072 1073 1074 1075
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
1076
		struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1077
		const int sr_fifo_size =
1078
			INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1079 1080
		struct intel_plane *plane;

1081 1082 1083 1084 1085 1086
		wm_state->sr[level].plane =
			vlv_invert_wm_value(wm_state->sr[level].plane,
					    sr_fifo_size);
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(wm_state->sr[level].cursor,
					    63);
1087

1088
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1089 1090 1091
			wm_state->wm[level].plane[plane->id] =
				vlv_invert_wm_value(wm_state->wm[level].plane[plane->id],
						    plane->wm.fifo_size);
1092 1093 1094 1095
		}
	}
}

1096
static void vlv_compute_wm(struct intel_crtc *crtc)
1097
{
1098
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1099 1100 1101 1102 1103 1104
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1105
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1106
	wm_state->num_levels = dev_priv->wm.max_level + 1;
1107 1108 1109

	wm_state->num_active_planes = 0;

1110
	vlv_compute_fifo(crtc);
1111 1112 1113 1114

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

1115
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1116 1117
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
1118
		int level;
1119

1120
		if (!state->base.visible)
1121 1122 1123 1124 1125
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1126
			int max_wm = plane->wm.fifo_size;
1127 1128 1129 1130 1131

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

1132
			if (wm > max_wm)
1133 1134
				break;

1135
			wm_state->wm[level].plane[plane->id] = wm;
1136 1137 1138 1139 1140 1141 1142 1143
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
1144
		if (plane->id == PLANE_CURSOR) {
1145 1146
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1147 1148
					wm_state->wm[level].plane[PLANE_CURSOR];
		} else {
1149 1150
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
1151
					max(wm_state->sr[level].plane,
1152
					    wm_state->wm[level].plane[plane->id]);
1153 1154 1155 1156
		}
	}

	/* clear any (partially) filled invalid levels */
1157
	for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1158 1159 1160 1161 1162 1163 1164
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1176 1177
		switch (plane->id) {
		case PLANE_PRIMARY:
1178
			sprite0_start = plane->wm.fifo_size;
1179 1180
			break;
		case PLANE_SPRITE0:
1181
			sprite1_start = sprite0_start + plane->wm.fifo_size;
1182 1183
			break;
		case PLANE_SPRITE1:
1184
			fifo_size = sprite1_start + plane->wm.fifo_size;
1185 1186 1187 1188 1189 1190 1191 1192
			break;
		case PLANE_CURSOR:
			WARN_ON(plane->wm.fifo_size != 63);
			break;
		default:
			MISSING_CASE(plane->id);
			break;
		}
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1261
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1262 1263 1264 1265 1266
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1267
	wm->level = dev_priv->wm.max_level;
1268 1269
	wm->cxsr = true;

1270
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1286 1287 1288
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1289
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

1300 1301 1302 1303
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1304 1305 1306
	}
}

1307
static void vlv_update_wm(struct intel_crtc *crtc)
1308
{
1309
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1310
	enum pipe pipe = crtc->pipe;
1311 1312
	struct vlv_wm_values wm = {};

1313
	vlv_compute_wm(crtc);
1314
	vlv_merge_wm(dev_priv, &wm);
1315

1316 1317
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
1318
		vlv_pipe_set_fifo_size(crtc);
1319
		return;
1320
	}
1321 1322 1323 1324 1325 1326 1327 1328 1329

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1330
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1331
		_intel_set_memory_cxsr(dev_priv, false);
1332

1333
	/* FIXME should be part of crtc atomic commit */
1334
	vlv_pipe_set_fifo_size(crtc);
1335

1336
	vlv_write_wm_values(crtc, &wm);
1337 1338 1339

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1340 1341
		      pipe_name(pipe), wm.pipe[pipe].plane[PLANE_PRIMARY], wm.pipe[pipe].plane[PLANE_CURSOR],
		      wm.pipe[pipe].plane[PLANE_SPRITE0], wm.pipe[pipe].plane[PLANE_SPRITE1],
1342 1343
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1344
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1345
		_intel_set_memory_cxsr(dev_priv, true);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1356 1357
}

1358 1359
#define single_plane_enabled(mask) is_power_of_2(mask)

1360
static void g4x_update_wm(struct intel_crtc *crtc)
1361
{
1362
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1363 1364 1365 1366
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1367
	bool cxsr_enabled;
1368

1369
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1370 1371
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1372
			    &planea_wm, &cursora_wm))
1373
		enabled |= 1 << PIPE_A;
1374

1375
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1376 1377
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1378
			    &planeb_wm, &cursorb_wm))
1379
		enabled |= 1 << PIPE_B;
1380 1381

	if (single_plane_enabled(enabled) &&
1382
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1383 1384 1385
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1386
			     &plane_sr, &cursor_sr)) {
1387
		cxsr_enabled = true;
1388
	} else {
1389
		cxsr_enabled = false;
1390
		intel_set_memory_cxsr(dev_priv, false);
1391 1392
		plane_sr = cursor_sr = 0;
	}
1393

1394 1395
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1396 1397 1398 1399 1400
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1401 1402 1403 1404
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1405
	I915_WRITE(DSPFW2,
1406
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1407
		   FW_WM(cursora_wm, CURSORA));
1408 1409
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1410
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1411
		   FW_WM(cursor_sr, CURSOR_SR));
1412 1413 1414

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1415 1416
}

1417
static void i965_update_wm(struct intel_crtc *unused_crtc)
1418
{
1419
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1420
	struct intel_crtc *crtc;
1421 1422
	int srwm = 1;
	int cursor_sr = 16;
1423
	bool cxsr_enabled;
1424 1425

	/* Calc sr entries for one plane configs */
1426
	crtc = single_enabled_crtc(dev_priv);
1427 1428 1429
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1430 1431 1432 1433
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1434
		int clock = adjusted_mode->crtc_clock;
1435
		int htotal = adjusted_mode->crtc_htotal;
1436 1437
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1438 1439 1440
		unsigned long line_time_us;
		int entries;

1441
		line_time_us = max(htotal * 1000 / clock, 1);
1442 1443 1444

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1445
			cpp * hdisplay;
1446 1447 1448 1449 1450 1451 1452 1453 1454
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1455
			cpp * crtc->base.cursor->state->crtc_w;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1467
		cxsr_enabled = true;
1468
	} else {
1469
		cxsr_enabled = false;
1470
		/* Turn off self refresh if both pipes are enabled */
1471
		intel_set_memory_cxsr(dev_priv, false);
1472 1473 1474 1475 1476 1477
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1478 1479 1480 1481 1482 1483
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1484
	/* update cursor SR watermark */
1485
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1486 1487 1488

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1489 1490
}

1491 1492
#undef FW_WM

1493
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1494
{
1495
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1496 1497 1498 1499 1500 1501
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1502
	struct intel_crtc *crtc, *enabled = NULL;
1503

1504
	if (IS_I945GM(dev_priv))
1505
		wm_info = &i945_wm_info;
1506
	else if (!IS_GEN2(dev_priv))
1507 1508
		wm_info = &i915_wm_info;
	else
1509
		wm_info = &i830_a_wm_info;
1510

1511
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1512
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1513 1514 1515 1516 1517 1518 1519
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1520
		if (IS_GEN2(dev_priv))
1521
			cpp = 4;
1522 1523
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1524

1525
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1526
					       wm_info, fifo_size, cpp,
1527
					       pessimal_latency_ns);
1528
		enabled = crtc;
1529
	} else {
1530
		planea_wm = fifo_size - wm_info->guard_size;
1531 1532 1533 1534
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1535
	if (IS_GEN2(dev_priv))
1536
		wm_info = &i830_bc_wm_info;
1537

1538
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1539
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1540 1541 1542 1543 1544 1545 1546
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1547
		if (IS_GEN2(dev_priv))
1548
			cpp = 4;
1549 1550
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1551

1552
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1553
					       wm_info, fifo_size, cpp,
1554
					       pessimal_latency_ns);
1555 1556 1557 1558
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1559
	} else {
1560
		planeb_wm = fifo_size - wm_info->guard_size;
1561 1562 1563
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1564 1565 1566

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1567
	if (IS_I915GM(dev_priv) && enabled) {
1568
		struct drm_i915_gem_object *obj;
1569

1570
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1571 1572

		/* self-refresh seems busted with untiled */
1573
		if (!i915_gem_object_is_tiled(obj))
1574 1575 1576
			enabled = NULL;
	}

1577 1578 1579 1580 1581 1582
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1583
	intel_set_memory_cxsr(dev_priv, false);
1584 1585

	/* Calc sr entries for one plane configs */
1586
	if (HAS_FW_BLC(dev_priv) && enabled) {
1587 1588
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1589 1590 1591 1592
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1593
		int clock = adjusted_mode->crtc_clock;
1594
		int htotal = adjusted_mode->crtc_htotal;
1595 1596
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1597 1598 1599
		unsigned long line_time_us;
		int entries;

1600
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1601
			cpp = 4;
1602 1603
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1604

1605
		line_time_us = max(htotal * 1000 / clock, 1);
1606 1607 1608

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1609
			cpp * hdisplay;
1610 1611 1612 1613 1614 1615
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1616
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1617 1618
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1619
		else
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1636 1637
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1638 1639
}

1640
static void i845_update_wm(struct intel_crtc *unused_crtc)
1641
{
1642
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1643
	struct intel_crtc *crtc;
1644
	const struct drm_display_mode *adjusted_mode;
1645 1646 1647
	uint32_t fwater_lo;
	int planea_wm;

1648
	crtc = single_enabled_crtc(dev_priv);
1649 1650 1651
	if (crtc == NULL)
		return;

1652
	adjusted_mode = &crtc->config->base.adjusted_mode;
1653
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1654
				       &i845_wm_info,
1655
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1656
				       4, pessimal_latency_ns);
1657 1658 1659 1660 1661 1662 1663 1664
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1665
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1666
{
1667
	uint32_t pixel_rate;
1668

1669
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1670 1671 1672 1673

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1674
	if (pipe_config->pch_pfit.enabled) {
1675
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1676 1677 1678 1679
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1680 1681 1682 1683 1684 1685 1686 1687

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1688 1689 1690
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1691 1692 1693 1694 1695 1696 1697
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1698
/* latency must be in 0.1us units. */
1699
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1700 1701 1702
{
	uint64_t ret;

1703 1704 1705
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1706
	ret = (uint64_t) pixel_rate * cpp * latency;
1707 1708 1709 1710 1711
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1712
/* latency must be in 0.1us units. */
1713
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1714
			       uint32_t horiz_pixels, uint8_t cpp,
1715 1716 1717 1718
			       uint32_t latency)
{
	uint32_t ret;

1719 1720
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1721 1722
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1723

1724
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1725
	ret = (ret + 1) * horiz_pixels * cpp;
1726 1727 1728 1729
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1730
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1731
			   uint8_t cpp)
1732
{
1733 1734 1735 1736 1737 1738
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1739
	if (WARN_ON(!cpp))
1740 1741 1742 1743
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1744
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1745 1746
}

1747
struct ilk_wm_maximums {
1748 1749 1750 1751 1752 1753
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1754 1755 1756 1757
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1758
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1759
				   const struct intel_plane_state *pstate,
1760 1761
				   uint32_t mem_value,
				   bool is_lp)
1762
{
1763 1764
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1765 1766
	uint32_t method1, method2;

1767
	if (!cstate->base.active || !pstate->base.visible)
1768 1769
		return 0;

1770
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1771 1772 1773 1774

	if (!is_lp)
		return method1;

1775 1776
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1777
				 drm_rect_width(&pstate->base.dst),
1778
				 cpp, mem_value);
1779 1780

	return min(method1, method2);
1781 1782
}

1783 1784 1785 1786
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1787
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1788
				   const struct intel_plane_state *pstate,
1789 1790
				   uint32_t mem_value)
{
1791 1792
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1793 1794
	uint32_t method1, method2;

1795
	if (!cstate->base.active || !pstate->base.visible)
1796 1797
		return 0;

1798
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1799 1800
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1801
				 drm_rect_width(&pstate->base.dst),
1802
				 cpp, mem_value);
1803 1804 1805
	return min(method1, method2);
}

1806 1807 1808 1809
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1810
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1811
				   const struct intel_plane_state *pstate,
1812 1813
				   uint32_t mem_value)
{
1814 1815 1816 1817 1818 1819
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1820
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1821

1822
	if (!cstate->base.active)
1823 1824
		return 0;

1825 1826
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1827
			      width, cpp, mem_value);
1828 1829
}

1830
/* Only for WM_LP. */
1831
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1832
				   const struct intel_plane_state *pstate,
1833
				   uint32_t pri_val)
1834
{
1835 1836
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1837

1838
	if (!cstate->base.active || !pstate->base.visible)
1839 1840
		return 0;

1841
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1842 1843
}

1844 1845
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1846
{
1847
	if (INTEL_GEN(dev_priv) >= 8)
1848
		return 3072;
1849
	else if (INTEL_GEN(dev_priv) >= 7)
1850 1851 1852 1853 1854
		return 768;
	else
		return 512;
}

1855 1856 1857
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
1858
{
1859
	if (INTEL_GEN(dev_priv) >= 8)
1860 1861
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
1862
	else if (INTEL_GEN(dev_priv) >= 7)
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

1873 1874
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1875
{
1876
	if (INTEL_GEN(dev_priv) >= 7)
1877 1878 1879 1880 1881
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

1882
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1883
{
1884
	if (INTEL_GEN(dev_priv) >= 8)
1885 1886 1887 1888 1889
		return 31;
	else
		return 15;
}

1890 1891 1892
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1893
				     const struct intel_wm_config *config,
1894 1895 1896
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
1897 1898
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1899 1900

	/* if sprites aren't enabled, sprites get nothing */
1901
	if (is_sprite && !config->sprites_enabled)
1902 1903 1904
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1905
	if (level == 0 || config->num_pipes_active > 1) {
1906
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1907 1908 1909 1910 1911 1912

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
1913
		if (INTEL_GEN(dev_priv) <= 6)
1914 1915 1916
			fifo_size /= 2;
	}

1917
	if (config->sprites_enabled) {
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1929
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1930 1931 1932 1933
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1934 1935
				      int level,
				      const struct intel_wm_config *config)
1936 1937
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1938
	if (level > 0 && config->num_pipes_active > 1)
1939 1940 1941
		return 64;

	/* otherwise just report max that registers can hold */
1942
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
1943 1944
}

1945
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1946 1947 1948
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1949
				    struct ilk_wm_maximums *max)
1950
{
1951 1952 1953
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1954
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1955 1956
}

1957
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
1958 1959 1960
					int level,
					struct ilk_wm_maximums *max)
{
1961 1962 1963 1964
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
1965 1966
}

1967
static bool ilk_validate_wm_level(int level,
1968
				  const struct ilk_wm_maximums *max,
1969
				  struct intel_wm_level *result)
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2008
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2009
				 const struct intel_crtc *intel_crtc,
2010
				 int level,
2011
				 struct intel_crtc_state *cstate,
2012 2013 2014
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2015
				 struct intel_wm_level *result)
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2040 2041 2042
	result->enable = true;
}

2043
static uint32_t
2044
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2045
{
2046 2047
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2048 2049
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2050
	u32 linetime, ips_linetime;
2051

2052 2053 2054 2055
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2056
	if (WARN_ON(intel_state->cdclk == 0))
2057
		return 0;
2058

2059 2060 2061
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2062 2063 2064
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2065
					 intel_state->cdclk);
2066

2067 2068
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2069 2070
}

2071 2072
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2073
{
2074
	if (IS_GEN9(dev_priv)) {
2075
		uint32_t val;
2076
		int ret, i;
2077
		int level, max_level = ilk_wm_max_level(dev_priv);
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2133
		/*
2134 2135
		 * WaWmMemoryReadLatency:skl
		 *
2136
		 * punit doesn't take into account the read latency so we need
2137 2138
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2139
		 */
2140 2141 2142 2143 2144
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2145
				wm[level] += 2;
2146
			}
2147 2148
		}

2149
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2150 2151 2152 2153 2154
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2155 2156 2157 2158
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2159
	} else if (INTEL_GEN(dev_priv) >= 6) {
2160 2161 2162 2163 2164 2165
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2166
	} else if (INTEL_GEN(dev_priv) >= 5) {
2167 2168 2169 2170 2171 2172
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2173 2174 2175
	}
}

2176 2177
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2178 2179
{
	/* ILK sprite LP0 latency is 1300 ns */
2180
	if (IS_GEN5(dev_priv))
2181 2182 2183
		wm[0] = 13;
}

2184 2185
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2186 2187
{
	/* ILK cursor LP0 latency is 1300 ns */
2188
	if (IS_GEN5(dev_priv))
2189 2190 2191
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2192
	if (IS_IVYBRIDGE(dev_priv))
2193 2194 2195
		wm[3] *= 2;
}

2196
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2197 2198
{
	/* how many WM levels are we expecting */
2199
	if (INTEL_GEN(dev_priv) >= 9)
2200
		return 7;
2201
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2202
		return 4;
2203
	else if (INTEL_GEN(dev_priv) >= 6)
2204
		return 3;
2205
	else
2206 2207
		return 2;
}
2208

2209
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2210
				   const char *name,
2211
				   const uint16_t wm[8])
2212
{
2213
	int level, max_level = ilk_wm_max_level(dev_priv);
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2224 2225 2226 2227
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2228
		if (IS_GEN9(dev_priv))
2229 2230
			latency *= 10;
		else if (level > 0)
2231 2232 2233 2234 2235 2236 2237 2238
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2239 2240 2241
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2242
	int level, max_level = ilk_wm_max_level(dev_priv);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2254
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2270 2271 2272
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2273 2274
}

2275
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2276
{
2277
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2278 2279 2280 2281 2282 2283

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2284
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2285
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2286

2287 2288 2289
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2290

2291
	if (IS_GEN6(dev_priv))
2292
		snb_wm_latency_quirk(dev_priv);
2293 2294
}

2295
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2296
{
2297
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2298
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2299 2300
}

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2324
/* Compute new watermarks for the pipe */
2325
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2326
{
2327 2328
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2329
	struct intel_pipe_wm *pipe_wm;
2330
	struct drm_device *dev = state->dev;
2331
	const struct drm_i915_private *dev_priv = to_i915(dev);
2332
	struct intel_plane *intel_plane;
2333
	struct intel_plane_state *pristate = NULL;
2334
	struct intel_plane_state *sprstate = NULL;
2335
	struct intel_plane_state *curstate = NULL;
2336
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2337
	struct ilk_wm_maximums max;
2338

2339
	pipe_wm = &cstate->wm.ilk.optimal;
2340

2341
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2342 2343 2344 2345 2346 2347
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2348 2349

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2350
			pristate = ps;
2351
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2352
			sprstate = ps;
2353
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2354
			curstate = ps;
2355 2356
	}

2357
	pipe_wm->pipe_enabled = cstate->base.active;
2358
	if (sprstate) {
2359 2360 2361 2362
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2363 2364
	}

2365 2366
	usable_level = max_level;

2367
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2368
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2369
		usable_level = 1;
2370 2371

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2372
	if (pipe_wm->sprites_scaled)
2373
		usable_level = 0;
2374

2375
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2376 2377 2378 2379
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2380

2381
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2382
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2383

2384
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2385
		return -EINVAL;
2386

2387
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2388 2389

	for (level = 1; level <= max_level; level++) {
2390
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2391

2392
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2393
				     pristate, sprstate, curstate, wm);
2394 2395 2396 2397 2398 2399

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2400 2401 2402 2403 2404 2405
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2406
			usable_level = level;
2407 2408
	}

2409
	return 0;
2410 2411
}

2412 2413 2414 2415 2416 2417 2418 2419 2420
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2421
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2422
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2423
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2424 2425 2426 2427 2428 2429

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2430
	*a = newstate->wm.ilk.optimal;
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2459
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2460 2461 2462 2463 2464
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2465 2466 2467 2468 2469 2470 2471 2472 2473
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2474 2475
	ret_wm->enable = true;

2476
	for_each_intel_crtc(dev, intel_crtc) {
2477
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2478 2479 2480 2481
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2482

2483 2484 2485 2486 2487
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2488
		if (!wm->enable)
2489
			ret_wm->enable = false;
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2502
			 const struct intel_wm_config *config,
2503
			 const struct ilk_wm_maximums *max,
2504 2505
			 struct intel_pipe_wm *merged)
{
2506
	struct drm_i915_private *dev_priv = to_i915(dev);
2507
	int level, max_level = ilk_wm_max_level(dev_priv);
2508
	int last_enabled_level = max_level;
2509

2510
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2511
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2512
	    config->num_pipes_active > 1)
2513
		last_enabled_level = 0;
2514

2515
	/* ILK: FBC WM must be disabled always */
2516
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2517 2518 2519 2520 2521 2522 2523

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2524 2525 2526 2527 2528
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2529 2530 2531 2532 2533 2534

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2535 2536
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2537 2538 2539
			wm->fbc_val = 0;
		}
	}
2540 2541 2542 2543 2544 2545 2546

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2547
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2548
	    intel_fbc_is_active(dev_priv)) {
2549 2550 2551 2552 2553 2554
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2555 2556
}

2557 2558 2559 2560 2561 2562
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2563 2564 2565
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2566
	struct drm_i915_private *dev_priv = to_i915(dev);
2567

2568
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2569 2570 2571 2572 2573
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2574
static void ilk_compute_wm_results(struct drm_device *dev,
2575
				   const struct intel_pipe_wm *merged,
2576
				   enum intel_ddb_partitioning partitioning,
2577
				   struct ilk_wm_values *results)
2578
{
2579
	struct drm_i915_private *dev_priv = to_i915(dev);
2580 2581
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2582

2583
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2584
	results->partitioning = partitioning;
2585

2586
	/* LP1+ register values */
2587
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2588
		const struct intel_wm_level *r;
2589

2590
		level = ilk_wm_lp_to_level(wm_lp, merged);
2591

2592
		r = &merged->wm[level];
2593

2594 2595 2596 2597 2598
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2599
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2600 2601 2602
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2603 2604 2605
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2606
		if (INTEL_GEN(dev_priv) >= 8)
2607 2608 2609 2610 2611 2612
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2613 2614 2615 2616
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2617
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2618 2619 2620 2621
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2622
	}
2623

2624
	/* LP0 register values */
2625
	for_each_intel_crtc(dev, intel_crtc) {
2626
		enum pipe pipe = intel_crtc->pipe;
2627 2628
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2629 2630 2631 2632

		if (WARN_ON(!r->enable))
			continue;

2633
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2634

2635 2636 2637 2638
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2639 2640 2641
	}
}

2642 2643
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2644
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2645 2646
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2647
{
2648
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2649
	int level1 = 0, level2 = 0;
2650

2651 2652 2653 2654 2655
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2656 2657
	}

2658 2659
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2660 2661 2662
			return r2;
		else
			return r1;
2663
	} else if (level1 > level2) {
2664 2665 2666 2667 2668 2669
		return r1;
	} else {
		return r2;
	}
}

2670 2671 2672 2673 2674 2675 2676 2677
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2678
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2679 2680
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2681 2682 2683 2684 2685
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2686
	for_each_pipe(dev_priv, pipe) {
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2730 2731
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2732
{
2733
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2734
	bool changed = false;
2735

2736 2737 2738
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2739
		changed = true;
2740 2741 2742 2743
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2744
		changed = true;
2745 2746 2747 2748
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2749
		changed = true;
2750
	}
2751

2752 2753 2754 2755
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2756

2757 2758 2759 2760 2761 2762 2763
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2764 2765
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2766
{
2767
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2768 2769 2770
	unsigned int dirty;
	uint32_t val;

2771
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2772 2773 2774 2775 2776
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2777
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2778
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2779
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2780
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2781
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2782 2783
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2784
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2785
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2786
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2787
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2788
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2789 2790
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2791
	if (dirty & WM_DIRTY_DDB) {
2792
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2807 2808
	}

2809
	if (dirty & WM_DIRTY_FBC) {
2810 2811 2812 2813 2814 2815 2816 2817
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2818 2819 2820 2821
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

2822
	if (INTEL_GEN(dev_priv) >= 7) {
2823 2824 2825 2826 2827
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2828

2829
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2830
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2831
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2832
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2833
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2834
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2835 2836

	dev_priv->wm.hw = *results;
2837 2838
}

2839
bool ilk_disable_lp_wm(struct drm_device *dev)
2840
{
2841
	struct drm_i915_private *dev_priv = to_i915(dev);
2842 2843 2844 2845

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2846
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2847

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2863 2864 2865
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2866 2867 2868 2869 2870 2871 2872 2873
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2874 2875
}

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2888
intel_enable_sagv(struct drm_i915_private *dev_priv)
2889 2890 2891
{
	int ret;

2892 2893 2894 2895
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2911
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2912
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2913
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2914 2915 2916 2917 2918 2919
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2920
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2921 2922 2923 2924
	return 0;
}

static int
2925
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2939
intel_disable_sagv(struct drm_i915_private *dev_priv)
2940 2941 2942
{
	int ret, result;

2943 2944 2945 2946
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2947 2948 2949 2950 2951 2952
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2953
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2965
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
2966
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2967
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2968 2969 2970 2971 2972 2973
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

2974
	dev_priv->sagv_status = I915_SAGV_DISABLED;
2975 2976 2977
	return 0;
}

2978
bool intel_can_enable_sagv(struct drm_atomic_state *state)
2979 2980 2981 2982
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2983 2984
	struct intel_crtc *crtc;
	struct intel_plane *plane;
2985
	struct intel_crtc_state *cstate;
2986
	enum pipe pipe;
2987
	int level, latency;
2988

2989 2990 2991
	if (!intel_has_sagv(dev_priv))
		return false;

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3005
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3006
	cstate = to_intel_crtc_state(crtc->base.state);
3007

3008
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3009 3010
		return false;

3011
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3012 3013
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3014

3015
		/* Skip this plane if it's not enabled */
3016
		if (!wm->wm[0].plane_en)
3017 3018 3019
			continue;

		/* Find the highest enabled wm level for this plane */
3020
		for (level = ilk_wm_max_level(dev_priv);
3021
		     !wm->wm[level].plane_en; --level)
3022 3023
		     { }

3024 3025 3026
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3027
		    plane->base.state->fb->modifier ==
3028 3029 3030
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3031 3032 3033 3034 3035
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3036
		if (latency < SKL_SAGV_BLOCK_TIME)
3037 3038 3039 3040 3041 3042
			return false;
	}

	return true;
}

3043 3044
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3045
				   const struct intel_crtc_state *cstate,
3046 3047
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3048
{
3049 3050 3051
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3052
	struct drm_crtc *for_crtc = cstate->base.crtc;
3053 3054
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3055

3056
	if (WARN_ON(!state) || !cstate->base.active) {
3057 3058
		alloc->start = 0;
		alloc->end = 0;
3059
		*num_active = hweight32(dev_priv->active_crtcs);
3060 3061 3062
		return;
	}

3063 3064 3065 3066 3067
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3068 3069
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3070 3071 3072

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3073
	/*
3074 3075 3076 3077 3078 3079
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3080
	 */
3081
	if (!intel_state->active_pipe_changes) {
3082 3083 3084 3085 3086
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3087
		return;
3088
	}
3089 3090 3091 3092 3093 3094

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3095 3096
}

3097
static unsigned int skl_cursor_allocation(int num_active)
3098
{
3099
	if (num_active == 1)
3100 3101 3102 3103 3104
		return 32;

	return 8;
}

3105 3106 3107 3108
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3109 3110
	if (entry->end)
		entry->end += 1;
3111 3112
}

3113 3114
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3115
{
3116
	struct intel_crtc *crtc;
3117

3118 3119
	memset(ddb, 0, sizeof(*ddb));

3120
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3121
		enum intel_display_power_domain power_domain;
3122 3123
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3124 3125 3126

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3127 3128
			continue;

3129 3130 3131 3132 3133 3134 3135
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3136

3137 3138
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3139 3140

		intel_display_power_put(dev_priv, power_domain);
3141 3142 3143
	}
}

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3166
	if (WARN_ON(!pstate->base.visible))
3167 3168 3169
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3170 3171 3172 3173
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3174
	if (drm_rotation_90_or_270(pstate->base.rotation))
3175 3176 3177 3178 3179 3180 3181 3182 3183
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3184
static unsigned int
3185 3186 3187
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3188
{
3189
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3190
	struct drm_framebuffer *fb = pstate->fb;
3191
	uint32_t down_scale_amount, data_rate;
3192
	uint32_t width = 0, height = 0;
3193 3194
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3195
	if (!intel_pstate->base.visible)
3196 3197 3198 3199 3200
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3201

3202 3203
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3204

3205
	if (drm_rotation_90_or_270(pstate->rotation))
3206
		swap(width, height);
3207 3208

	/* for planar format */
3209
	if (format == DRM_FORMAT_NV12) {
3210
		if (y)  /* y-plane data rate */
3211
			data_rate = width * height *
3212
				drm_format_plane_cpp(format, 0);
3213
		else    /* uv-plane data rate */
3214
			data_rate = (width / 2) * (height / 2) *
3215
				drm_format_plane_cpp(format, 1);
3216 3217 3218
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3219 3220
	}

3221 3222 3223
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3224 3225 3226 3227 3228 3229 3230 3231
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3232 3233 3234
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3235
{
3236 3237
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3238 3239
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3240
	unsigned int total_data_rate = 0;
3241 3242 3243

	if (WARN_ON(!state))
		return 0;
3244

3245
	/* Calculate and cache data rate for each plane */
3246
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3247 3248
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3249 3250 3251 3252

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3253
		plane_data_rate[plane_id] = rate;
3254 3255

		total_data_rate += rate;
3256 3257 3258 3259

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3260
		plane_y_data_rate[plane_id] = rate;
3261

3262
		total_data_rate += rate;
3263 3264 3265 3266 3267
	}

	return total_data_rate;
}

3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3286 3287
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3288 3289
		return 8;

3290 3291
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3292

3293
	if (drm_rotation_90_or_270(pstate->rotation))
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3307
	if (drm_rotation_90_or_270(pstate->rotation)) {
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3331 3332 3333 3334 3335 3336 3337 3338
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3339
		enum plane_id plane_id = to_intel_plane(plane)->id;
3340

3341
		if (plane_id == PLANE_CURSOR)
3342 3343 3344 3345 3346
			continue;

		if (!pstate->visible)
			continue;

3347 3348
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3349 3350 3351 3352 3353
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3354
static int
3355
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3356 3357
		      struct skl_ddb_allocation *ddb /* out */)
{
3358
	struct drm_atomic_state *state = cstate->base.state;
3359
	struct drm_crtc *crtc = cstate->base.crtc;
3360 3361 3362
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3363
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3364
	uint16_t alloc_size, start;
3365 3366
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3367
	unsigned int total_data_rate;
3368
	enum plane_id plane_id;
3369
	int num_active;
3370 3371
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3372

3373 3374 3375 3376
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3377 3378 3379
	if (WARN_ON(!state))
		return 0;

3380
	if (!cstate->base.active) {
3381
		alloc->start = alloc->end = 0;
3382 3383 3384
		return 0;
	}

3385
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3386
	alloc_size = skl_ddb_entry_size(alloc);
3387 3388
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3389
		return 0;
3390 3391
	}

3392
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3393

3394 3395 3396 3397 3398
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3399

3400 3401 3402
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3403 3404
	}

3405 3406 3407
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3408
	/*
3409 3410
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3411 3412 3413
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3414 3415 3416
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3417
	if (total_data_rate == 0)
3418
		return 0;
3419

3420
	start = alloc->start;
3421
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3422 3423
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3424

3425
		if (plane_id == PLANE_CURSOR)
3426 3427
			continue;

3428
		data_rate = plane_data_rate[plane_id];
3429 3430

		/*
3431
		 * allocation for (packed formats) or (uv-plane part of planar format):
3432 3433 3434
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3435
		plane_blocks = minimum[plane_id];
3436 3437
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3438

3439 3440
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3441 3442
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3443
		}
3444 3445

		start += plane_blocks;
3446 3447 3448 3449

		/*
		 * allocation for y_plane part of planar format:
		 */
3450
		y_data_rate = plane_y_data_rate[plane_id];
3451

3452
		y_plane_blocks = y_minimum[plane_id];
3453 3454
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3455

3456
		if (y_data_rate) {
3457 3458
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3459
		}
3460 3461

		start += y_plane_blocks;
3462 3463
	}

3464
	return 0;
3465 3466
}

3467 3468
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3469
 * for the read latency) and cpp should always be <= 8, so that
3470 3471 3472
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3473
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3474 3475 3476 3477 3478 3479
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3480
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3481 3482 3483 3484 3485 3486
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3487
			       uint32_t latency, uint32_t plane_blocks_per_line)
3488
{
3489 3490
	uint32_t ret;
	uint32_t wm_intermediate_val;
3491 3492 3493 3494 3495 3496

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3497
				plane_blocks_per_line;
3498 3499 3500 3501

	return ret;
}

3502 3503 3504 3505 3506 3507 3508 3509
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3510
	if (WARN_ON(!pstate->base.visible))
3511 3512 3513 3514 3515 3516
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3517
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3518 3519 3520 3521 3522 3523 3524 3525
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3526 3527 3528 3529 3530 3531 3532 3533
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3534
{
3535 3536
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3537 3538 3539 3540 3541
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3542
	uint8_t cpp;
3543
	uint32_t width = 0, height = 0;
3544
	uint32_t plane_pixel_rate;
3545
	uint32_t y_tile_minimum, y_min_scanlines;
3546 3547 3548
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3549

3550
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3551 3552 3553
		*enabled = false;
		return 0;
	}
3554

V
Ville Syrjälä 已提交
3555
	if (apply_memory_bw_wa && fb->modifier == I915_FORMAT_MOD_X_TILED)
3556 3557
		latency += 15;

3558 3559
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3560

3561
	if (drm_rotation_90_or_270(pstate->rotation))
3562 3563
		swap(width, height);

3564
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3565 3566
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3567
	if (drm_rotation_90_or_270(pstate->rotation)) {
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3582 3583 3584
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3585 3586 3587 3588 3589
		}
	} else {
		y_min_scanlines = 4;
	}

3590 3591 3592
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3593
	plane_bytes_per_line = width * cpp;
V
Ville Syrjälä 已提交
3594 3595
	if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3596 3597 3598
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
V
Ville Syrjälä 已提交
3599
	} else if (fb->modifier == DRM_FORMAT_MOD_NONE) {
3600 3601 3602 3603 3604 3605
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3606 3607
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3608
				 cstate->base.adjusted_mode.crtc_htotal,
3609
				 latency,
3610
				 plane_blocks_per_line);
3611

3612 3613
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;

V
Ville Syrjälä 已提交
3614 3615
	if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3616 3617
		selected_result = max(method2, y_tile_minimum);
	} else {
3618 3619 3620 3621
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3622 3623 3624 3625
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3626

3627 3628
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3629

3630
	if (level >= 1 && level <= 7) {
V
Ville Syrjälä 已提交
3631 3632
		if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3633
			res_blocks += y_tile_minimum;
3634
			res_lines += y_min_scanlines;
3635
		} else {
3636
			res_blocks++;
3637
		}
3638
	}
3639

3640 3641
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3642 3643 3644 3645 3646 3647 3648 3649

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3650 3651
			struct drm_plane *plane = pstate->plane;

3652
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3653 3654
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3655 3656 3657
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3658
	}
3659 3660 3661

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3662
	*enabled = true;
3663

3664
	return 0;
3665 3666
}

3667 3668 3669 3670
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3671
		     struct intel_plane *intel_plane,
3672 3673
		     int level,
		     struct skl_wm_level *result)
3674
{
3675
	struct drm_atomic_state *state = cstate->base.state;
3676
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3677 3678
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3679
	uint16_t ddb_blocks;
3680
	enum pipe pipe = intel_crtc->pipe;
3681
	int ret;
L
Lyude 已提交
3682 3683 3684 3685 3686

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3687

3688
	/*
L
Lyude 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3698
	 */
L
Lyude 已提交
3699 3700
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3701

L
Lyude 已提交
3702
	WARN_ON(!intel_pstate->base.fb);
3703

3704
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3705

L
Lyude 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3716 3717

	return 0;
3718 3719
}

3720
static uint32_t
3721
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3722
{
3723 3724
	uint32_t pixel_rate;

3725
	if (!cstate->base.active)
3726 3727
		return 0;

3728 3729 3730
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3731
		return 0;
3732

3733
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3734
			    pixel_rate);
3735 3736
}

3737
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3738
				      struct skl_wm_level *trans_wm /* out */)
3739
{
3740
	if (!cstate->base.active)
3741
		return;
3742 3743

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3744
	trans_wm->plane_en = false;
3745 3746
}

3747 3748 3749
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3750
{
3751
	struct drm_device *dev = cstate->base.crtc->dev;
3752
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3753 3754
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3755
	int level, max_level = ilk_wm_max_level(dev_priv);
3756
	int ret;
3757

L
Lyude 已提交
3758 3759 3760 3761 3762 3763 3764 3765 3766
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3767
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3777
	}
3778
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3779

3780
	return 0;
3781 3782
}

3783 3784
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3785 3786 3787 3788 3789 3790 3791 3792
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3808 3809 3810
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
3811
			       enum plane_id plane_id)
3812 3813 3814 3815
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3816
	int level, max_level = ilk_wm_max_level(dev_priv);
3817 3818 3819
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3820
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
3821
				   &wm->wm[level]);
3822
	}
3823
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
3824
			   &wm->trans_wm);
3825

3826 3827 3828 3829
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
3830 3831
}

3832 3833 3834
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
3835 3836 3837 3838
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3839
	int level, max_level = ilk_wm_max_level(dev_priv);
3840 3841 3842
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3843 3844
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3845
	}
3846
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3847

3848
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3849
			    &ddb->plane[pipe][PLANE_CURSOR]);
3850 3851
}

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3866 3867
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3868
{
3869
	return a->start < b->end && b->start < a->end;
3870 3871
}

3872 3873 3874
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
3875
{
3876
	int i;
3877

3878 3879 3880
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
3881
			return true;
3882

3883
	return false;
3884 3885
}

3886
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3887
			      const struct skl_pipe_wm *old_pipe_wm,
3888
			      struct skl_pipe_wm *pipe_wm, /* out */
3889
			      struct skl_ddb_allocation *ddb, /* out */
3890
			      bool *changed /* out */)
3891
{
3892
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3893
	int ret;
3894

3895 3896 3897
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3898

3899
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3900 3901 3902
		*changed = false;
	else
		*changed = true;
3903

3904
	return 0;
3905 3906
}

3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3920
static int
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

3937
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3938
		enum plane_id plane_id = to_intel_plane(plane)->id;
3939

3940 3941 3942 3943
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

3954 3955 3956 3957 3958 3959 3960
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3961
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3962
	uint32_t realloc_pipes = pipes_modified(state);
3963 3964 3965 3966 3967 3968 3969 3970
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
3971 3972 3973 3974 3975 3976
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

3977 3978
		intel_state->active_pipe_changes = ~0;

3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4002
	if (intel_state->active_pipe_changes) {
4003
		realloc_pipes = ~0;
4004 4005
		intel_state->wm_results.dirty_pipes = ~0;
	}
4006

4007 4008 4009 4010 4011 4012
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4013 4014 4015 4016 4017 4018 4019
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4020
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4021 4022
		if (ret)
			return ret;
4023

4024
		ret = skl_ddb_add_affected_planes(cstate);
4025 4026
		if (ret)
			return ret;
4027 4028 4029 4030 4031
	}

	return 0;
}

4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4055
	int i;
4056 4057

	for_each_crtc_in_state(state, crtc, cstate, i) {
4058 4059
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4060

4061
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4062
			enum plane_id plane_id = intel_plane->id;
4063 4064
			const struct skl_ddb_entry *old, *new;

4065 4066
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4067 4068 4069 4070

			if (skl_ddb_entry_equal(old, new))
				continue;

4071 4072 4073 4074 4075
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4076 4077 4078 4079
		}
	}
}

4080 4081 4082 4083 4084
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4085 4086 4087
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4088
	bool changed = false;
4089
	int ret, i;
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4104 4105 4106
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4107 4108 4109 4110
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4124 4125
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4126 4127

		pipe_wm = &intel_cstate->wm.skl.optimal;
4128 4129
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4143 4144
	skl_print_wm_changes(state);

4145 4146 4147
	return 0;
}

4148 4149 4150 4151 4152 4153
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4154
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4155
	enum pipe pipe = crtc->pipe;
4156
	enum plane_id plane_id;
4157 4158 4159

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4160 4161

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4162

4163 4164 4165 4166 4167 4168 4169 4170
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4171 4172
}

4173 4174
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4175
{
4176
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4177
	struct drm_device *dev = intel_crtc->base.dev;
4178
	struct drm_i915_private *dev_priv = to_i915(dev);
4179
	struct skl_wm_values *results = &state->wm_results;
4180
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4181
	enum pipe pipe = intel_crtc->pipe;
4182

4183
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4184 4185
		return;

4186
	mutex_lock(&dev_priv->wm.wm_mutex);
4187

4188 4189
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4190 4191

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4192 4193

	mutex_unlock(&dev_priv->wm.wm_mutex);
4194 4195
}

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4214
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4215
{
4216
	struct drm_device *dev = &dev_priv->drm;
4217
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4218
	struct ilk_wm_maximums max;
4219
	struct intel_wm_config config = {};
4220
	struct ilk_wm_values results = {};
4221
	enum intel_ddb_partitioning partitioning;
4222

4223 4224 4225 4226
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4227 4228

	/* 5/6 split only in single pipe config on IVB+ */
4229
	if (INTEL_GEN(dev_priv) >= 7 &&
4230 4231 4232
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4233

4234
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4235
	} else {
4236
		best_lp_wm = &lp_wm_1_2;
4237 4238
	}

4239
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4240
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4241

4242
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4243

4244
	ilk_write_wm_values(dev_priv, &results);
4245 4246
}

4247 4248
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4249
{
4250 4251
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4252

4253
	mutex_lock(&dev_priv->wm.wm_mutex);
4254
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4255 4256 4257
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4258

4259 4260
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4261 4262 4263
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4264

4265 4266
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4267
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4268 4269 4270
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4271 4272
}

4273 4274
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4275
{
4276 4277 4278 4279
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4280 4281
}

4282 4283
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4284
{
4285
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4286 4287
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4288 4289
	int level, max_level;
	enum plane_id plane_id;
4290
	uint32_t val;
4291

4292
	max_level = ilk_wm_max_level(dev_priv);
4293

4294 4295
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4296

4297
		for (level = 0; level <= max_level; level++) {
4298 4299
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4300 4301
			else
				val = I915_READ(CUR_WM(pipe, level));
4302

4303
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4304 4305
		}

4306 4307
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4308 4309 4310 4311
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4312 4313
	}

4314 4315
	if (!intel_crtc->active)
		return;
4316

4317
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4318 4319 4320 4321
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4322
	struct drm_i915_private *dev_priv = to_i915(dev);
4323
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4324
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4325
	struct drm_crtc *crtc;
4326 4327
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4328

4329
	skl_ddb_get_hw_state(dev_priv, ddb);
4330 4331 4332 4333 4334 4335
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4336
		if (intel_crtc->active)
4337 4338
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4339

4340 4341 4342 4343 4344 4345 4346
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4347 4348
}

4349 4350 4351
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4352
	struct drm_i915_private *dev_priv = to_i915(dev);
4353
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4354
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4355
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4356
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4357
	enum pipe pipe = intel_crtc->pipe;
4358
	static const i915_reg_t wm0_pipe_reg[] = {
4359 4360 4361 4362 4363 4364
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4365
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4366
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4367

4368 4369
	memset(active, 0, sizeof(*active));

4370
	active->pipe_enabled = intel_crtc->active;
4371 4372

	if (active->pipe_enabled) {
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4387
		int level, max_level = ilk_wm_max_level(dev_priv);
4388 4389 4390 4391 4392 4393 4394 4395 4396

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4397 4398

	intel_crtc->wm.active.ilk = *active;
4399 4400
}

4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

4415
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
4416
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4417
		wm->ddl[pipe].plane[PLANE_CURSOR] =
4418
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4419
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
4420
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4421
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
4422 4423 4424 4425 4426
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
4427 4428 4429
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4430 4431

	tmp = I915_READ(DSPFW2);
4432 4433 4434
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4435 4436 4437 4438 4439 4440

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
4441 4442
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4443 4444

		tmp = I915_READ(DSPFW8_CHV);
4445 4446
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4447 4448

		tmp = I915_READ(DSPFW9_CHV);
4449 4450
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4451 4452 4453

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4454 4455 4456 4457 4458 4459 4460 4461 4462
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4463 4464
	} else {
		tmp = I915_READ(DSPFW7);
4465 4466
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4467 4468 4469

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4470 4471 4472 4473 4474 4475
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

4492 4493
	for_each_intel_plane(dev, plane)
		plane->wm.fifo_size = vlv_get_fifo_size(plane);
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4505 4506 4507 4508 4509 4510 4511 4512 4513
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4514
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4528 4529 4530 4531 4532 4533

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4534 4535 4536 4537 4538
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
4539 4540 4541 4542 4543

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4544 4545
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4546
	struct drm_i915_private *dev_priv = to_i915(dev);
4547
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4548 4549
	struct drm_crtc *crtc;

4550
	for_each_crtc(dev, crtc)
4551 4552 4553 4554 4555 4556 4557
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4558
	if (INTEL_GEN(dev_priv) >= 7) {
4559 4560 4561
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4562

4563
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4564 4565
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4566
	else if (IS_IVYBRIDGE(dev_priv))
4567 4568
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4569 4570 4571 4572 4573

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4606
void intel_update_watermarks(struct intel_crtc *crtc)
4607
{
4608
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4609 4610

	if (dev_priv->display.update_wm)
4611
		dev_priv->display.update_wm(crtc);
4612 4613
}

4614
/*
4615 4616 4617 4618 4619 4620 4621 4622
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4623
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4624 4625 4626
{
	u16 rgvswctl;

4627 4628
	assert_spin_locked(&mchdev_lock);

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4646
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4647
{
4648
	u32 rgvmodectl;
4649 4650
	u8 fmax, fmin, fstart, vstart;

4651 4652
	spin_lock_irq(&mchdev_lock);

4653 4654
	rgvmodectl = I915_READ(MEMMODECTL);

4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4675
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4676 4677
		PXVFREQ_PX_SHIFT;

4678 4679
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4680

4681 4682 4683
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4700
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4701
		DRM_ERROR("stuck trying to change perf mode\n");
4702
	mdelay(1);
4703

4704
	ironlake_set_drps(dev_priv, fstart);
4705

4706 4707
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4708
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4709
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4710
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4711 4712

	spin_unlock_irq(&mchdev_lock);
4713 4714
}

4715
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4716
{
4717 4718 4719 4720 4721
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4722 4723 4724 4725 4726 4727 4728 4729 4730

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4731
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4732
	mdelay(1);
4733 4734
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4735
	mdelay(1);
4736

4737
	spin_unlock_irq(&mchdev_lock);
4738 4739
}

4740 4741 4742 4743 4744
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4745
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4746
{
4747
	u32 limits;
4748

4749 4750 4751 4752 4753 4754
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4755
	if (IS_GEN9(dev_priv)) {
4756 4757 4758 4759 4760 4761 4762 4763
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4764 4765 4766 4767

	return limits;
}

4768 4769 4770
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4771 4772
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4773 4774 4775 4776

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4777 4778
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4779 4780 4781 4782
			new_power = BETWEEN;
		break;

	case BETWEEN:
4783 4784
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4785
			new_power = LOW_POWER;
4786 4787
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4788 4789 4790 4791
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4792 4793
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4794 4795 4796 4797
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4798
	if (val <= dev_priv->rps.min_freq_softlimit)
4799
		new_power = LOW_POWER;
4800
	if (val >= dev_priv->rps.max_freq_softlimit)
4801 4802 4803 4804 4805 4806 4807 4808
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4809 4810
		ei_up = 16000;
		threshold_up = 95;
4811 4812

		/* Downclock if less than 85% busy over 32ms */
4813 4814
		ei_down = 32000;
		threshold_down = 85;
4815 4816 4817 4818
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4819 4820
		ei_up = 13000;
		threshold_up = 90;
4821 4822

		/* Downclock if less than 75% busy over 32ms */
4823 4824
		ei_down = 32000;
		threshold_down = 75;
4825 4826 4827 4828
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4829 4830
		ei_up = 10000;
		threshold_up = 85;
4831 4832

		/* Downclock if less than 60% busy over 32ms */
4833 4834
		ei_down = 32000;
		threshold_down = 60;
4835 4836 4837
		break;
	}

4838
	I915_WRITE(GEN6_RP_UP_EI,
4839
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4840
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4841 4842
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4843 4844

	I915_WRITE(GEN6_RP_DOWN_EI,
4845
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4846
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4857

4858
	dev_priv->rps.power = new_power;
4859 4860
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4861 4862 4863
	dev_priv->rps.last_adj = 0;
}

4864 4865 4866 4867 4868
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4869
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4870
	if (val < dev_priv->rps.max_freq_softlimit)
4871
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4872

4873 4874
	mask &= dev_priv->pm_rps_events;

4875
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4876 4877
}

4878 4879 4880
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4881
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4882
{
4883
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4884
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4885 4886
		return;

4887
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4888 4889
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4890

C
Chris Wilson 已提交
4891 4892 4893 4894 4895
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4896

4897
		if (IS_GEN9(dev_priv))
4898 4899
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4900
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4901 4902 4903 4904 4905 4906 4907
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4908
	}
4909 4910 4911 4912

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4913
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4914
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4915

4916 4917
	POSTING_READ(GEN6_RPNSWREQ);

4918
	dev_priv->rps.cur_freq = val;
4919
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4920 4921
}

4922
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4923 4924
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4925 4926
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4927

4928
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4929 4930 4931
		      "Odd GPU freq value\n"))
		val &= ~1;

4932 4933
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4934
	if (val != dev_priv->rps.cur_freq) {
4935
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4936 4937 4938
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4939 4940 4941 4942 4943

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4944
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4945 4946
 *
 * * If Gfx is Idle, then
4947 4948 4949
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4950 4951 4952
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4953
	u32 val = dev_priv->rps.idle_freq;
4954

4955
	if (dev_priv->rps.cur_freq <= val)
4956 4957
		return;

4958 4959 4960
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4961
	valleyview_set_rps(dev_priv, val);
4962
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4963 4964
}

4965 4966 4967 4968 4969 4970 4971 4972
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4973

4974 4975
		gen6_enable_rps_interrupts(dev_priv);

4976 4977 4978 4979 4980
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
4981 4982 4983 4984
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4985 4986
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4987 4988 4989 4990 4991 4992 4993
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

4994
	mutex_lock(&dev_priv->rps.hw_lock);
4995
	if (dev_priv->rps.enabled) {
4996
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4997
			vlv_set_rps_idle(dev_priv);
4998
		else
4999
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5000
		dev_priv->rps.last_adj = 0;
5001 5002
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5003
	}
5004
	mutex_unlock(&dev_priv->rps.hw_lock);
5005

5006
	spin_lock(&dev_priv->rps.client_lock);
5007 5008
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5009
	spin_unlock(&dev_priv->rps.client_lock);
5010 5011
}

5012
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5013 5014
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5015
{
5016 5017 5018
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5019
	if (!(dev_priv->gt.awake &&
5020
	      dev_priv->rps.enabled &&
5021
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5022
		return;
5023

5024 5025 5026
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5027
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5028 5029
		rps = NULL;

5030 5031 5032 5033 5034
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5035
			schedule_work(&dev_priv->rps.work);
5036 5037
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5038

5039 5040 5041
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5042 5043
		} else
			dev_priv->rps.boosts++;
5044
	}
5045
	spin_unlock(&dev_priv->rps.client_lock);
5046 5047
}

5048
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5049
{
5050 5051
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5052
	else
5053
		gen6_set_rps(dev_priv, val);
5054 5055
}

5056
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5057 5058
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5059
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5060 5061
}

5062
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5063 5064 5065 5066
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5067
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5068 5069
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5070
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5071
	I915_WRITE(GEN6_RP_CONTROL, 0);
5072 5073
}

5074
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5075 5076 5077 5078
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5079
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5080
{
5081 5082
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5083
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5084

5085
	I915_WRITE(GEN6_RC_CONTROL, 0);
5086

5087
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5088 5089
}

5090
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5091
{
5092
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5093 5094 5095 5096 5097
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5098
	if (HAS_RC6p(dev_priv))
5099 5100 5101 5102 5103
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5104 5105

	else
5106 5107
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5108 5109
}

5110
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5111
{
5112
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5113 5114
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5126 5127

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5128
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5129 5130 5131 5132 5133 5134 5135 5136
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5137 5138 5139
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5140
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5141 5142 5143 5144 5145 5146 5147
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5148
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5149 5150 5151
		enable_rc6 = false;
	}

5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5166 5167 5168 5169 5170 5171
		enable_rc6 = false;
	}

	return enable_rc6;
}

5172
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5173
{
5174
	/* No RC6 before Ironlake and code is gone for ilk. */
5175
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5176 5177
		return 0;

5178 5179 5180
	if (!enable_rc6)
		return 0;

5181
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5182 5183 5184 5185
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5186
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5187 5188 5189
	if (enable_rc6 >= 0) {
		int mask;

5190
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5191 5192 5193 5194 5195 5196
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5197 5198 5199
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5200 5201 5202

		return enable_rc6 & mask;
	}
5203

5204
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5205
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5206 5207

	return INTEL_RC6_ENABLE;
5208 5209
}

5210
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5211 5212
{
	/* All of these values are in units of 50MHz */
5213

5214
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5215
	if (IS_GEN9_LP(dev_priv)) {
5216
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5217 5218 5219 5220
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5221
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5222 5223 5224 5225
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5226
	/* hw_max = RP0 until we check for overclocking */
5227
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5228

5229
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5230 5231
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5232 5233 5234 5235 5236
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5237
			dev_priv->rps.efficient_freq =
5238 5239 5240 5241
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5242 5243
	}

5244
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5245
		/* Store the frequency values in 16.66 MHZ units, which is
5246 5247
		 * the natural hardware unit for SKL
		 */
5248 5249 5250 5251 5252 5253
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5254 5255
}

5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5268
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5269
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5270 5271 5272
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5273
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5274
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5275 5276 5277 5278 5279 5280 5281 5282 5283
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5284
		gen9_disable_rps(dev_priv);
5285 5286 5287 5288
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5289 5290 5291 5292 5293 5294 5295 5296
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5297 5298
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5299 5300 5301
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5302
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5303 5304 5305 5306

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5307
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5308
{
5309
	struct intel_engine_cs *engine;
5310
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5311 5312 5313 5314 5315 5316 5317
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5318
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5319 5320 5321 5322 5323

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5324 5325

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5326
	if (IS_SKYLAKE(dev_priv))
5327 5328 5329
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5330 5331
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5332
	for_each_engine(engine, dev_priv, id)
5333
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5334

5335
	if (HAS_GUC(dev_priv))
5336 5337
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5338 5339
	I915_WRITE(GEN6_RC_SLEEP, 0);

5340 5341 5342 5343
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5344
	/* 3a: Enable RC6 */
5345
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5346
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5347
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5348
	/* WaRsUseTimeoutMode:bxt */
5349
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5350
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5351 5352 5353
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5354 5355
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5356 5357 5358
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5359
	}
Z
Zhe Wang 已提交
5360

5361 5362
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5363
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5364
	 */
5365
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5366 5367 5368 5369
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5370

5371
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5372 5373
}

5374
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5375
{
5376
	struct intel_engine_cs *engine;
5377
	enum intel_engine_id id;
5378
	uint32_t rc6_mask = 0;
5379 5380 5381 5382 5383 5384

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5385
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5386 5387 5388 5389 5390 5391 5392 5393

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5394
	for_each_engine(engine, dev_priv, id)
5395
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5396
	I915_WRITE(GEN6_RC_SLEEP, 0);
5397
	if (IS_BROADWELL(dev_priv))
5398 5399 5400
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5401 5402

	/* 3: Enable RC6 */
5403
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5404
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5405 5406
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5407 5408 5409 5410 5411 5412 5413
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5414 5415

	/* 4 Program defaults and thresholds for RPS*/
5416 5417 5418 5419
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5434 5435

	/* 5: Enable RPS */
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5446
	reset_rps(dev_priv, gen6_set_rps);
5447

5448
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5449 5450
}

5451
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5452
{
5453
	struct intel_engine_cs *engine;
5454
	enum intel_engine_id id;
5455
	u32 rc6vids, rc6_mask = 0;
5456 5457
	u32 gtfifodbg;
	int rc6_mode;
5458
	int ret;
5459

5460
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5461

5462 5463 5464 5465 5466 5467 5468 5469 5470
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5471 5472
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5473 5474 5475 5476
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5477
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5488
	for_each_engine(engine, dev_priv, id)
5489
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5490 5491 5492

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5493
	if (IS_IVYBRIDGE(dev_priv))
5494 5495 5496
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5497
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5498 5499
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5500
	/* Check if we are enabling RC6 */
5501
	rc6_mode = intel_enable_rc6();
5502 5503 5504
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5505
	/* We don't use those on Haswell */
5506
	if (!IS_HASWELL(dev_priv)) {
5507 5508
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5509

5510 5511 5512
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5513

5514
	intel_print_rc6_info(dev_priv, rc6_mask);
5515 5516 5517 5518 5519 5520

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5521 5522
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5523 5524
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5525
	reset_rps(dev_priv, gen6_set_rps);
5526

5527 5528
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5529
	if (IS_GEN6(dev_priv) && ret) {
5530
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5531
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5532 5533 5534 5535 5536 5537 5538 5539 5540
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5541
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5542 5543
}

5544
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5545 5546
{
	int min_freq = 15;
5547 5548
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5549
	unsigned int max_gpu_freq, min_gpu_freq;
5550
	int scaling_factor = 180;
5551
	struct cpufreq_policy *policy;
5552

5553
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5554

5555 5556 5557 5558 5559 5560 5561 5562 5563
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5564
		max_ia_freq = tsc_khz;
5565
	}
5566 5567 5568 5569

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5570
	min_ring_freq = I915_READ(DCLK) & 0xf;
5571 5572
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5573

5574
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5575 5576 5577 5578 5579 5580 5581 5582
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5583 5584 5585 5586 5587
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5588 5589
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5590 5591
		unsigned int ia_freq = 0, ring_freq = 0;

5592
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5593 5594 5595 5596 5597
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5598
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5599 5600
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5601
		} else if (IS_HASWELL(dev_priv)) {
5602
			ring_freq = mult_frac(gpu_freq, 5, 4);
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5619

B
Ben Widawsky 已提交
5620 5621
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5622 5623 5624
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5625 5626 5627
	}
}

5628
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5629 5630 5631
{
	u32 val, rp0;

5632
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5633

5634
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5649
	}
5650 5651 5652

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5666 5667 5668 5669
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5670 5671 5672
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5673 5674 5675
	return rp1;
}

5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5687
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5688 5689 5690
{
	u32 val, rp0;

5691
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5704
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5705
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5706
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5707 5708 5709 5710 5711
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5712
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5713
{
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5725 5726
}

5727 5728 5729 5730 5731 5732 5733 5734 5735
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5736 5737 5738 5739 5740 5741 5742 5743 5744

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5745
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5746
{
5747
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5748
	unsigned long pctx_paddr, paddr;
5749 5750 5751 5752 5753
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5754
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5755
		paddr = (dev_priv->mm.stolen_base +
5756
			 (ggtt->stolen_size - pctx_size));
5757 5758 5759 5760

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5761 5762

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5763 5764
}

5765
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5778
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
5779
								      pcbr_offset,
5780
								      I915_GTT_OFFSET_NONE,
5781 5782 5783 5784
								      pctx_size);
		goto out;
	}

5785 5786
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5787 5788 5789 5790 5791 5792 5793 5794
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5795
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
5796 5797
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5798
		goto out;
5799 5800 5801 5802 5803 5804
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5805
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5806 5807 5808
	dev_priv->vlv_pctx = pctx;
}

5809
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5810 5811 5812 5813
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5814
	i915_gem_object_put(dev_priv->vlv_pctx);
5815 5816 5817
	dev_priv->vlv_pctx = NULL;
}

5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5829
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5830
{
5831
	u32 val;
5832

5833
	valleyview_setup_pctx(dev_priv);
5834

5835 5836
	vlv_init_gpll_ref_freq(dev_priv);

5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5850
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5851

5852 5853 5854
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5855
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5856 5857 5858 5859
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5860
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5861 5862
			 dev_priv->rps.efficient_freq);

5863 5864
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5865
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5866 5867
			 dev_priv->rps.rp1_freq);

5868 5869
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5870
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5871 5872 5873
			 dev_priv->rps.min_freq);
}

5874
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5875
{
5876
	u32 val;
5877

5878
	cherryview_setup_pctx(dev_priv);
5879

5880 5881
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5882
	mutex_lock(&dev_priv->sb_lock);
5883
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5884
	mutex_unlock(&dev_priv->sb_lock);
5885

5886 5887 5888 5889
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5890
	default:
5891 5892 5893
		dev_priv->mem_freq = 1600;
		break;
	}
5894
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5895

5896 5897 5898
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5899
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5900 5901 5902 5903
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5904
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5905 5906
			 dev_priv->rps.efficient_freq);

5907 5908
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5909
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5910 5911
			 dev_priv->rps.rp1_freq);

5912 5913
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5914
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5915
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5916 5917
			 dev_priv->rps.min_freq);

5918 5919 5920 5921 5922
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5923 5924
}

5925
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5926
{
5927
	valleyview_cleanup_pctx(dev_priv);
5928 5929
}

5930
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5931
{
5932
	struct intel_engine_cs *engine;
5933
	enum intel_engine_id id;
5934
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5935 5936 5937

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5938 5939
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5950
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5951

5952 5953 5954
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5955 5956 5957 5958 5959
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5960
	for_each_engine(engine, dev_priv, id)
5961
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5962 5963
	I915_WRITE(GEN6_RC_SLEEP, 0);

5964 5965
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
5977 5978
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
5979
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5980 5981 5982

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5983
	/* 4 Program defaults and thresholds for RPS*/
5984
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5995
		   GEN6_RP_MEDIA_IS_GFX |
5996 5997 5998 5999
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6000 6001 6002 6003 6004 6005
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6006 6007
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6008 6009 6010
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6011
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6012 6013
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6014
	reset_rps(dev_priv, valleyview_set_rps);
6015

6016
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6017 6018
}

6019
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6020
{
6021
	struct intel_engine_cs *engine;
6022
	enum intel_engine_id id;
6023
	u32 gtfifodbg, val, rc6_mode = 0;
6024 6025 6026

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6027 6028
	valleyview_check_pctx(dev_priv);

6029 6030
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6031 6032
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6033 6034 6035
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6036
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6037
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6038

6039 6040 6041
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6042
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6062
	for_each_engine(engine, dev_priv, id)
6063
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6064

6065
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6066 6067

	/* allows RC6 residency counter to work */
6068
	I915_WRITE(VLV_COUNTER_CONTROL,
6069 6070
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6071 6072
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6073

6074
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6075
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6076

6077
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6078

6079
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6080

D
Deepak S 已提交
6081 6082 6083 6084 6085 6086
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6087
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6088

6089 6090 6091
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6092
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6093 6094
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6095
	reset_rps(dev_priv, valleyview_set_rps);
6096

6097
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6098 6099
}

6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6129
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6130 6131 6132 6133 6134 6135
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6136 6137
	assert_spin_locked(&mchdev_lock);

6138
	diff1 = now - dev_priv->ips.last_time1;
6139 6140 6141 6142 6143 6144 6145

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6146
		return dev_priv->ips.chipset_power;
6147 6148 6149 6150 6151 6152 6153 6154

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6155 6156
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6157 6158
		diff += total_count;
	} else {
6159
		diff = total_count - dev_priv->ips.last_count1;
6160 6161 6162
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6163 6164
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6175 6176
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6177

6178
	dev_priv->ips.chipset_power = ret;
6179 6180 6181 6182

	return ret;
}

6183 6184 6185 6186
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6187
	if (INTEL_INFO(dev_priv)->gen != 5)
6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6226
{
6227 6228 6229
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6230
	if (INTEL_INFO(dev_priv)->is_mobile)
6231 6232 6233
		return vm > 0 ? vm : 0;

	return vd;
6234 6235
}

6236
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6237
{
6238
	u64 now, diff, diffms;
6239 6240
	u32 count;

6241
	assert_spin_locked(&mchdev_lock);
6242

6243 6244 6245
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6246 6247 6248 6249 6250 6251 6252

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6253 6254
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6255 6256
		diff += count;
	} else {
6257
		diff = count - dev_priv->ips.last_count2;
6258 6259
	}

6260 6261
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6262 6263 6264 6265

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6266
	dev_priv->ips.gfx_power = diff;
6267 6268
}

6269 6270
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6271
	if (INTEL_INFO(dev_priv)->gen != 5)
6272 6273
		return;

6274
	spin_lock_irq(&mchdev_lock);
6275 6276 6277

	__i915_update_gfx_val(dev_priv);

6278
	spin_unlock_irq(&mchdev_lock);
6279 6280
}

6281
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6282 6283 6284 6285
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6286 6287
	assert_spin_locked(&mchdev_lock);

6288
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6308
	corr2 = (corr * dev_priv->ips.corr);
6309 6310 6311 6312

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6313
	__i915_update_gfx_val(dev_priv);
6314

6315
	return dev_priv->ips.gfx_power + state2;
6316 6317
}

6318 6319 6320 6321
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6322
	if (INTEL_INFO(dev_priv)->gen != 5)
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6345
	spin_lock_irq(&mchdev_lock);
6346 6347 6348 6349
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6350 6351
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6352 6353 6354 6355

	ret = chipset_val + graphics_val;

out_unlock:
6356
	spin_unlock_irq(&mchdev_lock);
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6372
	spin_lock_irq(&mchdev_lock);
6373 6374 6375 6376 6377 6378
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6379 6380
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6381 6382

out_unlock:
6383
	spin_unlock_irq(&mchdev_lock);
6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6400
	spin_lock_irq(&mchdev_lock);
6401 6402 6403 6404 6405 6406
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6407 6408
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6409 6410

out_unlock:
6411
	spin_unlock_irq(&mchdev_lock);
6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6426
	spin_lock_irq(&mchdev_lock);
6427 6428
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6429
	spin_unlock_irq(&mchdev_lock);
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6446
	spin_lock_irq(&mchdev_lock);
6447 6448 6449 6450 6451 6452
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6453
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6454

6455
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6456 6457 6458
		ret = false;

out_unlock:
6459
	spin_unlock_irq(&mchdev_lock);
6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6487 6488
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6489
	spin_lock_irq(&mchdev_lock);
6490
	i915_mch_dev = dev_priv;
6491
	spin_unlock_irq(&mchdev_lock);
6492 6493 6494 6495 6496 6497

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6498
	spin_lock_irq(&mchdev_lock);
6499
	i915_mch_dev = NULL;
6500
	spin_unlock_irq(&mchdev_lock);
6501
}
6502

6503
static void intel_init_emon(struct drm_i915_private *dev_priv)
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6520
		I915_WRITE(PEW(i), 0);
6521
	for (i = 0; i < 3; i++)
6522
		I915_WRITE(DEW(i), 0);
6523 6524 6525

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6526
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6547
		I915_WRITE(PXW(i), val);
6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6563
		I915_WRITE(PXWL(i), 0);
6564 6565 6566 6567 6568 6569

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6570
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6571 6572
}

6573
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6574
{
6575 6576 6577 6578 6579 6580 6581 6582
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6583

6584
	mutex_lock(&dev_priv->drm.struct_mutex);
6585 6586 6587
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6588 6589 6590 6591
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6592
	else if (INTEL_GEN(dev_priv) >= 6)
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6622 6623 6624
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6625
	mutex_unlock(&dev_priv->rps.hw_lock);
6626
	mutex_unlock(&dev_priv->drm.struct_mutex);
6627 6628

	intel_autoenable_gt_powersave(dev_priv);
6629 6630
}

6631
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6632
{
6633
	if (IS_VALLEYVIEW(dev_priv))
6634
		valleyview_cleanup_gt_powersave(dev_priv);
6635 6636 6637

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6638 6639
}

6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6659 6660 6661 6662
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6663 6664

	gen6_reset_rps_interrupts(dev_priv);
6665 6666
}

6667
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6668
{
6669 6670
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6671

6672
	mutex_lock(&dev_priv->rps.hw_lock);
6673

6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6685
	}
6686 6687 6688

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6689 6690
}

6691
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6692
{
6693 6694 6695
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6696 6697
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6698

6699 6700 6701
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6702

6703
	mutex_lock(&dev_priv->rps.hw_lock);
6704 6705 6706 6707 6708

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6709
	} else if (INTEL_GEN(dev_priv) >= 9) {
6710 6711 6712
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6713
			gen6_update_ring_freq(dev_priv);
6714 6715
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6716
		gen6_update_ring_freq(dev_priv);
6717
	} else if (INTEL_GEN(dev_priv) >= 6) {
6718
		gen6_enable_rps(dev_priv);
6719
		gen6_update_ring_freq(dev_priv);
6720 6721 6722
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6723
	}
6724 6725 6726 6727 6728 6729 6730

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6731
	dev_priv->rps.enabled = true;
6732 6733
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6734

6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6745
	rcs = dev_priv->engine[RCS];
6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6798
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6799 6800 6801 6802 6803 6804 6805 6806 6807
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6808
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6809
{
6810
	enum pipe pipe;
6811

6812
	for_each_pipe(dev_priv, pipe) {
6813 6814 6815
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6816 6817 6818

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6819 6820 6821
	}
}

6822
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6834
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6835
{
6836
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6837

6838 6839 6840 6841
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6842 6843 6844
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6862
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6863 6864 6865
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6866

6867
	ilk_init_lp_watermarks(dev_priv);
6868 6869 6870 6871 6872 6873 6874 6875

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6876
	if (IS_IRONLAKE_M(dev_priv)) {
6877
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6878 6879 6880 6881 6882 6883 6884 6885
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6886 6887
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6888 6889 6890 6891 6892 6893
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6894

6895
	/* WaDisableRenderCachePipelinedFlush:ilk */
6896 6897
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6898

6899 6900 6901
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6902
	g4x_disable_trickle_feed(dev_priv);
6903

6904
	ibx_init_clock_gating(dev_priv);
6905 6906
}

6907
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6908 6909
{
	int pipe;
6910
	uint32_t val;
6911 6912 6913 6914 6915 6916

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6917 6918 6919
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6920 6921
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6922 6923 6924
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6925
	for_each_pipe(dev_priv, pipe) {
6926 6927 6928
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6929
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6930
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6931 6932 6933
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6934 6935
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6936
	/* WADP0ClockGatingDisable */
6937
	for_each_pipe(dev_priv, pipe) {
6938 6939 6940
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6941 6942
}

6943
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6944 6945 6946 6947
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6948 6949 6950
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6951 6952
}

6953
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6954
{
6955
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6956

6957
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6958 6959 6960 6961 6962

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6963
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6964 6965 6966
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6967 6968 6969
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6970 6971 6972
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6973 6974 6975 6976
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6977 6978
	 */
	I915_WRITE(GEN6_GT_MODE,
6979
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6980

6981
	ilk_init_lp_watermarks(dev_priv);
6982 6983

	I915_WRITE(CACHE_MODE_0,
6984
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7000
	 *
7001 7002
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7003 7004 7005 7006 7007
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7008
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7009 7010
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7011

7012 7013 7014 7015 7016 7017 7018 7019
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7020 7021 7022 7023 7024 7025 7026 7027
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7028 7029
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7030 7031 7032 7033 7034 7035 7036
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7037 7038 7039 7040
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7041

7042
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7043

7044
	cpt_init_clock_gating(dev_priv);
7045

7046
	gen6_check_mch_setup(dev_priv);
7047 7048 7049 7050 7051 7052
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7053
	/*
7054
	 * WaVSThreadDispatchOverride:ivb,vlv
7055 7056 7057 7058
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7059 7060 7061 7062 7063 7064 7065 7066
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7067
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7068 7069 7070 7071 7072
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7073
	if (HAS_PCH_LPT_LP(dev_priv))
7074 7075 7076
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7077 7078

	/* WADPOClockGatingDisable:hsw */
7079 7080
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7081
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7082 7083
}

7084
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7085
{
7086
	if (HAS_PCH_LPT_LP(dev_priv)) {
7087 7088 7089 7090 7091 7092 7093
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7117
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7118
{
7119
	gen9_init_clock_gating(dev_priv);
7120 7121 7122 7123 7124

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7125 7126 7127 7128 7129

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7130 7131 7132 7133

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7134 7135
}

7136
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7137
{
7138
	gen9_init_clock_gating(dev_priv);
7139 7140 7141 7142

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7143 7144 7145 7146

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7147 7148
}

7149
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7150
{
7151
	enum pipe pipe;
B
Ben Widawsky 已提交
7152

7153
	ilk_init_lp_watermarks(dev_priv);
7154

7155
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7156
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7157

7158
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7159 7160 7161
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7162
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7163
	for_each_pipe(dev_priv, pipe) {
7164
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7165
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7166
			   BDW_DPRS_MASK_VBLANK_SRD);
7167
	}
7168

7169 7170 7171 7172 7173
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7174

7175 7176
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7177 7178 7179 7180

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7181

7182 7183
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7184

7185 7186 7187 7188 7189 7190 7191
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7192 7193 7194 7195
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7196
	lpt_init_clock_gating(dev_priv);
B
Ben Widawsky 已提交
7197 7198
}

7199
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7200
{
7201
	ilk_init_lp_watermarks(dev_priv);
7202

7203 7204 7205 7206 7207
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7208
	/* This is required by WaCatErrorRejectionIssue:hsw */
7209 7210 7211 7212
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7213 7214 7215
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7216

7217 7218 7219
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7220 7221 7222 7223
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7224
	/* WaDisable4x2SubspanOptimization:hsw */
7225 7226
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7227

7228 7229 7230
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7231 7232 7233 7234
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7235 7236
	 */
	I915_WRITE(GEN7_GT_MODE,
7237
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7238

7239 7240 7241 7242
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7243
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7244 7245
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7246 7247 7248
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7249

7250
	lpt_init_clock_gating(dev_priv);
7251 7252
}

7253
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7254
{
7255
	uint32_t snpcr;
7256

7257
	ilk_init_lp_watermarks(dev_priv);
7258

7259
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7260

7261
	/* WaDisableEarlyCull:ivb */
7262 7263 7264
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7265
	/* WaDisableBackToBackFlipFix:ivb */
7266 7267 7268 7269
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7270
	/* WaDisablePSDDualDispatchEnable:ivb */
7271
	if (IS_IVB_GT1(dev_priv))
7272 7273 7274
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7275 7276 7277
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7278
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7279 7280 7281
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7282
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7283 7284 7285
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7286
		   GEN7_WA_L3_CHICKEN_MODE);
7287
	if (IS_IVB_GT1(dev_priv))
7288 7289
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7290 7291 7292 7293
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7294 7295
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7296
	}
7297

7298
	/* WaForceL3Serialization:ivb */
7299 7300 7301
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7302
	/*
7303
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7304
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7305 7306
	 */
	I915_WRITE(GEN6_UCGCTL2,
7307
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7308

7309
	/* This is required by WaCatErrorRejectionIssue:ivb */
7310 7311 7312 7313
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7314
	g4x_disable_trickle_feed(dev_priv);
7315 7316

	gen7_setup_fixed_func_scheduler(dev_priv);
7317

7318 7319 7320 7321 7322
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7323

7324
	/* WaDisable4x2SubspanOptimization:ivb */
7325 7326
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7327

7328 7329 7330
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7331 7332 7333 7334
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7335 7336
	 */
	I915_WRITE(GEN7_GT_MODE,
7337
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7338

7339 7340 7341 7342
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7343

7344
	if (!HAS_PCH_NOP(dev_priv))
7345
		cpt_init_clock_gating(dev_priv);
7346

7347
	gen6_check_mch_setup(dev_priv);
7348 7349
}

7350
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7351
{
7352
	/* WaDisableEarlyCull:vlv */
7353 7354 7355
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7356
	/* WaDisableBackToBackFlipFix:vlv */
7357 7358 7359 7360
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7361
	/* WaPsdDispatchEnable:vlv */
7362
	/* WaDisablePSDDualDispatchEnable:vlv */
7363
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7364 7365
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7366

7367 7368 7369
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7370
	/* WaForceL3Serialization:vlv */
7371 7372 7373
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7374
	/* WaDisableDopClockGating:vlv */
7375 7376 7377
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7378
	/* This is required by WaCatErrorRejectionIssue:vlv */
7379 7380 7381 7382
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7383 7384
	gen7_setup_fixed_func_scheduler(dev_priv);

7385
	/*
7386
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7387
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7388 7389
	 */
	I915_WRITE(GEN6_UCGCTL2,
7390
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7391

7392 7393 7394 7395 7396
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7397

7398 7399 7400 7401
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7402 7403
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7404

7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7416 7417 7418 7419 7420 7421
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7422
	/*
7423
	 * WaDisableVLVClockGating_VBIIssue:vlv
7424 7425 7426
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7427
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7428 7429
}

7430
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7431
{
7432 7433 7434 7435 7436
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7437 7438 7439 7440

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7441 7442 7443 7444

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7445 7446 7447 7448

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7449

7450 7451 7452 7453 7454 7455 7456
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7457 7458 7459 7460 7461
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7462 7463
}

7464
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7476
	if (IS_GM45(dev_priv))
7477 7478
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7479 7480 7481 7482

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7483

7484 7485 7486
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7487
	g4x_disable_trickle_feed(dev_priv);
7488 7489
}

7490
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7491 7492 7493 7494 7495 7496
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7497 7498
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7499 7500 7501

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7502 7503
}

7504
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7505 7506 7507 7508 7509 7510 7511
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7512 7513
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7514 7515 7516

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7517 7518
}

7519
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7520 7521 7522 7523 7524 7525
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7526

7527
	if (IS_PINEVIEW(dev_priv))
7528
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7529 7530 7531

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7532 7533

	/* interrupts should cause a wake up from C3 */
7534
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7535 7536 7537

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7538 7539 7540

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7541 7542
}

7543
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7544 7545
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7546 7547 7548 7549

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7550 7551 7552

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7553 7554
}

7555
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7556 7557
{
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7558 7559 7560 7561

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7562 7563
}

7564
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7565
{
7566
	dev_priv->display.init_clock_gating(dev_priv);
7567 7568
}

7569
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7570
{
7571 7572
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7573 7574
}

7575
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7592
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7593
	else if (IS_KABYLAKE(dev_priv))
7594
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7595
	else if (IS_GEN9_LP(dev_priv))
7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7629
/* Set up chip specific power management-related functions */
7630
void intel_init_pm(struct drm_i915_private *dev_priv)
7631
{
7632
	intel_fbc_init(dev_priv);
7633

7634
	/* For cxsr */
7635
	if (IS_PINEVIEW(dev_priv))
7636
		i915_pineview_get_mem_freq(dev_priv);
7637
	else if (IS_GEN5(dev_priv))
7638
		i915_ironlake_get_mem_freq(dev_priv);
7639

7640
	/* For FIFO watermark updates */
7641
	if (INTEL_GEN(dev_priv) >= 9) {
7642
		skl_setup_wm_latency(dev_priv);
7643
		dev_priv->display.initial_watermarks = skl_initial_wm;
7644
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7645
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7646
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7647
		ilk_setup_wm_latency(dev_priv);
7648

7649
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7650
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7651
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7652
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7653
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7654 7655 7656 7657 7658 7659
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7660 7661 7662 7663
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7664
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7665
		vlv_setup_wm_latency(dev_priv);
7666
		dev_priv->display.update_wm = vlv_update_wm;
7667
	} else if (IS_PINEVIEW(dev_priv)) {
7668
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7669 7670 7671 7672 7673 7674 7675 7676 7677
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7678
			intel_set_memory_cxsr(dev_priv, false);
7679 7680 7681
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7682
	} else if (IS_G4X(dev_priv)) {
7683
		dev_priv->display.update_wm = g4x_update_wm;
7684
	} else if (IS_GEN4(dev_priv)) {
7685
		dev_priv->display.update_wm = i965_update_wm;
7686
	} else if (IS_GEN3(dev_priv)) {
7687 7688
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7689
	} else if (IS_GEN2(dev_priv)) {
7690
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7691
			dev_priv->display.update_wm = i845_update_wm;
7692
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7693 7694
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7695
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7696 7697 7698
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7699 7700 7701
	}
}

7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7714
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7746
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7747
{
7748 7749
	int status;

7750
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7751

7752 7753 7754 7755 7756 7757
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7758 7759 7760 7761
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7762 7763 7764
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7765

7766 7767 7768
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7769 7770 7771 7772
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7773 7774
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7775

7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7787 7788 7789
	return 0;
}

7790
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7791
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7792
{
7793 7794
	int status;

7795
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7796

7797 7798 7799 7800 7801 7802
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7803 7804 7805 7806
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7807
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
7808
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7809
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7810

7811 7812 7813
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7814 7815 7816 7817
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7818
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7819

7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7831 7832
	return 0;
}
7833

7834 7835
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7836 7837 7838 7839 7840
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7841 7842
}

7843
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7844
{
7845
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7846 7847
}

7848
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7849
{
7850 7851 7852 7853 7854
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7855 7856
}

7857
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7858
{
7859
	/* CHV needs even values */
7860
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7861 7862
}

7863
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7864
{
7865
	if (IS_GEN9(dev_priv))
7866 7867
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7868
	else if (IS_CHERRYVIEW(dev_priv))
7869
		return chv_gpu_freq(dev_priv, val);
7870
	else if (IS_VALLEYVIEW(dev_priv))
7871 7872 7873
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7874 7875
}

7876 7877
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7878
	if (IS_GEN9(dev_priv))
7879 7880
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7881
	else if (IS_CHERRYVIEW(dev_priv))
7882
		return chv_freq_opcode(dev_priv, val);
7883
	else if (IS_VALLEYVIEW(dev_priv))
7884 7885
		return byt_freq_opcode(dev_priv, val);
	else
7886
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7887
}
7888

7889 7890
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7891
	struct drm_i915_gem_request *req;
7892 7893 7894 7895 7896
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7897
	struct drm_i915_gem_request *req = boost->req;
7898

7899
	if (!i915_gem_request_completed(req))
7900
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7901

7902
	i915_gem_request_put(req);
7903 7904 7905
	kfree(boost);
}

7906
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7907 7908 7909
{
	struct request_boost *boost;

7910
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7911 7912
		return;

7913
	if (i915_gem_request_completed(req))
7914 7915
		return;

7916 7917 7918 7919
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

7920
	boost->req = i915_gem_request_get(req);
7921 7922

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7923
	queue_work(req->i915->wq, &boost->work);
7924 7925
}

7926
void intel_pm_setup(struct drm_i915_private *dev_priv)
7927
{
D
Daniel Vetter 已提交
7928
	mutex_init(&dev_priv->rps.hw_lock);
7929
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7930

7931 7932
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
7933
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7934

7935
	dev_priv->pm.suspended = false;
7936
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7937
}