intel_pm.c 223.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67 68 69 70

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 74 75 76
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101 102 103 104

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
105 106
}

107
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

145
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

172
	dev_priv->ips.r_t = dev_priv->mem_freq;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
204
		dev_priv->ips.c_m = 0;
205
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206
		dev_priv->ips.c_m = 1;
207
	} else {
208
		dev_priv->ips.c_m = 2;
209 210 211
	}
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

250 251
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

312 313 314
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

315
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316
{
317
	u32 val;
318

319
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
320
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
321
		POSTING_READ(FW_BLC_SELF_VLV);
322
		dev_priv->wm.vlv.cxsr = enable;
323
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
324
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
325
		POSTING_READ(FW_BLC_SELF);
326
	} else if (IS_PINEVIEW(dev_priv)) {
327 328 329
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
330
		POSTING_READ(DSPFW3);
331
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
332 333 334
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
335
		POSTING_READ(FW_BLC_SELF);
336
	} else if (IS_I915GM(dev_priv)) {
337 338 339 340 341
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
342 343 344
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
345
		POSTING_READ(INSTPM);
346 347 348
	} else {
		return;
	}
349

350
	DRM_DEBUG_KMS("memory self-refresh is %s\n", enableddisabled(enable));
351 352
}

353

354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
368
static const int pessimal_latency_ns = 5000;
369

370 371 372
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

373
static int vlv_get_fifo_size(struct intel_plane *plane)
374
{
375
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
376 377
	int sprite0_start, sprite1_start, size;

378 379 380 381
	if (plane->id == PLANE_CURSOR)
		return 63;

	switch (plane->pipe) {
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

405 406
	switch (plane->id) {
	case PLANE_PRIMARY:
407 408
		size = sprite0_start;
		break;
409
	case PLANE_SPRITE0:
410 411
		size = sprite1_start - sprite0_start;
		break;
412
	case PLANE_SPRITE1:
413 414 415 416 417 418
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

419
	DRM_DEBUG_KMS("%s FIFO size: %d\n", plane->base.name, size);
420 421 422 423

	return size;
}

424
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
425 426 427 428 429 430 431 432 433 434 435 436 437 438
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

439
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

455
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
472 473 474 475 476
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
477 478
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
479 480 481 482 483
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
484 485
};
static const struct intel_watermark_params pineview_cursor_wm = {
486 487 488 489 490
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
491 492
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
493 494 495 496 497
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
498 499
};
static const struct intel_watermark_params g4x_wm_info = {
500 501 502 503 504
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
505 506
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
507 508 509 510 511
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
512 513
};
static const struct intel_watermark_params i965_cursor_wm_info = {
514 515 516 517 518
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
519 520
};
static const struct intel_watermark_params i945_wm_info = {
521 522 523 524 525
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
526 527
};
static const struct intel_watermark_params i915_wm_info = {
528 529 530 531 532
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
533
};
534
static const struct intel_watermark_params i830_a_wm_info = {
535 536 537 538 539
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
540
};
541 542 543 544 545 546 547
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
548
static const struct intel_watermark_params i845_wm_info = {
549 550 551 552 553
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
554 555 556 557 558 559
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
560
 * @cpp: bytes per pixel
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
576
					int fifo_size, int cpp,
577 578 579 580 581 582 583 584 585 586
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
587
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
588 589 590 591 592 593 594 595 596 597 598 599 600 601
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
602 603 604 605 606 607 608 609 610 611 612

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

613 614 615
	return wm_size;
}

616
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
617
{
618
	struct intel_crtc *crtc, *enabled = NULL;
619

620
	for_each_intel_crtc(&dev_priv->drm, crtc) {
621
		if (intel_crtc_active(crtc)) {
622 623 624 625 626 627 628 629 630
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

631
static void pineview_update_wm(struct intel_crtc *unused_crtc)
632
{
633
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
634
	struct intel_crtc *crtc;
635 636 637 638
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

639 640 641 642
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
643 644
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
645
		intel_set_memory_cxsr(dev_priv, false);
646 647 648
		return;
	}

649
	crtc = single_enabled_crtc(dev_priv);
650
	if (crtc) {
651 652 653 654 655
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
656
		int clock = adjusted_mode->crtc_clock;
657 658 659 660

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
661
					cpp, latency->display_sr);
662 663
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
664
		reg |= FW_WM(wm, SR);
665 666 667 668 669 670
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
671
					cpp, latency->cursor_sr);
672 673
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
674
		reg |= FW_WM(wm, CURSOR_SR);
675 676 677 678 679
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
680
					cpp, latency->display_hpll_disable);
681 682
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
683
		reg |= FW_WM(wm, HPLL_SR);
684 685 686 687 688
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
689
					cpp, latency->cursor_hpll_disable);
690 691
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
692
		reg |= FW_WM(wm, HPLL_CURSOR);
693 694 695
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

696
		intel_set_memory_cxsr(dev_priv, true);
697
	} else {
698
		intel_set_memory_cxsr(dev_priv, false);
699 700 701
	}
}

702
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
703 704 705 706 707 708 709 710
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
711
	struct intel_crtc *crtc;
712
	const struct drm_display_mode *adjusted_mode;
713
	const struct drm_framebuffer *fb;
714
	int htotal, hdisplay, clock, cpp;
715 716 717
	int line_time_us, line_count;
	int entries, tlb_miss;

718
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
719
	if (!intel_crtc_active(crtc)) {
720 721 722 723 724
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

725 726
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
727
	clock = adjusted_mode->crtc_clock;
728
	htotal = adjusted_mode->crtc_htotal;
729 730
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
731 732

	/* Use the small buffer method to calculate plane watermark */
733
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
734 735 736 737 738 739 740 741 742
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
743
	line_time_us = max(htotal * 1000 / clock, 1);
744
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
745
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
764
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
765 766 767 768 769 770 771 772
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
773
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
774 775 776 777 778
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
779
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
780 781 782 783 784 785 786 787 788 789 790 791
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

792
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
793 794 795 796 797 798
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
799
	struct intel_crtc *crtc;
800
	const struct drm_display_mode *adjusted_mode;
801
	const struct drm_framebuffer *fb;
802
	int hdisplay, htotal, cpp, clock;
803 804 805 806 807 808 809 810 811 812
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

813
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
814 815
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
816
	clock = adjusted_mode->crtc_clock;
817
	htotal = adjusted_mode->crtc_htotal;
818 819
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
820

821
	line_time_us = max(htotal * 1000 / clock, 1);
822
	line_count = (latency_ns / line_time_us + 1000) / 1000;
823
	line_size = hdisplay * cpp;
824 825

	/* Use the minimum of the small and large buffer method for primary */
826
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
827 828 829 830 831 832
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
833
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
834 835 836
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

837
	return g4x_check_srwm(dev_priv,
838 839 840 841
			      *display_wm, *cursor_wm,
			      display, cursor);
}

842 843 844
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

845 846 847 848 849 850 851
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
852 853 854 855
		   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
856

857
	I915_WRITE(DSPFW1,
858
		   FW_WM(wm->sr.plane, SR) |
859 860 861
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
862
	I915_WRITE(DSPFW2,
863 864 865
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
866
	I915_WRITE(DSPFW3,
867
		   FW_WM(wm->sr.cursor, CURSOR_SR));
868 869 870

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
871 872
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
873
		I915_WRITE(DSPFW8_CHV,
874 875
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
876
		I915_WRITE(DSPFW9_CHV,
877 878
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
879
		I915_WRITE(DSPHOWM,
880
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
881 882 883 884 885 886 887 888 889
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
890 891
	} else {
		I915_WRITE(DSPFW7,
892 893
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
894
		I915_WRITE(DSPHOWM,
895
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
896 897 898 899 900 901
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
902 903
	}

904 905 906 907 908 909
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

910
	POSTING_READ(DSPFW1);
911 912
}

913 914
#undef FW_WM_VLV

915 916 917 918 919 920
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

921 922 923 924
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
925
				   unsigned int cpp,
926 927 928 929 930
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
931
	ret = (ret + 1) * horiz_pixels * cpp;
932 933 934 935 936
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

937
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
938 939 940 941
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

942 943
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

944 945 946
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
947 948

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
949 950 951 952 953 954 955 956 957
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
958
	int clock, htotal, cpp, width, wm;
959 960 961 962

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

963
	if (!state->base.visible)
964 965
		return 0;

966
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
982
		wm = vlv_wm_method2(clock, htotal, width, cpp,
983 984 985 986 987 988
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1005
		if (state->base.visible) {
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1021
		if (!state->base.visible) {
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1056 1057 1058 1059 1060 1061 1062
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
1063 1064
		const int sr_fifo_size =
			INTEL_INFO(to_i915(dev))->num_pipes * 512 - 1;
1065 1066 1067 1068 1069 1070
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1071 1072
			wm_state->wm[level].plane[plane->id] = plane->wm.fifo_size -
				wm_state->wm[level].plane[plane->id];
1073 1074 1075 1076
		}
	}
}

1077
static void vlv_compute_wm(struct intel_crtc *crtc)
1078 1079
{
	struct drm_device *dev = crtc->base.dev;
1080
	struct drm_i915_private *dev_priv = to_i915(dev);
1081 1082 1083 1084 1085 1086
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1087
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1088
	wm_state->num_levels = dev_priv->wm.max_level + 1;
1089 1090 1091

	wm_state->num_active_planes = 0;

1092
	vlv_compute_fifo(crtc);
1093 1094 1095 1096 1097 1098 1099

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
1100
		int level;
1101

1102
		if (!state->base.visible)
1103 1104 1105 1106 1107
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1108
			int max_wm = plane->wm.fifo_size;
1109 1110 1111 1112 1113

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

1114
			if (wm > max_wm)
1115 1116
				break;

1117
			wm_state->wm[level].plane[plane->id] = wm;
1118 1119 1120 1121 1122 1123 1124 1125
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
1126
		if (plane->id == PLANE_CURSOR) {
1127 1128
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1129 1130
					wm_state->wm[level].plane[PLANE_CURSOR];
		} else {
1131 1132
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
1133
					max(wm_state->sr[level].plane,
1134
					    wm_state->wm[level].plane[plane->id]);
1135 1136 1137 1138
		}
	}

	/* clear any (partially) filled invalid levels */
1139
	for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1140 1141 1142 1143 1144 1145 1146
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1158 1159
		switch (plane->id) {
		case PLANE_PRIMARY:
1160
			sprite0_start = plane->wm.fifo_size;
1161 1162
			break;
		case PLANE_SPRITE0:
1163
			sprite1_start = sprite0_start + plane->wm.fifo_size;
1164 1165
			break;
		case PLANE_SPRITE1:
1166
			fifo_size = sprite1_start + plane->wm.fifo_size;
1167 1168 1169 1170 1171 1172 1173 1174
			break;
		case PLANE_CURSOR:
			WARN_ON(plane->wm.fifo_size != 63);
			break;
		default:
			MISSING_CASE(plane->id);
			break;
		}
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1243 1244 1245 1246 1247 1248
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1249
	wm->level = to_i915(dev)->wm.max_level;
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1268 1269 1270
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

1282 1283 1284 1285
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1286 1287 1288
	}
}

1289
static void vlv_update_wm(struct intel_crtc *crtc)
1290
{
1291
	struct drm_device *dev = crtc->base.dev;
1292
	struct drm_i915_private *dev_priv = to_i915(dev);
1293
	enum pipe pipe = crtc->pipe;
1294 1295
	struct vlv_wm_values wm = {};

1296
	vlv_compute_wm(crtc);
1297 1298
	vlv_merge_wm(dev, &wm);

1299 1300
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
1301
		vlv_pipe_set_fifo_size(crtc);
1302
		return;
1303
	}
1304 1305 1306 1307 1308 1309 1310 1311 1312

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1313
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1314 1315
		intel_set_memory_cxsr(dev_priv, false);

1316
	/* FIXME should be part of crtc atomic commit */
1317
	vlv_pipe_set_fifo_size(crtc);
1318

1319
	vlv_write_wm_values(crtc, &wm);
1320 1321 1322

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1323 1324
		      pipe_name(pipe), wm.pipe[pipe].plane[PLANE_PRIMARY], wm.pipe[pipe].plane[PLANE_CURSOR],
		      wm.pipe[pipe].plane[PLANE_SPRITE0], wm.pipe[pipe].plane[PLANE_SPRITE1],
1325 1326
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1327
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1339 1340
}

1341 1342
#define single_plane_enabled(mask) is_power_of_2(mask)

1343
static void g4x_update_wm(struct intel_crtc *crtc)
1344
{
1345
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1346 1347 1348 1349
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1350
	bool cxsr_enabled;
1351

1352
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1353 1354
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1355
			    &planea_wm, &cursora_wm))
1356
		enabled |= 1 << PIPE_A;
1357

1358
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1359 1360
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1361
			    &planeb_wm, &cursorb_wm))
1362
		enabled |= 1 << PIPE_B;
1363 1364

	if (single_plane_enabled(enabled) &&
1365
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1366 1367 1368
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1369
			     &plane_sr, &cursor_sr)) {
1370
		cxsr_enabled = true;
1371
	} else {
1372
		cxsr_enabled = false;
1373
		intel_set_memory_cxsr(dev_priv, false);
1374 1375
		plane_sr = cursor_sr = 0;
	}
1376

1377 1378
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1379 1380 1381 1382 1383
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1384 1385 1386 1387
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1388
	I915_WRITE(DSPFW2,
1389
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1390
		   FW_WM(cursora_wm, CURSORA));
1391 1392
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1393
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1394
		   FW_WM(cursor_sr, CURSOR_SR));
1395 1396 1397

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1398 1399
}

1400
static void i965_update_wm(struct intel_crtc *unused_crtc)
1401
{
1402
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1403
	struct intel_crtc *crtc;
1404 1405
	int srwm = 1;
	int cursor_sr = 16;
1406
	bool cxsr_enabled;
1407 1408

	/* Calc sr entries for one plane configs */
1409
	crtc = single_enabled_crtc(dev_priv);
1410 1411 1412
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1413 1414 1415 1416
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1417
		int clock = adjusted_mode->crtc_clock;
1418
		int htotal = adjusted_mode->crtc_htotal;
1419 1420
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1421 1422 1423
		unsigned long line_time_us;
		int entries;

1424
		line_time_us = max(htotal * 1000 / clock, 1);
1425 1426 1427

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1428
			cpp * hdisplay;
1429 1430 1431 1432 1433 1434 1435 1436 1437
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1438
			cpp * crtc->base.cursor->state->crtc_w;
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1450
		cxsr_enabled = true;
1451
	} else {
1452
		cxsr_enabled = false;
1453
		/* Turn off self refresh if both pipes are enabled */
1454
		intel_set_memory_cxsr(dev_priv, false);
1455 1456 1457 1458 1459 1460
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1461 1462 1463 1464 1465 1466
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1467
	/* update cursor SR watermark */
1468
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1469 1470 1471

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1472 1473
}

1474 1475
#undef FW_WM

1476
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1477
{
1478
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1479 1480 1481 1482 1483 1484
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1485
	struct intel_crtc *crtc, *enabled = NULL;
1486

1487
	if (IS_I945GM(dev_priv))
1488
		wm_info = &i945_wm_info;
1489
	else if (!IS_GEN2(dev_priv))
1490 1491
		wm_info = &i915_wm_info;
	else
1492
		wm_info = &i830_a_wm_info;
1493

1494
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1495
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1496 1497 1498 1499 1500 1501 1502
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1503
		if (IS_GEN2(dev_priv))
1504
			cpp = 4;
1505 1506
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1507

1508
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1509
					       wm_info, fifo_size, cpp,
1510
					       pessimal_latency_ns);
1511
		enabled = crtc;
1512
	} else {
1513
		planea_wm = fifo_size - wm_info->guard_size;
1514 1515 1516 1517
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1518
	if (IS_GEN2(dev_priv))
1519
		wm_info = &i830_bc_wm_info;
1520

1521
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1522
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1523 1524 1525 1526 1527 1528 1529
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1530
		if (IS_GEN2(dev_priv))
1531
			cpp = 4;
1532 1533
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1534

1535
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1536
					       wm_info, fifo_size, cpp,
1537
					       pessimal_latency_ns);
1538 1539 1540 1541
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1542
	} else {
1543
		planeb_wm = fifo_size - wm_info->guard_size;
1544 1545 1546
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1547 1548 1549

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1550
	if (IS_I915GM(dev_priv) && enabled) {
1551
		struct drm_i915_gem_object *obj;
1552

1553
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1554 1555

		/* self-refresh seems busted with untiled */
1556
		if (!i915_gem_object_is_tiled(obj))
1557 1558 1559
			enabled = NULL;
	}

1560 1561 1562 1563 1564 1565
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1566
	intel_set_memory_cxsr(dev_priv, false);
1567 1568

	/* Calc sr entries for one plane configs */
1569
	if (HAS_FW_BLC(dev_priv) && enabled) {
1570 1571
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1572 1573 1574 1575
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1576
		int clock = adjusted_mode->crtc_clock;
1577
		int htotal = adjusted_mode->crtc_htotal;
1578 1579
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1580 1581 1582
		unsigned long line_time_us;
		int entries;

1583
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1584
			cpp = 4;
1585 1586
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1587

1588
		line_time_us = max(htotal * 1000 / clock, 1);
1589 1590 1591

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1592
			cpp * hdisplay;
1593 1594 1595 1596 1597 1598
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1599
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1600 1601
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1602
		else
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1619 1620
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1621 1622
}

1623
static void i845_update_wm(struct intel_crtc *unused_crtc)
1624
{
1625
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1626
	struct intel_crtc *crtc;
1627
	const struct drm_display_mode *adjusted_mode;
1628 1629 1630
	uint32_t fwater_lo;
	int planea_wm;

1631
	crtc = single_enabled_crtc(dev_priv);
1632 1633 1634
	if (crtc == NULL)
		return;

1635
	adjusted_mode = &crtc->config->base.adjusted_mode;
1636
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1637
				       &i845_wm_info,
1638
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1639
				       4, pessimal_latency_ns);
1640 1641 1642 1643 1644 1645 1646 1647
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1648
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1649
{
1650
	uint32_t pixel_rate;
1651

1652
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1653 1654 1655 1656

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1657
	if (pipe_config->pch_pfit.enabled) {
1658
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1659 1660 1661 1662
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1663 1664 1665 1666 1667 1668 1669 1670

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1671 1672 1673
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1674 1675 1676 1677 1678 1679 1680
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1681
/* latency must be in 0.1us units. */
1682
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1683 1684 1685
{
	uint64_t ret;

1686 1687 1688
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1689
	ret = (uint64_t) pixel_rate * cpp * latency;
1690 1691 1692 1693 1694
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1695
/* latency must be in 0.1us units. */
1696
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1697
			       uint32_t horiz_pixels, uint8_t cpp,
1698 1699 1700 1701
			       uint32_t latency)
{
	uint32_t ret;

1702 1703
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1704 1705
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1706

1707
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1708
	ret = (ret + 1) * horiz_pixels * cpp;
1709 1710 1711 1712
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1713
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1714
			   uint8_t cpp)
1715
{
1716 1717 1718 1719 1720 1721
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1722
	if (WARN_ON(!cpp))
1723 1724 1725 1726
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1727
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1728 1729
}

1730
struct ilk_wm_maximums {
1731 1732 1733 1734 1735 1736
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1737 1738 1739 1740
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1741
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1742
				   const struct intel_plane_state *pstate,
1743 1744
				   uint32_t mem_value,
				   bool is_lp)
1745
{
1746 1747
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1748 1749
	uint32_t method1, method2;

1750
	if (!cstate->base.active || !pstate->base.visible)
1751 1752
		return 0;

1753
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1754 1755 1756 1757

	if (!is_lp)
		return method1;

1758 1759
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1760
				 drm_rect_width(&pstate->base.dst),
1761
				 cpp, mem_value);
1762 1763

	return min(method1, method2);
1764 1765
}

1766 1767 1768 1769
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1770
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1771
				   const struct intel_plane_state *pstate,
1772 1773
				   uint32_t mem_value)
{
1774 1775
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1776 1777
	uint32_t method1, method2;

1778
	if (!cstate->base.active || !pstate->base.visible)
1779 1780
		return 0;

1781
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1782 1783
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1784
				 drm_rect_width(&pstate->base.dst),
1785
				 cpp, mem_value);
1786 1787 1788
	return min(method1, method2);
}

1789 1790 1791 1792
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1793
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1794
				   const struct intel_plane_state *pstate,
1795 1796
				   uint32_t mem_value)
{
1797 1798 1799 1800 1801 1802
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1803
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1804

1805
	if (!cstate->base.active)
1806 1807
		return 0;

1808 1809
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1810
			      width, cpp, mem_value);
1811 1812
}

1813
/* Only for WM_LP. */
1814
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1815
				   const struct intel_plane_state *pstate,
1816
				   uint32_t pri_val)
1817
{
1818 1819
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1820

1821
	if (!cstate->base.active || !pstate->base.visible)
1822 1823
		return 0;

1824
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1825 1826
}

1827 1828
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1829
{
1830
	if (INTEL_GEN(dev_priv) >= 8)
1831
		return 3072;
1832
	else if (INTEL_GEN(dev_priv) >= 7)
1833 1834 1835 1836 1837
		return 768;
	else
		return 512;
}

1838 1839 1840
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
1841
{
1842
	if (INTEL_GEN(dev_priv) >= 8)
1843 1844
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
1845
	else if (INTEL_GEN(dev_priv) >= 7)
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

1856 1857
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1858
{
1859
	if (INTEL_GEN(dev_priv) >= 7)
1860 1861 1862 1863 1864
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

1865
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1866
{
1867
	if (INTEL_GEN(dev_priv) >= 8)
1868 1869 1870 1871 1872
		return 31;
	else
		return 15;
}

1873 1874 1875
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1876
				     const struct intel_wm_config *config,
1877 1878 1879
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
1880 1881
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1882 1883

	/* if sprites aren't enabled, sprites get nothing */
1884
	if (is_sprite && !config->sprites_enabled)
1885 1886 1887
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1888
	if (level == 0 || config->num_pipes_active > 1) {
1889
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1890 1891 1892 1893 1894 1895

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
1896
		if (INTEL_GEN(dev_priv) <= 6)
1897 1898 1899
			fifo_size /= 2;
	}

1900
	if (config->sprites_enabled) {
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1912
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1913 1914 1915 1916
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1917 1918
				      int level,
				      const struct intel_wm_config *config)
1919 1920
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1921
	if (level > 0 && config->num_pipes_active > 1)
1922 1923 1924
		return 64;

	/* otherwise just report max that registers can hold */
1925
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
1926 1927
}

1928
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1929 1930 1931
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1932
				    struct ilk_wm_maximums *max)
1933
{
1934 1935 1936
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1937
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1938 1939
}

1940
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
1941 1942 1943
					int level,
					struct ilk_wm_maximums *max)
{
1944 1945 1946 1947
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
1948 1949
}

1950
static bool ilk_validate_wm_level(int level,
1951
				  const struct ilk_wm_maximums *max,
1952
				  struct intel_wm_level *result)
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1991
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1992
				 const struct intel_crtc *intel_crtc,
1993
				 int level,
1994
				 struct intel_crtc_state *cstate,
1995 1996 1997
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
1998
				 struct intel_wm_level *result)
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2023 2024 2025
	result->enable = true;
}

2026
static uint32_t
2027
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2028
{
2029 2030
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2031 2032
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2033
	u32 linetime, ips_linetime;
2034

2035 2036 2037 2038
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2039
	if (WARN_ON(intel_state->cdclk == 0))
2040
		return 0;
2041

2042 2043 2044
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2045 2046 2047
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2048
					 intel_state->cdclk);
2049

2050 2051
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2052 2053
}

2054 2055
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2056
{
2057
	if (IS_GEN9(dev_priv)) {
2058
		uint32_t val;
2059
		int ret, i;
2060
		int level, max_level = ilk_wm_max_level(dev_priv);
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2116
		/*
2117 2118
		 * WaWmMemoryReadLatency:skl
		 *
2119
		 * punit doesn't take into account the read latency so we need
2120 2121
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2122
		 */
2123 2124 2125 2126 2127
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2128
				wm[level] += 2;
2129
			}
2130 2131
		}

2132
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2133 2134 2135 2136 2137
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2138 2139 2140 2141
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2142
	} else if (INTEL_GEN(dev_priv) >= 6) {
2143 2144 2145 2146 2147 2148
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2149
	} else if (INTEL_GEN(dev_priv) >= 5) {
2150 2151 2152 2153 2154 2155
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2156 2157 2158
	}
}

2159 2160
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2161 2162
{
	/* ILK sprite LP0 latency is 1300 ns */
2163
	if (IS_GEN5(dev_priv))
2164 2165 2166
		wm[0] = 13;
}

2167 2168
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2169 2170
{
	/* ILK cursor LP0 latency is 1300 ns */
2171
	if (IS_GEN5(dev_priv))
2172 2173 2174
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2175
	if (IS_IVYBRIDGE(dev_priv))
2176 2177 2178
		wm[3] *= 2;
}

2179
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2180 2181
{
	/* how many WM levels are we expecting */
2182
	if (INTEL_GEN(dev_priv) >= 9)
2183
		return 7;
2184
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2185
		return 4;
2186
	else if (INTEL_GEN(dev_priv) >= 6)
2187
		return 3;
2188
	else
2189 2190
		return 2;
}
2191

2192
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2193
				   const char *name,
2194
				   const uint16_t wm[8])
2195
{
2196
	int level, max_level = ilk_wm_max_level(dev_priv);
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2207 2208 2209 2210
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2211
		if (IS_GEN9(dev_priv))
2212 2213
			latency *= 10;
		else if (level > 0)
2214 2215 2216 2217 2218 2219 2220 2221
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2222 2223 2224
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2225
	int level, max_level = ilk_wm_max_level(dev_priv);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2237
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2253 2254 2255
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2256 2257
}

2258
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2259
{
2260
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2261 2262 2263 2264 2265 2266

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2267
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2268
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2269

2270 2271 2272
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2273

2274
	if (IS_GEN6(dev_priv))
2275
		snb_wm_latency_quirk(dev_priv);
2276 2277
}

2278
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2279
{
2280
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2281
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2282 2283
}

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2307
/* Compute new watermarks for the pipe */
2308
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2309
{
2310 2311
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2312
	struct intel_pipe_wm *pipe_wm;
2313
	struct drm_device *dev = state->dev;
2314
	const struct drm_i915_private *dev_priv = to_i915(dev);
2315
	struct intel_plane *intel_plane;
2316
	struct intel_plane_state *pristate = NULL;
2317
	struct intel_plane_state *sprstate = NULL;
2318
	struct intel_plane_state *curstate = NULL;
2319
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2320
	struct ilk_wm_maximums max;
2321

2322
	pipe_wm = &cstate->wm.ilk.optimal;
2323

2324
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2325 2326 2327 2328 2329 2330
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2331 2332

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2333
			pristate = ps;
2334
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2335
			sprstate = ps;
2336
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2337
			curstate = ps;
2338 2339
	}

2340
	pipe_wm->pipe_enabled = cstate->base.active;
2341
	if (sprstate) {
2342 2343 2344 2345
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2346 2347
	}

2348 2349
	usable_level = max_level;

2350
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2351
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2352
		usable_level = 1;
2353 2354

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2355
	if (pipe_wm->sprites_scaled)
2356
		usable_level = 0;
2357

2358
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2359 2360 2361 2362
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2363

2364
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2365
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2366

2367
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2368
		return -EINVAL;
2369

2370
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2371 2372

	for (level = 1; level <= max_level; level++) {
2373
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2374

2375
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2376
				     pristate, sprstate, curstate, wm);
2377 2378 2379 2380 2381 2382

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2383 2384 2385 2386 2387 2388
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2389
			usable_level = level;
2390 2391
	}

2392
	return 0;
2393 2394
}

2395 2396 2397 2398 2399 2400 2401 2402 2403
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2404
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2405
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2406
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2407 2408 2409 2410 2411 2412

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2413
	*a = newstate->wm.ilk.optimal;
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2442
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2443 2444 2445 2446 2447
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2448 2449 2450 2451 2452 2453 2454 2455 2456
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2457 2458
	ret_wm->enable = true;

2459
	for_each_intel_crtc(dev, intel_crtc) {
2460
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2461 2462 2463 2464
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2465

2466 2467 2468 2469 2470
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2471
		if (!wm->enable)
2472
			ret_wm->enable = false;
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2485
			 const struct intel_wm_config *config,
2486
			 const struct ilk_wm_maximums *max,
2487 2488
			 struct intel_pipe_wm *merged)
{
2489
	struct drm_i915_private *dev_priv = to_i915(dev);
2490
	int level, max_level = ilk_wm_max_level(dev_priv);
2491
	int last_enabled_level = max_level;
2492

2493
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2494
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2495
	    config->num_pipes_active > 1)
2496
		last_enabled_level = 0;
2497

2498
	/* ILK: FBC WM must be disabled always */
2499
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2500 2501 2502 2503 2504 2505 2506

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2507 2508 2509 2510 2511
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2512 2513 2514 2515 2516 2517

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2518 2519
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2520 2521 2522
			wm->fbc_val = 0;
		}
	}
2523 2524 2525 2526 2527 2528 2529

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2530
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2531
	    intel_fbc_is_active(dev_priv)) {
2532 2533 2534 2535 2536 2537
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2538 2539
}

2540 2541 2542 2543 2544 2545
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2546 2547 2548
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2549
	struct drm_i915_private *dev_priv = to_i915(dev);
2550

2551
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2552 2553 2554 2555 2556
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2557
static void ilk_compute_wm_results(struct drm_device *dev,
2558
				   const struct intel_pipe_wm *merged,
2559
				   enum intel_ddb_partitioning partitioning,
2560
				   struct ilk_wm_values *results)
2561
{
2562
	struct drm_i915_private *dev_priv = to_i915(dev);
2563 2564
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2565

2566
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2567
	results->partitioning = partitioning;
2568

2569
	/* LP1+ register values */
2570
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2571
		const struct intel_wm_level *r;
2572

2573
		level = ilk_wm_lp_to_level(wm_lp, merged);
2574

2575
		r = &merged->wm[level];
2576

2577 2578 2579 2580 2581
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2582
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2583 2584 2585
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2586 2587 2588
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2589
		if (INTEL_GEN(dev_priv) >= 8)
2590 2591 2592 2593 2594 2595
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2596 2597 2598 2599
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2600
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2601 2602 2603 2604
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2605
	}
2606

2607
	/* LP0 register values */
2608
	for_each_intel_crtc(dev, intel_crtc) {
2609
		enum pipe pipe = intel_crtc->pipe;
2610 2611
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2612 2613 2614 2615

		if (WARN_ON(!r->enable))
			continue;

2616
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2617

2618 2619 2620 2621
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2622 2623 2624
	}
}

2625 2626
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2627
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2628 2629
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2630
{
2631
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2632
	int level1 = 0, level2 = 0;
2633

2634 2635 2636 2637 2638
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2639 2640
	}

2641 2642
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2643 2644 2645
			return r2;
		else
			return r1;
2646
	} else if (level1 > level2) {
2647 2648 2649 2650 2651 2652
		return r1;
	} else {
		return r2;
	}
}

2653 2654 2655 2656 2657 2658 2659 2660
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2661
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2662 2663
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2664 2665 2666 2667 2668
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2669
	for_each_pipe(dev_priv, pipe) {
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2713 2714
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2715
{
2716
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2717
	bool changed = false;
2718

2719 2720 2721
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2722
		changed = true;
2723 2724 2725 2726
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2727
		changed = true;
2728 2729 2730 2731
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2732
		changed = true;
2733
	}
2734

2735 2736 2737 2738
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2739

2740 2741 2742 2743 2744 2745 2746
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2747 2748
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2749
{
2750
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2751 2752 2753
	unsigned int dirty;
	uint32_t val;

2754
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2755 2756 2757 2758 2759
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2760
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2761
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2762
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2763
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2764
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2765 2766
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2767
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2768
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2769
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2770
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2771
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2772 2773
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2774
	if (dirty & WM_DIRTY_DDB) {
2775
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2790 2791
	}

2792
	if (dirty & WM_DIRTY_FBC) {
2793 2794 2795 2796 2797 2798 2799 2800
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2801 2802 2803 2804
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

2805
	if (INTEL_GEN(dev_priv) >= 7) {
2806 2807 2808 2809 2810
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2811

2812
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2813
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2814
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2815
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2816
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2817
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2818 2819

	dev_priv->wm.hw = *results;
2820 2821
}

2822
bool ilk_disable_lp_wm(struct drm_device *dev)
2823
{
2824
	struct drm_i915_private *dev_priv = to_i915(dev);
2825 2826 2827 2828

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2829
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2830

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2846 2847 2848
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2849 2850 2851 2852 2853 2854 2855 2856
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2857 2858
}

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2871
intel_enable_sagv(struct drm_i915_private *dev_priv)
2872 2873 2874
{
	int ret;

2875 2876 2877 2878
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2894
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2895
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2896
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2897 2898 2899 2900 2901 2902
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2903
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2904 2905 2906 2907
	return 0;
}

static int
2908
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2922
intel_disable_sagv(struct drm_i915_private *dev_priv)
2923 2924 2925
{
	int ret, result;

2926 2927 2928 2929
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2930 2931 2932 2933 2934 2935
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2936
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2948
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
2949
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2950
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2951 2952 2953 2954 2955 2956
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

2957
	dev_priv->sagv_status = I915_SAGV_DISABLED;
2958 2959 2960
	return 0;
}

2961
bool intel_can_enable_sagv(struct drm_atomic_state *state)
2962 2963 2964 2965
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2966 2967
	struct intel_crtc *crtc;
	struct intel_plane *plane;
2968
	struct intel_crtc_state *cstate;
2969
	enum pipe pipe;
2970
	int level, latency;
2971

2972 2973 2974
	if (!intel_has_sagv(dev_priv))
		return false;

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
2988
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
2989
	cstate = to_intel_crtc_state(crtc->base.state);
2990

2991
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
2992 2993
		return false;

2994
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
2995 2996
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
2997

2998
		/* Skip this plane if it's not enabled */
2999
		if (!wm->wm[0].plane_en)
3000 3001 3002
			continue;

		/* Find the highest enabled wm level for this plane */
3003
		for (level = ilk_wm_max_level(dev_priv);
3004
		     !wm->wm[level].plane_en; --level)
3005 3006
		     { }

3007 3008 3009
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3010
		    plane->base.state->fb->modifier ==
3011 3012 3013
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3014 3015 3016 3017 3018
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3019
		if (latency < SKL_SAGV_BLOCK_TIME)
3020 3021 3022 3023 3024 3025
			return false;
	}

	return true;
}

3026 3027
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3028
				   const struct intel_crtc_state *cstate,
3029 3030
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3031
{
3032 3033 3034
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3035
	struct drm_crtc *for_crtc = cstate->base.crtc;
3036 3037
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3038

3039
	if (WARN_ON(!state) || !cstate->base.active) {
3040 3041
		alloc->start = 0;
		alloc->end = 0;
3042
		*num_active = hweight32(dev_priv->active_crtcs);
3043 3044 3045
		return;
	}

3046 3047 3048 3049 3050
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3051 3052
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3053 3054 3055

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3056
	/*
3057 3058 3059 3060 3061 3062
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3063
	 */
3064
	if (!intel_state->active_pipe_changes) {
3065 3066 3067 3068 3069
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3070
		return;
3071
	}
3072 3073 3074 3075 3076 3077

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3078 3079
}

3080
static unsigned int skl_cursor_allocation(int num_active)
3081
{
3082
	if (num_active == 1)
3083 3084 3085 3086 3087
		return 32;

	return 8;
}

3088 3089 3090 3091
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3092 3093
	if (entry->end)
		entry->end += 1;
3094 3095
}

3096 3097
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3098
{
3099
	struct intel_crtc *crtc;
3100

3101 3102
	memset(ddb, 0, sizeof(*ddb));

3103
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3104
		enum intel_display_power_domain power_domain;
3105 3106
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3107 3108 3109

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3110 3111
			continue;

3112 3113 3114 3115 3116 3117 3118
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3119

3120 3121
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3122 3123

		intel_display_power_put(dev_priv, power_domain);
3124 3125 3126
	}
}

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3149
	if (WARN_ON(!pstate->base.visible))
3150 3151 3152
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3153 3154 3155 3156
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3157
	if (drm_rotation_90_or_270(pstate->base.rotation))
3158 3159 3160 3161 3162 3163 3164 3165 3166
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3167
static unsigned int
3168 3169 3170
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3171
{
3172
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3173
	struct drm_framebuffer *fb = pstate->fb;
3174
	uint32_t down_scale_amount, data_rate;
3175
	uint32_t width = 0, height = 0;
3176 3177
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3178
	if (!intel_pstate->base.visible)
3179 3180 3181 3182 3183
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3184

3185 3186
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3187

3188
	if (drm_rotation_90_or_270(pstate->rotation))
3189
		swap(width, height);
3190 3191

	/* for planar format */
3192
	if (format == DRM_FORMAT_NV12) {
3193
		if (y)  /* y-plane data rate */
3194
			data_rate = width * height *
3195
				drm_format_plane_cpp(format, 0);
3196
		else    /* uv-plane data rate */
3197
			data_rate = (width / 2) * (height / 2) *
3198
				drm_format_plane_cpp(format, 1);
3199 3200 3201
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3202 3203
	}

3204 3205 3206
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3207 3208 3209 3210 3211 3212 3213 3214
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3215 3216 3217
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3218
{
3219 3220
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3221 3222
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3223
	unsigned int total_data_rate = 0;
3224 3225 3226

	if (WARN_ON(!state))
		return 0;
3227

3228
	/* Calculate and cache data rate for each plane */
3229
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3230 3231
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3232 3233 3234 3235

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3236
		plane_data_rate[plane_id] = rate;
3237 3238

		total_data_rate += rate;
3239 3240 3241 3242

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3243
		plane_y_data_rate[plane_id] = rate;
3244

3245
		total_data_rate += rate;
3246 3247 3248 3249 3250
	}

	return total_data_rate;
}

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3269 3270
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3271 3272
		return 8;

3273 3274
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3275

3276
	if (drm_rotation_90_or_270(pstate->rotation))
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3290
	if (drm_rotation_90_or_270(pstate->rotation)) {
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3314 3315 3316 3317 3318 3319 3320 3321
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3322
		enum plane_id plane_id = to_intel_plane(plane)->id;
3323

3324
		if (plane_id == PLANE_CURSOR)
3325 3326 3327 3328 3329
			continue;

		if (!pstate->visible)
			continue;

3330 3331
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3332 3333 3334 3335 3336
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3337
static int
3338
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3339 3340
		      struct skl_ddb_allocation *ddb /* out */)
{
3341
	struct drm_atomic_state *state = cstate->base.state;
3342
	struct drm_crtc *crtc = cstate->base.crtc;
3343 3344 3345
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3346
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3347
	uint16_t alloc_size, start;
3348 3349
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3350
	unsigned int total_data_rate;
3351
	enum plane_id plane_id;
3352
	int num_active;
3353 3354
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3355

3356 3357 3358 3359
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3360 3361 3362
	if (WARN_ON(!state))
		return 0;

3363
	if (!cstate->base.active) {
3364
		alloc->start = alloc->end = 0;
3365 3366 3367
		return 0;
	}

3368
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3369
	alloc_size = skl_ddb_entry_size(alloc);
3370 3371
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3372
		return 0;
3373 3374
	}

3375
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3376

3377 3378 3379 3380 3381
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3382

3383 3384 3385
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3386 3387
	}

3388 3389 3390
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3391
	/*
3392 3393
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3394 3395 3396
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3397 3398 3399
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3400
	if (total_data_rate == 0)
3401
		return 0;
3402

3403
	start = alloc->start;
3404
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3405 3406
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3407

3408
		if (plane_id == PLANE_CURSOR)
3409 3410
			continue;

3411
		data_rate = plane_data_rate[plane_id];
3412 3413

		/*
3414
		 * allocation for (packed formats) or (uv-plane part of planar format):
3415 3416 3417
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3418
		plane_blocks = minimum[plane_id];
3419 3420
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3421

3422 3423
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3424 3425
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3426
		}
3427 3428

		start += plane_blocks;
3429 3430 3431 3432

		/*
		 * allocation for y_plane part of planar format:
		 */
3433
		y_data_rate = plane_y_data_rate[plane_id];
3434

3435
		y_plane_blocks = y_minimum[plane_id];
3436 3437
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3438

3439
		if (y_data_rate) {
3440 3441
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3442
		}
3443 3444

		start += y_plane_blocks;
3445 3446
	}

3447
	return 0;
3448 3449
}

3450 3451
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3452
 * for the read latency) and cpp should always be <= 8, so that
3453 3454 3455
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3456
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3457 3458 3459 3460 3461 3462
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3463
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3464 3465 3466 3467 3468 3469
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3470
			       uint32_t latency, uint32_t plane_blocks_per_line)
3471
{
3472 3473
	uint32_t ret;
	uint32_t wm_intermediate_val;
3474 3475 3476 3477 3478 3479

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3480
				plane_blocks_per_line;
3481 3482 3483 3484

	return ret;
}

3485 3486 3487 3488 3489 3490 3491 3492
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3493
	if (WARN_ON(!pstate->base.visible))
3494 3495 3496 3497 3498 3499
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3500
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3501 3502 3503 3504 3505 3506 3507 3508
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3509 3510 3511 3512 3513 3514 3515 3516
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3517
{
3518 3519
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3520 3521 3522 3523 3524
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3525
	uint8_t cpp;
3526
	uint32_t width = 0, height = 0;
3527
	uint32_t plane_pixel_rate;
3528
	uint32_t y_tile_minimum, y_min_scanlines;
3529 3530 3531
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3532

3533
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3534 3535 3536
		*enabled = false;
		return 0;
	}
3537

V
Ville Syrjälä 已提交
3538
	if (apply_memory_bw_wa && fb->modifier == I915_FORMAT_MOD_X_TILED)
3539 3540
		latency += 15;

3541 3542
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3543

3544
	if (drm_rotation_90_or_270(pstate->rotation))
3545 3546
		swap(width, height);

3547
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3548 3549
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3550
	if (drm_rotation_90_or_270(pstate->rotation)) {
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3565 3566 3567
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3568 3569 3570 3571 3572
		}
	} else {
		y_min_scanlines = 4;
	}

3573 3574 3575
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3576
	plane_bytes_per_line = width * cpp;
V
Ville Syrjälä 已提交
3577 3578
	if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3579 3580 3581
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
V
Ville Syrjälä 已提交
3582
	} else if (fb->modifier == DRM_FORMAT_MOD_NONE) {
3583 3584 3585 3586 3587 3588
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3589 3590
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3591
				 cstate->base.adjusted_mode.crtc_htotal,
3592
				 latency,
3593
				 plane_blocks_per_line);
3594

3595 3596
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;

V
Ville Syrjälä 已提交
3597 3598
	if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3599 3600
		selected_result = max(method2, y_tile_minimum);
	} else {
3601 3602 3603 3604
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3605 3606 3607 3608
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3609

3610 3611
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3612

3613
	if (level >= 1 && level <= 7) {
V
Ville Syrjälä 已提交
3614 3615
		if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3616
			res_blocks += y_tile_minimum;
3617
			res_lines += y_min_scanlines;
3618
		} else {
3619
			res_blocks++;
3620
		}
3621
	}
3622

3623 3624
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3625 3626 3627 3628 3629 3630 3631 3632

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3633 3634
			struct drm_plane *plane = pstate->plane;

3635
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3636 3637
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3638 3639 3640
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3641
	}
3642 3643 3644

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3645
	*enabled = true;
3646

3647
	return 0;
3648 3649
}

3650 3651 3652 3653
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3654
		     struct intel_plane *intel_plane,
3655 3656
		     int level,
		     struct skl_wm_level *result)
3657
{
3658
	struct drm_atomic_state *state = cstate->base.state;
3659
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3660 3661
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3662
	uint16_t ddb_blocks;
3663
	enum pipe pipe = intel_crtc->pipe;
3664
	int ret;
L
Lyude 已提交
3665 3666 3667 3668 3669

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3670

3671
	/*
L
Lyude 已提交
3672 3673 3674 3675 3676 3677 3678 3679 3680
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3681
	 */
L
Lyude 已提交
3682 3683
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3684

L
Lyude 已提交
3685
	WARN_ON(!intel_pstate->base.fb);
3686

3687
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3688

L
Lyude 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3699 3700

	return 0;
3701 3702
}

3703
static uint32_t
3704
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3705
{
3706 3707
	uint32_t pixel_rate;

3708
	if (!cstate->base.active)
3709 3710
		return 0;

3711 3712 3713
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3714
		return 0;
3715

3716
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3717
			    pixel_rate);
3718 3719
}

3720
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3721
				      struct skl_wm_level *trans_wm /* out */)
3722
{
3723
	if (!cstate->base.active)
3724
		return;
3725 3726

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3727
	trans_wm->plane_en = false;
3728 3729
}

3730 3731 3732
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3733
{
3734
	struct drm_device *dev = cstate->base.crtc->dev;
3735
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3736 3737
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3738
	int level, max_level = ilk_wm_max_level(dev_priv);
3739
	int ret;
3740

L
Lyude 已提交
3741 3742 3743 3744 3745 3746 3747 3748 3749
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3750
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
3751 3752 3753 3754 3755 3756 3757 3758 3759

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3760
	}
3761
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3762

3763
	return 0;
3764 3765
}

3766 3767
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3768 3769 3770 3771 3772 3773 3774 3775
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3791 3792 3793
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
3794
			       enum plane_id plane_id)
3795 3796 3797 3798
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3799
	int level, max_level = ilk_wm_max_level(dev_priv);
3800 3801 3802
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3803
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
3804
				   &wm->wm[level]);
3805
	}
3806
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
3807
			   &wm->trans_wm);
3808

3809 3810 3811 3812
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
3813 3814
}

3815 3816 3817
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
3818 3819 3820 3821
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3822
	int level, max_level = ilk_wm_max_level(dev_priv);
3823 3824 3825
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3826 3827
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3828
	}
3829
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3830

3831
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3832
			    &ddb->plane[pipe][PLANE_CURSOR]);
3833 3834
}

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3849 3850
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3851
{
3852
	return a->start < b->end && b->start < a->end;
3853 3854
}

3855 3856 3857
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
3858
{
3859
	int i;
3860

3861 3862 3863
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
3864
			return true;
3865

3866
	return false;
3867 3868
}

3869
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3870
			      const struct skl_pipe_wm *old_pipe_wm,
3871
			      struct skl_pipe_wm *pipe_wm, /* out */
3872
			      struct skl_ddb_allocation *ddb, /* out */
3873
			      bool *changed /* out */)
3874
{
3875
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3876
	int ret;
3877

3878 3879 3880
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3881

3882
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3883 3884 3885
		*changed = false;
	else
		*changed = true;
3886

3887
	return 0;
3888 3889
}

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3903
static int
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

3920
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3921
		enum plane_id plane_id = to_intel_plane(plane)->id;
3922

3923 3924 3925 3926
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

3937 3938 3939 3940 3941 3942 3943
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3944
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3945
	uint32_t realloc_pipes = pipes_modified(state);
3946 3947 3948 3949 3950 3951 3952 3953
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
3954 3955 3956 3957 3958 3959
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

3960 3961
		intel_state->active_pipe_changes = ~0;

3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
3985
	if (intel_state->active_pipe_changes) {
3986
		realloc_pipes = ~0;
3987 3988
		intel_state->wm_results.dirty_pipes = ~0;
	}
3989

3990 3991 3992 3993 3994 3995
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

3996 3997 3998 3999 4000 4001 4002
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4003
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4004 4005
		if (ret)
			return ret;
4006

4007
		ret = skl_ddb_add_affected_planes(cstate);
4008 4009
		if (ret)
			return ret;
4010 4011 4012 4013 4014
	}

	return 0;
}

4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4038
	int i;
4039 4040

	for_each_crtc_in_state(state, crtc, cstate, i) {
4041 4042
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4043

4044
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4045
			enum plane_id plane_id = intel_plane->id;
4046 4047
			const struct skl_ddb_entry *old, *new;

4048 4049
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4050 4051 4052 4053

			if (skl_ddb_entry_equal(old, new))
				continue;

4054 4055 4056 4057 4058
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4059 4060 4061 4062
		}
	}
}

4063 4064 4065 4066 4067
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4068 4069 4070
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4071
	bool changed = false;
4072
	int ret, i;
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4087 4088 4089
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4090 4091 4092 4093
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4107 4108
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4109 4110

		pipe_wm = &intel_cstate->wm.skl.optimal;
4111 4112
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4126 4127
	skl_print_wm_changes(state);

4128 4129 4130
	return 0;
}

4131 4132 4133 4134 4135 4136
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4137
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4138
	enum pipe pipe = crtc->pipe;
4139
	enum plane_id plane_id;
4140 4141 4142

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4143 4144

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4145

4146 4147 4148 4149 4150 4151 4152 4153
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4154 4155
}

4156 4157
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4158
{
4159
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4160
	struct drm_device *dev = intel_crtc->base.dev;
4161
	struct drm_i915_private *dev_priv = to_i915(dev);
4162
	struct skl_wm_values *results = &state->wm_results;
4163
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4164
	enum pipe pipe = intel_crtc->pipe;
4165

4166
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4167 4168
		return;

4169
	mutex_lock(&dev_priv->wm.wm_mutex);
4170

4171 4172
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4173 4174

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4175 4176

	mutex_unlock(&dev_priv->wm.wm_mutex);
4177 4178
}

4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4197
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4198
{
4199
	struct drm_device *dev = &dev_priv->drm;
4200
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4201
	struct ilk_wm_maximums max;
4202
	struct intel_wm_config config = {};
4203
	struct ilk_wm_values results = {};
4204
	enum intel_ddb_partitioning partitioning;
4205

4206 4207 4208 4209
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4210 4211

	/* 5/6 split only in single pipe config on IVB+ */
4212
	if (INTEL_GEN(dev_priv) >= 7 &&
4213 4214 4215
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4216

4217
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4218
	} else {
4219
		best_lp_wm = &lp_wm_1_2;
4220 4221
	}

4222
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4223
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4224

4225
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4226

4227
	ilk_write_wm_values(dev_priv, &results);
4228 4229
}

4230 4231
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4232
{
4233 4234
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4235

4236
	mutex_lock(&dev_priv->wm.wm_mutex);
4237
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4238 4239 4240
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4241

4242 4243
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4244 4245 4246
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4247

4248 4249
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4250
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4251 4252 4253
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4254 4255
}

4256 4257
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4258
{
4259 4260 4261 4262
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4263 4264
}

4265 4266
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4267
{
4268
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4269 4270
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4271 4272
	int level, max_level;
	enum plane_id plane_id;
4273
	uint32_t val;
4274

4275
	max_level = ilk_wm_max_level(dev_priv);
4276

4277 4278
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4279

4280
		for (level = 0; level <= max_level; level++) {
4281 4282
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4283 4284
			else
				val = I915_READ(CUR_WM(pipe, level));
4285

4286
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4287 4288
		}

4289 4290
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4291 4292 4293 4294
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4295 4296
	}

4297 4298
	if (!intel_crtc->active)
		return;
4299

4300
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4301 4302 4303 4304
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4305
	struct drm_i915_private *dev_priv = to_i915(dev);
4306
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4307
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4308
	struct drm_crtc *crtc;
4309 4310
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4311

4312
	skl_ddb_get_hw_state(dev_priv, ddb);
4313 4314 4315 4316 4317 4318
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4319
		if (intel_crtc->active)
4320 4321
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4322

4323 4324 4325 4326 4327 4328 4329
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4330 4331
}

4332 4333 4334
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4335
	struct drm_i915_private *dev_priv = to_i915(dev);
4336
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4337
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4338
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4339
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4340
	enum pipe pipe = intel_crtc->pipe;
4341
	static const i915_reg_t wm0_pipe_reg[] = {
4342 4343 4344 4345 4346 4347
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4348
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4349
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4350

4351 4352
	memset(active, 0, sizeof(*active));

4353
	active->pipe_enabled = intel_crtc->active;
4354 4355

	if (active->pipe_enabled) {
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4370
		int level, max_level = ilk_wm_max_level(dev_priv);
4371 4372 4373 4374 4375 4376 4377 4378 4379

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4380 4381

	intel_crtc->wm.active.ilk = *active;
4382 4383
}

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

4398
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
4399
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4400
		wm->ddl[pipe].plane[PLANE_CURSOR] =
4401
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4402
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
4403
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4404
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
4405 4406 4407 4408 4409
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
4410 4411 4412
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4413 4414

	tmp = I915_READ(DSPFW2);
4415 4416 4417
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4418 4419 4420 4421 4422 4423

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
4424 4425
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4426 4427

		tmp = I915_READ(DSPFW8_CHV);
4428 4429
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4430 4431

		tmp = I915_READ(DSPFW9_CHV);
4432 4433
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4434 4435 4436

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4437 4438 4439 4440 4441 4442 4443 4444 4445
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4446 4447
	} else {
		tmp = I915_READ(DSPFW7);
4448 4449
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4450 4451 4452

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4453 4454 4455 4456 4457 4458
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

4475 4476
	for_each_intel_plane(dev, plane)
		plane->wm.fifo_size = vlv_get_fifo_size(plane);
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4488 4489 4490 4491 4492 4493 4494 4495 4496
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4497
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4511 4512 4513 4514 4515 4516

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4517 4518 4519 4520 4521
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
4522 4523 4524 4525 4526

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4527 4528
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4529
	struct drm_i915_private *dev_priv = to_i915(dev);
4530
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4531 4532
	struct drm_crtc *crtc;

4533
	for_each_crtc(dev, crtc)
4534 4535 4536 4537 4538 4539 4540
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4541
	if (INTEL_GEN(dev_priv) >= 7) {
4542 4543 4544
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4545

4546
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4547 4548
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4549
	else if (IS_IVYBRIDGE(dev_priv))
4550 4551
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4552 4553 4554 4555 4556

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4589
void intel_update_watermarks(struct intel_crtc *crtc)
4590
{
4591
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4592 4593

	if (dev_priv->display.update_wm)
4594
		dev_priv->display.update_wm(crtc);
4595 4596
}

4597
/*
4598 4599 4600 4601 4602 4603 4604 4605
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4606
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4607 4608 4609
{
	u16 rgvswctl;

4610 4611
	assert_spin_locked(&mchdev_lock);

4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4629
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4630
{
4631
	u32 rgvmodectl;
4632 4633
	u8 fmax, fmin, fstart, vstart;

4634 4635
	spin_lock_irq(&mchdev_lock);

4636 4637
	rgvmodectl = I915_READ(MEMMODECTL);

4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4658
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4659 4660
		PXVFREQ_PX_SHIFT;

4661 4662
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4663

4664 4665 4666
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4683
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4684
		DRM_ERROR("stuck trying to change perf mode\n");
4685
	mdelay(1);
4686

4687
	ironlake_set_drps(dev_priv, fstart);
4688

4689 4690
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4691
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4692
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4693
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4694 4695

	spin_unlock_irq(&mchdev_lock);
4696 4697
}

4698
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4699
{
4700 4701 4702 4703 4704
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4705 4706 4707 4708 4709 4710 4711 4712 4713

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4714
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4715
	mdelay(1);
4716 4717
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4718
	mdelay(1);
4719

4720
	spin_unlock_irq(&mchdev_lock);
4721 4722
}

4723 4724 4725 4726 4727
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4728
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4729
{
4730
	u32 limits;
4731

4732 4733 4734 4735 4736 4737
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4738
	if (IS_GEN9(dev_priv)) {
4739 4740 4741 4742 4743 4744 4745 4746
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4747 4748 4749 4750

	return limits;
}

4751 4752 4753
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4754 4755
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4756 4757 4758 4759

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4760 4761
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4762 4763 4764 4765
			new_power = BETWEEN;
		break;

	case BETWEEN:
4766 4767
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4768
			new_power = LOW_POWER;
4769 4770
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4771 4772 4773 4774
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4775 4776
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4777 4778 4779 4780
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4781
	if (val <= dev_priv->rps.min_freq_softlimit)
4782
		new_power = LOW_POWER;
4783
	if (val >= dev_priv->rps.max_freq_softlimit)
4784 4785 4786 4787 4788 4789 4790 4791
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4792 4793
		ei_up = 16000;
		threshold_up = 95;
4794 4795

		/* Downclock if less than 85% busy over 32ms */
4796 4797
		ei_down = 32000;
		threshold_down = 85;
4798 4799 4800 4801
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4802 4803
		ei_up = 13000;
		threshold_up = 90;
4804 4805

		/* Downclock if less than 75% busy over 32ms */
4806 4807
		ei_down = 32000;
		threshold_down = 75;
4808 4809 4810 4811
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4812 4813
		ei_up = 10000;
		threshold_up = 85;
4814 4815

		/* Downclock if less than 60% busy over 32ms */
4816 4817
		ei_down = 32000;
		threshold_down = 60;
4818 4819 4820
		break;
	}

4821
	I915_WRITE(GEN6_RP_UP_EI,
4822
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4823
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4824 4825
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4826 4827

	I915_WRITE(GEN6_RP_DOWN_EI,
4828
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4829
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4840

4841
	dev_priv->rps.power = new_power;
4842 4843
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4844 4845 4846
	dev_priv->rps.last_adj = 0;
}

4847 4848 4849 4850 4851
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4852
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4853
	if (val < dev_priv->rps.max_freq_softlimit)
4854
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4855

4856 4857
	mask &= dev_priv->pm_rps_events;

4858
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4859 4860
}

4861 4862 4863
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4864
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4865
{
4866
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4867
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4868 4869
		return;

4870
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4871 4872
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4873

C
Chris Wilson 已提交
4874 4875 4876 4877 4878
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4879

4880
		if (IS_GEN9(dev_priv))
4881 4882
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4883
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4884 4885 4886 4887 4888 4889 4890
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4891
	}
4892 4893 4894 4895

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4896
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4897
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4898

4899 4900
	POSTING_READ(GEN6_RPNSWREQ);

4901
	dev_priv->rps.cur_freq = val;
4902
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4903 4904
}

4905
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4906 4907
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4908 4909
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4910

4911
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4912 4913 4914
		      "Odd GPU freq value\n"))
		val &= ~1;

4915 4916
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4917
	if (val != dev_priv->rps.cur_freq) {
4918
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4919 4920 4921
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4922 4923 4924 4925 4926

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4927
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4928 4929
 *
 * * If Gfx is Idle, then
4930 4931 4932
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4933 4934 4935
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4936
	u32 val = dev_priv->rps.idle_freq;
4937

4938
	if (dev_priv->rps.cur_freq <= val)
4939 4940
		return;

4941 4942 4943
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4944
	valleyview_set_rps(dev_priv, val);
4945
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4946 4947
}

4948 4949 4950 4951 4952 4953 4954 4955
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4956

4957 4958
		gen6_enable_rps_interrupts(dev_priv);

4959 4960 4961 4962 4963
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
4964 4965 4966 4967
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4968 4969
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4970 4971 4972 4973 4974 4975 4976
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

4977
	mutex_lock(&dev_priv->rps.hw_lock);
4978
	if (dev_priv->rps.enabled) {
4979
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4980
			vlv_set_rps_idle(dev_priv);
4981
		else
4982
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4983
		dev_priv->rps.last_adj = 0;
4984 4985
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4986
	}
4987
	mutex_unlock(&dev_priv->rps.hw_lock);
4988

4989
	spin_lock(&dev_priv->rps.client_lock);
4990 4991
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4992
	spin_unlock(&dev_priv->rps.client_lock);
4993 4994
}

4995
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4996 4997
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4998
{
4999 5000 5001
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5002
	if (!(dev_priv->gt.awake &&
5003
	      dev_priv->rps.enabled &&
5004
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5005
		return;
5006

5007 5008 5009
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5010
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5011 5012
		rps = NULL;

5013 5014 5015 5016 5017
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5018
			schedule_work(&dev_priv->rps.work);
5019 5020
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5021

5022 5023 5024
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5025 5026
		} else
			dev_priv->rps.boosts++;
5027
	}
5028
	spin_unlock(&dev_priv->rps.client_lock);
5029 5030
}

5031
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5032
{
5033 5034
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5035
	else
5036
		gen6_set_rps(dev_priv, val);
5037 5038
}

5039
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5040 5041
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5042
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5043 5044
}

5045
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5046 5047 5048 5049
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5050
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5051 5052
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5053
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5054
	I915_WRITE(GEN6_RP_CONTROL, 0);
5055 5056
}

5057
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5058 5059 5060 5061
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5062
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5063
{
5064 5065
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5066
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5067

5068
	I915_WRITE(GEN6_RC_CONTROL, 0);
5069

5070
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5071 5072
}

5073
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5074
{
5075
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5076 5077 5078 5079 5080
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5081
	if (HAS_RC6p(dev_priv))
5082 5083 5084 5085 5086
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5087 5088

	else
5089 5090
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5091 5092
}

5093
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5094
{
5095
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5096 5097
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5109 5110

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5111
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5112 5113 5114 5115 5116 5117 5118 5119
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5120 5121 5122
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5123
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5124 5125 5126 5127 5128 5129 5130
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5131
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5132 5133 5134
		enable_rc6 = false;
	}

5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5149 5150 5151 5152 5153 5154
		enable_rc6 = false;
	}

	return enable_rc6;
}

5155
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5156
{
5157
	/* No RC6 before Ironlake and code is gone for ilk. */
5158
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5159 5160
		return 0;

5161 5162 5163
	if (!enable_rc6)
		return 0;

5164
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5165 5166 5167 5168
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5169
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5170 5171 5172
	if (enable_rc6 >= 0) {
		int mask;

5173
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5174 5175 5176 5177 5178 5179
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5180 5181 5182
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5183 5184 5185

		return enable_rc6 & mask;
	}
5186

5187
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5188
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5189 5190

	return INTEL_RC6_ENABLE;
5191 5192
}

5193
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5194 5195
{
	/* All of these values are in units of 50MHz */
5196

5197
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5198
	if (IS_GEN9_LP(dev_priv)) {
5199
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5200 5201 5202 5203
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5204
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5205 5206 5207 5208
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5209
	/* hw_max = RP0 until we check for overclocking */
5210
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5211

5212
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5213 5214
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5215 5216 5217 5218 5219
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5220
			dev_priv->rps.efficient_freq =
5221 5222 5223 5224
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5225 5226
	}

5227
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5228
		/* Store the frequency values in 16.66 MHZ units, which is
5229 5230
		 * the natural hardware unit for SKL
		 */
5231 5232 5233 5234 5235 5236
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5237 5238
}

5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5251
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5252
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5253 5254 5255
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5256
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5257
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5258 5259 5260 5261 5262 5263 5264 5265 5266
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5267
		gen9_disable_rps(dev_priv);
5268 5269 5270 5271
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5272 5273 5274 5275 5276 5277 5278 5279
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5280 5281
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5282 5283 5284
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5285
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5286 5287 5288 5289

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5290
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5291
{
5292
	struct intel_engine_cs *engine;
5293
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5294 5295 5296 5297 5298 5299 5300
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5301
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5302 5303 5304 5305 5306

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5307 5308

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5309
	if (IS_SKYLAKE(dev_priv))
5310 5311 5312
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5313 5314
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5315
	for_each_engine(engine, dev_priv, id)
5316
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5317

5318
	if (HAS_GUC(dev_priv))
5319 5320
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5321 5322
	I915_WRITE(GEN6_RC_SLEEP, 0);

5323 5324 5325 5326
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5327
	/* 3a: Enable RC6 */
5328
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5329
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5330
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5331
	/* WaRsUseTimeoutMode:bxt */
5332
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5333
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5334 5335 5336
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5337 5338
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5339 5340 5341
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5342
	}
Z
Zhe Wang 已提交
5343

5344 5345
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5346
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5347
	 */
5348
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5349 5350 5351 5352
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5353

5354
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5355 5356
}

5357
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5358
{
5359
	struct intel_engine_cs *engine;
5360
	enum intel_engine_id id;
5361
	uint32_t rc6_mask = 0;
5362 5363 5364 5365 5366 5367

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5368
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5369 5370 5371 5372 5373 5374 5375 5376

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5377
	for_each_engine(engine, dev_priv, id)
5378
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5379
	I915_WRITE(GEN6_RC_SLEEP, 0);
5380
	if (IS_BROADWELL(dev_priv))
5381 5382 5383
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5384 5385

	/* 3: Enable RC6 */
5386
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5387
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5388 5389
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5390 5391 5392 5393 5394 5395 5396
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5397 5398

	/* 4 Program defaults and thresholds for RPS*/
5399 5400 5401 5402
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5417 5418

	/* 5: Enable RPS */
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5429
	reset_rps(dev_priv, gen6_set_rps);
5430

5431
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5432 5433
}

5434
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5435
{
5436
	struct intel_engine_cs *engine;
5437
	enum intel_engine_id id;
5438
	u32 rc6vids, rc6_mask = 0;
5439 5440
	u32 gtfifodbg;
	int rc6_mode;
5441
	int ret;
5442

5443
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5444

5445 5446 5447 5448 5449 5450 5451 5452 5453
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5454 5455
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5456 5457 5458 5459
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5460
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5461 5462 5463 5464 5465 5466 5467 5468 5469 5470

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5471
	for_each_engine(engine, dev_priv, id)
5472
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5473 5474 5475

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5476
	if (IS_IVYBRIDGE(dev_priv))
5477 5478 5479
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5480
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5481 5482
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5483
	/* Check if we are enabling RC6 */
5484
	rc6_mode = intel_enable_rc6();
5485 5486 5487
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5488
	/* We don't use those on Haswell */
5489
	if (!IS_HASWELL(dev_priv)) {
5490 5491
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5492

5493 5494 5495
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5496

5497
	intel_print_rc6_info(dev_priv, rc6_mask);
5498 5499 5500 5501 5502 5503

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5504 5505
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5506 5507
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5508
	reset_rps(dev_priv, gen6_set_rps);
5509

5510 5511
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5512
	if (IS_GEN6(dev_priv) && ret) {
5513
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5514
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5515 5516 5517 5518 5519 5520 5521 5522 5523
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5524
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5525 5526
}

5527
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5528 5529
{
	int min_freq = 15;
5530 5531
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5532
	unsigned int max_gpu_freq, min_gpu_freq;
5533
	int scaling_factor = 180;
5534
	struct cpufreq_policy *policy;
5535

5536
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5537

5538 5539 5540 5541 5542 5543 5544 5545 5546
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5547
		max_ia_freq = tsc_khz;
5548
	}
5549 5550 5551 5552

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5553
	min_ring_freq = I915_READ(DCLK) & 0xf;
5554 5555
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5556

5557
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5558 5559 5560 5561 5562 5563 5564 5565
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5566 5567 5568 5569 5570
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5571 5572
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5573 5574
		unsigned int ia_freq = 0, ring_freq = 0;

5575
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5576 5577 5578 5579 5580
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5581
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5582 5583
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5584
		} else if (IS_HASWELL(dev_priv)) {
5585
			ring_freq = mult_frac(gpu_freq, 5, 4);
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5602

B
Ben Widawsky 已提交
5603 5604
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5605 5606 5607
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5608 5609 5610
	}
}

5611
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5612 5613 5614
{
	u32 val, rp0;

5615
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5616

5617
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5632
	}
5633 5634 5635

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5649 5650 5651 5652
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5653 5654 5655
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5656 5657 5658
	return rp1;
}

5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5670
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5671 5672 5673
{
	u32 val, rp0;

5674
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5687
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5688
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5689
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5690 5691 5692 5693 5694
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5695
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5696
{
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5708 5709
}

5710 5711 5712 5713 5714 5715 5716 5717 5718
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5719 5720 5721 5722 5723 5724 5725 5726 5727

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5728
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5729
{
5730
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5731
	unsigned long pctx_paddr, paddr;
5732 5733 5734 5735 5736
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5737
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5738
		paddr = (dev_priv->mm.stolen_base +
5739
			 (ggtt->stolen_size - pctx_size));
5740 5741 5742 5743

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5744 5745

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5746 5747
}

5748
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5761
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
5762
								      pcbr_offset,
5763
								      I915_GTT_OFFSET_NONE,
5764 5765 5766 5767
								      pctx_size);
		goto out;
	}

5768 5769
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5770 5771 5772 5773 5774 5775 5776 5777
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5778
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
5779 5780
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5781
		goto out;
5782 5783 5784 5785 5786 5787
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5788
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5789 5790 5791
	dev_priv->vlv_pctx = pctx;
}

5792
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5793 5794 5795 5796
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5797
	i915_gem_object_put(dev_priv->vlv_pctx);
5798 5799 5800
	dev_priv->vlv_pctx = NULL;
}

5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5812
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5813
{
5814
	u32 val;
5815

5816
	valleyview_setup_pctx(dev_priv);
5817

5818 5819
	vlv_init_gpll_ref_freq(dev_priv);

5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5833
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5834

5835 5836 5837
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5838
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5839 5840 5841 5842
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5843
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5844 5845
			 dev_priv->rps.efficient_freq);

5846 5847
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5848
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5849 5850
			 dev_priv->rps.rp1_freq);

5851 5852
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5853
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5854 5855 5856
			 dev_priv->rps.min_freq);
}

5857
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5858
{
5859
	u32 val;
5860

5861
	cherryview_setup_pctx(dev_priv);
5862

5863 5864
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5865
	mutex_lock(&dev_priv->sb_lock);
5866
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5867
	mutex_unlock(&dev_priv->sb_lock);
5868

5869 5870 5871 5872
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5873
	default:
5874 5875 5876
		dev_priv->mem_freq = 1600;
		break;
	}
5877
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5878

5879 5880 5881
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5882
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5883 5884 5885 5886
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5887
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5888 5889
			 dev_priv->rps.efficient_freq);

5890 5891
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5892
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5893 5894
			 dev_priv->rps.rp1_freq);

5895 5896
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5897
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5898
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5899 5900
			 dev_priv->rps.min_freq);

5901 5902 5903 5904 5905
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5906 5907
}

5908
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5909
{
5910
	valleyview_cleanup_pctx(dev_priv);
5911 5912
}

5913
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5914
{
5915
	struct intel_engine_cs *engine;
5916
	enum intel_engine_id id;
5917
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5918 5919 5920

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5921 5922
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5933
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5934

5935 5936 5937
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5938 5939 5940 5941 5942
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5943
	for_each_engine(engine, dev_priv, id)
5944
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5945 5946
	I915_WRITE(GEN6_RC_SLEEP, 0);

5947 5948
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
5960 5961
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
5962
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5963 5964 5965

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5966
	/* 4 Program defaults and thresholds for RPS*/
5967
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5978
		   GEN6_RP_MEDIA_IS_GFX |
5979 5980 5981 5982
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5983 5984 5985 5986 5987 5988
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5989 5990
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5991 5992 5993
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5994
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5995 5996
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5997
	reset_rps(dev_priv, valleyview_set_rps);
5998

5999
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6000 6001
}

6002
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6003
{
6004
	struct intel_engine_cs *engine;
6005
	enum intel_engine_id id;
6006
	u32 gtfifodbg, val, rc6_mode = 0;
6007 6008 6009

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6010 6011
	valleyview_check_pctx(dev_priv);

6012 6013
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6014 6015
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6016 6017 6018
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6019
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6020
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6021

6022 6023 6024
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6025
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6045
	for_each_engine(engine, dev_priv, id)
6046
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6047

6048
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6049 6050

	/* allows RC6 residency counter to work */
6051
	I915_WRITE(VLV_COUNTER_CONTROL,
6052 6053
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6054 6055
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6056

6057
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6058
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6059

6060
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6061

6062
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6063

D
Deepak S 已提交
6064 6065 6066 6067 6068 6069
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6070
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6071

6072 6073 6074
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6075
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6076 6077
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6078
	reset_rps(dev_priv, valleyview_set_rps);
6079

6080
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6081 6082
}

6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6112
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6113 6114 6115 6116 6117 6118
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6119 6120
	assert_spin_locked(&mchdev_lock);

6121
	diff1 = now - dev_priv->ips.last_time1;
6122 6123 6124 6125 6126 6127 6128

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6129
		return dev_priv->ips.chipset_power;
6130 6131 6132 6133 6134 6135 6136 6137

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6138 6139
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6140 6141
		diff += total_count;
	} else {
6142
		diff = total_count - dev_priv->ips.last_count1;
6143 6144 6145
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6146 6147
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6148 6149 6150 6151 6152 6153 6154 6155 6156 6157
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6158 6159
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6160

6161
	dev_priv->ips.chipset_power = ret;
6162 6163 6164 6165

	return ret;
}

6166 6167 6168 6169
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6170
	if (INTEL_INFO(dev_priv)->gen != 5)
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6209
{
6210 6211 6212
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6213
	if (INTEL_INFO(dev_priv)->is_mobile)
6214 6215 6216
		return vm > 0 ? vm : 0;

	return vd;
6217 6218
}

6219
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6220
{
6221
	u64 now, diff, diffms;
6222 6223
	u32 count;

6224
	assert_spin_locked(&mchdev_lock);
6225

6226 6227 6228
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6229 6230 6231 6232 6233 6234 6235

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6236 6237
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6238 6239
		diff += count;
	} else {
6240
		diff = count - dev_priv->ips.last_count2;
6241 6242
	}

6243 6244
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6245 6246 6247 6248

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6249
	dev_priv->ips.gfx_power = diff;
6250 6251
}

6252 6253
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6254
	if (INTEL_INFO(dev_priv)->gen != 5)
6255 6256
		return;

6257
	spin_lock_irq(&mchdev_lock);
6258 6259 6260

	__i915_update_gfx_val(dev_priv);

6261
	spin_unlock_irq(&mchdev_lock);
6262 6263
}

6264
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6265 6266 6267 6268
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6269 6270
	assert_spin_locked(&mchdev_lock);

6271
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6291
	corr2 = (corr * dev_priv->ips.corr);
6292 6293 6294 6295

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6296
	__i915_update_gfx_val(dev_priv);
6297

6298
	return dev_priv->ips.gfx_power + state2;
6299 6300
}

6301 6302 6303 6304
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6305
	if (INTEL_INFO(dev_priv)->gen != 5)
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6328
	spin_lock_irq(&mchdev_lock);
6329 6330 6331 6332
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6333 6334
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6335 6336 6337 6338

	ret = chipset_val + graphics_val;

out_unlock:
6339
	spin_unlock_irq(&mchdev_lock);
6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6355
	spin_lock_irq(&mchdev_lock);
6356 6357 6358 6359 6360 6361
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6362 6363
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6364 6365

out_unlock:
6366
	spin_unlock_irq(&mchdev_lock);
6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6383
	spin_lock_irq(&mchdev_lock);
6384 6385 6386 6387 6388 6389
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6390 6391
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6392 6393

out_unlock:
6394
	spin_unlock_irq(&mchdev_lock);
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6409
	spin_lock_irq(&mchdev_lock);
6410 6411
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6412
	spin_unlock_irq(&mchdev_lock);
6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6429
	spin_lock_irq(&mchdev_lock);
6430 6431 6432 6433 6434 6435
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6436
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6437

6438
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6439 6440 6441
		ret = false;

out_unlock:
6442
	spin_unlock_irq(&mchdev_lock);
6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6470 6471
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6472
	spin_lock_irq(&mchdev_lock);
6473
	i915_mch_dev = dev_priv;
6474
	spin_unlock_irq(&mchdev_lock);
6475 6476 6477 6478 6479 6480

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6481
	spin_lock_irq(&mchdev_lock);
6482
	i915_mch_dev = NULL;
6483
	spin_unlock_irq(&mchdev_lock);
6484
}
6485

6486
static void intel_init_emon(struct drm_i915_private *dev_priv)
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6503
		I915_WRITE(PEW(i), 0);
6504
	for (i = 0; i < 3; i++)
6505
		I915_WRITE(DEW(i), 0);
6506 6507 6508

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6509
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6530
		I915_WRITE(PXW(i), val);
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6546
		I915_WRITE(PXWL(i), 0);
6547 6548 6549 6550 6551 6552

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6553
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6554 6555
}

6556
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6557
{
6558 6559 6560 6561 6562 6563 6564 6565
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6566

6567
	mutex_lock(&dev_priv->drm.struct_mutex);
6568 6569 6570
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6571 6572 6573 6574
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6575
	else if (INTEL_GEN(dev_priv) >= 6)
6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6605 6606 6607
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6608
	mutex_unlock(&dev_priv->rps.hw_lock);
6609
	mutex_unlock(&dev_priv->drm.struct_mutex);
6610 6611

	intel_autoenable_gt_powersave(dev_priv);
6612 6613
}

6614
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6615
{
6616
	if (IS_VALLEYVIEW(dev_priv))
6617
		valleyview_cleanup_gt_powersave(dev_priv);
6618 6619 6620

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6621 6622
}

6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6642 6643 6644 6645
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6646 6647

	gen6_reset_rps_interrupts(dev_priv);
6648 6649
}

6650
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6651
{
6652 6653
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6654

6655
	mutex_lock(&dev_priv->rps.hw_lock);
6656

6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6668
	}
6669 6670 6671

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6672 6673
}

6674
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6675
{
6676 6677 6678
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6679 6680
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6681

6682 6683 6684
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6685

6686
	mutex_lock(&dev_priv->rps.hw_lock);
6687 6688 6689 6690 6691

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6692
	} else if (INTEL_GEN(dev_priv) >= 9) {
6693 6694 6695
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6696
			gen6_update_ring_freq(dev_priv);
6697 6698
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6699
		gen6_update_ring_freq(dev_priv);
6700
	} else if (INTEL_GEN(dev_priv) >= 6) {
6701
		gen6_enable_rps(dev_priv);
6702
		gen6_update_ring_freq(dev_priv);
6703 6704 6705
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6706
	}
6707 6708 6709 6710 6711 6712 6713

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6714
	dev_priv->rps.enabled = true;
6715 6716
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6717

6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6728
	rcs = dev_priv->engine[RCS];
6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6781
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6782 6783 6784 6785 6786 6787 6788 6789 6790
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6791
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6792
{
6793
	enum pipe pipe;
6794

6795
	for_each_pipe(dev_priv, pipe) {
6796 6797 6798
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6799 6800 6801

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6802 6803 6804
	}
}

6805
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6817
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6818
{
6819
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6820

6821 6822 6823 6824
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6825 6826 6827
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6845
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6846 6847 6848
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6849

6850
	ilk_init_lp_watermarks(dev_priv);
6851 6852 6853 6854 6855 6856 6857 6858

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6859
	if (IS_IRONLAKE_M(dev_priv)) {
6860
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6861 6862 6863 6864 6865 6866 6867 6868
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6869 6870
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6871 6872 6873 6874 6875 6876
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6877

6878
	/* WaDisableRenderCachePipelinedFlush:ilk */
6879 6880
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6881

6882 6883 6884
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6885
	g4x_disable_trickle_feed(dev_priv);
6886

6887
	ibx_init_clock_gating(dev_priv);
6888 6889
}

6890
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6891 6892
{
	int pipe;
6893
	uint32_t val;
6894 6895 6896 6897 6898 6899

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6900 6901 6902
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6903 6904
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6905 6906 6907
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6908
	for_each_pipe(dev_priv, pipe) {
6909 6910 6911
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6912
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6913
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6914 6915 6916
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6917 6918
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6919
	/* WADP0ClockGatingDisable */
6920
	for_each_pipe(dev_priv, pipe) {
6921 6922 6923
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6924 6925
}

6926
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6927 6928 6929 6930
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6931 6932 6933
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6934 6935
}

6936
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6937
{
6938
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6939

6940
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6941 6942 6943 6944 6945

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6946
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6947 6948 6949
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6950 6951 6952
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6953 6954 6955
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6956 6957 6958 6959
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6960 6961
	 */
	I915_WRITE(GEN6_GT_MODE,
6962
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6963

6964
	ilk_init_lp_watermarks(dev_priv);
6965 6966

	I915_WRITE(CACHE_MODE_0,
6967
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6983
	 *
6984 6985
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6986 6987 6988 6989 6990
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6991
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6992 6993
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6994

6995 6996 6997 6998 6999 7000 7001 7002
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7003 7004 7005 7006 7007 7008 7009 7010
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7011 7012
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7013 7014 7015 7016 7017 7018 7019
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7020 7021 7022 7023
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7024

7025
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7026

7027
	cpt_init_clock_gating(dev_priv);
7028

7029
	gen6_check_mch_setup(dev_priv);
7030 7031 7032 7033 7034 7035
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7036
	/*
7037
	 * WaVSThreadDispatchOverride:ivb,vlv
7038 7039 7040 7041
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7042 7043 7044 7045 7046 7047 7048 7049
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7050
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7051 7052 7053 7054 7055
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7056
	if (HAS_PCH_LPT_LP(dev_priv))
7057 7058 7059
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7060 7061

	/* WADPOClockGatingDisable:hsw */
7062 7063
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7064
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7065 7066
}

7067
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7068
{
7069
	if (HAS_PCH_LPT_LP(dev_priv)) {
7070 7071 7072 7073 7074 7075 7076
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7100
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7101
{
7102
	gen9_init_clock_gating(dev_priv);
7103 7104 7105 7106 7107

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7108 7109 7110 7111 7112

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7113 7114 7115 7116

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7117 7118
}

7119
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7120
{
7121
	gen9_init_clock_gating(dev_priv);
7122 7123 7124 7125

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7126 7127 7128 7129

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7130 7131
}

7132
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7133
{
7134
	enum pipe pipe;
B
Ben Widawsky 已提交
7135

7136
	ilk_init_lp_watermarks(dev_priv);
7137

7138
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7139
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7140

7141
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7142 7143 7144
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7145
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7146
	for_each_pipe(dev_priv, pipe) {
7147
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7148
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7149
			   BDW_DPRS_MASK_VBLANK_SRD);
7150
	}
7151

7152 7153 7154 7155 7156
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7157

7158 7159
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7160 7161 7162 7163

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7164

7165 7166
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7167

7168 7169 7170 7171 7172 7173 7174
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7175 7176 7177 7178
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7179
	lpt_init_clock_gating(dev_priv);
B
Ben Widawsky 已提交
7180 7181
}

7182
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7183
{
7184
	ilk_init_lp_watermarks(dev_priv);
7185

7186 7187 7188 7189 7190
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7191
	/* This is required by WaCatErrorRejectionIssue:hsw */
7192 7193 7194 7195
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7196 7197 7198
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7199

7200 7201 7202
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7203 7204 7205 7206
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7207
	/* WaDisable4x2SubspanOptimization:hsw */
7208 7209
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7210

7211 7212 7213
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7214 7215 7216 7217
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7218 7219
	 */
	I915_WRITE(GEN7_GT_MODE,
7220
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7221

7222 7223 7224 7225
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7226
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7227 7228
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7229 7230 7231
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7232

7233
	lpt_init_clock_gating(dev_priv);
7234 7235
}

7236
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7237
{
7238
	uint32_t snpcr;
7239

7240
	ilk_init_lp_watermarks(dev_priv);
7241

7242
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7243

7244
	/* WaDisableEarlyCull:ivb */
7245 7246 7247
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7248
	/* WaDisableBackToBackFlipFix:ivb */
7249 7250 7251 7252
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7253
	/* WaDisablePSDDualDispatchEnable:ivb */
7254
	if (IS_IVB_GT1(dev_priv))
7255 7256 7257
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7258 7259 7260
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7261
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7262 7263 7264
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7265
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7266 7267 7268
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7269
		   GEN7_WA_L3_CHICKEN_MODE);
7270
	if (IS_IVB_GT1(dev_priv))
7271 7272
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7273 7274 7275 7276
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7277 7278
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7279
	}
7280

7281
	/* WaForceL3Serialization:ivb */
7282 7283 7284
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7285
	/*
7286
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7287
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7288 7289
	 */
	I915_WRITE(GEN6_UCGCTL2,
7290
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7291

7292
	/* This is required by WaCatErrorRejectionIssue:ivb */
7293 7294 7295 7296
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7297
	g4x_disable_trickle_feed(dev_priv);
7298 7299

	gen7_setup_fixed_func_scheduler(dev_priv);
7300

7301 7302 7303 7304 7305
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7306

7307
	/* WaDisable4x2SubspanOptimization:ivb */
7308 7309
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7310

7311 7312 7313
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7314 7315 7316 7317
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7318 7319
	 */
	I915_WRITE(GEN7_GT_MODE,
7320
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7321

7322 7323 7324 7325
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7326

7327
	if (!HAS_PCH_NOP(dev_priv))
7328
		cpt_init_clock_gating(dev_priv);
7329

7330
	gen6_check_mch_setup(dev_priv);
7331 7332
}

7333
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7334
{
7335
	/* WaDisableEarlyCull:vlv */
7336 7337 7338
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7339
	/* WaDisableBackToBackFlipFix:vlv */
7340 7341 7342 7343
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7344
	/* WaPsdDispatchEnable:vlv */
7345
	/* WaDisablePSDDualDispatchEnable:vlv */
7346
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7347 7348
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7349

7350 7351 7352
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7353
	/* WaForceL3Serialization:vlv */
7354 7355 7356
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7357
	/* WaDisableDopClockGating:vlv */
7358 7359 7360
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7361
	/* This is required by WaCatErrorRejectionIssue:vlv */
7362 7363 7364 7365
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7366 7367
	gen7_setup_fixed_func_scheduler(dev_priv);

7368
	/*
7369
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7370
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7371 7372
	 */
	I915_WRITE(GEN6_UCGCTL2,
7373
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7374

7375 7376 7377 7378 7379
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7380

7381 7382 7383 7384
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7385 7386
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7387

7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7399 7400 7401 7402 7403 7404
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7405
	/*
7406
	 * WaDisableVLVClockGating_VBIIssue:vlv
7407 7408 7409
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7410
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7411 7412
}

7413
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7414
{
7415 7416 7417 7418 7419
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7420 7421 7422 7423

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7424 7425 7426 7427

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7428 7429 7430 7431

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7432

7433 7434 7435 7436 7437 7438 7439
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7440 7441 7442 7443 7444
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7445 7446
}

7447
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7459
	if (IS_GM45(dev_priv))
7460 7461
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7462 7463 7464 7465

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7466

7467 7468 7469
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7470
	g4x_disable_trickle_feed(dev_priv);
7471 7472
}

7473
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7474 7475 7476 7477 7478 7479
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7480 7481
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7482 7483 7484

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7485 7486
}

7487
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7488 7489 7490 7491 7492 7493 7494
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7495 7496
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7497 7498 7499

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7500 7501
}

7502
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7503 7504 7505 7506 7507 7508
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7509

7510
	if (IS_PINEVIEW(dev_priv))
7511
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7512 7513 7514

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7515 7516

	/* interrupts should cause a wake up from C3 */
7517
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7518 7519 7520

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7521 7522 7523

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7524 7525
}

7526
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7527 7528
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7529 7530 7531 7532

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7533 7534 7535

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7536 7537
}

7538
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7539 7540
{
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7541 7542 7543 7544

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7545 7546
}

7547
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7548
{
7549
	dev_priv->display.init_clock_gating(dev_priv);
7550 7551
}

7552
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7553
{
7554 7555
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7556 7557
}

7558
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7575
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7576
	else if (IS_KABYLAKE(dev_priv))
7577
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7578
	else if (IS_GEN9_LP(dev_priv))
7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7612
/* Set up chip specific power management-related functions */
7613
void intel_init_pm(struct drm_i915_private *dev_priv)
7614
{
7615
	intel_fbc_init(dev_priv);
7616

7617
	/* For cxsr */
7618
	if (IS_PINEVIEW(dev_priv))
7619
		i915_pineview_get_mem_freq(dev_priv);
7620
	else if (IS_GEN5(dev_priv))
7621
		i915_ironlake_get_mem_freq(dev_priv);
7622

7623
	/* For FIFO watermark updates */
7624
	if (INTEL_GEN(dev_priv) >= 9) {
7625
		skl_setup_wm_latency(dev_priv);
7626
		dev_priv->display.initial_watermarks = skl_initial_wm;
7627
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7628
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7629
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7630
		ilk_setup_wm_latency(dev_priv);
7631

7632
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7633
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7634
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7635
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7636
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7637 7638 7639 7640 7641 7642
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7643 7644 7645 7646
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7647
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7648
		vlv_setup_wm_latency(dev_priv);
7649
		dev_priv->display.update_wm = vlv_update_wm;
7650
	} else if (IS_PINEVIEW(dev_priv)) {
7651
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7652 7653 7654 7655 7656 7657 7658 7659 7660
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7661
			intel_set_memory_cxsr(dev_priv, false);
7662 7663 7664
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7665
	} else if (IS_G4X(dev_priv)) {
7666
		dev_priv->display.update_wm = g4x_update_wm;
7667
	} else if (IS_GEN4(dev_priv)) {
7668
		dev_priv->display.update_wm = i965_update_wm;
7669
	} else if (IS_GEN3(dev_priv)) {
7670 7671
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7672
	} else if (IS_GEN2(dev_priv)) {
7673
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7674
			dev_priv->display.update_wm = i845_update_wm;
7675
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7676 7677
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7678
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7679 7680 7681
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7682 7683 7684
	}
}

7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7697
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7729
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7730
{
7731 7732
	int status;

7733
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7734

7735 7736 7737 7738 7739 7740
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7741 7742 7743 7744
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7745 7746 7747
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7748

7749 7750 7751
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7752 7753 7754 7755
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7756 7757
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7758

7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7770 7771 7772
	return 0;
}

7773
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7774
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7775
{
7776 7777
	int status;

7778
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7779

7780 7781 7782 7783 7784 7785
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7786 7787 7788 7789
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7790
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
7791
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7792
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7793

7794 7795 7796
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7797 7798 7799 7800
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7801
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7802

7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7814 7815
	return 0;
}
7816

7817 7818
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7819 7820 7821 7822 7823
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7824 7825
}

7826
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7827
{
7828
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7829 7830
}

7831
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7832
{
7833 7834 7835 7836 7837
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7838 7839
}

7840
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7841
{
7842
	/* CHV needs even values */
7843
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7844 7845
}

7846
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7847
{
7848
	if (IS_GEN9(dev_priv))
7849 7850
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7851
	else if (IS_CHERRYVIEW(dev_priv))
7852
		return chv_gpu_freq(dev_priv, val);
7853
	else if (IS_VALLEYVIEW(dev_priv))
7854 7855 7856
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7857 7858
}

7859 7860
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7861
	if (IS_GEN9(dev_priv))
7862 7863
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7864
	else if (IS_CHERRYVIEW(dev_priv))
7865
		return chv_freq_opcode(dev_priv, val);
7866
	else if (IS_VALLEYVIEW(dev_priv))
7867 7868
		return byt_freq_opcode(dev_priv, val);
	else
7869
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7870
}
7871

7872 7873
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7874
	struct drm_i915_gem_request *req;
7875 7876 7877 7878 7879
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7880
	struct drm_i915_gem_request *req = boost->req;
7881

7882
	if (!i915_gem_request_completed(req))
7883
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7884

7885
	i915_gem_request_put(req);
7886 7887 7888
	kfree(boost);
}

7889
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7890 7891 7892
{
	struct request_boost *boost;

7893
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7894 7895
		return;

7896
	if (i915_gem_request_completed(req))
7897 7898
		return;

7899 7900 7901 7902
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

7903
	boost->req = i915_gem_request_get(req);
7904 7905

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7906
	queue_work(req->i915->wq, &boost->work);
7907 7908
}

7909
void intel_pm_setup(struct drm_i915_private *dev_priv)
7910
{
D
Daniel Vetter 已提交
7911
	mutex_init(&dev_priv->rps.hw_lock);
7912
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7913

7914 7915
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
7916
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7917

7918
	dev_priv->pm.suspended = false;
7919
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7920
}