intel_pm.c 224.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34

B
Ben Widawsky 已提交
35
/**
36 37
 * DOC: RC6
 *
B
Ben Widawsky 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58
static void gen9_init_clock_gating(struct drm_device *dev)
59
{
60 61
	struct drm_i915_private *dev_priv = dev->dev_private;

62
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 64 65
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

66 67
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68 69 70 71

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72 73

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74 75 76 77
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
78 79 80 81

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
82 83 84 85
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
86
	struct drm_i915_private *dev_priv = to_i915(dev);
87 88 89

	gen9_init_clock_gating(dev);

90 91 92 93
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

94 95
	/*
	 * FIXME:
96
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97 98
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100 101 102 103 104 105 106 107

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
108 109
}

110 111
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
112
	struct drm_i915_private *dev_priv = to_i915(dev);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
151
	struct drm_i915_private *dev_priv = to_i915(dev);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

177
	dev_priv->ips.r_t = dev_priv->mem_freq;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
209
		dev_priv->ips.c_m = 0;
210
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211
		dev_priv->ips.c_m = 1;
212
	} else {
213
		dev_priv->ips.c_m = 2;
214 215 216
	}
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

255
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

317 318 319
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

320
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321
{
322
	struct drm_device *dev = &dev_priv->drm;
323
	u32 val;
324

325
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327
		POSTING_READ(FW_BLC_SELF_VLV);
328
		dev_priv->wm.vlv.cxsr = enable;
329 330
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331
		POSTING_READ(FW_BLC_SELF);
332 333 334 335
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
336
		POSTING_READ(DSPFW3);
337 338 339 340
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
341
		POSTING_READ(FW_BLC_SELF);
342
	} else if (IS_I915GM(dev)) {
343 344 345 346 347
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
348 349 350
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
351
		POSTING_READ(INSTPM);
352 353 354
	} else {
		return;
	}
355

356 357
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
358 359
}

360

361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
375
static const int pessimal_latency_ns = 5000;
376

377 378 379 380 381 382
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
383
	struct drm_i915_private *dev_priv = to_i915(dev);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

432
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
433
{
434
	struct drm_i915_private *dev_priv = to_i915(dev);
435 436 437 438 439 440 441 442 443 444 445 446 447
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

448
static int i830_get_fifo_size(struct drm_device *dev, int plane)
449
{
450
	struct drm_i915_private *dev_priv = to_i915(dev);
451 452 453 454 455 456 457 458 459 460 461 462 463 464
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

465
static int i845_get_fifo_size(struct drm_device *dev, int plane)
466
{
467
	struct drm_i915_private *dev_priv = to_i915(dev);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
483 484 485 486 487
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
488 489
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
490 491 492 493 494
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
495 496
};
static const struct intel_watermark_params pineview_cursor_wm = {
497 498 499 500 501
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
502 503
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
504 505 506 507 508
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
509 510
};
static const struct intel_watermark_params g4x_wm_info = {
511 512 513 514 515
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
516 517
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
518 519 520 521 522
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
523 524
};
static const struct intel_watermark_params i965_cursor_wm_info = {
525 526 527 528 529
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
530 531
};
static const struct intel_watermark_params i945_wm_info = {
532 533 534 535 536
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
537 538
};
static const struct intel_watermark_params i915_wm_info = {
539 540 541 542 543
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
544
};
545
static const struct intel_watermark_params i830_a_wm_info = {
546 547 548 549 550
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
551
};
552 553 554 555 556 557 558
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
559
static const struct intel_watermark_params i845_wm_info = {
560 561 562 563 564
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
565 566 567 568 569 570
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
571
 * @cpp: bytes per pixel
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
587
					int fifo_size, int cpp,
588 589 590 591 592 593 594 595 596 597
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
598
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
599 600 601 602 603 604 605 606 607 608 609 610 611 612
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
613 614 615 616 617 618 619 620 621 622 623

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

624 625 626 627 628 629 630
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

631
	for_each_crtc(dev, crtc) {
632
		if (intel_crtc_active(crtc)) {
633 634 635 636 637 638 639 640 641
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

642
static void pineview_update_wm(struct drm_crtc *unused_crtc)
643
{
644
	struct drm_device *dev = unused_crtc->dev;
645
	struct drm_i915_private *dev_priv = to_i915(dev);
646 647 648 649 650 651 652 653 654
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
655
		intel_set_memory_cxsr(dev_priv, false);
656 657 658 659 660
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
661
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
662
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
663
		int clock = adjusted_mode->crtc_clock;
664 665 666 667

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
668
					cpp, latency->display_sr);
669 670
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
671
		reg |= FW_WM(wm, SR);
672 673 674 675 676 677
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
678
					cpp, latency->cursor_sr);
679 680
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
681
		reg |= FW_WM(wm, CURSOR_SR);
682 683 684 685 686
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
687
					cpp, latency->display_hpll_disable);
688 689
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
690
		reg |= FW_WM(wm, HPLL_SR);
691 692 693 694 695
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
696
					cpp, latency->cursor_hpll_disable);
697 698
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
699
		reg |= FW_WM(wm, HPLL_CURSOR);
700 701 702
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

703
		intel_set_memory_cxsr(dev_priv, true);
704
	} else {
705
		intel_set_memory_cxsr(dev_priv, false);
706 707 708 709 710 711 712 713 714 715 716 717 718
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
719
	const struct drm_display_mode *adjusted_mode;
720
	int htotal, hdisplay, clock, cpp;
721 722 723 724
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
725
	if (!intel_crtc_active(crtc)) {
726 727 728 729 730
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

731
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
732
	clock = adjusted_mode->crtc_clock;
733
	htotal = adjusted_mode->crtc_htotal;
734
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
735
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
736 737

	/* Use the small buffer method to calculate plane watermark */
738
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
739 740 741 742 743 744 745 746 747
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
748
	line_time_us = max(htotal * 1000 / clock, 1);
749
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
750
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
805
	const struct drm_display_mode *adjusted_mode;
806
	int hdisplay, htotal, cpp, clock;
807 808 809 810 811 812 813 814 815 816 817
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
818
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
819
	clock = adjusted_mode->crtc_clock;
820
	htotal = adjusted_mode->crtc_htotal;
821
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
822
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
823

824
	line_time_us = max(htotal * 1000 / clock, 1);
825
	line_count = (latency_ns / line_time_us + 1000) / 1000;
826
	line_size = hdisplay * cpp;
827 828

	/* Use the minimum of the small and large buffer method for primary */
829
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
830 831 832 833 834 835
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
836
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
837 838 839 840 841 842 843 844
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

845 846 847
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

848 849 850 851 852 853 854 855 856 857 858 859
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

860
	I915_WRITE(DSPFW1,
861 862 863 864
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
865
	I915_WRITE(DSPFW2,
866 867 868
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
869
	I915_WRITE(DSPFW3,
870
		   FW_WM(wm->sr.cursor, CURSOR_SR));
871 872 873

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
874 875
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876
		I915_WRITE(DSPFW8_CHV,
877 878
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
879
		I915_WRITE(DSPFW9_CHV,
880 881
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
882
		I915_WRITE(DSPHOWM,
883 884 885 886 887 888 889 890 891 892
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
893 894
	} else {
		I915_WRITE(DSPFW7,
895 896
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
897
		I915_WRITE(DSPHOWM,
898 899 900 901 902 903 904
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
905 906
	}

907 908 909 910 911 912
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

913
	POSTING_READ(DSPFW1);
914 915
}

916 917
#undef FW_WM_VLV

918 919 920 921 922 923
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

924 925 926 927
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
928
				   unsigned int cpp,
929 930 931 932 933
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
934
	ret = (ret + 1) * horiz_pixels * cpp;
935 936 937 938 939 940 941
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
942
	struct drm_i915_private *dev_priv = to_i915(dev);
943 944 945 946

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

947 948
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

949 950 951
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
952 953

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
954 955 956 957 958 959 960 961 962
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
963
	int clock, htotal, cpp, width, wm;
964 965 966 967

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

968
	if (!state->base.visible)
969 970
		return 0;

971
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
987
		wm = vlv_wm_method2(clock, htotal, width, cpp,
988 989 990 991 992 993
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1010
		if (state->base.visible) {
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1026
		if (!state->base.visible) {
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1095
static void vlv_compute_wm(struct intel_crtc *crtc)
1096 1097 1098 1099 1100 1101 1102 1103 1104
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1105
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1106
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1107 1108 1109

	wm_state->num_active_planes = 0;

1110
	vlv_compute_fifo(crtc);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1126
		if (!state->base.visible)
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1167
					wm_state->wm[level].cursor;
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1186
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1187 1188 1189 1190 1191 1192 1193
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1284 1285 1286 1287 1288 1289
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1290
	wm->level = to_i915(dev)->wm.max_level;
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1309 1310 1311
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
1333
	struct drm_i915_private *dev_priv = to_i915(dev);
1334 1335 1336 1337
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1338
	vlv_compute_wm(intel_crtc);
1339 1340
	vlv_merge_wm(dev, &wm);

1341 1342 1343
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1344
		return;
1345
	}
1346 1347 1348 1349 1350 1351 1352 1353 1354

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1355
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1356 1357
		intel_set_memory_cxsr(dev_priv, false);

1358 1359 1360
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1361 1362 1363 1364 1365 1366 1367 1368
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1369
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1381 1382
}

1383 1384
#define single_plane_enabled(mask) is_power_of_2(mask)

1385
static void g4x_update_wm(struct drm_crtc *crtc)
1386
{
1387
	struct drm_device *dev = crtc->dev;
1388
	static const int sr_latency_ns = 12000;
1389
	struct drm_i915_private *dev_priv = to_i915(dev);
1390 1391 1392
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1393
	bool cxsr_enabled;
1394

1395
	if (g4x_compute_wm0(dev, PIPE_A,
1396 1397
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1398
			    &planea_wm, &cursora_wm))
1399
		enabled |= 1 << PIPE_A;
1400

1401
	if (g4x_compute_wm0(dev, PIPE_B,
1402 1403
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1404
			    &planeb_wm, &cursorb_wm))
1405
		enabled |= 1 << PIPE_B;
1406 1407 1408 1409 1410 1411

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1412
			     &plane_sr, &cursor_sr)) {
1413
		cxsr_enabled = true;
1414
	} else {
1415
		cxsr_enabled = false;
1416
		intel_set_memory_cxsr(dev_priv, false);
1417 1418
		plane_sr = cursor_sr = 0;
	}
1419

1420 1421
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1422 1423 1424 1425 1426
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1427 1428 1429 1430
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1431
	I915_WRITE(DSPFW2,
1432
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1433
		   FW_WM(cursora_wm, CURSORA));
1434 1435
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1436
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1437
		   FW_WM(cursor_sr, CURSOR_SR));
1438 1439 1440

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1441 1442
}

1443
static void i965_update_wm(struct drm_crtc *unused_crtc)
1444
{
1445
	struct drm_device *dev = unused_crtc->dev;
1446
	struct drm_i915_private *dev_priv = to_i915(dev);
1447 1448 1449
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1450
	bool cxsr_enabled;
1451 1452 1453 1454 1455 1456

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1457
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1458
		int clock = adjusted_mode->crtc_clock;
1459
		int htotal = adjusted_mode->crtc_htotal;
1460
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1461
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1462 1463 1464
		unsigned long line_time_us;
		int entries;

1465
		line_time_us = max(htotal * 1000 / clock, 1);
1466 1467 1468

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1469
			cpp * hdisplay;
1470 1471 1472 1473 1474 1475 1476 1477 1478
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1479
			cpp * crtc->cursor->state->crtc_w;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1491
		cxsr_enabled = true;
1492
	} else {
1493
		cxsr_enabled = false;
1494
		/* Turn off self refresh if both pipes are enabled */
1495
		intel_set_memory_cxsr(dev_priv, false);
1496 1497 1498 1499 1500 1501
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1502 1503 1504 1505 1506 1507
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1508
	/* update cursor SR watermark */
1509
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1510 1511 1512

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1513 1514
}

1515 1516
#undef FW_WM

1517
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1518
{
1519
	struct drm_device *dev = unused_crtc->dev;
1520
	struct drm_i915_private *dev_priv = to_i915(dev);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1534
		wm_info = &i830_a_wm_info;
1535 1536 1537

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1538
	if (intel_crtc_active(crtc)) {
1539
		const struct drm_display_mode *adjusted_mode;
1540
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1541 1542 1543
		if (IS_GEN2(dev))
			cpp = 4;

1544
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1545
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1546
					       wm_info, fifo_size, cpp,
1547
					       pessimal_latency_ns);
1548
		enabled = crtc;
1549
	} else {
1550
		planea_wm = fifo_size - wm_info->guard_size;
1551 1552 1553 1554 1555 1556
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1557 1558 1559

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1560
	if (intel_crtc_active(crtc)) {
1561
		const struct drm_display_mode *adjusted_mode;
1562
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1563 1564 1565
		if (IS_GEN2(dev))
			cpp = 4;

1566
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1567
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1568
					       wm_info, fifo_size, cpp,
1569
					       pessimal_latency_ns);
1570 1571 1572 1573
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1574
	} else {
1575
		planeb_wm = fifo_size - wm_info->guard_size;
1576 1577 1578
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1579 1580 1581

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1582
	if (IS_I915GM(dev) && enabled) {
1583
		struct drm_i915_gem_object *obj;
1584

1585
		obj = intel_fb_obj(enabled->primary->state->fb);
1586 1587

		/* self-refresh seems busted with untiled */
1588
		if (!i915_gem_object_is_tiled(obj))
1589 1590 1591
			enabled = NULL;
	}

1592 1593 1594 1595 1596 1597
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1598
	intel_set_memory_cxsr(dev_priv, false);
1599 1600 1601 1602 1603

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1604
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1605
		int clock = adjusted_mode->crtc_clock;
1606
		int htotal = adjusted_mode->crtc_htotal;
1607
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1608
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1609 1610 1611
		unsigned long line_time_us;
		int entries;

1612 1613 1614
		if (IS_I915GM(dev) || IS_I945GM(dev))
			cpp = 4;

1615
		line_time_us = max(htotal * 1000 / clock, 1);
1616 1617 1618

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1619
			cpp * hdisplay;
1620 1621 1622 1623 1624 1625 1626 1627 1628
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1629
		else
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1646 1647
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1648 1649
}

1650
static void i845_update_wm(struct drm_crtc *unused_crtc)
1651
{
1652
	struct drm_device *dev = unused_crtc->dev;
1653
	struct drm_i915_private *dev_priv = to_i915(dev);
1654
	struct drm_crtc *crtc;
1655
	const struct drm_display_mode *adjusted_mode;
1656 1657 1658 1659 1660 1661 1662
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1663
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1664
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1665
				       &i845_wm_info,
1666
				       dev_priv->display.get_fifo_size(dev, 0),
1667
				       4, pessimal_latency_ns);
1668 1669 1670 1671 1672 1673 1674 1675
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1676
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1677
{
1678
	uint32_t pixel_rate;
1679

1680
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1681 1682 1683 1684

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1685
	if (pipe_config->pch_pfit.enabled) {
1686
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1687 1688 1689 1690
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1691 1692 1693 1694 1695 1696 1697 1698

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1699 1700 1701
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1702 1703 1704 1705 1706 1707 1708
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1709
/* latency must be in 0.1us units. */
1710
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1711 1712 1713
{
	uint64_t ret;

1714 1715 1716
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1717
	ret = (uint64_t) pixel_rate * cpp * latency;
1718 1719 1720 1721 1722
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1723
/* latency must be in 0.1us units. */
1724
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1725
			       uint32_t horiz_pixels, uint8_t cpp,
1726 1727 1728 1729
			       uint32_t latency)
{
	uint32_t ret;

1730 1731
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1732 1733
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1734

1735
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1736
	ret = (ret + 1) * horiz_pixels * cpp;
1737 1738 1739 1740
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1741
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1742
			   uint8_t cpp)
1743
{
1744 1745 1746 1747 1748 1749
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1750
	if (WARN_ON(!cpp))
1751 1752 1753 1754
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1755
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1756 1757
}

1758
struct ilk_wm_maximums {
1759 1760 1761 1762 1763 1764
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1765 1766 1767 1768
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1769
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1770
				   const struct intel_plane_state *pstate,
1771 1772
				   uint32_t mem_value,
				   bool is_lp)
1773
{
1774 1775
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1776 1777
	uint32_t method1, method2;

1778
	if (!cstate->base.active || !pstate->base.visible)
1779 1780
		return 0;

1781
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1782 1783 1784 1785

	if (!is_lp)
		return method1;

1786 1787
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1788
				 drm_rect_width(&pstate->base.dst),
1789
				 cpp, mem_value);
1790 1791

	return min(method1, method2);
1792 1793
}

1794 1795 1796 1797
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1798
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1799
				   const struct intel_plane_state *pstate,
1800 1801
				   uint32_t mem_value)
{
1802 1803
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1804 1805
	uint32_t method1, method2;

1806
	if (!cstate->base.active || !pstate->base.visible)
1807 1808
		return 0;

1809
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1810 1811
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1812
				 drm_rect_width(&pstate->base.dst),
1813
				 cpp, mem_value);
1814 1815 1816
	return min(method1, method2);
}

1817 1818 1819 1820
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1821
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1822
				   const struct intel_plane_state *pstate,
1823 1824
				   uint32_t mem_value)
{
1825 1826 1827 1828 1829 1830
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1831
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1832

1833
	if (!cstate->base.active)
1834 1835
		return 0;

1836 1837
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1838
			      width, cpp, mem_value);
1839 1840
}

1841
/* Only for WM_LP. */
1842
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1843
				   const struct intel_plane_state *pstate,
1844
				   uint32_t pri_val)
1845
{
1846 1847
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1848

1849
	if (!cstate->base.active || !pstate->base.visible)
1850 1851
		return 0;

1852
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1853 1854
}

1855 1856
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1857 1858 1859
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1860 1861 1862 1863 1864
		return 768;
	else
		return 512;
}

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1899 1900 1901
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1902
				     const struct intel_wm_config *config,
1903 1904 1905 1906 1907 1908
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1909
	if (is_sprite && !config->sprites_enabled)
1910 1911 1912
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1913
	if (level == 0 || config->num_pipes_active > 1) {
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1925
	if (config->sprites_enabled) {
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1937
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1938 1939 1940 1941
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1942 1943
				      int level,
				      const struct intel_wm_config *config)
1944 1945
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1946
	if (level > 0 && config->num_pipes_active > 1)
1947 1948 1949
		return 64;

	/* otherwise just report max that registers can hold */
1950
	return ilk_cursor_wm_reg_max(dev, level);
1951 1952
}

1953
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1954 1955 1956
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1957
				    struct ilk_wm_maximums *max)
1958
{
1959 1960 1961
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1962
	max->fbc = ilk_fbc_wm_reg_max(dev);
1963 1964
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1975
static bool ilk_validate_wm_level(int level,
1976
				  const struct ilk_wm_maximums *max,
1977
				  struct intel_wm_level *result)
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2016
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2017
				 const struct intel_crtc *intel_crtc,
2018
				 int level,
2019
				 struct intel_crtc_state *cstate,
2020 2021 2022
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2023
				 struct intel_wm_level *result)
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2048 2049 2050
	result->enable = true;
}

2051
static uint32_t
2052
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2053
{
2054 2055
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2056 2057
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2058
	u32 linetime, ips_linetime;
2059

2060 2061 2062 2063
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2064
	if (WARN_ON(intel_state->cdclk == 0))
2065
		return 0;
2066

2067 2068 2069
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2070 2071 2072
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2073
					 intel_state->cdclk);
2074

2075 2076
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2077 2078
}

2079
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2080
{
2081
	struct drm_i915_private *dev_priv = to_i915(dev);
2082

2083 2084
	if (IS_GEN9(dev)) {
		uint32_t val;
2085
		int ret, i;
2086
		int level, max_level = ilk_wm_max_level(dev);
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2142
		/*
2143 2144
		 * WaWmMemoryReadLatency:skl
		 *
2145
		 * punit doesn't take into account the read latency so we need
2146 2147
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2148
		 */
2149 2150 2151 2152 2153
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2154
				wm[level] += 2;
2155
			}
2156 2157
		}

2158
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2159 2160 2161 2162 2163
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2164 2165 2166 2167
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2168 2169 2170 2171 2172 2173 2174
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2175 2176 2177 2178 2179 2180 2181
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2182 2183 2184
	}
}

2185 2186 2187
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
2188
	if (IS_GEN5(dev))
2189 2190 2191 2192 2193 2194
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
2195
	if (IS_GEN5(dev))
2196 2197 2198 2199 2200 2201 2202
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2203
int ilk_wm_max_level(const struct drm_device *dev)
2204 2205
{
	/* how many WM levels are we expecting */
2206
	if (INTEL_INFO(dev)->gen >= 9)
2207 2208
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2209
		return 4;
2210
	else if (INTEL_INFO(dev)->gen >= 6)
2211
		return 3;
2212
	else
2213 2214
		return 2;
}
2215

2216 2217
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2218
				   const uint16_t wm[8])
2219 2220
{
	int level, max_level = ilk_wm_max_level(dev);
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2231 2232 2233 2234 2235 2236 2237
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2238 2239 2240 2241 2242 2243 2244 2245
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2246 2247 2248
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2249
	int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
2263
	struct drm_i915_private *dev_priv = to_i915(dev);
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2283
static void ilk_setup_wm_latency(struct drm_device *dev)
2284
{
2285
	struct drm_i915_private *dev_priv = to_i915(dev);
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2296 2297 2298 2299

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2300 2301 2302

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2303 2304
}

2305 2306
static void skl_setup_wm_latency(struct drm_device *dev)
{
2307
	struct drm_i915_private *dev_priv = to_i915(dev);
2308 2309 2310 2311 2312

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2336
/* Compute new watermarks for the pipe */
2337
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2338
{
2339 2340
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2341
	struct intel_pipe_wm *pipe_wm;
2342
	struct drm_device *dev = state->dev;
2343
	const struct drm_i915_private *dev_priv = to_i915(dev);
2344
	struct intel_plane *intel_plane;
2345
	struct intel_plane_state *pristate = NULL;
2346
	struct intel_plane_state *sprstate = NULL;
2347
	struct intel_plane_state *curstate = NULL;
2348
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2349
	struct ilk_wm_maximums max;
2350

2351
	pipe_wm = &cstate->wm.ilk.optimal;
2352

2353
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2354 2355 2356 2357 2358 2359
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2360 2361

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2362
			pristate = ps;
2363
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2364
			sprstate = ps;
2365
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2366
			curstate = ps;
2367 2368
	}

2369
	pipe_wm->pipe_enabled = cstate->base.active;
2370
	if (sprstate) {
2371 2372 2373 2374
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2375 2376
	}

2377 2378
	usable_level = max_level;

2379
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2380
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2381
		usable_level = 1;
2382 2383

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2384
	if (pipe_wm->sprites_scaled)
2385
		usable_level = 0;
2386

2387
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2388 2389 2390 2391
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2392

2393
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2394
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2395

2396
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2397
		return -EINVAL;
2398 2399 2400 2401

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2402
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2403

2404
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2405
				     pristate, sprstate, curstate, wm);
2406 2407 2408 2409 2410 2411

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2412 2413 2414 2415 2416 2417
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2418
			usable_level = level;
2419 2420
	}

2421
	return 0;
2422 2423
}

2424 2425 2426 2427 2428 2429 2430 2431 2432
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2433
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2434 2435 2436 2437 2438 2439 2440 2441
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2442
	*a = newstate->wm.ilk.optimal;
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2471
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2472 2473 2474 2475 2476
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2477 2478 2479 2480 2481 2482 2483 2484 2485
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2486 2487
	ret_wm->enable = true;

2488
	for_each_intel_crtc(dev, intel_crtc) {
2489
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2490 2491 2492 2493
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2494

2495 2496 2497 2498 2499
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2500
		if (!wm->enable)
2501
			ret_wm->enable = false;
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2514
			 const struct intel_wm_config *config,
2515
			 const struct ilk_wm_maximums *max,
2516 2517
			 struct intel_pipe_wm *merged)
{
2518
	struct drm_i915_private *dev_priv = to_i915(dev);
2519
	int level, max_level = ilk_wm_max_level(dev);
2520
	int last_enabled_level = max_level;
2521

2522 2523 2524
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
2525
		last_enabled_level = 0;
2526

2527 2528
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2529 2530 2531 2532 2533 2534 2535

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2536 2537 2538 2539 2540
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2541 2542 2543 2544 2545 2546

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2547 2548
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2549 2550 2551
			wm->fbc_val = 0;
		}
	}
2552 2553 2554 2555 2556 2557 2558

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2559
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2560
	    intel_fbc_is_active(dev_priv)) {
2561 2562 2563 2564 2565 2566
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2567 2568
}

2569 2570 2571 2572 2573 2574
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2575 2576 2577
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2578
	struct drm_i915_private *dev_priv = to_i915(dev);
2579

2580
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2581 2582 2583 2584 2585
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2586
static void ilk_compute_wm_results(struct drm_device *dev,
2587
				   const struct intel_pipe_wm *merged,
2588
				   enum intel_ddb_partitioning partitioning,
2589
				   struct ilk_wm_values *results)
2590
{
2591 2592
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2593

2594
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2595
	results->partitioning = partitioning;
2596

2597
	/* LP1+ register values */
2598
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2599
		const struct intel_wm_level *r;
2600

2601
		level = ilk_wm_lp_to_level(wm_lp, merged);
2602

2603
		r = &merged->wm[level];
2604

2605 2606 2607 2608 2609
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2610
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2611 2612 2613
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2614 2615 2616
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2617 2618 2619 2620 2621 2622 2623
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2624 2625 2626 2627
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2628 2629 2630 2631 2632
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2633
	}
2634

2635
	/* LP0 register values */
2636
	for_each_intel_crtc(dev, intel_crtc) {
2637
		enum pipe pipe = intel_crtc->pipe;
2638 2639
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2640 2641 2642 2643

		if (WARN_ON(!r->enable))
			continue;

2644
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2645

2646 2647 2648 2649
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2650 2651 2652
	}
}

2653 2654
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2655
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2656 2657
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2658
{
2659 2660
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2661

2662 2663 2664 2665 2666
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2667 2668
	}

2669 2670
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2671 2672 2673
			return r2;
		else
			return r1;
2674
	} else if (level1 > level2) {
2675 2676 2677 2678 2679 2680
		return r1;
	} else {
		return r2;
	}
}

2681 2682 2683 2684 2685 2686 2687 2688
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2689
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2690 2691
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2692 2693 2694 2695 2696
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2697
	for_each_pipe(dev_priv, pipe) {
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2741 2742
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2743
{
2744
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2745
	bool changed = false;
2746

2747 2748 2749
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2750
		changed = true;
2751 2752 2753 2754
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2755
		changed = true;
2756 2757 2758 2759
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2760
		changed = true;
2761
	}
2762

2763 2764 2765 2766
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2767

2768 2769 2770 2771 2772 2773 2774
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2775 2776
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2777
{
2778
	struct drm_device *dev = &dev_priv->drm;
2779
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2780 2781 2782
	unsigned int dirty;
	uint32_t val;

2783
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2784 2785 2786 2787 2788
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2789
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2790
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2791
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2792
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2793
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2794 2795
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2796
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2797
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2798
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2799
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2800
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2801 2802
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2803
	if (dirty & WM_DIRTY_DDB) {
2804
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2819 2820
	}

2821
	if (dirty & WM_DIRTY_FBC) {
2822 2823 2824 2825 2826 2827 2828 2829
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2830 2831 2832 2833 2834
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2835 2836 2837 2838 2839
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2840

2841
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2842
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2843
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2844
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2845
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2846
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2847 2848

	dev_priv->wm.hw = *results;
2849 2850
}

2851
bool ilk_disable_lp_wm(struct drm_device *dev)
2852
{
2853
	struct drm_i915_private *dev_priv = to_i915(dev);
2854 2855 2856 2857

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2858
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2859

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2882 2883 2884
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2885 2886 2887 2888 2889 2890 2891 2892
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2893 2894
}

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2907
intel_enable_sagv(struct drm_i915_private *dev_priv)
2908 2909 2910
{
	int ret;

2911 2912 2913 2914
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2930
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2931
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2932
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2933 2934 2935 2936 2937 2938
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2939
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2940 2941 2942 2943
	return 0;
}

static int
2944
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2958
intel_disable_sagv(struct drm_i915_private *dev_priv)
2959 2960 2961
{
	int ret, result;

2962 2963 2964 2965
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2966 2967 2968 2969 2970 2971
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2972
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2984
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
2985
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2986
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2987 2988 2989 2990 2991 2992
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

2993
	dev_priv->sagv_status = I915_SAGV_DISABLED;
2994 2995 2996
	return 0;
}

2997
bool intel_can_enable_sagv(struct drm_atomic_state *state)
2998 2999 3000 3001 3002 3003 3004 3005
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_crtc *crtc;
	enum pipe pipe;
	int level, plane;

3006 3007 3008
	if (!intel_has_sagv(dev_priv))
		return false;

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
	crtc = dev_priv->pipe_to_crtc_mapping[pipe];

	if (crtc->state->mode.flags & DRM_MODE_FLAG_INTERLACE)
		return false;

	for_each_plane(dev_priv, pipe, plane) {
		/* Skip this plane if it's not enabled */
		if (intel_state->wm_results.plane[pipe][plane][0] == 0)
			continue;

		/* Find the highest enabled wm level for this plane */
		for (level = ilk_wm_max_level(dev);
		     intel_state->wm_results.plane[pipe][plane][level] == 0; --level)
		     { }

		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
		if (dev_priv->wm.skl_latency[level] < SKL_SAGV_BLOCK_TIME)
			return false;
	}

	return true;
}

3049 3050
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3051
				   const struct intel_crtc_state *cstate,
3052 3053
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3054
{
3055 3056 3057
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3058
	struct drm_crtc *for_crtc = cstate->base.crtc;
3059 3060
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3061 3062
	int pipe = to_intel_crtc(for_crtc)->pipe;

3063
	if (WARN_ON(!state) || !cstate->base.active) {
3064 3065
		alloc->start = 0;
		alloc->end = 0;
3066
		*num_active = hweight32(dev_priv->active_crtcs);
3067 3068 3069
		return;
	}

3070 3071 3072 3073 3074
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3075 3076
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3077 3078 3079

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3080
	/*
3081 3082 3083 3084 3085 3086
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3087
	 */
3088 3089 3090
	if (!intel_state->active_pipe_changes) {
		*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
		return;
3091
	}
3092 3093 3094 3095 3096 3097

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3098 3099
}

3100
static unsigned int skl_cursor_allocation(int num_active)
3101
{
3102
	if (num_active == 1)
3103 3104 3105 3106 3107
		return 32;

	return 8;
}

3108 3109 3110 3111
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3112 3113
	if (entry->end)
		entry->end += 1;
3114 3115
}

3116 3117
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3118 3119 3120 3121 3122
{
	enum pipe pipe;
	int plane;
	u32 val;

3123 3124
	memset(ddb, 0, sizeof(*ddb));

3125
	for_each_pipe(dev_priv, pipe) {
3126 3127 3128 3129
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3130 3131
			continue;

3132
		for_each_plane(dev_priv, pipe, plane) {
3133 3134 3135 3136 3137 3138
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3139 3140
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3141 3142

		intel_display_power_put(dev_priv, power_domain);
3143 3144 3145
	}
}

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3168
	if (WARN_ON(!pstate->base.visible))
3169 3170 3171
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3172 3173 3174 3175
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	if (intel_rotation_90_or_270(pstate->base.rotation))
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3186
static unsigned int
3187 3188 3189
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3190
{
3191
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3192
	struct drm_framebuffer *fb = pstate->fb;
3193
	uint32_t down_scale_amount, data_rate;
3194
	uint32_t width = 0, height = 0;
3195 3196
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3197
	if (!intel_pstate->base.visible)
3198 3199 3200 3201 3202
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3203

3204 3205
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3206 3207 3208

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
3209 3210

	/* for planar format */
3211
	if (format == DRM_FORMAT_NV12) {
3212
		if (y)  /* y-plane data rate */
3213
			data_rate = width * height *
3214
				drm_format_plane_cpp(format, 0);
3215
		else    /* uv-plane data rate */
3216
			data_rate = (width / 2) * (height / 2) *
3217
				drm_format_plane_cpp(format, 1);
3218 3219 3220
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3221 3222
	}

3223 3224 3225
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3226 3227 3228 3229 3230 3231 3232 3233
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3234
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3235
{
3236 3237 3238 3239 3240
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3241
	const struct drm_plane *plane;
3242
	const struct intel_plane *intel_plane;
3243
	struct drm_plane_state *pstate;
3244
	unsigned int rate, total_data_rate = 0;
3245
	int id;
3246 3247 3248 3249
	int i;

	if (WARN_ON(!state))
		return 0;
3250

3251
	/* Calculate and cache data rate for each plane */
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
	for_each_plane_in_state(state, plane, pstate, i) {
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe != intel_crtc->pipe)
			continue;

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3268
	}
3269

3270 3271 3272
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3273

3274
		/* packed/uv */
3275 3276
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3277 3278 3279 3280 3281
	}

	return total_data_rate;
}

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3304 3305
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

	if (intel_rotation_90_or_270(pstate->rotation)) {
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3345
static int
3346
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3347 3348
		      struct skl_ddb_allocation *ddb /* out */)
{
3349
	struct drm_atomic_state *state = cstate->base.state;
3350
	struct drm_crtc *crtc = cstate->base.crtc;
3351 3352
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3353
	struct intel_plane *intel_plane;
3354 3355
	struct drm_plane *plane;
	struct drm_plane_state *pstate;
3356
	enum pipe pipe = intel_crtc->pipe;
3357
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3358
	uint16_t alloc_size, start, cursor_blocks;
3359 3360
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3361
	unsigned int total_data_rate;
3362 3363
	int num_active;
	int id, i;
3364

3365 3366 3367
	if (WARN_ON(!state))
		return 0;

3368 3369 3370 3371 3372 3373 3374
	if (!cstate->base.active) {
		ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
		return 0;
	}

3375
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3376
	alloc_size = skl_ddb_entry_size(alloc);
3377 3378
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3379
		return 0;
3380 3381
	}

3382
	cursor_blocks = skl_cursor_allocation(num_active);
3383 3384
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3385 3386 3387

	alloc_size -= cursor_blocks;

3388
	/* 1. Allocate the mininum required blocks for each active plane */
3389 3390 3391
	for_each_plane_in_state(state, plane, pstate, i) {
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3392

3393 3394
		if (intel_plane->pipe != pipe)
			continue;
3395

3396
		if (!to_intel_plane_state(pstate)->base.visible) {
3397 3398 3399 3400 3401 3402 3403 3404
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3405
		}
3406

3407 3408
		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3409
	}
3410

3411 3412 3413
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3414 3415
	}

3416
	/*
3417 3418
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3419 3420 3421
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3422
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3423
	if (total_data_rate == 0)
3424
		return 0;
3425

3426
	start = alloc->start;
3427
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3428 3429
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3430
		int id = skl_wm_plane_id(intel_plane);
3431

3432
		data_rate = cstate->wm.skl.plane_data_rate[id];
3433 3434

		/*
3435
		 * allocation for (packed formats) or (uv-plane part of planar format):
3436 3437 3438
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3439
		plane_blocks = minimum[id];
3440 3441
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3442

3443 3444 3445 3446 3447
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3448 3449

		start += plane_blocks;
3450 3451 3452 3453

		/*
		 * allocation for y_plane part of planar format:
		 */
3454 3455 3456 3457 3458
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3459

3460 3461 3462 3463
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3464 3465

		start += y_plane_blocks;
3466 3467
	}

3468
	return 0;
3469 3470
}

3471
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3472 3473
{
	/* TODO: Take into account the scalers once we support them */
3474
	return config->base.adjusted_mode.crtc_clock;
3475 3476 3477 3478
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3479
 * for the read latency) and cpp should always be <= 8, so that
3480 3481 3482
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3483
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3484 3485 3486 3487 3488 3489
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3490
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3491 3492 3493 3494 3495 3496
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3497
			       uint32_t horiz_pixels, uint8_t cpp,
3498
			       uint64_t tiling, uint32_t latency)
3499
{
3500 3501 3502
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3503 3504 3505 3506

	if (latency == 0)
		return UINT_MAX;

3507
	plane_bytes_per_line = horiz_pixels * cpp;
3508 3509 3510 3511 3512 3513

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
3514 3515
	} else if (tiling == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
3516 3517 3518 3519
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3520 3521
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3522
				plane_blocks_per_line;
3523 3524 3525 3526

	return ret;
}

3527 3528 3529 3530 3531 3532 3533 3534
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3535
	if (WARN_ON(!pstate->base.visible))
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
	adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3551 3552 3553 3554 3555 3556 3557 3558
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3559
{
3560 3561
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3562 3563 3564 3565 3566
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3567
	uint8_t cpp;
3568
	uint32_t width = 0, height = 0;
3569
	uint32_t plane_pixel_rate;
3570

3571
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3572 3573 3574
		*enabled = false;
		return 0;
	}
3575

3576 3577
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3578

3579
	if (intel_rotation_90_or_270(pstate->rotation))
3580 3581
		swap(width, height);

3582
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3583 3584 3585 3586
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3587
				 cstate->base.adjusted_mode.crtc_htotal,
3588 3589 3590
				 width,
				 cpp,
				 fb->modifier[0],
3591
				 latency);
3592

3593
	plane_bytes_per_line = width * cpp;
3594
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3595

3596 3597
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3598 3599
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3600
		if (intel_rotation_90_or_270(pstate->rotation)) {
3601
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3602 3603 3604
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3605
			switch (cpp) {
3606 3607 3608 3609 3610 3611 3612 3613
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3614
			}
3615 3616
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3617 3618 3619 3620 3621 3622 3623
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3624

3625 3626
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3627

3628
	if (level >= 1 && level <= 7) {
3629 3630
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3631 3632 3633 3634
			res_lines += 4;
		else
			res_blocks++;
	}
3635

3636 3637
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3654
	}
3655 3656 3657

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3658
	*enabled = true;
3659

3660
	return 0;
3661 3662
}

3663 3664 3665 3666 3667 3668
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
		     int level,
		     struct skl_wm_level *result)
3669
{
3670
	struct drm_atomic_state *state = cstate->base.state;
3671
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3672
	struct drm_plane *plane;
3673
	struct intel_plane *intel_plane;
3674
	struct intel_plane_state *intel_pstate;
3675
	uint16_t ddb_blocks;
3676
	enum pipe pipe = intel_crtc->pipe;
3677
	int ret;
3678

3679 3680 3681 3682 3683 3684
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(result, 0, sizeof(*result));

3685 3686 3687
	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3688
		int i = skl_wm_plane_id(intel_plane);
3689

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
		plane = &intel_plane->base;
		intel_pstate = NULL;
		if (state)
			intel_pstate =
				intel_atomic_get_existing_plane_state(state,
								      intel_plane);

		/*
		 * Note: If we start supporting multiple pending atomic commits
		 * against the same planes/CRTC's in the future, plane->state
		 * will no longer be the correct pre-state to use for the
		 * calculations here and we'll need to change where we get the
		 * 'unchanged' plane data from.
		 *
		 * For now this is fine because we only allow one queued commit
		 * against a CRTC.  Even if the plane isn't modified by this
		 * transaction and we don't have a plane lock, we still have
		 * the CRTC's lock, so we know that no other transactions are
		 * racing with us to update it.
		 */
		if (!intel_pstate)
			intel_pstate = to_intel_plane_state(plane->state);

		WARN_ON(!intel_pstate->base.fb);

3715 3716
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
					   ddb_blocks,
					   level,
					   &result->plane_res_b[i],
					   &result->plane_res_l[i],
					   &result->plane_en[i]);
		if (ret)
			return ret;
3727
	}
3728 3729

	return 0;
3730 3731
}

3732
static uint32_t
3733
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3734
{
3735
	if (!cstate->base.active)
3736 3737
		return 0;

3738
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3739
		return 0;
3740

3741 3742
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3743 3744
}

3745
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3746
				      struct skl_wm_level *trans_wm /* out */)
3747
{
3748
	struct drm_crtc *crtc = cstate->base.crtc;
3749
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3750
	struct intel_plane *intel_plane;
3751

3752
	if (!cstate->base.active)
3753
		return;
3754 3755

	/* Until we know more, just disable transition WMs */
3756 3757 3758
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3759
		trans_wm->plane_en[i] = false;
3760
	}
3761 3762
}

3763 3764 3765
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3766
{
3767
	struct drm_device *dev = cstate->base.crtc->dev;
3768
	const struct drm_i915_private *dev_priv = to_i915(dev);
3769
	int level, max_level = ilk_wm_max_level(dev);
3770
	int ret;
3771 3772

	for (level = 0; level <= max_level; level++) {
3773 3774 3775 3776
		ret = skl_compute_wm_level(dev_priv, ddb, cstate,
					   level, &pipe_wm->wm[level]);
		if (ret)
			return ret;
3777
	}
3778
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3779

3780
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3781 3782

	return 0;
3783 3784 3785 3786 3787 3788 3789 3790 3791
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3792 3793
	uint32_t temp;
	int i;
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3810 3811
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3812

3813
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3814 3815
			temp |= PLANE_WM_EN;

3816
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3817 3818 3819

	}

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3832 3833 3834
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3835 3836
		temp |= PLANE_WM_EN;

3837
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3838

3839 3840 3841
	r->wm_linetime[pipe] = p_wm->linetime;
}

3842 3843
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3844 3845 3846 3847 3848 3849 3850 3851
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			const struct skl_wm_values *wm,
			int plane)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
		I915_WRITE(PLANE_WM(pipe, plane, level),
			   wm->plane[pipe][plane][level]);
	}
	I915_WRITE(PLANE_WM_TRANS(pipe, plane), wm->plane_trans[pipe][plane]);
3867 3868 3869 3870 3871

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
			    &wm->ddb.plane[pipe][plane]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
			    &wm->ddb.y_plane[pipe][plane]);
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
}

void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
			 const struct skl_wm_values *wm)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
		I915_WRITE(CUR_WM(pipe, level),
			   wm->plane[pipe][PLANE_CURSOR][level]);
	}
	I915_WRITE(CUR_WM_TRANS(pipe), wm->plane_trans[pipe][PLANE_CURSOR]);
3888

3889 3890
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
			    &wm->ddb.plane[pipe][PLANE_CURSOR]);
3891 3892
}

3893 3894 3895
bool skl_ddb_allocation_equals(const struct skl_ddb_allocation *old,
			       const struct skl_ddb_allocation *new,
			       enum pipe pipe)
3896
{
3897 3898
	return new->pipe[pipe].start == old->pipe[pipe].start &&
	       new->pipe[pipe].end == old->pipe[pipe].end;
3899 3900
}

3901 3902
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3903
{
3904
	return a->start < b->end && b->start < a->end;
3905 3906
}

3907 3908 3909 3910
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
				 const struct skl_ddb_allocation *old,
				 const struct skl_ddb_allocation *new,
				 enum pipe pipe)
3911
{
3912 3913 3914
	struct drm_device *dev = state->dev;
	struct intel_crtc *intel_crtc;
	enum pipe otherp;
3915

3916 3917
	for_each_intel_crtc(dev, intel_crtc) {
		otherp = intel_crtc->pipe;
3918

3919
		if (otherp == pipe)
3920 3921
			continue;

3922 3923 3924
		if (skl_ddb_entries_overlap(&new->pipe[pipe],
					    &old->pipe[otherp]))
			return true;
3925 3926
	}

3927
	return false;
3928 3929
}

3930 3931 3932 3933
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3934
{
3935 3936
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3937
	int ret;
3938

3939 3940 3941
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3942

3943
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3944 3945 3946
		*changed = false;
	else
		*changed = true;
3947

3948
	return 0;
3949 3950
}

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3964 3965 3966 3967 3968 3969 3970
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3971
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3972
	uint32_t realloc_pipes = pipes_modified(state);
3973 3974 3975 3976 3977 3978 3979 3980
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
3981 3982 3983 3984 3985 3986
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

3987 3988
		intel_state->active_pipe_changes = ~0;

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4012
	if (intel_state->active_pipe_changes) {
4013
		realloc_pipes = ~0;
4014 4015
		intel_state->wm_results.dirty_pipes = ~0;
	}
4016 4017 4018 4019 4020 4021 4022 4023

	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4024
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4025 4026
		if (ret)
			return ret;
4027 4028 4029 4030

		ret = drm_atomic_add_affected_planes(state, &intel_crtc->base);
		if (ret)
			return ret;
4031 4032 4033 4034 4035
	}

	return 0;
}

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	dst->wm_linetime[pipe] = src->wm_linetime[pipe];
	memcpy(dst->plane[pipe], src->plane[pipe],
	       sizeof(dst->plane[pipe]));
	memcpy(dst->plane_trans[pipe], src->plane_trans[pipe],
	       sizeof(dst->plane_trans[pipe]));

	dst->ddb.pipe[pipe] = src->ddb.pipe[pipe];
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4054 4055 4056 4057 4058
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4059 4060 4061
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4062
	bool changed = false;
4063
	int ret, i;
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4078 4079 4080
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4081 4082 4083 4084
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
	}

4117 4118 4119
	return 0;
}

4120 4121 4122 4123
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
4124
	struct drm_i915_private *dev_priv = to_i915(dev);
4125
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4126
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4127
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4128
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4129
	enum pipe pipe = intel_crtc->pipe;
4130

4131
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4132 4133
		return;

4134 4135 4136
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
4137

4138
	/*
4139 4140 4141 4142
	 * If this pipe isn't active already, we're going to be enabling it
	 * very soon. Since it's safe to update a pipe's ddb allocation while
	 * the pipe's shut off, just do so here. Already active pipes will have
	 * their watermarks updated once we update their planes.
4143
	 */
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
	if (crtc->state->active_changed) {
		int plane;

		for (plane = 0; plane < intel_num_planes(intel_crtc); plane++)
			skl_write_plane_wm(intel_crtc, results, plane);

		skl_write_cursor_wm(intel_crtc, results);
	}

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4154 4155

	mutex_unlock(&dev_priv->wm.wm_mutex);
4156 4157
}

4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4176
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4177
{
4178
	struct drm_device *dev = &dev_priv->drm;
4179
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4180
	struct ilk_wm_maximums max;
4181
	struct intel_wm_config config = {};
4182
	struct ilk_wm_values results = {};
4183
	enum intel_ddb_partitioning partitioning;
4184

4185 4186 4187 4188
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4189 4190

	/* 5/6 split only in single pipe config on IVB+ */
4191
	if (INTEL_INFO(dev)->gen >= 7 &&
4192 4193 4194
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4195

4196
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4197
	} else {
4198
		best_lp_wm = &lp_wm_1_2;
4199 4200
	}

4201
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4202
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4203

4204
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4205

4206
	ilk_write_wm_values(dev_priv, &results);
4207 4208
}

4209
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4210
{
4211 4212
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4213

4214
	mutex_lock(&dev_priv->wm.wm_mutex);
4215
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4216 4217 4218
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4219

4220 4221 4222 4223
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4224

4225 4226
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4227
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4228 4229 4230
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4231 4232
}

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4251 4252
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
4253
					val & PLANE_WM_BLOCKS_MASK;
4254
			active->wm[level].plane_res_l[PLANE_CURSOR] =
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4267 4268
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
4269
					val & PLANE_WM_BLOCKS_MASK;
4270
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
4271 4272 4273 4274 4275 4276 4277 4278 4279
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4280
	struct drm_i915_private *dev_priv = to_i915(dev);
4281 4282
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4283
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4284
	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
4297
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4298 4299 4300 4301
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4302
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4303

4304
	if (!intel_crtc->active)
4305 4306
		return;

4307
	hw->dirty_pipes |= drm_crtc_mask(crtc);
4308 4309 4310 4311 4312 4313 4314 4315 4316

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
4317
		temp = hw->plane[pipe][PLANE_CURSOR][level];
4318 4319 4320 4321 4322 4323 4324 4325
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

4326
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4327
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4328 4329

	intel_crtc->wm.active.skl = *active;
4330 4331 4332 4333
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4334
	struct drm_i915_private *dev_priv = to_i915(dev);
4335
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4336 4337
	struct drm_crtc *crtc;

4338
	skl_ddb_get_hw_state(dev_priv, ddb);
4339 4340
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
4341

4342 4343 4344 4345 4346 4347 4348
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4349 4350
}

4351 4352 4353
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4354
	struct drm_i915_private *dev_priv = to_i915(dev);
4355
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4356
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4357
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4358
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4359
	enum pipe pipe = intel_crtc->pipe;
4360
	static const i915_reg_t wm0_pipe_reg[] = {
4361 4362 4363 4364 4365 4366
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4367
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4368
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4369

4370 4371
	memset(active, 0, sizeof(*active));

4372
	active->pipe_enabled = intel_crtc->active;
4373 4374

	if (active->pipe_enabled) {
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4399 4400

	intel_crtc->wm.active.ilk = *active;
4401 4402
}

4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4520 4521 4522 4523 4524 4525 4526 4527 4528
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4529
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4556 4557
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4558
	struct drm_i915_private *dev_priv = to_i915(dev);
4559
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4560 4561
	struct drm_crtc *crtc;

4562
	for_each_crtc(dev, crtc)
4563 4564 4565 4566 4567 4568 4569
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4570 4571 4572 4573
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4574

4575
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4576 4577 4578 4579 4580
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4581 4582 4583 4584 4585

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4618
void intel_update_watermarks(struct drm_crtc *crtc)
4619
{
4620
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4621 4622

	if (dev_priv->display.update_wm)
4623
		dev_priv->display.update_wm(crtc);
4624 4625
}

4626
/*
4627 4628 4629 4630 4631 4632 4633 4634
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4635
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4636 4637 4638
{
	u16 rgvswctl;

4639 4640
	assert_spin_locked(&mchdev_lock);

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4658
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4659
{
4660
	u32 rgvmodectl;
4661 4662
	u8 fmax, fmin, fstart, vstart;

4663 4664
	spin_lock_irq(&mchdev_lock);

4665 4666
	rgvmodectl = I915_READ(MEMMODECTL);

4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4687
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4688 4689
		PXVFREQ_PX_SHIFT;

4690 4691
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4692

4693 4694 4695
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4712
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4713
		DRM_ERROR("stuck trying to change perf mode\n");
4714
	mdelay(1);
4715

4716
	ironlake_set_drps(dev_priv, fstart);
4717

4718 4719
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4720
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4721
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4722
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4723 4724

	spin_unlock_irq(&mchdev_lock);
4725 4726
}

4727
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4728
{
4729 4730 4731 4732 4733
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4734 4735 4736 4737 4738 4739 4740 4741 4742

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4743
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4744
	mdelay(1);
4745 4746
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4747
	mdelay(1);
4748

4749
	spin_unlock_irq(&mchdev_lock);
4750 4751
}

4752 4753 4754 4755 4756
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4757
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4758
{
4759
	u32 limits;
4760

4761 4762 4763 4764 4765 4766
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4767
	if (IS_GEN9(dev_priv)) {
4768 4769 4770 4771 4772 4773 4774 4775
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4776 4777 4778 4779

	return limits;
}

4780 4781 4782
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4783 4784
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4785 4786 4787 4788

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4789 4790
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4791 4792 4793 4794
			new_power = BETWEEN;
		break;

	case BETWEEN:
4795 4796
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4797
			new_power = LOW_POWER;
4798 4799
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4800 4801 4802 4803
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4804 4805
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4806 4807 4808 4809
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4810
	if (val <= dev_priv->rps.min_freq_softlimit)
4811
		new_power = LOW_POWER;
4812
	if (val >= dev_priv->rps.max_freq_softlimit)
4813 4814 4815 4816 4817 4818 4819 4820
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4821 4822
		ei_up = 16000;
		threshold_up = 95;
4823 4824

		/* Downclock if less than 85% busy over 32ms */
4825 4826
		ei_down = 32000;
		threshold_down = 85;
4827 4828 4829 4830
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4831 4832
		ei_up = 13000;
		threshold_up = 90;
4833 4834

		/* Downclock if less than 75% busy over 32ms */
4835 4836
		ei_down = 32000;
		threshold_down = 75;
4837 4838 4839 4840
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4841 4842
		ei_up = 10000;
		threshold_up = 85;
4843 4844

		/* Downclock if less than 60% busy over 32ms */
4845 4846
		ei_down = 32000;
		threshold_down = 60;
4847 4848 4849
		break;
	}

4850
	I915_WRITE(GEN6_RP_UP_EI,
4851
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4852
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4853 4854
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4855 4856

	I915_WRITE(GEN6_RP_DOWN_EI,
4857
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4858
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4869

4870
	dev_priv->rps.power = new_power;
4871 4872
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4873 4874 4875
	dev_priv->rps.last_adj = 0;
}

4876 4877 4878 4879 4880
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4881
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4882
	if (val < dev_priv->rps.max_freq_softlimit)
4883
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4884

4885 4886
	mask &= dev_priv->pm_rps_events;

4887
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4888 4889
}

4890 4891 4892
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4893
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4894
{
4895
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4896
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4897 4898
		return;

4899
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4900 4901
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4902

C
Chris Wilson 已提交
4903 4904 4905 4906 4907
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4908

4909
		if (IS_GEN9(dev_priv))
4910 4911
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4912
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4913 4914 4915 4916 4917 4918 4919
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4920
	}
4921 4922 4923 4924

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4925
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4926
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4927

4928 4929
	POSTING_READ(GEN6_RPNSWREQ);

4930
	dev_priv->rps.cur_freq = val;
4931
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4932 4933
}

4934
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4935 4936
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4937 4938
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4939

4940
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4941 4942 4943
		      "Odd GPU freq value\n"))
		val &= ~1;

4944 4945
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4946
	if (val != dev_priv->rps.cur_freq) {
4947
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4948 4949 4950
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4951 4952 4953 4954 4955

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4956
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4957 4958
 *
 * * If Gfx is Idle, then
4959 4960 4961
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4962 4963 4964
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4965
	u32 val = dev_priv->rps.idle_freq;
4966

4967
	if (dev_priv->rps.cur_freq <= val)
4968 4969
		return;

4970 4971 4972
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4973
	valleyview_set_rps(dev_priv, val);
4974
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4975 4976
}

4977 4978 4979 4980 4981 4982 4983 4984
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4985

4986 4987
		gen6_enable_rps_interrupts(dev_priv);

4988 4989 4990 4991 4992
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
4993 4994 4995 4996
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4997 4998
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4999 5000 5001 5002 5003 5004 5005
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5006
	mutex_lock(&dev_priv->rps.hw_lock);
5007
	if (dev_priv->rps.enabled) {
5008
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5009
			vlv_set_rps_idle(dev_priv);
5010
		else
5011
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5012
		dev_priv->rps.last_adj = 0;
5013 5014
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5015
	}
5016
	mutex_unlock(&dev_priv->rps.hw_lock);
5017

5018
	spin_lock(&dev_priv->rps.client_lock);
5019 5020
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5021
	spin_unlock(&dev_priv->rps.client_lock);
5022 5023
}

5024
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5025 5026
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5027
{
5028 5029 5030
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5031
	if (!(dev_priv->gt.awake &&
5032
	      dev_priv->rps.enabled &&
5033
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5034
		return;
5035

5036 5037 5038
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5039
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5040 5041
		rps = NULL;

5042 5043 5044 5045 5046
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5047
			schedule_work(&dev_priv->rps.work);
5048 5049
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5050

5051 5052 5053
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5054 5055
		} else
			dev_priv->rps.boosts++;
5056
	}
5057
	spin_unlock(&dev_priv->rps.client_lock);
5058 5059
}

5060
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5061
{
5062 5063
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5064
	else
5065
		gen6_set_rps(dev_priv, val);
5066 5067
}

5068
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5069 5070
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5071
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5072 5073
}

5074
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5075 5076 5077 5078
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5079
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5080 5081
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5082
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5083
	I915_WRITE(GEN6_RP_CONTROL, 0);
5084 5085
}

5086
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5087 5088 5089 5090
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5091
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5092
{
5093 5094
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5095
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5096

5097
	I915_WRITE(GEN6_RC_CONTROL, 0);
5098

5099
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5100 5101
}

5102
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5103
{
5104
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5105 5106 5107 5108 5109
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5110
	if (HAS_RC6p(dev_priv))
5111 5112 5113 5114 5115
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5116 5117

	else
5118 5119
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5120 5121
}

5122
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5123
{
5124
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5125 5126
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5138 5139

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5140
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5141 5142 5143 5144 5145 5146 5147 5148
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5149 5150 5151
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5152
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5153 5154 5155 5156 5157 5158 5159
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5160
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5161 5162 5163
		enable_rc6 = false;
	}

5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5178 5179 5180 5181 5182 5183
		enable_rc6 = false;
	}

	return enable_rc6;
}

5184
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5185
{
5186
	/* No RC6 before Ironlake and code is gone for ilk. */
5187
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5188 5189
		return 0;

5190 5191 5192
	if (!enable_rc6)
		return 0;

5193
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5194 5195 5196 5197
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5198
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5199 5200 5201
	if (enable_rc6 >= 0) {
		int mask;

5202
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5203 5204 5205 5206 5207 5208
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5209 5210 5211
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5212 5213 5214

		return enable_rc6 & mask;
	}
5215

5216
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5217
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5218 5219

	return INTEL_RC6_ENABLE;
5220 5221
}

5222
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5223 5224
{
	/* All of these values are in units of 50MHz */
5225

5226
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5227
	if (IS_BROXTON(dev_priv)) {
5228
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5229 5230 5231 5232
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5233
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5234 5235 5236 5237
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5238
	/* hw_max = RP0 until we check for overclocking */
5239
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5240

5241
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5242 5243
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5244 5245 5246 5247 5248
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5249
			dev_priv->rps.efficient_freq =
5250 5251 5252 5253
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5254 5255
	}

5256
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5257
		/* Store the frequency values in 16.66 MHZ units, which is
5258 5259
		 * the natural hardware unit for SKL
		 */
5260 5261 5262 5263 5264 5265
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5266 5267
}

5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5280
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5281
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5282 5283 5284
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5285
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5286
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5287 5288 5289 5290 5291 5292 5293 5294 5295
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5296
		gen9_disable_rps(dev_priv);
5297 5298 5299 5300
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5301 5302 5303 5304 5305 5306 5307 5308
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5309 5310
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5311 5312 5313
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5314
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5315 5316 5317 5318

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5319
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5320
{
5321
	struct intel_engine_cs *engine;
Z
Zhe Wang 已提交
5322 5323 5324 5325 5326 5327 5328
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5329
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5330 5331 5332 5333 5334

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5335 5336

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5337
	if (IS_SKYLAKE(dev_priv))
5338 5339 5340
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5341 5342
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5343
	for_each_engine(engine, dev_priv)
5344
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5345

5346
	if (HAS_GUC(dev_priv))
5347 5348
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5349 5350
	I915_WRITE(GEN6_RC_SLEEP, 0);

5351 5352 5353 5354
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5355
	/* 3a: Enable RC6 */
5356
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5357
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5358
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5359
	/* WaRsUseTimeoutMode */
5360
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5361
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5362 5363 5364
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5365 5366
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5367 5368 5369
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5370
	}
Z
Zhe Wang 已提交
5371

5372 5373
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5374
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5375
	 */
5376
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5377 5378 5379 5380
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5381

5382
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5383 5384
}

5385
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5386
{
5387
	struct intel_engine_cs *engine;
5388
	uint32_t rc6_mask = 0;
5389 5390 5391 5392 5393 5394

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5395
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5396 5397 5398 5399 5400 5401 5402 5403

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5404
	for_each_engine(engine, dev_priv)
5405
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5406
	I915_WRITE(GEN6_RC_SLEEP, 0);
5407
	if (IS_BROADWELL(dev_priv))
5408 5409 5410
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5411 5412

	/* 3: Enable RC6 */
5413
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5414
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5415 5416
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5417 5418 5419 5420 5421 5422 5423
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5424 5425

	/* 4 Program defaults and thresholds for RPS*/
5426 5427 5428 5429
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5444 5445

	/* 5: Enable RPS */
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5456
	reset_rps(dev_priv, gen6_set_rps);
5457

5458
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5459 5460
}

5461
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5462
{
5463
	struct intel_engine_cs *engine;
5464
	u32 rc6vids, rc6_mask = 0;
5465 5466
	u32 gtfifodbg;
	int rc6_mode;
5467
	int ret;
5468

5469
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5470

5471 5472 5473 5474 5475 5476 5477 5478 5479
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5480 5481
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5482 5483 5484 5485
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5486
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5497
	for_each_engine(engine, dev_priv)
5498
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5499 5500 5501

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5502
	if (IS_IVYBRIDGE(dev_priv))
5503 5504 5505
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5506
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5507 5508
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5509
	/* Check if we are enabling RC6 */
5510
	rc6_mode = intel_enable_rc6();
5511 5512 5513
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5514
	/* We don't use those on Haswell */
5515
	if (!IS_HASWELL(dev_priv)) {
5516 5517
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5518

5519 5520 5521
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5522

5523
	intel_print_rc6_info(dev_priv, rc6_mask);
5524 5525 5526 5527 5528 5529

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5530 5531
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5532 5533
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5534
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5535
	if (ret)
B
Ben Widawsky 已提交
5536
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5537

5538
	reset_rps(dev_priv, gen6_set_rps);
5539

5540 5541
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5542
	if (IS_GEN6(dev_priv) && ret) {
5543
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5544
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5545 5546 5547 5548 5549 5550 5551 5552 5553
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5554
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5555 5556
}

5557
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5558 5559
{
	int min_freq = 15;
5560 5561
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5562
	unsigned int max_gpu_freq, min_gpu_freq;
5563
	int scaling_factor = 180;
5564
	struct cpufreq_policy *policy;
5565

5566
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5567

5568 5569 5570 5571 5572 5573 5574 5575 5576
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5577
		max_ia_freq = tsc_khz;
5578
	}
5579 5580 5581 5582

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5583
	min_ring_freq = I915_READ(DCLK) & 0xf;
5584 5585
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5586

5587
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5588 5589 5590 5591 5592 5593 5594 5595
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5596 5597 5598 5599 5600
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5601 5602
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5603 5604
		unsigned int ia_freq = 0, ring_freq = 0;

5605
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5606 5607 5608 5609 5610
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5611
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5612 5613
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5614
		} else if (IS_HASWELL(dev_priv)) {
5615
			ring_freq = mult_frac(gpu_freq, 5, 4);
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5632

B
Ben Widawsky 已提交
5633 5634
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5635 5636 5637
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5638 5639 5640
	}
}

5641
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5642 5643 5644
{
	u32 val, rp0;

5645
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5646

5647
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5662
	}
5663 5664 5665

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5679 5680 5681 5682
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5683 5684 5685
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5686 5687 5688
	return rp1;
}

5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5700
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5701 5702 5703
{
	u32 val, rp0;

5704
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5717
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5718
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5719
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5720 5721 5722 5723 5724
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5725
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5726
{
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5738 5739
}

5740 5741 5742 5743 5744 5745 5746 5747 5748
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5749 5750 5751 5752 5753 5754 5755 5756 5757

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5758
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5759
{
5760
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5761
	unsigned long pctx_paddr, paddr;
5762 5763 5764 5765 5766
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5767
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5768
		paddr = (dev_priv->mm.stolen_base +
5769
			 (ggtt->stolen_size - pctx_size));
5770 5771 5772 5773

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5774 5775

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5776 5777
}

5778
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5791
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5792
								      pcbr_offset,
5793
								      I915_GTT_OFFSET_NONE,
5794 5795 5796 5797
								      pctx_size);
		goto out;
	}

5798 5799
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5800 5801 5802 5803 5804 5805 5806 5807
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5808
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5809 5810
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5811
		goto out;
5812 5813 5814 5815 5816 5817
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5818
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5819 5820 5821
	dev_priv->vlv_pctx = pctx;
}

5822
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5823 5824 5825 5826
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5827
	i915_gem_object_put_unlocked(dev_priv->vlv_pctx);
5828 5829 5830
	dev_priv->vlv_pctx = NULL;
}

5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5842
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5843
{
5844
	u32 val;
5845

5846
	valleyview_setup_pctx(dev_priv);
5847

5848 5849
	vlv_init_gpll_ref_freq(dev_priv);

5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5863
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5864

5865 5866 5867
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5868
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5869 5870 5871 5872
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5873
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5874 5875
			 dev_priv->rps.efficient_freq);

5876 5877
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5878
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5879 5880
			 dev_priv->rps.rp1_freq);

5881 5882
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5883
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5884 5885 5886
			 dev_priv->rps.min_freq);
}

5887
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5888
{
5889
	u32 val;
5890

5891
	cherryview_setup_pctx(dev_priv);
5892

5893 5894
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5895
	mutex_lock(&dev_priv->sb_lock);
5896
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5897
	mutex_unlock(&dev_priv->sb_lock);
5898

5899 5900 5901 5902
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5903
	default:
5904 5905 5906
		dev_priv->mem_freq = 1600;
		break;
	}
5907
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5908

5909 5910 5911
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5912
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5913 5914 5915 5916
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5917
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5918 5919
			 dev_priv->rps.efficient_freq);

5920 5921
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5922
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5923 5924
			 dev_priv->rps.rp1_freq);

5925 5926
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5927
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5928
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5929 5930
			 dev_priv->rps.min_freq);

5931 5932 5933 5934 5935
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5936 5937
}

5938
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5939
{
5940
	valleyview_cleanup_pctx(dev_priv);
5941 5942
}

5943
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5944
{
5945
	struct intel_engine_cs *engine;
5946
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5947 5948 5949

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5950 5951
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5962
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5963

5964 5965 5966
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5967 5968 5969 5970 5971
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5972
	for_each_engine(engine, dev_priv)
5973
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5974 5975
	I915_WRITE(GEN6_RC_SLEEP, 0);

5976 5977
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
5989 5990
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
5991
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5992 5993 5994

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5995
	/* 4 Program defaults and thresholds for RPS*/
5996
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6007
		   GEN6_RP_MEDIA_IS_GFX |
6008 6009 6010 6011
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6012 6013 6014 6015 6016 6017
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6018 6019
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6020 6021 6022
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6023
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6024 6025
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6026
	reset_rps(dev_priv, valleyview_set_rps);
6027

6028
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6029 6030
}

6031
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6032
{
6033
	struct intel_engine_cs *engine;
6034
	u32 gtfifodbg, val, rc6_mode = 0;
6035 6036 6037

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6038 6039
	valleyview_check_pctx(dev_priv);

6040 6041
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6042 6043
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6044 6045 6046
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6047
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6048
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6049

6050 6051 6052
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6053
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6073
	for_each_engine(engine, dev_priv)
6074
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6075

6076
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6077 6078

	/* allows RC6 residency counter to work */
6079
	I915_WRITE(VLV_COUNTER_CONTROL,
6080 6081
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6082 6083
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6084

6085
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6086
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6087

6088
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6089

6090
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6091

D
Deepak S 已提交
6092 6093 6094 6095 6096 6097
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6098
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6099

6100 6101 6102
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6103
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6104 6105
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6106
	reset_rps(dev_priv, valleyview_set_rps);
6107

6108
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6109 6110
}

6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6140
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6141 6142 6143 6144 6145 6146
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6147 6148
	assert_spin_locked(&mchdev_lock);

6149
	diff1 = now - dev_priv->ips.last_time1;
6150 6151 6152 6153 6154 6155 6156

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6157
		return dev_priv->ips.chipset_power;
6158 6159 6160 6161 6162 6163 6164 6165

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6166 6167
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6168 6169
		diff += total_count;
	} else {
6170
		diff = total_count - dev_priv->ips.last_count1;
6171 6172 6173
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6174 6175
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6186 6187
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6188

6189
	dev_priv->ips.chipset_power = ret;
6190 6191 6192 6193

	return ret;
}

6194 6195 6196 6197
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6198
	if (INTEL_INFO(dev_priv)->gen != 5)
6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6237
{
6238 6239 6240
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6241
	if (INTEL_INFO(dev_priv)->is_mobile)
6242 6243 6244
		return vm > 0 ? vm : 0;

	return vd;
6245 6246
}

6247
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6248
{
6249
	u64 now, diff, diffms;
6250 6251
	u32 count;

6252
	assert_spin_locked(&mchdev_lock);
6253

6254 6255 6256
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6257 6258 6259 6260 6261 6262 6263

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6264 6265
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6266 6267
		diff += count;
	} else {
6268
		diff = count - dev_priv->ips.last_count2;
6269 6270
	}

6271 6272
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6273 6274 6275 6276

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6277
	dev_priv->ips.gfx_power = diff;
6278 6279
}

6280 6281
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6282
	if (INTEL_INFO(dev_priv)->gen != 5)
6283 6284
		return;

6285
	spin_lock_irq(&mchdev_lock);
6286 6287 6288

	__i915_update_gfx_val(dev_priv);

6289
	spin_unlock_irq(&mchdev_lock);
6290 6291
}

6292
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6293 6294 6295 6296
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6297 6298
	assert_spin_locked(&mchdev_lock);

6299
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6319
	corr2 = (corr * dev_priv->ips.corr);
6320 6321 6322 6323

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6324
	__i915_update_gfx_val(dev_priv);
6325

6326
	return dev_priv->ips.gfx_power + state2;
6327 6328
}

6329 6330 6331 6332
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6333
	if (INTEL_INFO(dev_priv)->gen != 5)
6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6356
	spin_lock_irq(&mchdev_lock);
6357 6358 6359 6360
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6361 6362
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6363 6364 6365 6366

	ret = chipset_val + graphics_val;

out_unlock:
6367
	spin_unlock_irq(&mchdev_lock);
6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6383
	spin_lock_irq(&mchdev_lock);
6384 6385 6386 6387 6388 6389
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6390 6391
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6392 6393

out_unlock:
6394
	spin_unlock_irq(&mchdev_lock);
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6411
	spin_lock_irq(&mchdev_lock);
6412 6413 6414 6415 6416 6417
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6418 6419
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6420 6421

out_unlock:
6422
	spin_unlock_irq(&mchdev_lock);
6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6437
	spin_lock_irq(&mchdev_lock);
6438 6439
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6440
	spin_unlock_irq(&mchdev_lock);
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6457
	spin_lock_irq(&mchdev_lock);
6458 6459 6460 6461 6462 6463
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6464
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6465

6466
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6467 6468 6469
		ret = false;

out_unlock:
6470
	spin_unlock_irq(&mchdev_lock);
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6498 6499
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6500
	spin_lock_irq(&mchdev_lock);
6501
	i915_mch_dev = dev_priv;
6502
	spin_unlock_irq(&mchdev_lock);
6503 6504 6505 6506 6507 6508

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6509
	spin_lock_irq(&mchdev_lock);
6510
	i915_mch_dev = NULL;
6511
	spin_unlock_irq(&mchdev_lock);
6512
}
6513

6514
static void intel_init_emon(struct drm_i915_private *dev_priv)
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6531
		I915_WRITE(PEW(i), 0);
6532
	for (i = 0; i < 3; i++)
6533
		I915_WRITE(DEW(i), 0);
6534 6535 6536

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6537
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6558
		I915_WRITE(PXW(i), val);
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6574
		I915_WRITE(PXWL(i), 0);
6575 6576 6577 6578 6579 6580

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6581
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6582 6583
}

6584
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6585
{
6586 6587 6588 6589 6590 6591 6592 6593
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6594

6595
	mutex_lock(&dev_priv->drm.struct_mutex);
6596 6597 6598
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6599 6600 6601 6602
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6603
	else if (INTEL_GEN(dev_priv) >= 6)
6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6633 6634 6635
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6636
	mutex_unlock(&dev_priv->rps.hw_lock);
6637
	mutex_unlock(&dev_priv->drm.struct_mutex);
6638 6639

	intel_autoenable_gt_powersave(dev_priv);
6640 6641
}

6642
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6643
{
6644
	if (IS_VALLEYVIEW(dev_priv))
6645
		valleyview_cleanup_gt_powersave(dev_priv);
6646 6647 6648

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6649 6650
}

6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6670 6671 6672 6673
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6674 6675

	gen6_reset_rps_interrupts(dev_priv);
6676 6677
}

6678
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6679
{
6680 6681
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6682

6683
	mutex_lock(&dev_priv->rps.hw_lock);
6684

6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6696
	}
6697 6698 6699

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6700 6701
}

6702
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6703
{
6704 6705 6706
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6707 6708
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6709

6710 6711 6712
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6713

6714
	mutex_lock(&dev_priv->rps.hw_lock);
6715 6716 6717 6718 6719

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6720
	} else if (INTEL_GEN(dev_priv) >= 9) {
6721 6722 6723
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6724
			gen6_update_ring_freq(dev_priv);
6725 6726
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6727
		gen6_update_ring_freq(dev_priv);
6728
	} else if (INTEL_GEN(dev_priv) >= 6) {
6729
		gen6_enable_rps(dev_priv);
6730
		gen6_update_ring_freq(dev_priv);
6731 6732 6733
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6734
	}
6735 6736 6737 6738 6739 6740 6741

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6742
	dev_priv->rps.enabled = true;
6743 6744
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6745

6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

	rcs = &dev_priv->engine[RCS];
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6809 6810
static void ibx_init_clock_gating(struct drm_device *dev)
{
6811
	struct drm_i915_private *dev_priv = to_i915(dev);
6812 6813 6814 6815 6816 6817 6818 6819 6820

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6821 6822
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
6823
	struct drm_i915_private *dev_priv = to_i915(dev);
6824
	enum pipe pipe;
6825

6826
	for_each_pipe(dev_priv, pipe) {
6827 6828 6829
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6830 6831 6832

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6833 6834 6835
	}
}

6836 6837
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
6838
	struct drm_i915_private *dev_priv = to_i915(dev);
6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6850
static void ironlake_init_clock_gating(struct drm_device *dev)
6851
{
6852
	struct drm_i915_private *dev_priv = to_i915(dev);
6853
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6854

6855 6856 6857 6858
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6859 6860 6861
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6879
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6880 6881 6882
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6883 6884

	ilk_init_lp_watermarks(dev);
6885 6886 6887 6888 6889 6890 6891 6892 6893

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6894
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6895 6896 6897 6898 6899 6900 6901 6902
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6903 6904
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6905 6906 6907 6908 6909 6910
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6911

6912
	/* WaDisableRenderCachePipelinedFlush:ilk */
6913 6914
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6915

6916 6917 6918
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6919
	g4x_disable_trickle_feed(dev);
6920

6921 6922 6923 6924 6925
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
6926
	struct drm_i915_private *dev_priv = to_i915(dev);
6927
	int pipe;
6928
	uint32_t val;
6929 6930 6931 6932 6933 6934

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6935 6936 6937
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6938 6939
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6940 6941 6942
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6943
	for_each_pipe(dev_priv, pipe) {
6944 6945 6946
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6947
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6948
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6949 6950 6951
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6952 6953
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6954
	/* WADP0ClockGatingDisable */
6955
	for_each_pipe(dev_priv, pipe) {
6956 6957 6958
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6959 6960
}

6961 6962
static void gen6_check_mch_setup(struct drm_device *dev)
{
6963
	struct drm_i915_private *dev_priv = to_i915(dev);
6964 6965 6966
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6967 6968 6969
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6970 6971
}

6972
static void gen6_init_clock_gating(struct drm_device *dev)
6973
{
6974
	struct drm_i915_private *dev_priv = to_i915(dev);
6975
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6976

6977
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6978 6979 6980 6981 6982

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6983
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6984 6985 6986
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6987 6988 6989
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6990 6991 6992
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6993 6994 6995 6996
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6997 6998
	 */
	I915_WRITE(GEN6_GT_MODE,
6999
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7000

7001
	ilk_init_lp_watermarks(dev);
7002 7003

	I915_WRITE(CACHE_MODE_0,
7004
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7020
	 *
7021 7022
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7023 7024 7025 7026 7027
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7028
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7029 7030
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7031

7032 7033 7034 7035 7036 7037 7038 7039
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7040 7041 7042 7043 7044 7045 7046 7047
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7048 7049
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7050 7051 7052 7053 7054 7055 7056
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7057 7058 7059 7060
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7061

7062
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
7063

7064
	cpt_init_clock_gating(dev);
7065 7066

	gen6_check_mch_setup(dev);
7067 7068 7069 7070 7071 7072
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7073
	/*
7074
	 * WaVSThreadDispatchOverride:ivb,vlv
7075 7076 7077 7078
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7079 7080 7081 7082 7083 7084 7085 7086
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7087 7088
static void lpt_init_clock_gating(struct drm_device *dev)
{
7089
	struct drm_i915_private *dev_priv = to_i915(dev);
7090 7091 7092 7093 7094

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7095
	if (HAS_PCH_LPT_LP(dev))
7096 7097 7098
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7099 7100

	/* WADPOClockGatingDisable:hsw */
7101 7102
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7103
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7104 7105
}

7106 7107
static void lpt_suspend_hw(struct drm_device *dev)
{
7108
	struct drm_i915_private *dev_priv = to_i915(dev);
7109

7110
	if (HAS_PCH_LPT_LP(dev)) {
7111 7112 7113 7114 7115 7116 7117
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7141 7142
static void kabylake_init_clock_gating(struct drm_device *dev)
{
7143
	struct drm_i915_private *dev_priv = dev->dev_private;
7144

7145
	gen9_init_clock_gating(dev);
7146 7147 7148 7149 7150

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7151 7152 7153 7154 7155

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7156 7157 7158 7159

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7160 7161
}

7162 7163
static void skylake_init_clock_gating(struct drm_device *dev)
{
7164
	struct drm_i915_private *dev_priv = dev->dev_private;
7165

7166
	gen9_init_clock_gating(dev);
7167 7168 7169 7170

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7171 7172 7173 7174

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7175 7176
}

7177
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7178
{
7179
	struct drm_i915_private *dev_priv = to_i915(dev);
7180
	enum pipe pipe;
B
Ben Widawsky 已提交
7181

7182
	ilk_init_lp_watermarks(dev);
7183

7184
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7185
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7186

7187
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7188 7189 7190
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7191
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7192
	for_each_pipe(dev_priv, pipe) {
7193
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7194
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7195
			   BDW_DPRS_MASK_VBLANK_SRD);
7196
	}
7197

7198 7199 7200 7201 7202
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7203

7204 7205
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7206 7207 7208 7209

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7210

7211 7212
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7213

7214 7215 7216 7217 7218 7219 7220
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7221 7222 7223 7224
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7225
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7226 7227
}

7228 7229
static void haswell_init_clock_gating(struct drm_device *dev)
{
7230
	struct drm_i915_private *dev_priv = to_i915(dev);
7231

7232
	ilk_init_lp_watermarks(dev);
7233

7234 7235 7236 7237 7238
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7239
	/* This is required by WaCatErrorRejectionIssue:hsw */
7240 7241 7242 7243
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7244 7245 7246
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7247

7248 7249 7250
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7251 7252 7253 7254
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7255
	/* WaDisable4x2SubspanOptimization:hsw */
7256 7257
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7258

7259 7260 7261
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7262 7263 7264 7265
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7266 7267
	 */
	I915_WRITE(GEN7_GT_MODE,
7268
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7269

7270 7271 7272 7273
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7274
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7275 7276
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7277 7278 7279
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7280

7281
	lpt_init_clock_gating(dev);
7282 7283
}

7284
static void ivybridge_init_clock_gating(struct drm_device *dev)
7285
{
7286
	struct drm_i915_private *dev_priv = to_i915(dev);
7287
	uint32_t snpcr;
7288

7289
	ilk_init_lp_watermarks(dev);
7290

7291
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7292

7293
	/* WaDisableEarlyCull:ivb */
7294 7295 7296
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7297
	/* WaDisableBackToBackFlipFix:ivb */
7298 7299 7300 7301
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7302
	/* WaDisablePSDDualDispatchEnable:ivb */
7303 7304 7305 7306
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7307 7308 7309
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7310
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7311 7312 7313
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7314
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7315 7316 7317
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7318 7319 7320 7321
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7322 7323 7324 7325
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7326 7327
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7328
	}
7329

7330
	/* WaForceL3Serialization:ivb */
7331 7332 7333
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7334
	/*
7335
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7336
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7337 7338
	 */
	I915_WRITE(GEN6_UCGCTL2,
7339
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7340

7341
	/* This is required by WaCatErrorRejectionIssue:ivb */
7342 7343 7344 7345
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7346
	g4x_disable_trickle_feed(dev);
7347 7348

	gen7_setup_fixed_func_scheduler(dev_priv);
7349

7350 7351 7352 7353 7354
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7355

7356
	/* WaDisable4x2SubspanOptimization:ivb */
7357 7358
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7359

7360 7361 7362
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7363 7364 7365 7366
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7367 7368
	 */
	I915_WRITE(GEN7_GT_MODE,
7369
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7370

7371 7372 7373 7374
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7375

7376 7377
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
7378 7379

	gen6_check_mch_setup(dev);
7380 7381
}

7382
static void valleyview_init_clock_gating(struct drm_device *dev)
7383
{
7384
	struct drm_i915_private *dev_priv = to_i915(dev);
7385

7386
	/* WaDisableEarlyCull:vlv */
7387 7388 7389
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7390
	/* WaDisableBackToBackFlipFix:vlv */
7391 7392 7393 7394
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7395
	/* WaPsdDispatchEnable:vlv */
7396
	/* WaDisablePSDDualDispatchEnable:vlv */
7397
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7398 7399
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7400

7401 7402 7403
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7404
	/* WaForceL3Serialization:vlv */
7405 7406 7407
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7408
	/* WaDisableDopClockGating:vlv */
7409 7410 7411
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7412
	/* This is required by WaCatErrorRejectionIssue:vlv */
7413 7414 7415 7416
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7417 7418
	gen7_setup_fixed_func_scheduler(dev_priv);

7419
	/*
7420
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7421
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7422 7423
	 */
	I915_WRITE(GEN6_UCGCTL2,
7424
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7425

7426 7427 7428 7429 7430
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7431

7432 7433 7434 7435
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7436 7437
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7438

7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7450 7451 7452 7453 7454 7455
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7456
	/*
7457
	 * WaDisableVLVClockGating_VBIIssue:vlv
7458 7459 7460
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7461
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7462 7463
}

7464 7465
static void cherryview_init_clock_gating(struct drm_device *dev)
{
7466
	struct drm_i915_private *dev_priv = to_i915(dev);
7467

7468 7469 7470 7471 7472
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7473 7474 7475 7476

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7477 7478 7479 7480

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7481 7482 7483 7484

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7485

7486 7487 7488 7489 7490 7491 7492
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7493 7494 7495 7496 7497
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7498 7499
}

7500
static void g4x_init_clock_gating(struct drm_device *dev)
7501
{
7502
	struct drm_i915_private *dev_priv = to_i915(dev);
7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7516 7517 7518 7519

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7520

7521 7522 7523
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7524
	g4x_disable_trickle_feed(dev);
7525 7526
}

7527
static void crestline_init_clock_gating(struct drm_device *dev)
7528
{
7529
	struct drm_i915_private *dev_priv = to_i915(dev);
7530 7531 7532 7533 7534 7535

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7536 7537
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7538 7539 7540

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7541 7542
}

7543
static void broadwater_init_clock_gating(struct drm_device *dev)
7544
{
7545
	struct drm_i915_private *dev_priv = to_i915(dev);
7546 7547 7548 7549 7550 7551 7552

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7553 7554
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7555 7556 7557

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7558 7559
}

7560
static void gen3_init_clock_gating(struct drm_device *dev)
7561
{
7562
	struct drm_i915_private *dev_priv = to_i915(dev);
7563 7564 7565 7566 7567
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7568 7569 7570

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7571 7572 7573

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7574 7575

	/* interrupts should cause a wake up from C3 */
7576
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7577 7578 7579

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7580 7581 7582

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7583 7584
}

7585
static void i85x_init_clock_gating(struct drm_device *dev)
7586
{
7587
	struct drm_i915_private *dev_priv = to_i915(dev);
7588 7589

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7590 7591 7592 7593

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7594 7595 7596

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7597 7598
}

7599
static void i830_init_clock_gating(struct drm_device *dev)
7600
{
7601
	struct drm_i915_private *dev_priv = to_i915(dev);
7602 7603

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7604 7605 7606 7607

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7608 7609 7610 7611
}

void intel_init_clock_gating(struct drm_device *dev)
{
7612
	struct drm_i915_private *dev_priv = to_i915(dev);
7613

7614
	dev_priv->display.init_clock_gating(dev);
7615 7616
}

7617 7618 7619 7620 7621 7622
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7640
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7641
	else if (IS_KABYLAKE(dev_priv))
7642
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7677 7678 7679
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
7680
	struct drm_i915_private *dev_priv = to_i915(dev);
7681

7682
	intel_fbc_init(dev_priv);
7683

7684 7685 7686 7687 7688 7689
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7690
	/* For FIFO watermark updates */
7691
	if (INTEL_INFO(dev)->gen >= 9) {
7692
		skl_setup_wm_latency(dev);
7693
		dev_priv->display.update_wm = skl_update_wm;
7694
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7695
	} else if (HAS_PCH_SPLIT(dev)) {
7696
		ilk_setup_wm_latency(dev);
7697

7698 7699 7700 7701
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7702
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7703 7704 7705 7706 7707 7708
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7709 7710 7711 7712
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7713
	} else if (IS_CHERRYVIEW(dev)) {
7714 7715
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7716
	} else if (IS_VALLEYVIEW(dev)) {
7717 7718
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7730
			intel_set_memory_cxsr(dev_priv, false);
7731 7732 7733 7734 7735 7736 7737 7738 7739 7740
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7741 7742 7743
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7744
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7745 7746
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7747
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7748 7749 7750
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7751 7752 7753
	}
}

7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7766
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7798
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7799
{
7800 7801
	int status;

7802
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7803

7804 7805 7806 7807 7808 7809
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7810 7811 7812 7813
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7814 7815 7816
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7817

7818 7819 7820
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7821 7822 7823 7824
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7825 7826
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7827

7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7839 7840 7841
	return 0;
}

7842
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7843
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7844
{
7845 7846
	int status;

7847
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7848

7849 7850 7851 7852 7853 7854
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7855 7856 7857 7858
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7859 7860
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7861

7862 7863 7864
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7865 7866 7867 7868
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7869
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7870

7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7882 7883
	return 0;
}
7884

7885 7886
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7887 7888 7889 7890 7891
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7892 7893
}

7894
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7895
{
7896
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7897 7898
}

7899
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7900
{
7901 7902 7903 7904 7905
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7906 7907
}

7908
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7909
{
7910
	/* CHV needs even values */
7911
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7912 7913
}

7914
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7915
{
7916
	if (IS_GEN9(dev_priv))
7917 7918
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7919
	else if (IS_CHERRYVIEW(dev_priv))
7920
		return chv_gpu_freq(dev_priv, val);
7921
	else if (IS_VALLEYVIEW(dev_priv))
7922 7923 7924
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7925 7926
}

7927 7928
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7929
	if (IS_GEN9(dev_priv))
7930 7931
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7932
	else if (IS_CHERRYVIEW(dev_priv))
7933
		return chv_freq_opcode(dev_priv, val);
7934
	else if (IS_VALLEYVIEW(dev_priv))
7935 7936
		return byt_freq_opcode(dev_priv, val);
	else
7937
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7938
}
7939

7940 7941
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7942
	struct drm_i915_gem_request *req;
7943 7944 7945 7946 7947
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7948
	struct drm_i915_gem_request *req = boost->req;
7949

7950
	if (!i915_gem_request_completed(req))
7951
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7952

7953
	i915_gem_request_put(req);
7954 7955 7956
	kfree(boost);
}

7957
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7958 7959 7960
{
	struct request_boost *boost;

7961
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7962 7963
		return;

7964
	if (i915_gem_request_completed(req))
7965 7966
		return;

7967 7968 7969 7970
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

7971
	boost->req = i915_gem_request_get(req);
7972 7973

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7974
	queue_work(req->i915->wq, &boost->work);
7975 7976
}

D
Daniel Vetter 已提交
7977
void intel_pm_setup(struct drm_device *dev)
7978
{
7979
	struct drm_i915_private *dev_priv = to_i915(dev);
7980

D
Daniel Vetter 已提交
7981
	mutex_init(&dev_priv->rps.hw_lock);
7982
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7983

7984 7985
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
7986
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7987

7988
	dev_priv->pm.suspended = false;
7989
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7990
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7991
}