intel_pm.c 225.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_device *dev)
60
{
61 62
	struct drm_i915_private *dev_priv = dev->dev_private;

63
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
64 65 66
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

67 68
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
69 70 71 72

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
73 74

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
75 76 77 78
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
79 80 81 82

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
83 84 85 86
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
87
	struct drm_i915_private *dev_priv = to_i915(dev);
88 89 90

	gen9_init_clock_gating(dev);

91 92 93 94
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

95 96
	/*
	 * FIXME:
97
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
98 99
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
100
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
101 102 103 104 105 106 107 108

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
109 110
}

111
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

149
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

176
	dev_priv->ips.r_t = dev_priv->mem_freq;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
208
		dev_priv->ips.c_m = 0;
209
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
210
		dev_priv->ips.c_m = 1;
211
	} else {
212
		dev_priv->ips.c_m = 2;
213 214 215
	}
}

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

254 255
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

316 317 318
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

319
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
320
{
321
	u32 val;
322

323
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
324
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
325
		POSTING_READ(FW_BLC_SELF_VLV);
326
		dev_priv->wm.vlv.cxsr = enable;
327
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
328
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
329
		POSTING_READ(FW_BLC_SELF);
330
	} else if (IS_PINEVIEW(dev_priv)) {
331 332 333
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
334
		POSTING_READ(DSPFW3);
335
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
336 337 338
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
339
		POSTING_READ(FW_BLC_SELF);
340
	} else if (IS_I915GM(dev_priv)) {
341 342 343 344 345
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
346 347 348
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
349
		POSTING_READ(INSTPM);
350 351 352
	} else {
		return;
	}
353

354 355
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
356 357
}

358

359 360 361 362 363 364 365 366 367 368 369 370 371 372
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
373
static const int pessimal_latency_ns = 5000;
374

375 376 377
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

378
static int vlv_get_fifo_size(struct drm_i915_private *dev_priv,
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
			      enum pipe pipe, int plane)
{
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

429
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
430 431 432 433 434 435 436 437 438 439 440 441 442 443
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

444
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

460
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
477 478 479 480 481
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
482 483
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
484 485 486 487 488
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
489 490
};
static const struct intel_watermark_params pineview_cursor_wm = {
491 492 493 494 495
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
496 497
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
498 499 500 501 502
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
503 504
};
static const struct intel_watermark_params g4x_wm_info = {
505 506 507 508 509
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
510 511
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
512 513 514 515 516
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
517 518
};
static const struct intel_watermark_params i965_cursor_wm_info = {
519 520 521 522 523
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
524 525
};
static const struct intel_watermark_params i945_wm_info = {
526 527 528 529 530
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
531 532
};
static const struct intel_watermark_params i915_wm_info = {
533 534 535 536 537
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
538
};
539
static const struct intel_watermark_params i830_a_wm_info = {
540 541 542 543 544
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
545
};
546 547 548 549 550 551 552
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
553
static const struct intel_watermark_params i845_wm_info = {
554 555 556 557 558
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
559 560 561 562 563 564
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
565
 * @cpp: bytes per pixel
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
581
					int fifo_size, int cpp,
582 583 584 585 586 587 588 589 590 591
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
592
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
593 594 595 596 597 598 599 600 601 602 603 604 605 606
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
607 608 609 610 611 612 613 614 615 616 617

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

618 619 620
	return wm_size;
}

621
static struct intel_crtc *single_enabled_crtc(struct drm_device *dev)
622
{
623
	struct intel_crtc *crtc, *enabled = NULL;
624

625 626
	for_each_intel_crtc(dev, crtc) {
		if (intel_crtc_active(crtc)) {
627 628 629 630 631 632 633 634 635
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

636
static void pineview_update_wm(struct intel_crtc *unused_crtc)
637
{
638
	struct drm_device *dev = unused_crtc->base.dev;
639
	struct drm_i915_private *dev_priv = to_i915(dev);
640
	struct intel_crtc *crtc;
641 642 643 644
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

645 646 647 648
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
649 650
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
651
		intel_set_memory_cxsr(dev_priv, false);
652 653 654 655 656
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
657 658 659 660 661
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
662
		int clock = adjusted_mode->crtc_clock;
663 664 665 666

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
667
					cpp, latency->display_sr);
668 669
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
670
		reg |= FW_WM(wm, SR);
671 672 673 674 675 676
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
677
					cpp, latency->cursor_sr);
678 679
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
680
		reg |= FW_WM(wm, CURSOR_SR);
681 682 683 684 685
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
686
					cpp, latency->display_hpll_disable);
687 688
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
689
		reg |= FW_WM(wm, HPLL_SR);
690 691 692 693 694
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
695
					cpp, latency->cursor_hpll_disable);
696 697
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
698
		reg |= FW_WM(wm, HPLL_CURSOR);
699 700 701
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

702
		intel_set_memory_cxsr(dev_priv, true);
703
	} else {
704
		intel_set_memory_cxsr(dev_priv, false);
705 706 707
	}
}

708
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
709 710 711 712 713 714 715 716
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
717
	struct intel_crtc *crtc;
718
	const struct drm_display_mode *adjusted_mode;
719
	const struct drm_framebuffer *fb;
720
	int htotal, hdisplay, clock, cpp;
721 722 723
	int line_time_us, line_count;
	int entries, tlb_miss;

724
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
725
	if (!intel_crtc_active(crtc)) {
726 727 728 729 730
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

731 732
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
733
	clock = adjusted_mode->crtc_clock;
734
	htotal = adjusted_mode->crtc_htotal;
735 736
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
737 738

	/* Use the small buffer method to calculate plane watermark */
739
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
740 741 742 743 744 745 746 747 748
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
749
	line_time_us = max(htotal * 1000 / clock, 1);
750
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
751
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
770
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
771 772 773 774 775 776 777 778
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
779
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
780 781 782 783 784
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
785
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
786 787 788 789 790 791 792 793 794 795 796 797
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

798
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
799 800 801 802 803 804
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
805
	struct intel_crtc *crtc;
806
	const struct drm_display_mode *adjusted_mode;
807
	const struct drm_framebuffer *fb;
808
	int hdisplay, htotal, cpp, clock;
809 810 811 812 813 814 815 816 817 818
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

819
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
820 821
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
822
	clock = adjusted_mode->crtc_clock;
823
	htotal = adjusted_mode->crtc_htotal;
824 825
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
826

827
	line_time_us = max(htotal * 1000 / clock, 1);
828
	line_count = (latency_ns / line_time_us + 1000) / 1000;
829
	line_size = hdisplay * cpp;
830 831

	/* Use the minimum of the small and large buffer method for primary */
832
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
833 834 835 836 837 838
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
839
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
840 841 842
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

843
	return g4x_check_srwm(dev_priv,
844 845 846 847
			      *display_wm, *cursor_wm,
			      display, cursor);
}

848 849 850
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

851 852 853 854 855 856 857 858 859 860 861 862
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

863
	I915_WRITE(DSPFW1,
864 865 866 867
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
868
	I915_WRITE(DSPFW2,
869 870 871
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
872
	I915_WRITE(DSPFW3,
873
		   FW_WM(wm->sr.cursor, CURSOR_SR));
874 875 876

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
877 878
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
879
		I915_WRITE(DSPFW8_CHV,
880 881
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
882
		I915_WRITE(DSPFW9_CHV,
883 884
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
885
		I915_WRITE(DSPHOWM,
886 887 888 889 890 891 892 893 894 895
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
896 897
	} else {
		I915_WRITE(DSPFW7,
898 899
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
900
		I915_WRITE(DSPHOWM,
901 902 903 904 905 906 907
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
908 909
	}

910 911 912 913 914 915
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

916
	POSTING_READ(DSPFW1);
917 918
}

919 920
#undef FW_WM_VLV

921 922 923 924 925 926
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

927 928 929 930
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
931
				   unsigned int cpp,
932 933 934 935 936
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
937
	ret = (ret + 1) * horiz_pixels * cpp;
938 939 940 941 942 943 944
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
945
	struct drm_i915_private *dev_priv = to_i915(dev);
946 947 948 949

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

950 951
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

952 953 954
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
955 956

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
957 958 959 960 961 962 963 964 965
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
966
	int clock, htotal, cpp, width, wm;
967 968 969 970

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

971
	if (!state->base.visible)
972 973
		return 0;

974
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
990
		wm = vlv_wm_method2(clock, htotal, width, cpp,
991 992 993 994 995 996
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1013
		if (state->base.visible) {
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1029
		if (!state->base.visible) {
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1098
static void vlv_compute_wm(struct intel_crtc *crtc)
1099 1100 1101 1102 1103 1104 1105 1106 1107
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1108
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1109
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1110 1111 1112

	wm_state->num_active_planes = 0;

1113
	vlv_compute_fifo(crtc);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1129
		if (!state->base.visible)
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1170
					wm_state->wm[level].cursor;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1189
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1190 1191 1192 1193 1194 1195 1196
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1287 1288 1289 1290 1291 1292
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1293
	wm->level = to_i915(dev)->wm.max_level;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1312 1313 1314
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

1333
static void vlv_update_wm(struct intel_crtc *crtc)
1334
{
1335
	struct drm_device *dev = crtc->base.dev;
1336
	struct drm_i915_private *dev_priv = to_i915(dev);
1337
	enum pipe pipe = crtc->pipe;
1338 1339
	struct vlv_wm_values wm = {};

1340
	vlv_compute_wm(crtc);
1341 1342
	vlv_merge_wm(dev, &wm);

1343 1344
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
1345
		vlv_pipe_set_fifo_size(crtc);
1346
		return;
1347
	}
1348 1349 1350 1351 1352 1353 1354 1355 1356

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1357
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1358 1359
		intel_set_memory_cxsr(dev_priv, false);

1360
	/* FIXME should be part of crtc atomic commit */
1361
	vlv_pipe_set_fifo_size(crtc);
1362

1363
	vlv_write_wm_values(crtc, &wm);
1364 1365 1366 1367 1368 1369 1370

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1371
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1383 1384
}

1385 1386
#define single_plane_enabled(mask) is_power_of_2(mask)

1387
static void g4x_update_wm(struct intel_crtc *crtc)
1388
{
1389
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1390 1391 1392 1393
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1394
	bool cxsr_enabled;
1395

1396
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1397 1398
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1399
			    &planea_wm, &cursora_wm))
1400
		enabled |= 1 << PIPE_A;
1401

1402
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1403 1404
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1405
			    &planeb_wm, &cursorb_wm))
1406
		enabled |= 1 << PIPE_B;
1407 1408

	if (single_plane_enabled(enabled) &&
1409
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1410 1411 1412
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1413
			     &plane_sr, &cursor_sr)) {
1414
		cxsr_enabled = true;
1415
	} else {
1416
		cxsr_enabled = false;
1417
		intel_set_memory_cxsr(dev_priv, false);
1418 1419
		plane_sr = cursor_sr = 0;
	}
1420

1421 1422
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1423 1424 1425 1426 1427
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1428 1429 1430 1431
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1432
	I915_WRITE(DSPFW2,
1433
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1434
		   FW_WM(cursora_wm, CURSORA));
1435 1436
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1437
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1438
		   FW_WM(cursor_sr, CURSOR_SR));
1439 1440 1441

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1442 1443
}

1444
static void i965_update_wm(struct intel_crtc *unused_crtc)
1445
{
1446
	struct drm_device *dev = unused_crtc->base.dev;
1447
	struct drm_i915_private *dev_priv = to_i915(dev);
1448
	struct intel_crtc *crtc;
1449 1450
	int srwm = 1;
	int cursor_sr = 16;
1451
	bool cxsr_enabled;
1452 1453 1454 1455 1456 1457

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1458 1459 1460 1461
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1462
		int clock = adjusted_mode->crtc_clock;
1463
		int htotal = adjusted_mode->crtc_htotal;
1464 1465
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1466 1467 1468
		unsigned long line_time_us;
		int entries;

1469
		line_time_us = max(htotal * 1000 / clock, 1);
1470 1471 1472

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1473
			cpp * hdisplay;
1474 1475 1476 1477 1478 1479 1480 1481 1482
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1483
			cpp * crtc->base.cursor->state->crtc_w;
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1495
		cxsr_enabled = true;
1496
	} else {
1497
		cxsr_enabled = false;
1498
		/* Turn off self refresh if both pipes are enabled */
1499
		intel_set_memory_cxsr(dev_priv, false);
1500 1501 1502 1503 1504 1505
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1506 1507 1508 1509 1510 1511
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1512
	/* update cursor SR watermark */
1513
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1514 1515 1516

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1517 1518
}

1519 1520
#undef FW_WM

1521
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1522
{
1523
	struct drm_device *dev = unused_crtc->base.dev;
1524
	struct drm_i915_private *dev_priv = to_i915(dev);
1525 1526 1527 1528 1529 1530
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1531
	struct intel_crtc *crtc, *enabled = NULL;
1532 1533 1534

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
1535
	else if (!IS_GEN2(dev_priv))
1536 1537
		wm_info = &i915_wm_info;
	else
1538
		wm_info = &i830_a_wm_info;
1539

1540
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1541
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1542 1543 1544 1545 1546 1547 1548
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1549
		if (IS_GEN2(dev_priv))
1550
			cpp = 4;
1551 1552
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1553

1554
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1555
					       wm_info, fifo_size, cpp,
1556
					       pessimal_latency_ns);
1557
		enabled = crtc;
1558
	} else {
1559
		planea_wm = fifo_size - wm_info->guard_size;
1560 1561 1562 1563
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1564
	if (IS_GEN2(dev_priv))
1565
		wm_info = &i830_bc_wm_info;
1566

1567
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1568
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1569 1570 1571 1572 1573 1574 1575
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1576
		if (IS_GEN2(dev_priv))
1577
			cpp = 4;
1578 1579
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1580

1581
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1582
					       wm_info, fifo_size, cpp,
1583
					       pessimal_latency_ns);
1584 1585 1586 1587
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1588
	} else {
1589
		planeb_wm = fifo_size - wm_info->guard_size;
1590 1591 1592
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1593 1594 1595

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1596
	if (IS_I915GM(dev_priv) && enabled) {
1597
		struct drm_i915_gem_object *obj;
1598

1599
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1600 1601

		/* self-refresh seems busted with untiled */
1602
		if (!i915_gem_object_is_tiled(obj))
1603 1604 1605
			enabled = NULL;
	}

1606 1607 1608 1609 1610 1611
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1612
	intel_set_memory_cxsr(dev_priv, false);
1613 1614

	/* Calc sr entries for one plane configs */
1615
	if (HAS_FW_BLC(dev_priv) && enabled) {
1616 1617
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1618 1619 1620 1621
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1622
		int clock = adjusted_mode->crtc_clock;
1623
		int htotal = adjusted_mode->crtc_htotal;
1624 1625
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1626 1627 1628
		unsigned long line_time_us;
		int entries;

1629
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1630
			cpp = 4;
1631 1632
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1633

1634
		line_time_us = max(htotal * 1000 / clock, 1);
1635 1636 1637

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1638
			cpp * hdisplay;
1639 1640 1641 1642 1643 1644
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1645
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1646 1647
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1648
		else
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1665 1666
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1667 1668
}

1669
static void i845_update_wm(struct intel_crtc *unused_crtc)
1670
{
1671
	struct drm_device *dev = unused_crtc->base.dev;
1672
	struct drm_i915_private *dev_priv = to_i915(dev);
1673
	struct intel_crtc *crtc;
1674
	const struct drm_display_mode *adjusted_mode;
1675 1676 1677 1678 1679 1680 1681
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1682
	adjusted_mode = &crtc->config->base.adjusted_mode;
1683
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1684
				       &i845_wm_info,
1685
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1686
				       4, pessimal_latency_ns);
1687 1688 1689 1690 1691 1692 1693 1694
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1695
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1696
{
1697
	uint32_t pixel_rate;
1698

1699
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1700 1701 1702 1703

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1704
	if (pipe_config->pch_pfit.enabled) {
1705
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1706 1707 1708 1709
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1710 1711 1712 1713 1714 1715 1716 1717

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1718 1719 1720
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1721 1722 1723 1724 1725 1726 1727
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1728
/* latency must be in 0.1us units. */
1729
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1730 1731 1732
{
	uint64_t ret;

1733 1734 1735
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1736
	ret = (uint64_t) pixel_rate * cpp * latency;
1737 1738 1739 1740 1741
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1742
/* latency must be in 0.1us units. */
1743
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1744
			       uint32_t horiz_pixels, uint8_t cpp,
1745 1746 1747 1748
			       uint32_t latency)
{
	uint32_t ret;

1749 1750
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1751 1752
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1753

1754
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1755
	ret = (ret + 1) * horiz_pixels * cpp;
1756 1757 1758 1759
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1760
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1761
			   uint8_t cpp)
1762
{
1763 1764 1765 1766 1767 1768
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1769
	if (WARN_ON(!cpp))
1770 1771 1772 1773
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1774
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1775 1776
}

1777
struct ilk_wm_maximums {
1778 1779 1780 1781 1782 1783
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1784 1785 1786 1787
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1788
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1789
				   const struct intel_plane_state *pstate,
1790 1791
				   uint32_t mem_value,
				   bool is_lp)
1792
{
1793 1794
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1795 1796
	uint32_t method1, method2;

1797
	if (!cstate->base.active || !pstate->base.visible)
1798 1799
		return 0;

1800
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1801 1802 1803 1804

	if (!is_lp)
		return method1;

1805 1806
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1807
				 drm_rect_width(&pstate->base.dst),
1808
				 cpp, mem_value);
1809 1810

	return min(method1, method2);
1811 1812
}

1813 1814 1815 1816
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1817
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1818
				   const struct intel_plane_state *pstate,
1819 1820
				   uint32_t mem_value)
{
1821 1822
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1823 1824
	uint32_t method1, method2;

1825
	if (!cstate->base.active || !pstate->base.visible)
1826 1827
		return 0;

1828
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1829 1830
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1831
				 drm_rect_width(&pstate->base.dst),
1832
				 cpp, mem_value);
1833 1834 1835
	return min(method1, method2);
}

1836 1837 1838 1839
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1840
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1841
				   const struct intel_plane_state *pstate,
1842 1843
				   uint32_t mem_value)
{
1844 1845 1846 1847 1848 1849
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1850
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1851

1852
	if (!cstate->base.active)
1853 1854
		return 0;

1855 1856
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1857
			      width, cpp, mem_value);
1858 1859
}

1860
/* Only for WM_LP. */
1861
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1862
				   const struct intel_plane_state *pstate,
1863
				   uint32_t pri_val)
1864
{
1865 1866
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1867

1868
	if (!cstate->base.active || !pstate->base.visible)
1869 1870
		return 0;

1871
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1872 1873
}

1874 1875
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1876 1877 1878
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1879 1880 1881 1882 1883
		return 768;
	else
		return 512;
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1918 1919 1920
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1921
				     const struct intel_wm_config *config,
1922 1923 1924 1925 1926 1927
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1928
	if (is_sprite && !config->sprites_enabled)
1929 1930 1931
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1932
	if (level == 0 || config->num_pipes_active > 1) {
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1944
	if (config->sprites_enabled) {
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1956
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1957 1958 1959 1960
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1961 1962
				      int level,
				      const struct intel_wm_config *config)
1963 1964
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1965
	if (level > 0 && config->num_pipes_active > 1)
1966 1967 1968
		return 64;

	/* otherwise just report max that registers can hold */
1969
	return ilk_cursor_wm_reg_max(dev, level);
1970 1971
}

1972
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1973 1974 1975
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1976
				    struct ilk_wm_maximums *max)
1977
{
1978 1979 1980
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1981
	max->fbc = ilk_fbc_wm_reg_max(dev);
1982 1983
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1994
static bool ilk_validate_wm_level(int level,
1995
				  const struct ilk_wm_maximums *max,
1996
				  struct intel_wm_level *result)
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2035
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2036
				 const struct intel_crtc *intel_crtc,
2037
				 int level,
2038
				 struct intel_crtc_state *cstate,
2039 2040 2041
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2042
				 struct intel_wm_level *result)
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2067 2068 2069
	result->enable = true;
}

2070
static uint32_t
2071
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2072
{
2073 2074
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2075 2076
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2077
	u32 linetime, ips_linetime;
2078

2079 2080 2081 2082
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2083
	if (WARN_ON(intel_state->cdclk == 0))
2084
		return 0;
2085

2086 2087 2088
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2089 2090 2091
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2092
					 intel_state->cdclk);
2093

2094 2095
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2096 2097
}

2098
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2099
{
2100
	struct drm_i915_private *dev_priv = to_i915(dev);
2101

2102
	if (IS_GEN9(dev_priv)) {
2103
		uint32_t val;
2104
		int ret, i;
2105
		int level, max_level = ilk_wm_max_level(dev_priv);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2161
		/*
2162 2163
		 * WaWmMemoryReadLatency:skl
		 *
2164
		 * punit doesn't take into account the read latency so we need
2165 2166
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2167
		 */
2168 2169 2170 2171 2172
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2173
				wm[level] += 2;
2174
			}
2175 2176
		}

2177
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2178 2179 2180 2181 2182
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2183 2184 2185 2186
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2187 2188 2189 2190 2191 2192 2193
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2194 2195 2196 2197 2198 2199 2200
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2201 2202 2203
	}
}

2204 2205
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2206 2207
{
	/* ILK sprite LP0 latency is 1300 ns */
2208
	if (IS_GEN5(dev_priv))
2209 2210 2211
		wm[0] = 13;
}

2212 2213
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2214 2215
{
	/* ILK cursor LP0 latency is 1300 ns */
2216
	if (IS_GEN5(dev_priv))
2217 2218 2219
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2220
	if (IS_IVYBRIDGE(dev_priv))
2221 2222 2223
		wm[3] *= 2;
}

2224
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2225 2226
{
	/* how many WM levels are we expecting */
2227
	if (INTEL_GEN(dev_priv) >= 9)
2228
		return 7;
2229
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2230
		return 4;
2231
	else if (INTEL_GEN(dev_priv) >= 6)
2232
		return 3;
2233
	else
2234 2235
		return 2;
}
2236

2237
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2238
				   const char *name,
2239
				   const uint16_t wm[8])
2240
{
2241
	int level, max_level = ilk_wm_max_level(dev_priv);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2252 2253 2254 2255
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2256
		if (IS_GEN9(dev_priv))
2257 2258
			latency *= 10;
		else if (level > 0)
2259 2260 2261 2262 2263 2264 2265 2266
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2267 2268 2269
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2270
	int level, max_level = ilk_wm_max_level(dev_priv);
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
2284
	struct drm_i915_private *dev_priv = to_i915(dev);
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2299 2300 2301
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2302 2303
}

2304
static void ilk_setup_wm_latency(struct drm_device *dev)
2305
{
2306
	struct drm_i915_private *dev_priv = to_i915(dev);
2307 2308 2309 2310 2311 2312 2313 2314

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2315
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2316
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2317

2318 2319 2320
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2321

2322
	if (IS_GEN6(dev_priv))
2323
		snb_wm_latency_quirk(dev);
2324 2325
}

2326 2327
static void skl_setup_wm_latency(struct drm_device *dev)
{
2328
	struct drm_i915_private *dev_priv = to_i915(dev);
2329 2330

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2331
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2332 2333
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2357
/* Compute new watermarks for the pipe */
2358
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2359
{
2360 2361
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2362
	struct intel_pipe_wm *pipe_wm;
2363
	struct drm_device *dev = state->dev;
2364
	const struct drm_i915_private *dev_priv = to_i915(dev);
2365
	struct intel_plane *intel_plane;
2366
	struct intel_plane_state *pristate = NULL;
2367
	struct intel_plane_state *sprstate = NULL;
2368
	struct intel_plane_state *curstate = NULL;
2369
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2370
	struct ilk_wm_maximums max;
2371

2372
	pipe_wm = &cstate->wm.ilk.optimal;
2373

2374
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2375 2376 2377 2378 2379 2380
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2381 2382

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2383
			pristate = ps;
2384
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2385
			sprstate = ps;
2386
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2387
			curstate = ps;
2388 2389
	}

2390
	pipe_wm->pipe_enabled = cstate->base.active;
2391
	if (sprstate) {
2392 2393 2394 2395
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2396 2397
	}

2398 2399
	usable_level = max_level;

2400
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2401
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2402
		usable_level = 1;
2403 2404

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2405
	if (pipe_wm->sprites_scaled)
2406
		usable_level = 0;
2407

2408
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2409 2410 2411 2412
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2413

2414
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2415
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2416

2417
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2418
		return -EINVAL;
2419 2420 2421 2422

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2423
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2424

2425
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2426
				     pristate, sprstate, curstate, wm);
2427 2428 2429 2430 2431 2432

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2433 2434 2435 2436 2437 2438
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2439
			usable_level = level;
2440 2441
	}

2442
	return 0;
2443 2444
}

2445 2446 2447 2448 2449 2450 2451 2452 2453
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2454
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2455
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2456
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2457 2458 2459 2460 2461 2462

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2463
	*a = newstate->wm.ilk.optimal;
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2492
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2493 2494 2495 2496 2497
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2498 2499 2500 2501 2502 2503 2504 2505 2506
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2507 2508
	ret_wm->enable = true;

2509
	for_each_intel_crtc(dev, intel_crtc) {
2510
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2511 2512 2513 2514
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2515

2516 2517 2518 2519 2520
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2521
		if (!wm->enable)
2522
			ret_wm->enable = false;
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2535
			 const struct intel_wm_config *config,
2536
			 const struct ilk_wm_maximums *max,
2537 2538
			 struct intel_pipe_wm *merged)
{
2539
	struct drm_i915_private *dev_priv = to_i915(dev);
2540
	int level, max_level = ilk_wm_max_level(dev_priv);
2541
	int last_enabled_level = max_level;
2542

2543
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2544
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2545
	    config->num_pipes_active > 1)
2546
		last_enabled_level = 0;
2547

2548 2549
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2550 2551 2552 2553 2554 2555 2556

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2557 2558 2559 2560 2561
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2562 2563 2564 2565 2566 2567

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2568 2569
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2570 2571 2572
			wm->fbc_val = 0;
		}
	}
2573 2574 2575 2576 2577 2578 2579

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2580
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2581
	    intel_fbc_is_active(dev_priv)) {
2582 2583 2584 2585 2586 2587
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2588 2589
}

2590 2591 2592 2593 2594 2595
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2596 2597 2598
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2599
	struct drm_i915_private *dev_priv = to_i915(dev);
2600

2601
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2602 2603 2604 2605 2606
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2607
static void ilk_compute_wm_results(struct drm_device *dev,
2608
				   const struct intel_pipe_wm *merged,
2609
				   enum intel_ddb_partitioning partitioning,
2610
				   struct ilk_wm_values *results)
2611
{
2612 2613
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2614

2615
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2616
	results->partitioning = partitioning;
2617

2618
	/* LP1+ register values */
2619
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2620
		const struct intel_wm_level *r;
2621

2622
		level = ilk_wm_lp_to_level(wm_lp, merged);
2623

2624
		r = &merged->wm[level];
2625

2626 2627 2628 2629 2630
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2631
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2632 2633 2634
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2635 2636 2637
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2638 2639 2640 2641 2642 2643 2644
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2645 2646 2647 2648
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2649 2650 2651 2652 2653
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2654
	}
2655

2656
	/* LP0 register values */
2657
	for_each_intel_crtc(dev, intel_crtc) {
2658
		enum pipe pipe = intel_crtc->pipe;
2659 2660
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2661 2662 2663 2664

		if (WARN_ON(!r->enable))
			continue;

2665
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2666

2667 2668 2669 2670
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2671 2672 2673
	}
}

2674 2675
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2676
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2677 2678
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2679
{
2680
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2681
	int level1 = 0, level2 = 0;
2682

2683 2684 2685 2686 2687
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2688 2689
	}

2690 2691
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2692 2693 2694
			return r2;
		else
			return r1;
2695
	} else if (level1 > level2) {
2696 2697 2698 2699 2700 2701
		return r1;
	} else {
		return r2;
	}
}

2702 2703 2704 2705 2706 2707 2708 2709
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2710
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2711 2712
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2713 2714 2715 2716 2717
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2718
	for_each_pipe(dev_priv, pipe) {
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2762 2763
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2764
{
2765
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2766
	bool changed = false;
2767

2768 2769 2770
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2771
		changed = true;
2772 2773 2774 2775
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2776
		changed = true;
2777 2778 2779 2780
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2781
		changed = true;
2782
	}
2783

2784 2785 2786 2787
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2788

2789 2790 2791 2792 2793 2794 2795
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2796 2797
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2798
{
2799
	struct drm_device *dev = &dev_priv->drm;
2800
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2801 2802 2803
	unsigned int dirty;
	uint32_t val;

2804
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2805 2806 2807 2808 2809
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2810
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2811
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2812
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2813
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2814
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2815 2816
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2817
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2818
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2819
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2820
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2821
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2822 2823
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2824
	if (dirty & WM_DIRTY_DDB) {
2825
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2840 2841
	}

2842
	if (dirty & WM_DIRTY_FBC) {
2843 2844 2845 2846 2847 2848 2849 2850
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2851 2852 2853 2854 2855
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2856 2857 2858 2859 2860
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2861

2862
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2863
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2864
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2865
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2866
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2867
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2868 2869

	dev_priv->wm.hw = *results;
2870 2871
}

2872
bool ilk_disable_lp_wm(struct drm_device *dev)
2873
{
2874
	struct drm_i915_private *dev_priv = to_i915(dev);
2875 2876 2877 2878

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2879
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2880

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2918 2919 2920
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2921 2922 2923 2924 2925 2926 2927 2928
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2929 2930
}

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2943
intel_enable_sagv(struct drm_i915_private *dev_priv)
2944 2945 2946
{
	int ret;

2947 2948 2949 2950
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2966
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2967
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2968
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2969 2970 2971 2972 2973 2974
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2975
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2976 2977 2978 2979
	return 0;
}

static int
2980
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2994
intel_disable_sagv(struct drm_i915_private *dev_priv)
2995 2996 2997
{
	int ret, result;

2998 2999 3000 3001
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3002 3003 3004 3005 3006 3007
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3008
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3020
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
3021
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3022
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3023 3024 3025 3026 3027 3028
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

3029
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3030 3031 3032
	return 0;
}

3033
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3034 3035 3036 3037
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3038 3039
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3040 3041
	struct intel_crtc_state *cstate;
	struct skl_plane_wm *wm;
3042
	enum pipe pipe;
3043
	int level, latency;
3044

3045 3046 3047
	if (!intel_has_sagv(dev_priv))
		return false;

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3061
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3062
	cstate = to_intel_crtc_state(crtc->base.state);
3063

3064
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3065 3066
		return false;

3067
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3068
		wm = &cstate->wm.skl.optimal.planes[skl_wm_plane_id(plane)];
3069

3070
		/* Skip this plane if it's not enabled */
3071
		if (!wm->wm[0].plane_en)
3072 3073 3074
			continue;

		/* Find the highest enabled wm level for this plane */
3075
		for (level = ilk_wm_max_level(dev_priv);
3076
		     !wm->wm[level].plane_en; --level)
3077 3078
		     { }

3079 3080 3081 3082 3083 3084 3085
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
		    plane->base.state->fb->modifier[0] ==
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3086 3087 3088 3089 3090
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3091
		if (latency < SKL_SAGV_BLOCK_TIME)
3092 3093 3094 3095 3096 3097
			return false;
	}

	return true;
}

3098 3099
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3100
				   const struct intel_crtc_state *cstate,
3101 3102
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3103
{
3104 3105 3106
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3107
	struct drm_crtc *for_crtc = cstate->base.crtc;
3108 3109
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3110

3111
	if (WARN_ON(!state) || !cstate->base.active) {
3112 3113
		alloc->start = 0;
		alloc->end = 0;
3114
		*num_active = hweight32(dev_priv->active_crtcs);
3115 3116 3117
		return;
	}

3118 3119 3120 3121 3122
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3123 3124
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3125 3126 3127

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3128
	/*
3129 3130 3131 3132 3133 3134
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3135
	 */
3136
	if (!intel_state->active_pipe_changes) {
3137
		*alloc = to_intel_crtc(for_crtc)->hw_ddb;
3138
		return;
3139
	}
3140 3141 3142 3143 3144 3145

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3146 3147
}

3148
static unsigned int skl_cursor_allocation(int num_active)
3149
{
3150
	if (num_active == 1)
3151 3152 3153 3154 3155
		return 32;

	return 8;
}

3156 3157 3158 3159
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3160 3161
	if (entry->end)
		entry->end += 1;
3162 3163
}

3164 3165
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3166 3167 3168 3169 3170
{
	enum pipe pipe;
	int plane;
	u32 val;

3171 3172
	memset(ddb, 0, sizeof(*ddb));

3173
	for_each_pipe(dev_priv, pipe) {
3174 3175 3176 3177
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3178 3179
			continue;

3180
		for_each_universal_plane(dev_priv, pipe, plane) {
3181 3182 3183 3184 3185 3186
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3187 3188
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3189 3190

		intel_display_power_put(dev_priv, power_domain);
3191 3192 3193
	}
}

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3216
	if (WARN_ON(!pstate->base.visible))
3217 3218 3219
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3220 3221 3222 3223
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3224
	if (drm_rotation_90_or_270(pstate->base.rotation))
3225 3226 3227 3228 3229 3230 3231 3232 3233
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3234
static unsigned int
3235 3236 3237
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3238
{
3239
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3240
	struct drm_framebuffer *fb = pstate->fb;
3241
	uint32_t down_scale_amount, data_rate;
3242
	uint32_t width = 0, height = 0;
3243 3244
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3245
	if (!intel_pstate->base.visible)
3246 3247 3248 3249 3250
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3251

3252 3253
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3254

3255
	if (drm_rotation_90_or_270(pstate->rotation))
3256
		swap(width, height);
3257 3258

	/* for planar format */
3259
	if (format == DRM_FORMAT_NV12) {
3260
		if (y)  /* y-plane data rate */
3261
			data_rate = width * height *
3262
				drm_format_plane_cpp(format, 0);
3263
		else    /* uv-plane data rate */
3264
			data_rate = (width / 2) * (height / 2) *
3265
				drm_format_plane_cpp(format, 1);
3266 3267 3268
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3269 3270
	}

3271 3272 3273
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3274 3275 3276 3277 3278 3279 3280 3281
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3282 3283 3284
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3285
{
3286 3287
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3288
	struct drm_plane *plane;
3289
	const struct intel_plane *intel_plane;
3290
	const struct drm_plane_state *pstate;
3291
	unsigned int rate, total_data_rate = 0;
3292
	int id;
3293 3294 3295

	if (WARN_ON(!state))
		return 0;
3296

3297
	/* Calculate and cache data rate for each plane */
3298
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3299 3300 3301 3302 3303 3304
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3305 3306 3307
		plane_data_rate[id] = rate;

		total_data_rate += rate;
3308 3309 3310 3311

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3312
		plane_y_data_rate[id] = rate;
3313

3314
		total_data_rate += rate;
3315 3316 3317 3318 3319
	}

	return total_data_rate;
}

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3342 3343
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3344

3345
	if (drm_rotation_90_or_270(pstate->rotation))
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3359
	if (drm_rotation_90_or_270(pstate->rotation)) {
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
		struct intel_plane *intel_plane = to_intel_plane(plane);
		int id = skl_wm_plane_id(intel_plane);

		if (id == PLANE_CURSOR)
			continue;

		if (!pstate->visible)
			continue;

		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3407
static int
3408
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3409 3410
		      struct skl_ddb_allocation *ddb /* out */)
{
3411
	struct drm_atomic_state *state = cstate->base.state;
3412
	struct drm_crtc *crtc = cstate->base.crtc;
3413 3414 3415
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3416
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3417
	uint16_t alloc_size, start;
3418 3419
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3420
	unsigned int total_data_rate;
3421 3422
	int num_active;
	int id, i;
3423 3424
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3425

3426 3427 3428 3429
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3430 3431 3432
	if (WARN_ON(!state))
		return 0;

3433
	if (!cstate->base.active) {
3434
		alloc->start = alloc->end = 0;
3435 3436 3437
		return 0;
	}

3438
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3439
	alloc_size = skl_ddb_entry_size(alloc);
3440 3441
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3442
		return 0;
3443 3444
	}

3445
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3446

3447 3448 3449 3450 3451
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3452

3453
	for (i = 0; i < I915_MAX_PLANES; i++) {
3454 3455
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3456 3457
	}

3458 3459 3460
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3461
	/*
3462 3463
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3464 3465 3466
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3467 3468 3469
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3470
	if (total_data_rate == 0)
3471
		return 0;
3472

3473
	start = alloc->start;
3474
	for (id = 0; id < I915_MAX_PLANES; id++) {
3475 3476
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3477

3478 3479 3480
		if (id == PLANE_CURSOR)
			continue;

3481
		data_rate = plane_data_rate[id];
3482 3483

		/*
3484
		 * allocation for (packed formats) or (uv-plane part of planar format):
3485 3486 3487
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3488
		plane_blocks = minimum[id];
3489 3490
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3491

3492 3493 3494 3495 3496
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3497 3498

		start += plane_blocks;
3499 3500 3501 3502

		/*
		 * allocation for y_plane part of planar format:
		 */
3503
		y_data_rate = plane_y_data_rate[id];
3504 3505 3506 3507

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3508

3509 3510 3511 3512
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3513 3514

		start += y_plane_blocks;
3515 3516
	}

3517
	return 0;
3518 3519
}

3520 3521
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3522
 * for the read latency) and cpp should always be <= 8, so that
3523 3524 3525
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3526
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3527 3528 3529 3530 3531 3532
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3533
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3534 3535 3536 3537 3538 3539
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3540
			       uint32_t latency, uint32_t plane_blocks_per_line)
3541
{
3542 3543
	uint32_t ret;
	uint32_t wm_intermediate_val;
3544 3545 3546 3547 3548 3549

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3550
				plane_blocks_per_line;
3551 3552 3553 3554

	return ret;
}

3555 3556 3557 3558 3559 3560 3561 3562
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3563
	if (WARN_ON(!pstate->base.visible))
3564 3565 3566 3567 3568 3569
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3570
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3571 3572 3573 3574 3575 3576 3577 3578
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3579 3580 3581 3582 3583 3584 3585 3586
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3587
{
3588 3589
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3590 3591 3592 3593 3594
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3595
	uint8_t cpp;
3596
	uint32_t width = 0, height = 0;
3597
	uint32_t plane_pixel_rate;
3598
	uint32_t y_tile_minimum, y_min_scanlines;
3599 3600 3601
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3602

3603
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3604 3605 3606
		*enabled = false;
		return 0;
	}
3607

3608 3609 3610
	if (apply_memory_bw_wa && fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
		latency += 15;

3611 3612
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3613

3614
	if (drm_rotation_90_or_270(pstate->rotation))
3615 3616
		swap(width, height);

3617
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3618 3619
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3620
	if (drm_rotation_90_or_270(pstate->rotation)) {
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3635 3636 3637
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3638 3639 3640 3641 3642
		}
	} else {
		y_min_scanlines = 4;
	}

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
	plane_bytes_per_line = width * cpp;
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3656 3657
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3658
				 cstate->base.adjusted_mode.crtc_htotal,
3659
				 latency,
3660
				 plane_blocks_per_line);
3661

3662
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3663 3664
	if (apply_memory_bw_wa)
		y_tile_minimum *= 2;
3665

3666 3667
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3668 3669
		selected_result = max(method2, y_tile_minimum);
	} else {
3670 3671 3672 3673
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3674 3675 3676 3677
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3678

3679 3680
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3681

3682
	if (level >= 1 && level <= 7) {
3683
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3684 3685
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
			res_blocks += y_tile_minimum;
3686
			res_lines += y_min_scanlines;
3687
		} else {
3688
			res_blocks++;
3689
		}
3690
	}
3691

3692 3693
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3710
	}
3711 3712 3713

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3714
	*enabled = true;
3715

3716
	return 0;
3717 3718
}

3719 3720 3721 3722
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3723
		     struct intel_plane *intel_plane,
3724 3725
		     int level,
		     struct skl_wm_level *result)
3726
{
3727
	struct drm_atomic_state *state = cstate->base.state;
3728
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3729 3730
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3731
	uint16_t ddb_blocks;
3732
	enum pipe pipe = intel_crtc->pipe;
3733
	int ret;
L
Lyude 已提交
3734 3735 3736 3737 3738 3739
	int i = skl_wm_plane_id(intel_plane);

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3740

3741
	/*
L
Lyude 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3751
	 */
L
Lyude 已提交
3752 3753
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3754

L
Lyude 已提交
3755
	WARN_ON(!intel_pstate->base.fb);
3756

L
Lyude 已提交
3757
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3758

L
Lyude 已提交
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3769 3770

	return 0;
3771 3772
}

3773
static uint32_t
3774
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3775
{
3776 3777
	uint32_t pixel_rate;

3778
	if (!cstate->base.active)
3779 3780
		return 0;

3781 3782 3783
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3784
		return 0;
3785

3786
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3787
			    pixel_rate);
3788 3789
}

3790
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3791
				      struct skl_wm_level *trans_wm /* out */)
3792
{
3793
	if (!cstate->base.active)
3794
		return;
3795 3796

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3797
	trans_wm->plane_en = false;
3798 3799
}

3800 3801 3802
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3803
{
3804
	struct drm_device *dev = cstate->base.crtc->dev;
3805
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3806 3807
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3808
	int level, max_level = ilk_wm_max_level(dev_priv);
3809
	int ret;
3810

L
Lyude 已提交
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
		wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3830
	}
3831
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3832

3833
	return 0;
3834 3835
}

3836 3837
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3838 3839 3840 3841 3842 3843 3844 3845
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3861
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3862 3863
			const struct skl_plane_wm *wm,
			const struct skl_ddb_allocation *ddb,
3864 3865 3866 3867 3868
			int plane)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3869
	int level, max_level = ilk_wm_max_level(dev_priv);
3870 3871 3872
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3873 3874
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane, level),
				   &wm->wm[level]);
3875
	}
3876 3877
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane),
			   &wm->trans_wm);
3878 3879

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3880
			    &ddb->plane[pipe][plane]);
3881
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3882
			    &ddb->y_plane[pipe][plane]);
3883 3884 3885
}

void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3886 3887
			 const struct skl_plane_wm *wm,
			 const struct skl_ddb_allocation *ddb)
3888 3889 3890 3891
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3892
	int level, max_level = ilk_wm_max_level(dev_priv);
3893 3894 3895
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3896 3897
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3898
	}
3899
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3900

3901
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3902
			    &ddb->plane[pipe][PLANE_CURSOR]);
3903 3904
}

3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3919 3920
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3921
{
3922
	return a->start < b->end && b->start < a->end;
3923 3924
}

3925
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
3926
				 struct intel_crtc *intel_crtc)
3927
{
3928 3929 3930 3931 3932 3933
	struct drm_crtc *other_crtc;
	struct drm_crtc_state *other_cstate;
	struct intel_crtc *other_intel_crtc;
	const struct skl_ddb_entry *ddb =
		&to_intel_crtc_state(intel_crtc->base.state)->wm.skl.ddb;
	int i;
3934

3935 3936
	for_each_crtc_in_state(state, other_crtc, other_cstate, i) {
		other_intel_crtc = to_intel_crtc(other_crtc);
3937

3938
		if (other_intel_crtc == intel_crtc)
3939 3940
			continue;

3941
		if (skl_ddb_entries_overlap(ddb, &other_intel_crtc->hw_ddb))
3942
			return true;
3943 3944
	}

3945
	return false;
3946 3947
}

3948
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3949
			      const struct skl_pipe_wm *old_pipe_wm,
3950
			      struct skl_pipe_wm *pipe_wm, /* out */
3951
			      struct skl_ddb_allocation *ddb, /* out */
3952
			      bool *changed /* out */)
3953
{
3954
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3955
	int ret;
3956

3957 3958 3959
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3960

3961
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3962 3963 3964
		*changed = false;
	else
		*changed = true;
3965

3966
	return 0;
3967 3968
}

3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3982
static int
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;
	int id;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

4000
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
		id = skl_wm_plane_id(to_intel_plane(plane));

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
					&new_ddb->plane[pipe][id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
					&new_ddb->y_plane[pipe][id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4017 4018 4019 4020 4021 4022 4023
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4024
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4025
	uint32_t realloc_pipes = pipes_modified(state);
4026 4027 4028 4029 4030 4031 4032 4033
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4034 4035 4036 4037 4038 4039
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4040 4041
		intel_state->active_pipe_changes = ~0;

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4065
	if (intel_state->active_pipe_changes) {
4066
		realloc_pipes = ~0;
4067 4068
		intel_state->wm_results.dirty_pipes = ~0;
	}
4069

4070 4071 4072 4073 4074 4075
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4076 4077 4078 4079 4080 4081 4082
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4083
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4084 4085
		if (ret)
			return ret;
4086

4087
		ret = skl_ddb_add_affected_planes(cstate);
4088 4089
		if (ret)
			return ret;
4090 4091 4092 4093 4094
	}

	return 0;
}

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	int id;
4119
	int i;
4120 4121

	for_each_crtc_in_state(state, crtc, cstate, i) {
4122 4123
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4124

4125
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4126 4127 4128 4129 4130 4131 4132 4133 4134
			const struct skl_ddb_entry *old, *new;

			id = skl_wm_plane_id(intel_plane);
			old = &old_ddb->plane[pipe][id];
			new = &new_ddb->plane[pipe][id];

			if (skl_ddb_entry_equal(old, new))
				continue;

4135 4136 4137 4138 4139
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4140 4141 4142 4143
		}
	}
}

4144 4145 4146 4147 4148
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4149 4150 4151
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4152
	bool changed = false;
4153
	int ret, i;
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4168 4169 4170
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4171 4172 4173 4174
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4188 4189
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4190 4191

		pipe_wm = &intel_cstate->wm.skl.optimal;
4192 4193
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4207 4208
	skl_print_wm_changes(state);

4209 4210 4211
	return 0;
}

4212
static void skl_update_wm(struct intel_crtc *intel_crtc)
4213
{
4214
	struct drm_device *dev = intel_crtc->base.dev;
4215
	struct drm_i915_private *dev_priv = to_i915(dev);
4216
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4217
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4218
	struct intel_crtc_state *cstate = to_intel_crtc_state(intel_crtc->base.state);
4219
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4220
	enum pipe pipe = intel_crtc->pipe;
4221

4222
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4223 4224
		return;

4225
	mutex_lock(&dev_priv->wm.wm_mutex);
4226

4227
	/*
4228 4229 4230 4231
	 * If this pipe isn't active already, we're going to be enabling it
	 * very soon. Since it's safe to update a pipe's ddb allocation while
	 * the pipe's shut off, just do so here. Already active pipes will have
	 * their watermarks updated once we update their planes.
4232
	 */
4233
	if (intel_crtc->base.state->active_changed) {
4234 4235
		int plane;

4236
		for_each_universal_plane(dev_priv, pipe, plane)
4237 4238
			skl_write_plane_wm(intel_crtc, &pipe_wm->planes[plane],
					   &results->ddb, plane);
4239

4240 4241
		skl_write_cursor_wm(intel_crtc, &pipe_wm->planes[PLANE_CURSOR],
				    &results->ddb);
4242 4243 4244
	}

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4245

4246 4247
	intel_crtc->hw_ddb = cstate->wm.skl.ddb;

4248
	mutex_unlock(&dev_priv->wm.wm_mutex);
4249 4250
}

4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4269
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4270
{
4271
	struct drm_device *dev = &dev_priv->drm;
4272
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4273
	struct ilk_wm_maximums max;
4274
	struct intel_wm_config config = {};
4275
	struct ilk_wm_values results = {};
4276
	enum intel_ddb_partitioning partitioning;
4277

4278 4279 4280 4281
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4282 4283

	/* 5/6 split only in single pipe config on IVB+ */
4284
	if (INTEL_INFO(dev)->gen >= 7 &&
4285 4286 4287
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4288

4289
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4290
	} else {
4291
		best_lp_wm = &lp_wm_1_2;
4292 4293
	}

4294
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4295
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4296

4297
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4298

4299
	ilk_write_wm_values(dev_priv, &results);
4300 4301
}

4302
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4303
{
4304 4305
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4306

4307
	mutex_lock(&dev_priv->wm.wm_mutex);
4308
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4309 4310 4311
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4312

4313 4314 4315 4316
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4317

4318 4319
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4320
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4321 4322 4323
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4324 4325
}

4326 4327
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4328
{
4329 4330 4331 4332
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4333 4334
}

4335 4336
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4337 4338
{
	struct drm_device *dev = crtc->dev;
4339
	struct drm_i915_private *dev_priv = to_i915(dev);
4340
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4341 4342
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4343
	enum pipe pipe = intel_crtc->pipe;
4344 4345
	int level, id, max_level;
	uint32_t val;
4346

4347
	max_level = ilk_wm_max_level(dev_priv);
4348

4349 4350
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		id = skl_wm_plane_id(intel_plane);
4351
		wm = &out->planes[id];
4352

4353 4354 4355 4356 4357
		for (level = 0; level <= max_level; level++) {
			if (id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, id, level));
			else
				val = I915_READ(CUR_WM(pipe, level));
4358

4359
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4360 4361
		}

4362 4363 4364 4365 4366 4367
		if (id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, id));
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4368 4369
	}

4370 4371
	if (!intel_crtc->active)
		return;
4372

4373
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4374 4375 4376 4377
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4378
	struct drm_i915_private *dev_priv = to_i915(dev);
4379
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4380
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4381
	struct drm_crtc *crtc;
4382 4383
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4384

4385
	skl_ddb_get_hw_state(dev_priv, ddb);
4386 4387 4388 4389 4390 4391
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4392
		if (intel_crtc->active)
4393 4394
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4395

4396 4397 4398 4399 4400 4401 4402
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4403 4404
}

4405 4406 4407
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4408
	struct drm_i915_private *dev_priv = to_i915(dev);
4409
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4410
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4411
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4412
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4413
	enum pipe pipe = intel_crtc->pipe;
4414
	static const i915_reg_t wm0_pipe_reg[] = {
4415 4416 4417 4418 4419 4420
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4421
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4422
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4423

4424 4425
	memset(active, 0, sizeof(*active));

4426
	active->pipe_enabled = intel_crtc->active;
4427 4428

	if (active->pipe_enabled) {
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4443
		int level, max_level = ilk_wm_max_level(dev_priv);
4444 4445 4446 4447 4448 4449 4450 4451 4452

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4453 4454

	intel_crtc->wm.active.ilk = *active;
4455 4456
}

4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
4555
			plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, 0);
4556 4557 4558
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
4559
			plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, sprite + 1);
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4574 4575 4576 4577 4578 4579 4580 4581 4582
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4583
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4610 4611
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4612
	struct drm_i915_private *dev_priv = to_i915(dev);
4613
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4614 4615
	struct drm_crtc *crtc;

4616
	for_each_crtc(dev, crtc)
4617 4618 4619 4620 4621 4622 4623
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4624 4625 4626 4627
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4628

4629
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4630 4631
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4632
	else if (IS_IVYBRIDGE(dev_priv))
4633 4634
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4635 4636 4637 4638 4639

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4672
void intel_update_watermarks(struct intel_crtc *crtc)
4673
{
4674
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4675 4676

	if (dev_priv->display.update_wm)
4677
		dev_priv->display.update_wm(crtc);
4678 4679
}

4680
/*
4681 4682 4683 4684 4685 4686 4687 4688
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4689
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4690 4691 4692
{
	u16 rgvswctl;

4693 4694
	assert_spin_locked(&mchdev_lock);

4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4712
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4713
{
4714
	u32 rgvmodectl;
4715 4716
	u8 fmax, fmin, fstart, vstart;

4717 4718
	spin_lock_irq(&mchdev_lock);

4719 4720
	rgvmodectl = I915_READ(MEMMODECTL);

4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4741
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4742 4743
		PXVFREQ_PX_SHIFT;

4744 4745
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4746

4747 4748 4749
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4766
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4767
		DRM_ERROR("stuck trying to change perf mode\n");
4768
	mdelay(1);
4769

4770
	ironlake_set_drps(dev_priv, fstart);
4771

4772 4773
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4774
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4775
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4776
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4777 4778

	spin_unlock_irq(&mchdev_lock);
4779 4780
}

4781
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4782
{
4783 4784 4785 4786 4787
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4788 4789 4790 4791 4792 4793 4794 4795 4796

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4797
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4798
	mdelay(1);
4799 4800
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4801
	mdelay(1);
4802

4803
	spin_unlock_irq(&mchdev_lock);
4804 4805
}

4806 4807 4808 4809 4810
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4811
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4812
{
4813
	u32 limits;
4814

4815 4816 4817 4818 4819 4820
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4821
	if (IS_GEN9(dev_priv)) {
4822 4823 4824 4825 4826 4827 4828 4829
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4830 4831 4832 4833

	return limits;
}

4834 4835 4836
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4837 4838
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4839 4840 4841 4842

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4843 4844
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4845 4846 4847 4848
			new_power = BETWEEN;
		break;

	case BETWEEN:
4849 4850
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4851
			new_power = LOW_POWER;
4852 4853
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4854 4855 4856 4857
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4858 4859
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4860 4861 4862 4863
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4864
	if (val <= dev_priv->rps.min_freq_softlimit)
4865
		new_power = LOW_POWER;
4866
	if (val >= dev_priv->rps.max_freq_softlimit)
4867 4868 4869 4870 4871 4872 4873 4874
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4875 4876
		ei_up = 16000;
		threshold_up = 95;
4877 4878

		/* Downclock if less than 85% busy over 32ms */
4879 4880
		ei_down = 32000;
		threshold_down = 85;
4881 4882 4883 4884
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4885 4886
		ei_up = 13000;
		threshold_up = 90;
4887 4888

		/* Downclock if less than 75% busy over 32ms */
4889 4890
		ei_down = 32000;
		threshold_down = 75;
4891 4892 4893 4894
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4895 4896
		ei_up = 10000;
		threshold_up = 85;
4897 4898

		/* Downclock if less than 60% busy over 32ms */
4899 4900
		ei_down = 32000;
		threshold_down = 60;
4901 4902 4903
		break;
	}

4904
	I915_WRITE(GEN6_RP_UP_EI,
4905
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4906
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4907 4908
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4909 4910

	I915_WRITE(GEN6_RP_DOWN_EI,
4911
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4912
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4923

4924
	dev_priv->rps.power = new_power;
4925 4926
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4927 4928 4929
	dev_priv->rps.last_adj = 0;
}

4930 4931 4932 4933 4934
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4935
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4936
	if (val < dev_priv->rps.max_freq_softlimit)
4937
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4938

4939 4940
	mask &= dev_priv->pm_rps_events;

4941
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4942 4943
}

4944 4945 4946
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4947
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4948
{
4949
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4950
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4951 4952
		return;

4953
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4954 4955
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4956

C
Chris Wilson 已提交
4957 4958 4959 4960 4961
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4962

4963
		if (IS_GEN9(dev_priv))
4964 4965
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4966
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4967 4968 4969 4970 4971 4972 4973
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4974
	}
4975 4976 4977 4978

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4979
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4980
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4981

4982 4983
	POSTING_READ(GEN6_RPNSWREQ);

4984
	dev_priv->rps.cur_freq = val;
4985
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4986 4987
}

4988
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4989 4990
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4991 4992
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4993

4994
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4995 4996 4997
		      "Odd GPU freq value\n"))
		val &= ~1;

4998 4999
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5000
	if (val != dev_priv->rps.cur_freq) {
5001
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5002 5003 5004
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
5005 5006 5007 5008 5009

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

5010
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5011 5012
 *
 * * If Gfx is Idle, then
5013 5014 5015
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5016 5017 5018
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5019
	u32 val = dev_priv->rps.idle_freq;
5020

5021
	if (dev_priv->rps.cur_freq <= val)
5022 5023
		return;

5024 5025 5026
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5027
	valleyview_set_rps(dev_priv, val);
5028
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5029 5030
}

5031 5032 5033 5034 5035 5036 5037 5038
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5039

5040 5041
		gen6_enable_rps_interrupts(dev_priv);

5042 5043 5044 5045 5046
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5047 5048 5049 5050
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5051 5052
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5053 5054 5055 5056 5057 5058 5059
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5060
	mutex_lock(&dev_priv->rps.hw_lock);
5061
	if (dev_priv->rps.enabled) {
5062
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5063
			vlv_set_rps_idle(dev_priv);
5064
		else
5065
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5066
		dev_priv->rps.last_adj = 0;
5067 5068
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5069
	}
5070
	mutex_unlock(&dev_priv->rps.hw_lock);
5071

5072
	spin_lock(&dev_priv->rps.client_lock);
5073 5074
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5075
	spin_unlock(&dev_priv->rps.client_lock);
5076 5077
}

5078
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5079 5080
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5081
{
5082 5083 5084
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5085
	if (!(dev_priv->gt.awake &&
5086
	      dev_priv->rps.enabled &&
5087
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5088
		return;
5089

5090 5091 5092
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5093
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5094 5095
		rps = NULL;

5096 5097 5098 5099 5100
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5101
			schedule_work(&dev_priv->rps.work);
5102 5103
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5104

5105 5106 5107
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5108 5109
		} else
			dev_priv->rps.boosts++;
5110
	}
5111
	spin_unlock(&dev_priv->rps.client_lock);
5112 5113
}

5114
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5115
{
5116 5117
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5118
	else
5119
		gen6_set_rps(dev_priv, val);
5120 5121
}

5122
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5123 5124
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5125
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5126 5127
}

5128
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5129 5130 5131 5132
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5133
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5134 5135
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5136
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5137
	I915_WRITE(GEN6_RP_CONTROL, 0);
5138 5139
}

5140
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5141 5142 5143 5144
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5145
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5146
{
5147 5148
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5149
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5150

5151
	I915_WRITE(GEN6_RC_CONTROL, 0);
5152

5153
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5154 5155
}

5156
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5157
{
5158
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5159 5160 5161 5162 5163
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5164
	if (HAS_RC6p(dev_priv))
5165 5166 5167 5168 5169
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5170 5171

	else
5172 5173
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5174 5175
}

5176
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5177
{
5178
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5179 5180
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5192 5193

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5194
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5195 5196 5197 5198 5199 5200 5201 5202
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5203 5204 5205
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5206
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5207 5208 5209 5210 5211 5212 5213
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5214
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5215 5216 5217
		enable_rc6 = false;
	}

5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5232 5233 5234 5235 5236 5237
		enable_rc6 = false;
	}

	return enable_rc6;
}

5238
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5239
{
5240
	/* No RC6 before Ironlake and code is gone for ilk. */
5241
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5242 5243
		return 0;

5244 5245 5246
	if (!enable_rc6)
		return 0;

5247
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5248 5249 5250 5251
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5252
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5253 5254 5255
	if (enable_rc6 >= 0) {
		int mask;

5256
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5257 5258 5259 5260 5261 5262
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5263 5264 5265
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5266 5267 5268

		return enable_rc6 & mask;
	}
5269

5270
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5271
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5272 5273

	return INTEL_RC6_ENABLE;
5274 5275
}

5276
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5277 5278
{
	/* All of these values are in units of 50MHz */
5279

5280
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5281
	if (IS_BROXTON(dev_priv)) {
5282
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5283 5284 5285 5286
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5287
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5288 5289 5290 5291
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5292
	/* hw_max = RP0 until we check for overclocking */
5293
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5294

5295
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5296 5297
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5298 5299 5300 5301 5302
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5303
			dev_priv->rps.efficient_freq =
5304 5305 5306 5307
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5308 5309
	}

5310
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5311
		/* Store the frequency values in 16.66 MHZ units, which is
5312 5313
		 * the natural hardware unit for SKL
		 */
5314 5315 5316 5317 5318 5319
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5320 5321
}

5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5334
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5335
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5336 5337 5338
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5339
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5340
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5341 5342 5343 5344 5345 5346 5347 5348 5349
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5350
		gen9_disable_rps(dev_priv);
5351 5352 5353 5354
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5355 5356 5357 5358 5359 5360 5361 5362
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5363 5364
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5365 5366 5367
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5368
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5369 5370 5371 5372

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5373
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5374
{
5375
	struct intel_engine_cs *engine;
5376
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5377 5378 5379 5380 5381 5382 5383
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5384
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5385 5386 5387 5388 5389

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5390 5391

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5392
	if (IS_SKYLAKE(dev_priv))
5393 5394 5395
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5396 5397
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5398
	for_each_engine(engine, dev_priv, id)
5399
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5400

5401
	if (HAS_GUC(dev_priv))
5402 5403
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5404 5405
	I915_WRITE(GEN6_RC_SLEEP, 0);

5406 5407 5408 5409
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5410
	/* 3a: Enable RC6 */
5411
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5412
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5413
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5414
	/* WaRsUseTimeoutMode:bxt */
5415
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5416
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5417 5418 5419
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5420 5421
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5422 5423 5424
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5425
	}
Z
Zhe Wang 已提交
5426

5427 5428
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5429
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5430
	 */
5431
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5432 5433 5434 5435
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5436

5437
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5438 5439
}

5440
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5441
{
5442
	struct intel_engine_cs *engine;
5443
	enum intel_engine_id id;
5444
	uint32_t rc6_mask = 0;
5445 5446 5447 5448 5449 5450

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5451
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5452 5453 5454 5455 5456 5457 5458 5459

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5460
	for_each_engine(engine, dev_priv, id)
5461
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5462
	I915_WRITE(GEN6_RC_SLEEP, 0);
5463
	if (IS_BROADWELL(dev_priv))
5464 5465 5466
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5467 5468

	/* 3: Enable RC6 */
5469
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5470
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5471 5472
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5473 5474 5475 5476 5477 5478 5479
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5480 5481

	/* 4 Program defaults and thresholds for RPS*/
5482 5483 5484 5485
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5500 5501

	/* 5: Enable RPS */
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5512
	reset_rps(dev_priv, gen6_set_rps);
5513

5514
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5515 5516
}

5517
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5518
{
5519
	struct intel_engine_cs *engine;
5520
	enum intel_engine_id id;
5521
	u32 rc6vids, rc6_mask = 0;
5522 5523
	u32 gtfifodbg;
	int rc6_mode;
5524
	int ret;
5525

5526
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5527

5528 5529 5530 5531 5532 5533 5534 5535 5536
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5537 5538
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5539 5540 5541 5542
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5543
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5554
	for_each_engine(engine, dev_priv, id)
5555
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5556 5557 5558

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5559
	if (IS_IVYBRIDGE(dev_priv))
5560 5561 5562
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5563
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5564 5565
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5566
	/* Check if we are enabling RC6 */
5567
	rc6_mode = intel_enable_rc6();
5568 5569 5570
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5571
	/* We don't use those on Haswell */
5572
	if (!IS_HASWELL(dev_priv)) {
5573 5574
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5575

5576 5577 5578
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5579

5580
	intel_print_rc6_info(dev_priv, rc6_mask);
5581 5582 5583 5584 5585 5586

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5587 5588
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5589 5590
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5591
	reset_rps(dev_priv, gen6_set_rps);
5592

5593 5594
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5595
	if (IS_GEN6(dev_priv) && ret) {
5596
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5597
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5598 5599 5600 5601 5602 5603 5604 5605 5606
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5607
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5608 5609
}

5610
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5611 5612
{
	int min_freq = 15;
5613 5614
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5615
	unsigned int max_gpu_freq, min_gpu_freq;
5616
	int scaling_factor = 180;
5617
	struct cpufreq_policy *policy;
5618

5619
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5620

5621 5622 5623 5624 5625 5626 5627 5628 5629
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5630
		max_ia_freq = tsc_khz;
5631
	}
5632 5633 5634 5635

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5636
	min_ring_freq = I915_READ(DCLK) & 0xf;
5637 5638
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5639

5640
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5641 5642 5643 5644 5645 5646 5647 5648
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5649 5650 5651 5652 5653
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5654 5655
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5656 5657
		unsigned int ia_freq = 0, ring_freq = 0;

5658
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5659 5660 5661 5662 5663
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5664
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5665 5666
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5667
		} else if (IS_HASWELL(dev_priv)) {
5668
			ring_freq = mult_frac(gpu_freq, 5, 4);
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5685

B
Ben Widawsky 已提交
5686 5687
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5688 5689 5690
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5691 5692 5693
	}
}

5694
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5695 5696 5697
{
	u32 val, rp0;

5698
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5699

5700
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5715
	}
5716 5717 5718

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5732 5733 5734 5735
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5736 5737 5738
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5739 5740 5741
	return rp1;
}

5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5753
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5754 5755 5756
{
	u32 val, rp0;

5757
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5770
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5771
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5772
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5773 5774 5775 5776 5777
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5778
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5779
{
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5791 5792
}

5793 5794 5795 5796 5797 5798 5799 5800 5801
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5802 5803 5804 5805 5806 5807 5808 5809 5810

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5811
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5812
{
5813
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5814
	unsigned long pctx_paddr, paddr;
5815 5816 5817 5818 5819
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5820
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5821
		paddr = (dev_priv->mm.stolen_base +
5822
			 (ggtt->stolen_size - pctx_size));
5823 5824 5825 5826

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5827 5828

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5829 5830
}

5831
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5844
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5845
								      pcbr_offset,
5846
								      I915_GTT_OFFSET_NONE,
5847 5848 5849 5850
								      pctx_size);
		goto out;
	}

5851 5852
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5853 5854 5855 5856 5857 5858 5859 5860
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5861
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5862 5863
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5864
		goto out;
5865 5866 5867 5868 5869 5870
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5871
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5872 5873 5874
	dev_priv->vlv_pctx = pctx;
}

5875
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5876 5877 5878 5879
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5880
	i915_gem_object_put(dev_priv->vlv_pctx);
5881 5882 5883
	dev_priv->vlv_pctx = NULL;
}

5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5895
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5896
{
5897
	u32 val;
5898

5899
	valleyview_setup_pctx(dev_priv);
5900

5901 5902
	vlv_init_gpll_ref_freq(dev_priv);

5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5916
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5917

5918 5919 5920
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5921
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5922 5923 5924 5925
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5926
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5927 5928
			 dev_priv->rps.efficient_freq);

5929 5930
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5931
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5932 5933
			 dev_priv->rps.rp1_freq);

5934 5935
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5936
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5937 5938 5939
			 dev_priv->rps.min_freq);
}

5940
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5941
{
5942
	u32 val;
5943

5944
	cherryview_setup_pctx(dev_priv);
5945

5946 5947
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5948
	mutex_lock(&dev_priv->sb_lock);
5949
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5950
	mutex_unlock(&dev_priv->sb_lock);
5951

5952 5953 5954 5955
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5956
	default:
5957 5958 5959
		dev_priv->mem_freq = 1600;
		break;
	}
5960
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5961

5962 5963 5964
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5965
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5966 5967 5968 5969
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5970
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5971 5972
			 dev_priv->rps.efficient_freq);

5973 5974
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5975
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5976 5977
			 dev_priv->rps.rp1_freq);

5978 5979
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5980
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5981
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5982 5983
			 dev_priv->rps.min_freq);

5984 5985 5986 5987 5988
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5989 5990
}

5991
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5992
{
5993
	valleyview_cleanup_pctx(dev_priv);
5994 5995
}

5996
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5997
{
5998
	struct intel_engine_cs *engine;
5999
	enum intel_engine_id id;
6000
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6001 6002 6003

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6004 6005
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6016
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6017

6018 6019 6020
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6021 6022 6023 6024 6025
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6026
	for_each_engine(engine, dev_priv, id)
6027
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6028 6029
	I915_WRITE(GEN6_RC_SLEEP, 0);

6030 6031
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6043 6044
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6045
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6046 6047 6048

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6049
	/* 4 Program defaults and thresholds for RPS*/
6050
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6061
		   GEN6_RP_MEDIA_IS_GFX |
6062 6063 6064 6065
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6066 6067 6068 6069 6070 6071
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6072 6073
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6074 6075 6076
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6077
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6078 6079
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6080
	reset_rps(dev_priv, valleyview_set_rps);
6081

6082
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6083 6084
}

6085
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6086
{
6087
	struct intel_engine_cs *engine;
6088
	enum intel_engine_id id;
6089
	u32 gtfifodbg, val, rc6_mode = 0;
6090 6091 6092

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6093 6094
	valleyview_check_pctx(dev_priv);

6095 6096
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6097 6098
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6099 6100 6101
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6102
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6103
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6104

6105 6106 6107
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6108
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6128
	for_each_engine(engine, dev_priv, id)
6129
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6130

6131
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6132 6133

	/* allows RC6 residency counter to work */
6134
	I915_WRITE(VLV_COUNTER_CONTROL,
6135 6136
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6137 6138
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6139

6140
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6141
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6142

6143
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6144

6145
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6146

D
Deepak S 已提交
6147 6148 6149 6150 6151 6152
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6153
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6154

6155 6156 6157
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6158
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6159 6160
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6161
	reset_rps(dev_priv, valleyview_set_rps);
6162

6163
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6164 6165
}

6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6195
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6196 6197 6198 6199 6200 6201
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6202 6203
	assert_spin_locked(&mchdev_lock);

6204
	diff1 = now - dev_priv->ips.last_time1;
6205 6206 6207 6208 6209 6210 6211

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6212
		return dev_priv->ips.chipset_power;
6213 6214 6215 6216 6217 6218 6219 6220

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6221 6222
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6223 6224
		diff += total_count;
	} else {
6225
		diff = total_count - dev_priv->ips.last_count1;
6226 6227 6228
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6229 6230
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6241 6242
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6243

6244
	dev_priv->ips.chipset_power = ret;
6245 6246 6247 6248

	return ret;
}

6249 6250 6251 6252
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6253
	if (INTEL_INFO(dev_priv)->gen != 5)
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6292
{
6293 6294 6295
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6296
	if (INTEL_INFO(dev_priv)->is_mobile)
6297 6298 6299
		return vm > 0 ? vm : 0;

	return vd;
6300 6301
}

6302
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6303
{
6304
	u64 now, diff, diffms;
6305 6306
	u32 count;

6307
	assert_spin_locked(&mchdev_lock);
6308

6309 6310 6311
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6312 6313 6314 6315 6316 6317 6318

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6319 6320
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6321 6322
		diff += count;
	} else {
6323
		diff = count - dev_priv->ips.last_count2;
6324 6325
	}

6326 6327
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6328 6329 6330 6331

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6332
	dev_priv->ips.gfx_power = diff;
6333 6334
}

6335 6336
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6337
	if (INTEL_INFO(dev_priv)->gen != 5)
6338 6339
		return;

6340
	spin_lock_irq(&mchdev_lock);
6341 6342 6343

	__i915_update_gfx_val(dev_priv);

6344
	spin_unlock_irq(&mchdev_lock);
6345 6346
}

6347
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6348 6349 6350 6351
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6352 6353
	assert_spin_locked(&mchdev_lock);

6354
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6374
	corr2 = (corr * dev_priv->ips.corr);
6375 6376 6377 6378

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6379
	__i915_update_gfx_val(dev_priv);
6380

6381
	return dev_priv->ips.gfx_power + state2;
6382 6383
}

6384 6385 6386 6387
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6388
	if (INTEL_INFO(dev_priv)->gen != 5)
6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6411
	spin_lock_irq(&mchdev_lock);
6412 6413 6414 6415
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6416 6417
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6418 6419 6420 6421

	ret = chipset_val + graphics_val;

out_unlock:
6422
	spin_unlock_irq(&mchdev_lock);
6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6438
	spin_lock_irq(&mchdev_lock);
6439 6440 6441 6442 6443 6444
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6445 6446
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6447 6448

out_unlock:
6449
	spin_unlock_irq(&mchdev_lock);
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6466
	spin_lock_irq(&mchdev_lock);
6467 6468 6469 6470 6471 6472
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6473 6474
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6475 6476

out_unlock:
6477
	spin_unlock_irq(&mchdev_lock);
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6492
	spin_lock_irq(&mchdev_lock);
6493 6494
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6495
	spin_unlock_irq(&mchdev_lock);
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6512
	spin_lock_irq(&mchdev_lock);
6513 6514 6515 6516 6517 6518
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6519
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6520

6521
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6522 6523 6524
		ret = false;

out_unlock:
6525
	spin_unlock_irq(&mchdev_lock);
6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6553 6554
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6555
	spin_lock_irq(&mchdev_lock);
6556
	i915_mch_dev = dev_priv;
6557
	spin_unlock_irq(&mchdev_lock);
6558 6559 6560 6561 6562 6563

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6564
	spin_lock_irq(&mchdev_lock);
6565
	i915_mch_dev = NULL;
6566
	spin_unlock_irq(&mchdev_lock);
6567
}
6568

6569
static void intel_init_emon(struct drm_i915_private *dev_priv)
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6586
		I915_WRITE(PEW(i), 0);
6587
	for (i = 0; i < 3; i++)
6588
		I915_WRITE(DEW(i), 0);
6589 6590 6591

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6592
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6613
		I915_WRITE(PXW(i), val);
6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6629
		I915_WRITE(PXWL(i), 0);
6630 6631 6632 6633 6634 6635

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6636
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6637 6638
}

6639
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6640
{
6641 6642 6643 6644 6645 6646 6647 6648
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6649

6650
	mutex_lock(&dev_priv->drm.struct_mutex);
6651 6652 6653
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6654 6655 6656 6657
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6658
	else if (INTEL_GEN(dev_priv) >= 6)
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6688 6689 6690
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6691
	mutex_unlock(&dev_priv->rps.hw_lock);
6692
	mutex_unlock(&dev_priv->drm.struct_mutex);
6693 6694

	intel_autoenable_gt_powersave(dev_priv);
6695 6696
}

6697
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6698
{
6699
	if (IS_VALLEYVIEW(dev_priv))
6700
		valleyview_cleanup_gt_powersave(dev_priv);
6701 6702 6703

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6704 6705
}

6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6725 6726 6727 6728
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6729 6730

	gen6_reset_rps_interrupts(dev_priv);
6731 6732
}

6733
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6734
{
6735 6736
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6737

6738
	mutex_lock(&dev_priv->rps.hw_lock);
6739

6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6751
	}
6752 6753 6754

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6755 6756
}

6757
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6758
{
6759 6760 6761
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6762 6763
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6764

6765 6766 6767
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6768

6769
	mutex_lock(&dev_priv->rps.hw_lock);
6770 6771 6772 6773 6774

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6775
	} else if (INTEL_GEN(dev_priv) >= 9) {
6776 6777 6778
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6779
			gen6_update_ring_freq(dev_priv);
6780 6781
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6782
		gen6_update_ring_freq(dev_priv);
6783
	} else if (INTEL_GEN(dev_priv) >= 6) {
6784
		gen6_enable_rps(dev_priv);
6785
		gen6_update_ring_freq(dev_priv);
6786 6787 6788
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6789
	}
6790 6791 6792 6793 6794 6795 6796

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6797
	dev_priv->rps.enabled = true;
6798 6799
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6800

6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6811
	rcs = dev_priv->engine[RCS];
6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6864 6865
static void ibx_init_clock_gating(struct drm_device *dev)
{
6866
	struct drm_i915_private *dev_priv = to_i915(dev);
6867 6868 6869 6870 6871 6872 6873 6874 6875

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6876 6877
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
6878
	struct drm_i915_private *dev_priv = to_i915(dev);
6879
	enum pipe pipe;
6880

6881
	for_each_pipe(dev_priv, pipe) {
6882 6883 6884
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6885 6886 6887

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6888 6889 6890
	}
}

6891 6892
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
6893
	struct drm_i915_private *dev_priv = to_i915(dev);
6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6905
static void ironlake_init_clock_gating(struct drm_device *dev)
6906
{
6907
	struct drm_i915_private *dev_priv = to_i915(dev);
6908
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6909

6910 6911 6912 6913
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6914 6915 6916
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6934
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6935 6936 6937
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6938 6939

	ilk_init_lp_watermarks(dev);
6940 6941 6942 6943 6944 6945 6946 6947

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6948
	if (IS_IRONLAKE_M(dev_priv)) {
6949
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6950 6951 6952 6953 6954 6955 6956 6957
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6958 6959
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6960 6961 6962 6963 6964 6965
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6966

6967
	/* WaDisableRenderCachePipelinedFlush:ilk */
6968 6969
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6970

6971 6972 6973
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6974
	g4x_disable_trickle_feed(dev);
6975

6976 6977 6978 6979 6980
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
6981
	struct drm_i915_private *dev_priv = to_i915(dev);
6982
	int pipe;
6983
	uint32_t val;
6984 6985 6986 6987 6988 6989

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6990 6991 6992
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6993 6994
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6995 6996 6997
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6998
	for_each_pipe(dev_priv, pipe) {
6999 7000 7001
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7002
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7003
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7004 7005 7006
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7007 7008
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7009
	/* WADP0ClockGatingDisable */
7010
	for_each_pipe(dev_priv, pipe) {
7011 7012 7013
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7014 7015
}

7016 7017
static void gen6_check_mch_setup(struct drm_device *dev)
{
7018
	struct drm_i915_private *dev_priv = to_i915(dev);
7019 7020 7021
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7022 7023 7024
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7025 7026
}

7027
static void gen6_init_clock_gating(struct drm_device *dev)
7028
{
7029
	struct drm_i915_private *dev_priv = to_i915(dev);
7030
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7031

7032
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7033 7034 7035 7036 7037

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7038
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7039 7040 7041
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7042 7043 7044
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7045 7046 7047
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7048 7049 7050 7051
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7052 7053
	 */
	I915_WRITE(GEN6_GT_MODE,
7054
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7055

7056
	ilk_init_lp_watermarks(dev);
7057 7058

	I915_WRITE(CACHE_MODE_0,
7059
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7075
	 *
7076 7077
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7078 7079 7080 7081 7082
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7083
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7084 7085
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7086

7087 7088 7089 7090 7091 7092 7093 7094
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7095 7096 7097 7098 7099 7100 7101 7102
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7103 7104
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7105 7106 7107 7108 7109 7110 7111
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7112 7113 7114 7115
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7116

7117
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
7118

7119
	cpt_init_clock_gating(dev);
7120 7121

	gen6_check_mch_setup(dev);
7122 7123 7124 7125 7126 7127
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7128
	/*
7129
	 * WaVSThreadDispatchOverride:ivb,vlv
7130 7131 7132 7133
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7134 7135 7136 7137 7138 7139 7140 7141
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7142 7143
static void lpt_init_clock_gating(struct drm_device *dev)
{
7144
	struct drm_i915_private *dev_priv = to_i915(dev);
7145 7146 7147 7148 7149

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7150
	if (HAS_PCH_LPT_LP(dev_priv))
7151 7152 7153
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7154 7155

	/* WADPOClockGatingDisable:hsw */
7156 7157
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7158
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7159 7160
}

7161 7162
static void lpt_suspend_hw(struct drm_device *dev)
{
7163
	struct drm_i915_private *dev_priv = to_i915(dev);
7164

7165
	if (HAS_PCH_LPT_LP(dev_priv)) {
7166 7167 7168 7169 7170 7171 7172
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7196 7197
static void kabylake_init_clock_gating(struct drm_device *dev)
{
7198
	struct drm_i915_private *dev_priv = dev->dev_private;
7199

7200
	gen9_init_clock_gating(dev);
7201 7202 7203 7204 7205

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7206 7207 7208 7209 7210

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7211 7212 7213 7214

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7215 7216
}

7217 7218
static void skylake_init_clock_gating(struct drm_device *dev)
{
7219
	struct drm_i915_private *dev_priv = dev->dev_private;
7220

7221
	gen9_init_clock_gating(dev);
7222 7223 7224 7225

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7226 7227 7228 7229

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7230 7231
}

7232
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7233
{
7234
	struct drm_i915_private *dev_priv = to_i915(dev);
7235
	enum pipe pipe;
B
Ben Widawsky 已提交
7236

7237
	ilk_init_lp_watermarks(dev);
7238

7239
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7240
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7241

7242
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7243 7244 7245
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7246
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7247
	for_each_pipe(dev_priv, pipe) {
7248
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7249
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7250
			   BDW_DPRS_MASK_VBLANK_SRD);
7251
	}
7252

7253 7254 7255 7256 7257
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7258

7259 7260
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7261 7262 7263 7264

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7265

7266 7267
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7268

7269 7270 7271 7272 7273 7274 7275
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7276 7277 7278 7279
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7280
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7281 7282
}

7283 7284
static void haswell_init_clock_gating(struct drm_device *dev)
{
7285
	struct drm_i915_private *dev_priv = to_i915(dev);
7286

7287
	ilk_init_lp_watermarks(dev);
7288

7289 7290 7291 7292 7293
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7294
	/* This is required by WaCatErrorRejectionIssue:hsw */
7295 7296 7297 7298
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7299 7300 7301
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7302

7303 7304 7305
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7306 7307 7308 7309
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7310
	/* WaDisable4x2SubspanOptimization:hsw */
7311 7312
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7313

7314 7315 7316
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7317 7318 7319 7320
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7321 7322
	 */
	I915_WRITE(GEN7_GT_MODE,
7323
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7324

7325 7326 7327 7328
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7329
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7330 7331
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7332 7333 7334
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7335

7336
	lpt_init_clock_gating(dev);
7337 7338
}

7339
static void ivybridge_init_clock_gating(struct drm_device *dev)
7340
{
7341
	struct drm_i915_private *dev_priv = to_i915(dev);
7342
	uint32_t snpcr;
7343

7344
	ilk_init_lp_watermarks(dev);
7345

7346
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7347

7348
	/* WaDisableEarlyCull:ivb */
7349 7350 7351
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7352
	/* WaDisableBackToBackFlipFix:ivb */
7353 7354 7355 7356
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7357
	/* WaDisablePSDDualDispatchEnable:ivb */
7358
	if (IS_IVB_GT1(dev_priv))
7359 7360 7361
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7362 7363 7364
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7365
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7366 7367 7368
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7369
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7370 7371 7372
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7373
		   GEN7_WA_L3_CHICKEN_MODE);
7374
	if (IS_IVB_GT1(dev_priv))
7375 7376
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7377 7378 7379 7380
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7381 7382
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7383
	}
7384

7385
	/* WaForceL3Serialization:ivb */
7386 7387 7388
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7389
	/*
7390
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7391
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7392 7393
	 */
	I915_WRITE(GEN6_UCGCTL2,
7394
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7395

7396
	/* This is required by WaCatErrorRejectionIssue:ivb */
7397 7398 7399 7400
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7401
	g4x_disable_trickle_feed(dev);
7402 7403

	gen7_setup_fixed_func_scheduler(dev_priv);
7404

7405 7406 7407 7408 7409
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7410

7411
	/* WaDisable4x2SubspanOptimization:ivb */
7412 7413
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7414

7415 7416 7417
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7418 7419 7420 7421
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7422 7423
	 */
	I915_WRITE(GEN7_GT_MODE,
7424
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7425

7426 7427 7428 7429
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7430

7431
	if (!HAS_PCH_NOP(dev_priv))
7432
		cpt_init_clock_gating(dev);
7433 7434

	gen6_check_mch_setup(dev);
7435 7436
}

7437
static void valleyview_init_clock_gating(struct drm_device *dev)
7438
{
7439
	struct drm_i915_private *dev_priv = to_i915(dev);
7440

7441
	/* WaDisableEarlyCull:vlv */
7442 7443 7444
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7445
	/* WaDisableBackToBackFlipFix:vlv */
7446 7447 7448 7449
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7450
	/* WaPsdDispatchEnable:vlv */
7451
	/* WaDisablePSDDualDispatchEnable:vlv */
7452
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7453 7454
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7455

7456 7457 7458
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7459
	/* WaForceL3Serialization:vlv */
7460 7461 7462
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7463
	/* WaDisableDopClockGating:vlv */
7464 7465 7466
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7467
	/* This is required by WaCatErrorRejectionIssue:vlv */
7468 7469 7470 7471
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7472 7473
	gen7_setup_fixed_func_scheduler(dev_priv);

7474
	/*
7475
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7476
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7477 7478
	 */
	I915_WRITE(GEN6_UCGCTL2,
7479
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7480

7481 7482 7483 7484 7485
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7486

7487 7488 7489 7490
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7491 7492
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7493

7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7505 7506 7507 7508 7509 7510
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7511
	/*
7512
	 * WaDisableVLVClockGating_VBIIssue:vlv
7513 7514 7515
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7516
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7517 7518
}

7519 7520
static void cherryview_init_clock_gating(struct drm_device *dev)
{
7521
	struct drm_i915_private *dev_priv = to_i915(dev);
7522

7523 7524 7525 7526 7527
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7528 7529 7530 7531

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7532 7533 7534 7535

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7536 7537 7538 7539

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7540

7541 7542 7543 7544 7545 7546 7547
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7548 7549 7550 7551 7552
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7553 7554
}

7555
static void g4x_init_clock_gating(struct drm_device *dev)
7556
{
7557
	struct drm_i915_private *dev_priv = to_i915(dev);
7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7568
	if (IS_GM45(dev_priv))
7569 7570
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7571 7572 7573 7574

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7575

7576 7577 7578
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7579
	g4x_disable_trickle_feed(dev);
7580 7581
}

7582
static void crestline_init_clock_gating(struct drm_device *dev)
7583
{
7584
	struct drm_i915_private *dev_priv = to_i915(dev);
7585 7586 7587 7588 7589 7590

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7591 7592
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7593 7594 7595

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7596 7597
}

7598
static void broadwater_init_clock_gating(struct drm_device *dev)
7599
{
7600
	struct drm_i915_private *dev_priv = to_i915(dev);
7601 7602 7603 7604 7605 7606 7607

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7608 7609
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7610 7611 7612

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7613 7614
}

7615
static void gen3_init_clock_gating(struct drm_device *dev)
7616
{
7617
	struct drm_i915_private *dev_priv = to_i915(dev);
7618 7619 7620 7621 7622
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7623

7624
	if (IS_PINEVIEW(dev_priv))
7625
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7626 7627 7628

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7629 7630

	/* interrupts should cause a wake up from C3 */
7631
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7632 7633 7634

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7635 7636 7637

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7638 7639
}

7640
static void i85x_init_clock_gating(struct drm_device *dev)
7641
{
7642
	struct drm_i915_private *dev_priv = to_i915(dev);
7643 7644

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7645 7646 7647 7648

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7649 7650 7651

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7652 7653
}

7654
static void i830_init_clock_gating(struct drm_device *dev)
7655
{
7656
	struct drm_i915_private *dev_priv = to_i915(dev);
7657 7658

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7659 7660 7661 7662

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7663 7664 7665 7666
}

void intel_init_clock_gating(struct drm_device *dev)
{
7667
	struct drm_i915_private *dev_priv = to_i915(dev);
7668

7669
	dev_priv->display.init_clock_gating(dev);
7670 7671
}

7672 7673
void intel_suspend_hw(struct drm_device *dev)
{
7674
	if (HAS_PCH_LPT(to_i915(dev)))
7675 7676 7677
		lpt_suspend_hw(dev);
}

7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7695
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7696
	else if (IS_KABYLAKE(dev_priv))
7697
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7732 7733 7734
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
7735
	struct drm_i915_private *dev_priv = to_i915(dev);
7736

7737
	intel_fbc_init(dev_priv);
7738

7739
	/* For cxsr */
7740
	if (IS_PINEVIEW(dev_priv))
7741
		i915_pineview_get_mem_freq(dev_priv);
7742
	else if (IS_GEN5(dev_priv))
7743
		i915_ironlake_get_mem_freq(dev_priv);
7744

7745
	/* For FIFO watermark updates */
7746
	if (INTEL_INFO(dev)->gen >= 9) {
7747
		skl_setup_wm_latency(dev);
7748
		dev_priv->display.update_wm = skl_update_wm;
7749
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7750
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7751
		ilk_setup_wm_latency(dev);
7752

7753
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7754
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7755
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7756
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7757
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7758 7759 7760 7761 7762 7763
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7764 7765 7766 7767
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7768
	} else if (IS_CHERRYVIEW(dev_priv)) {
7769 7770
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7771
	} else if (IS_VALLEYVIEW(dev_priv)) {
7772 7773
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7774
	} else if (IS_PINEVIEW(dev_priv)) {
7775
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7776 7777 7778 7779 7780 7781 7782 7783 7784
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7785
			intel_set_memory_cxsr(dev_priv, false);
7786 7787 7788
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7789
	} else if (IS_G4X(dev_priv)) {
7790
		dev_priv->display.update_wm = g4x_update_wm;
7791
	} else if (IS_GEN4(dev_priv)) {
7792
		dev_priv->display.update_wm = i965_update_wm;
7793
	} else if (IS_GEN3(dev_priv)) {
7794 7795
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7796
	} else if (IS_GEN2(dev_priv)) {
7797 7798
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7799
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7800 7801
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7802
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7803 7804 7805
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7806 7807 7808
	}
}

7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7821
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7853
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7854
{
7855 7856
	int status;

7857
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7858

7859 7860 7861 7862 7863 7864
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7865 7866 7867 7868
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7869 7870 7871
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7872

7873 7874 7875
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7876 7877 7878 7879
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7880 7881
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7882

7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7894 7895 7896
	return 0;
}

7897
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7898
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7899
{
7900 7901
	int status;

7902
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7903

7904 7905 7906 7907 7908 7909
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7910 7911 7912 7913
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7914 7915
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7916

7917 7918 7919
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7920 7921 7922 7923
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7924
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7925

7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7937 7938
	return 0;
}
7939

7940 7941
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7942 7943 7944 7945 7946
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7947 7948
}

7949
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7950
{
7951
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7952 7953
}

7954
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7955
{
7956 7957 7958 7959 7960
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7961 7962
}

7963
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7964
{
7965
	/* CHV needs even values */
7966
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7967 7968
}

7969
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7970
{
7971
	if (IS_GEN9(dev_priv))
7972 7973
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7974
	else if (IS_CHERRYVIEW(dev_priv))
7975
		return chv_gpu_freq(dev_priv, val);
7976
	else if (IS_VALLEYVIEW(dev_priv))
7977 7978 7979
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7980 7981
}

7982 7983
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7984
	if (IS_GEN9(dev_priv))
7985 7986
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7987
	else if (IS_CHERRYVIEW(dev_priv))
7988
		return chv_freq_opcode(dev_priv, val);
7989
	else if (IS_VALLEYVIEW(dev_priv))
7990 7991
		return byt_freq_opcode(dev_priv, val);
	else
7992
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7993
}
7994

7995 7996
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7997
	struct drm_i915_gem_request *req;
7998 7999 8000 8001 8002
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8003
	struct drm_i915_gem_request *req = boost->req;
8004

8005
	if (!i915_gem_request_completed(req))
8006
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8007

8008
	i915_gem_request_put(req);
8009 8010 8011
	kfree(boost);
}

8012
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8013 8014 8015
{
	struct request_boost *boost;

8016
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8017 8018
		return;

8019
	if (i915_gem_request_completed(req))
8020 8021
		return;

8022 8023 8024 8025
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8026
	boost->req = i915_gem_request_get(req);
8027 8028

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8029
	queue_work(req->i915->wq, &boost->work);
8030 8031
}

D
Daniel Vetter 已提交
8032
void intel_pm_setup(struct drm_device *dev)
8033
{
8034
	struct drm_i915_private *dev_priv = to_i915(dev);
8035

D
Daniel Vetter 已提交
8036
	mutex_init(&dev_priv->rps.hw_lock);
8037
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8038

8039 8040
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8041
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8042

8043
	dev_priv->pm.suspended = false;
8044
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8045
}