intel_pm.c 220.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34

B
Ben Widawsky 已提交
35
/**
36 37
 * DOC: RC6
 *
B
Ben Widawsky 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58
static void gen9_init_clock_gating(struct drm_device *dev)
59
{
60
	struct drm_i915_private *dev_priv = to_i915(dev);
61

62
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 64 65
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

66 67
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68 69 70 71

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72 73

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74 75 76 77
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
78 79 80 81

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
82 83 84 85
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
86
	struct drm_i915_private *dev_priv = to_i915(dev);
87 88 89

	gen9_init_clock_gating(dev);

90 91 92 93
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

94 95
	/*
	 * FIXME:
96
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97 98
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100 101 102 103 104 105 106 107

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
108 109
}

110 111
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
112
	struct drm_i915_private *dev_priv = to_i915(dev);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
151
	struct drm_i915_private *dev_priv = to_i915(dev);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

177
	dev_priv->ips.r_t = dev_priv->mem_freq;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
209
		dev_priv->ips.c_m = 0;
210
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211
		dev_priv->ips.c_m = 1;
212
	} else {
213
		dev_priv->ips.c_m = 2;
214 215 216
	}
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

255
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

317 318 319
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

320
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321
{
322
	struct drm_device *dev = &dev_priv->drm;
323
	u32 val;
324

325
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327
		POSTING_READ(FW_BLC_SELF_VLV);
328
		dev_priv->wm.vlv.cxsr = enable;
329 330
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331
		POSTING_READ(FW_BLC_SELF);
332 333 334 335
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
336
		POSTING_READ(DSPFW3);
337 338 339 340
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
341
		POSTING_READ(FW_BLC_SELF);
342 343 344 345
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
346
		POSTING_READ(INSTPM);
347 348 349
	} else {
		return;
	}
350

351 352
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
353 354
}

355

356 357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
370
static const int pessimal_latency_ns = 5000;
371

372 373 374 375 376 377
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
378
	struct drm_i915_private *dev_priv = to_i915(dev);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

427
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
428
{
429
	struct drm_i915_private *dev_priv = to_i915(dev);
430 431 432 433 434 435 436 437 438 439 440 441 442
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

443
static int i830_get_fifo_size(struct drm_device *dev, int plane)
444
{
445
	struct drm_i915_private *dev_priv = to_i915(dev);
446 447 448 449 450 451 452 453 454 455 456 457 458 459
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

460
static int i845_get_fifo_size(struct drm_device *dev, int plane)
461
{
462
	struct drm_i915_private *dev_priv = to_i915(dev);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
478 479 480 481 482
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
483 484
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
485 486 487 488 489
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
490 491
};
static const struct intel_watermark_params pineview_cursor_wm = {
492 493 494 495 496
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
497 498
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
499 500 501 502 503
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
504 505
};
static const struct intel_watermark_params g4x_wm_info = {
506 507 508 509 510
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
511 512
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
513 514 515 516 517
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
518 519
};
static const struct intel_watermark_params i965_cursor_wm_info = {
520 521 522 523 524
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
525 526
};
static const struct intel_watermark_params i945_wm_info = {
527 528 529 530 531
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
532 533
};
static const struct intel_watermark_params i915_wm_info = {
534 535 536 537 538
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
539
};
540
static const struct intel_watermark_params i830_a_wm_info = {
541 542 543 544 545
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
546
};
547 548 549 550 551 552 553
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
554
static const struct intel_watermark_params i845_wm_info = {
555 556 557 558 559
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
560 561 562 563 564 565
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
566
 * @cpp: bytes per pixel
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
582
					int fifo_size, int cpp,
583 584 585 586 587 588 589 590 591 592
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
593
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
594 595 596 597 598 599 600 601 602 603 604 605 606 607
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
608 609 610 611 612 613 614 615 616 617 618

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

619 620 621 622 623 624 625
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

626
	for_each_crtc(dev, crtc) {
627
		if (intel_crtc_active(crtc)) {
628 629 630 631 632 633 634 635 636
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

637
static void pineview_update_wm(struct drm_crtc *unused_crtc)
638
{
639
	struct drm_device *dev = unused_crtc->dev;
640
	struct drm_i915_private *dev_priv = to_i915(dev);
641 642 643 644 645 646 647 648 649
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
650
		intel_set_memory_cxsr(dev_priv, false);
651 652 653 654 655
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
656
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
657
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
658
		int clock = adjusted_mode->crtc_clock;
659 660 661 662

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
663
					cpp, latency->display_sr);
664 665
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
666
		reg |= FW_WM(wm, SR);
667 668 669 670 671 672
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
673
					cpp, latency->cursor_sr);
674 675
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
676
		reg |= FW_WM(wm, CURSOR_SR);
677 678 679 680 681
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
682
					cpp, latency->display_hpll_disable);
683 684
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
685
		reg |= FW_WM(wm, HPLL_SR);
686 687 688 689 690
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
691
					cpp, latency->cursor_hpll_disable);
692 693
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
694
		reg |= FW_WM(wm, HPLL_CURSOR);
695 696 697
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

698
		intel_set_memory_cxsr(dev_priv, true);
699
	} else {
700
		intel_set_memory_cxsr(dev_priv, false);
701 702 703 704 705 706 707 708 709 710 711 712 713
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
714
	const struct drm_display_mode *adjusted_mode;
715
	int htotal, hdisplay, clock, cpp;
716 717 718 719
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
720
	if (!intel_crtc_active(crtc)) {
721 722 723 724 725
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

726
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
727
	clock = adjusted_mode->crtc_clock;
728
	htotal = adjusted_mode->crtc_htotal;
729
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
730
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
731 732

	/* Use the small buffer method to calculate plane watermark */
733
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
734 735 736 737 738 739 740 741 742
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
743
	line_time_us = max(htotal * 1000 / clock, 1);
744
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
745
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
800
	const struct drm_display_mode *adjusted_mode;
801
	int hdisplay, htotal, cpp, clock;
802 803 804 805 806 807 808 809 810 811 812
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
813
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
814
	clock = adjusted_mode->crtc_clock;
815
	htotal = adjusted_mode->crtc_htotal;
816
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
817
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
818

819
	line_time_us = max(htotal * 1000 / clock, 1);
820
	line_count = (latency_ns / line_time_us + 1000) / 1000;
821
	line_size = hdisplay * cpp;
822 823

	/* Use the minimum of the small and large buffer method for primary */
824
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
825 826 827 828 829 830
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
831
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
832 833 834 835 836 837 838 839
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

840 841 842
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

843 844 845 846 847 848 849 850 851 852 853 854
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

855
	I915_WRITE(DSPFW1,
856 857 858 859
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
860
	I915_WRITE(DSPFW2,
861 862 863
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
864
	I915_WRITE(DSPFW3,
865
		   FW_WM(wm->sr.cursor, CURSOR_SR));
866 867 868

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
869 870
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
871
		I915_WRITE(DSPFW8_CHV,
872 873
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
874
		I915_WRITE(DSPFW9_CHV,
875 876
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
877
		I915_WRITE(DSPHOWM,
878 879 880 881 882 883 884 885 886 887
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
888 889
	} else {
		I915_WRITE(DSPFW7,
890 891
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
892
		I915_WRITE(DSPHOWM,
893 894 895 896 897 898 899
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
900 901
	}

902 903 904 905 906 907
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

908
	POSTING_READ(DSPFW1);
909 910
}

911 912
#undef FW_WM_VLV

913 914 915 916 917 918
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

919 920 921 922
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
923
				   unsigned int cpp,
924 925 926 927 928
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
929
	ret = (ret + 1) * horiz_pixels * cpp;
930 931 932 933 934 935 936
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
937
	struct drm_i915_private *dev_priv = to_i915(dev);
938 939 940 941

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

942 943
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

944 945 946
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
947 948

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
949 950 951 952 953 954 955 956 957
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
958
	int clock, htotal, cpp, width, wm;
959 960 961 962 963 964 965

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

966
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
982
		wm = vlv_wm_method2(clock, htotal, width, cpp,
983 984 985 986 987 988
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1090
static void vlv_compute_wm(struct intel_crtc *crtc)
1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1100
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1101
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1102 1103 1104

	wm_state->num_active_planes = 0;

1105
	vlv_compute_fifo(crtc);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1162
					wm_state->wm[level].cursor;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1181
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1182 1183 1184 1185 1186 1187 1188
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1279 1280 1281 1282 1283 1284
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1285
	wm->level = to_i915(dev)->wm.max_level;
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1304 1305 1306
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
1328
	struct drm_i915_private *dev_priv = to_i915(dev);
1329 1330 1331 1332
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1333
	vlv_compute_wm(intel_crtc);
1334 1335
	vlv_merge_wm(dev, &wm);

1336 1337 1338
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1339
		return;
1340
	}
1341 1342 1343 1344 1345 1346 1347 1348 1349

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1350
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1351 1352
		intel_set_memory_cxsr(dev_priv, false);

1353 1354 1355
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1356 1357 1358 1359 1360 1361 1362 1363
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1364
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1376 1377
}

1378 1379
#define single_plane_enabled(mask) is_power_of_2(mask)

1380
static void g4x_update_wm(struct drm_crtc *crtc)
1381
{
1382
	struct drm_device *dev = crtc->dev;
1383
	static const int sr_latency_ns = 12000;
1384
	struct drm_i915_private *dev_priv = to_i915(dev);
1385 1386 1387
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1388
	bool cxsr_enabled;
1389

1390
	if (g4x_compute_wm0(dev, PIPE_A,
1391 1392
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1393
			    &planea_wm, &cursora_wm))
1394
		enabled |= 1 << PIPE_A;
1395

1396
	if (g4x_compute_wm0(dev, PIPE_B,
1397 1398
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1399
			    &planeb_wm, &cursorb_wm))
1400
		enabled |= 1 << PIPE_B;
1401 1402 1403 1404 1405 1406

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1407
			     &plane_sr, &cursor_sr)) {
1408
		cxsr_enabled = true;
1409
	} else {
1410
		cxsr_enabled = false;
1411
		intel_set_memory_cxsr(dev_priv, false);
1412 1413
		plane_sr = cursor_sr = 0;
	}
1414

1415 1416
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1417 1418 1419 1420 1421
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1422 1423 1424 1425
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1426
	I915_WRITE(DSPFW2,
1427
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1428
		   FW_WM(cursora_wm, CURSORA));
1429 1430
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1431
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1432
		   FW_WM(cursor_sr, CURSOR_SR));
1433 1434 1435

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1436 1437
}

1438
static void i965_update_wm(struct drm_crtc *unused_crtc)
1439
{
1440
	struct drm_device *dev = unused_crtc->dev;
1441
	struct drm_i915_private *dev_priv = to_i915(dev);
1442 1443 1444
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1445
	bool cxsr_enabled;
1446 1447 1448 1449 1450 1451

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1452
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1453
		int clock = adjusted_mode->crtc_clock;
1454
		int htotal = adjusted_mode->crtc_htotal;
1455
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1456
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1457 1458 1459
		unsigned long line_time_us;
		int entries;

1460
		line_time_us = max(htotal * 1000 / clock, 1);
1461 1462 1463

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1464
			cpp * hdisplay;
1465 1466 1467 1468 1469 1470 1471 1472 1473
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1474
			cpp * crtc->cursor->state->crtc_w;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1486
		cxsr_enabled = true;
1487
	} else {
1488
		cxsr_enabled = false;
1489
		/* Turn off self refresh if both pipes are enabled */
1490
		intel_set_memory_cxsr(dev_priv, false);
1491 1492 1493 1494 1495 1496
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1497 1498 1499 1500 1501 1502
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1503
	/* update cursor SR watermark */
1504
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1505 1506 1507

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1508 1509
}

1510 1511
#undef FW_WM

1512
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1513
{
1514
	struct drm_device *dev = unused_crtc->dev;
1515
	struct drm_i915_private *dev_priv = to_i915(dev);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1529
		wm_info = &i830_a_wm_info;
1530 1531 1532

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1533
	if (intel_crtc_active(crtc)) {
1534
		const struct drm_display_mode *adjusted_mode;
1535
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1536 1537 1538
		if (IS_GEN2(dev))
			cpp = 4;

1539
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1540
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1541
					       wm_info, fifo_size, cpp,
1542
					       pessimal_latency_ns);
1543
		enabled = crtc;
1544
	} else {
1545
		planea_wm = fifo_size - wm_info->guard_size;
1546 1547 1548 1549 1550 1551
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1552 1553 1554

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1555
	if (intel_crtc_active(crtc)) {
1556
		const struct drm_display_mode *adjusted_mode;
1557
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1558 1559 1560
		if (IS_GEN2(dev))
			cpp = 4;

1561
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1562
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1563
					       wm_info, fifo_size, cpp,
1564
					       pessimal_latency_ns);
1565 1566 1567 1568
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1569
	} else {
1570
		planeb_wm = fifo_size - wm_info->guard_size;
1571 1572 1573
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1574 1575 1576

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1577
	if (IS_I915GM(dev) && enabled) {
1578
		struct drm_i915_gem_object *obj;
1579

1580
		obj = intel_fb_obj(enabled->primary->state->fb);
1581 1582

		/* self-refresh seems busted with untiled */
1583
		if (obj->tiling_mode == I915_TILING_NONE)
1584 1585 1586
			enabled = NULL;
	}

1587 1588 1589 1590 1591 1592
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1593
	intel_set_memory_cxsr(dev_priv, false);
1594 1595 1596 1597 1598

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1599
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1600
		int clock = adjusted_mode->crtc_clock;
1601
		int htotal = adjusted_mode->crtc_htotal;
1602
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1603
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1604 1605 1606
		unsigned long line_time_us;
		int entries;

1607 1608 1609
		if (IS_I915GM(dev) || IS_I945GM(dev))
			cpp = 4;

1610
		line_time_us = max(htotal * 1000 / clock, 1);
1611 1612 1613

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1614
			cpp * hdisplay;
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1641 1642
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1643 1644
}

1645
static void i845_update_wm(struct drm_crtc *unused_crtc)
1646
{
1647
	struct drm_device *dev = unused_crtc->dev;
1648
	struct drm_i915_private *dev_priv = to_i915(dev);
1649
	struct drm_crtc *crtc;
1650
	const struct drm_display_mode *adjusted_mode;
1651 1652 1653 1654 1655 1656 1657
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1658
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1659
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1660
				       &i845_wm_info,
1661
				       dev_priv->display.get_fifo_size(dev, 0),
1662
				       4, pessimal_latency_ns);
1663 1664 1665 1666 1667 1668 1669 1670
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1671
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1672
{
1673
	uint32_t pixel_rate;
1674

1675
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1676 1677 1678 1679

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1680
	if (pipe_config->pch_pfit.enabled) {
1681
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1682 1683 1684 1685
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1686 1687 1688 1689 1690 1691 1692 1693

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1694 1695 1696
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1697 1698 1699 1700 1701 1702 1703
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1704
/* latency must be in 0.1us units. */
1705
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1706 1707 1708
{
	uint64_t ret;

1709 1710 1711
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1712
	ret = (uint64_t) pixel_rate * cpp * latency;
1713 1714 1715 1716 1717
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1718
/* latency must be in 0.1us units. */
1719
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1720
			       uint32_t horiz_pixels, uint8_t cpp,
1721 1722 1723 1724
			       uint32_t latency)
{
	uint32_t ret;

1725 1726
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1727 1728
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1729

1730
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1731
	ret = (ret + 1) * horiz_pixels * cpp;
1732 1733 1734 1735
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1736
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1737
			   uint8_t cpp)
1738
{
1739 1740 1741 1742 1743 1744
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1745
	if (WARN_ON(!cpp))
1746 1747 1748 1749
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1750
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1751 1752
}

1753
struct ilk_wm_maximums {
1754 1755 1756 1757 1758 1759
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1760 1761 1762 1763
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1764
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1765
				   const struct intel_plane_state *pstate,
1766 1767
				   uint32_t mem_value,
				   bool is_lp)
1768
{
1769 1770
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1771 1772
	uint32_t method1, method2;

1773
	if (!cstate->base.active || !pstate->visible)
1774 1775
		return 0;

1776
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1777 1778 1779 1780

	if (!is_lp)
		return method1;

1781 1782
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1783
				 drm_rect_width(&pstate->dst),
1784
				 cpp, mem_value);
1785 1786

	return min(method1, method2);
1787 1788
}

1789 1790 1791 1792
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1793
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1794
				   const struct intel_plane_state *pstate,
1795 1796
				   uint32_t mem_value)
{
1797 1798
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1799 1800
	uint32_t method1, method2;

1801
	if (!cstate->base.active || !pstate->visible)
1802 1803
		return 0;

1804
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1805 1806
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1807
				 drm_rect_width(&pstate->dst),
1808
				 cpp, mem_value);
1809 1810 1811
	return min(method1, method2);
}

1812 1813 1814 1815
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1816
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1817
				   const struct intel_plane_state *pstate,
1818 1819
				   uint32_t mem_value)
{
1820 1821 1822 1823 1824 1825 1826
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
	int width = pstate->visible ? pstate->base.crtc_w : 64;
1827

1828
	if (!cstate->base.active)
1829 1830
		return 0;

1831 1832
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1833
			      width, cpp, mem_value);
1834 1835
}

1836
/* Only for WM_LP. */
1837
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1838
				   const struct intel_plane_state *pstate,
1839
				   uint32_t pri_val)
1840
{
1841 1842
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1843

1844
	if (!cstate->base.active || !pstate->visible)
1845 1846
		return 0;

1847
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1848 1849
}

1850 1851
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1852 1853 1854
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1855 1856 1857 1858 1859
		return 768;
	else
		return 512;
}

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1894 1895 1896
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1897
				     const struct intel_wm_config *config,
1898 1899 1900 1901 1902 1903
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1904
	if (is_sprite && !config->sprites_enabled)
1905 1906 1907
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1908
	if (level == 0 || config->num_pipes_active > 1) {
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1920
	if (config->sprites_enabled) {
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1932
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1933 1934 1935 1936
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1937 1938
				      int level,
				      const struct intel_wm_config *config)
1939 1940
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1941
	if (level > 0 && config->num_pipes_active > 1)
1942 1943 1944
		return 64;

	/* otherwise just report max that registers can hold */
1945
	return ilk_cursor_wm_reg_max(dev, level);
1946 1947
}

1948
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1949 1950 1951
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1952
				    struct ilk_wm_maximums *max)
1953
{
1954 1955 1956
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1957
	max->fbc = ilk_fbc_wm_reg_max(dev);
1958 1959
}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1970
static bool ilk_validate_wm_level(int level,
1971
				  const struct ilk_wm_maximums *max,
1972
				  struct intel_wm_level *result)
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2011
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2012
				 const struct intel_crtc *intel_crtc,
2013
				 int level,
2014
				 struct intel_crtc_state *cstate,
2015 2016 2017
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2018
				 struct intel_wm_level *result)
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2043 2044 2045
	result->enable = true;
}

2046
static uint32_t
2047
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2048
{
2049 2050
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2051 2052
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2053
	u32 linetime, ips_linetime;
2054

2055 2056 2057 2058
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2059
	if (WARN_ON(intel_state->cdclk == 0))
2060
		return 0;
2061

2062 2063 2064
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2065 2066 2067
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2068
					 intel_state->cdclk);
2069

2070 2071
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2072 2073
}

2074
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2075
{
2076
	struct drm_i915_private *dev_priv = to_i915(dev);
2077

2078 2079
	if (IS_GEN9(dev)) {
		uint32_t val;
2080
		int ret, i;
2081
		int level, max_level = ilk_wm_max_level(dev);
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2124
		/*
2125 2126
		 * WaWmMemoryReadLatency:skl
		 *
2127 2128 2129 2130 2131 2132 2133 2134
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2135 2136 2137 2138 2139
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2140 2141 2142 2143 2144
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2145 2146 2147
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2148

2149 2150
				break;
			}
2151
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2152 2153 2154 2155 2156
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2157 2158 2159 2160
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2161 2162 2163 2164 2165 2166 2167
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2168 2169 2170 2171 2172 2173 2174
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2175 2176 2177
	}
}

2178 2179 2180
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
2181
	if (IS_GEN5(dev))
2182 2183 2184 2185 2186 2187
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
2188
	if (IS_GEN5(dev))
2189 2190 2191 2192 2193 2194 2195
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2196
int ilk_wm_max_level(const struct drm_device *dev)
2197 2198
{
	/* how many WM levels are we expecting */
2199
	if (INTEL_INFO(dev)->gen >= 9)
2200 2201
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2202
		return 4;
2203
	else if (INTEL_INFO(dev)->gen >= 6)
2204
		return 3;
2205
	else
2206 2207
		return 2;
}
2208

2209 2210
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2211
				   const uint16_t wm[8])
2212 2213
{
	int level, max_level = ilk_wm_max_level(dev);
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2224 2225 2226 2227 2228 2229 2230
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2231 2232 2233 2234 2235 2236 2237 2238
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2239 2240 2241
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2242
	int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
2256
	struct drm_i915_private *dev_priv = to_i915(dev);
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2276
static void ilk_setup_wm_latency(struct drm_device *dev)
2277
{
2278
	struct drm_i915_private *dev_priv = to_i915(dev);
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2289 2290 2291 2292

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2293 2294 2295

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2296 2297
}

2298 2299
static void skl_setup_wm_latency(struct drm_device *dev)
{
2300
	struct drm_i915_private *dev_priv = to_i915(dev);
2301 2302 2303 2304 2305

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2329
/* Compute new watermarks for the pipe */
2330
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2331
{
2332 2333
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2334
	struct intel_pipe_wm *pipe_wm;
2335
	struct drm_device *dev = state->dev;
2336
	const struct drm_i915_private *dev_priv = to_i915(dev);
2337
	struct intel_plane *intel_plane;
2338
	struct intel_plane_state *pristate = NULL;
2339
	struct intel_plane_state *sprstate = NULL;
2340
	struct intel_plane_state *curstate = NULL;
2341
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2342
	struct ilk_wm_maximums max;
2343

2344
	pipe_wm = &cstate->wm.ilk.optimal;
2345

2346
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2347 2348 2349 2350 2351 2352
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2353 2354

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2355
			pristate = ps;
2356
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2357
			sprstate = ps;
2358
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2359
			curstate = ps;
2360 2361
	}

2362
	pipe_wm->pipe_enabled = cstate->base.active;
2363 2364 2365 2366 2367 2368 2369
	if (sprstate) {
		pipe_wm->sprites_enabled = sprstate->visible;
		pipe_wm->sprites_scaled = sprstate->visible &&
			(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
			 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
	}

2370 2371
	usable_level = max_level;

2372
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2373
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2374
		usable_level = 1;
2375 2376

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2377
	if (pipe_wm->sprites_scaled)
2378
		usable_level = 0;
2379

2380
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2381 2382 2383 2384
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2385

2386
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2387
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2388

2389
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2390
		return -EINVAL;
2391 2392 2393 2394

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2395
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2396

2397
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2398
				     pristate, sprstate, curstate, wm);
2399 2400 2401 2402 2403 2404

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2405 2406 2407 2408 2409 2410
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2411
			usable_level = level;
2412 2413
	}

2414
	return 0;
2415 2416
}

2417 2418 2419 2420 2421 2422 2423 2424 2425
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2426
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2427 2428 2429 2430 2431 2432 2433 2434
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2435
	*a = newstate->wm.ilk.optimal;
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2464
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2465 2466 2467 2468 2469
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2470 2471 2472 2473 2474 2475 2476 2477 2478
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2479 2480
	ret_wm->enable = true;

2481
	for_each_intel_crtc(dev, intel_crtc) {
2482
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2483 2484 2485 2486
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2487

2488 2489 2490 2491 2492
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2493
		if (!wm->enable)
2494
			ret_wm->enable = false;
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2507
			 const struct intel_wm_config *config,
2508
			 const struct ilk_wm_maximums *max,
2509 2510
			 struct intel_pipe_wm *merged)
{
2511
	struct drm_i915_private *dev_priv = to_i915(dev);
2512
	int level, max_level = ilk_wm_max_level(dev);
2513
	int last_enabled_level = max_level;
2514

2515 2516 2517
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
2518
		last_enabled_level = 0;
2519

2520 2521
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2522 2523 2524 2525 2526 2527 2528

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2529 2530 2531 2532 2533
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2534 2535 2536 2537 2538 2539

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2540 2541
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2542 2543 2544
			wm->fbc_val = 0;
		}
	}
2545 2546 2547 2548 2549 2550 2551

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2552
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2553
	    intel_fbc_is_active(dev_priv)) {
2554 2555 2556 2557 2558 2559
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2560 2561
}

2562 2563 2564 2565 2566 2567
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2568 2569 2570
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2571
	struct drm_i915_private *dev_priv = to_i915(dev);
2572

2573
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2574 2575 2576 2577 2578
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2579
static void ilk_compute_wm_results(struct drm_device *dev,
2580
				   const struct intel_pipe_wm *merged,
2581
				   enum intel_ddb_partitioning partitioning,
2582
				   struct ilk_wm_values *results)
2583
{
2584 2585
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2586

2587
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2588
	results->partitioning = partitioning;
2589

2590
	/* LP1+ register values */
2591
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2592
		const struct intel_wm_level *r;
2593

2594
		level = ilk_wm_lp_to_level(wm_lp, merged);
2595

2596
		r = &merged->wm[level];
2597

2598 2599 2600 2601 2602
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2603
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2604 2605 2606
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2607 2608 2609
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2610 2611 2612 2613 2614 2615 2616
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2617 2618 2619 2620
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2621 2622 2623 2624 2625
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2626
	}
2627

2628
	/* LP0 register values */
2629
	for_each_intel_crtc(dev, intel_crtc) {
2630
		enum pipe pipe = intel_crtc->pipe;
2631 2632
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2633 2634 2635 2636

		if (WARN_ON(!r->enable))
			continue;

2637
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2638

2639 2640 2641 2642
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2643 2644 2645
	}
}

2646 2647
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2648
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2649 2650
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2651
{
2652 2653
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2654

2655 2656 2657 2658 2659
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2660 2661
	}

2662 2663
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2664 2665 2666
			return r2;
		else
			return r1;
2667
	} else if (level1 > level2) {
2668 2669 2670 2671 2672 2673
		return r1;
	} else {
		return r2;
	}
}

2674 2675 2676 2677 2678 2679 2680 2681
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2682
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2683 2684
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2685 2686 2687 2688 2689
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2690
	for_each_pipe(dev_priv, pipe) {
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2734 2735
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2736
{
2737
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2738
	bool changed = false;
2739

2740 2741 2742
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2743
		changed = true;
2744 2745 2746 2747
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2748
		changed = true;
2749 2750 2751 2752
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2753
		changed = true;
2754
	}
2755

2756 2757 2758 2759
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2760

2761 2762 2763 2764 2765 2766 2767
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2768 2769
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2770
{
2771
	struct drm_device *dev = &dev_priv->drm;
2772
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2773 2774 2775
	unsigned int dirty;
	uint32_t val;

2776
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2777 2778 2779 2780 2781
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2782
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2783
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2784
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2785
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2786
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2787 2788
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2789
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2790
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2791
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2792
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2793
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2794 2795
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2796
	if (dirty & WM_DIRTY_DDB) {
2797
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2812 2813
	}

2814
	if (dirty & WM_DIRTY_FBC) {
2815 2816 2817 2818 2819 2820 2821 2822
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2823 2824 2825 2826 2827
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2828 2829 2830 2831 2832
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2833

2834
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2835
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2836
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2837
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2838
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2839
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2840 2841

	dev_priv->wm.hw = *results;
2842 2843
}

2844
bool ilk_disable_lp_wm(struct drm_device *dev)
2845
{
2846
	struct drm_i915_private *dev_priv = to_i915(dev);
2847 2848 2849 2850

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2851 2852 2853 2854 2855 2856
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2857
#define BXT_DDB_SIZE		512
2858

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2881 2882
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2883
				   const struct intel_crtc_state *cstate,
2884 2885
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
2886
{
2887 2888 2889
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
2890
	struct drm_crtc *for_crtc = cstate->base.crtc;
2891 2892
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
2893 2894
	int pipe = to_intel_crtc(for_crtc)->pipe;

2895
	if (WARN_ON(!state) || !cstate->base.active) {
2896 2897
		alloc->start = 0;
		alloc->end = 0;
2898
		*num_active = hweight32(dev_priv->active_crtcs);
2899 2900 2901
		return;
	}

2902 2903 2904 2905 2906
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

2907 2908 2909 2910
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2911 2912 2913

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

2914
	/*
2915 2916 2917 2918 2919 2920
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
2921
	 */
2922 2923 2924
	if (!intel_state->active_pipe_changes) {
		*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
		return;
2925
	}
2926 2927 2928 2929 2930 2931

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
2932 2933
}

2934
static unsigned int skl_cursor_allocation(int num_active)
2935
{
2936
	if (num_active == 1)
2937 2938 2939 2940 2941
		return 32;

	return 8;
}

2942 2943 2944 2945
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2946 2947
	if (entry->end)
		entry->end += 1;
2948 2949
}

2950 2951
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2952 2953 2954 2955 2956
{
	enum pipe pipe;
	int plane;
	u32 val;

2957 2958
	memset(ddb, 0, sizeof(*ddb));

2959
	for_each_pipe(dev_priv, pipe) {
2960 2961 2962 2963
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2964 2965
			continue;

2966
		for_each_plane(dev_priv, pipe, plane) {
2967 2968 2969 2970 2971 2972
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2973 2974
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2975 2976

		intel_display_power_put(dev_priv, power_domain);
2977 2978 2979
	}
}

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

	if (WARN_ON(!pstate->visible))
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
	src_w = drm_rect_width(&pstate->src);
	src_h = drm_rect_height(&pstate->src);
	dst_w = drm_rect_width(&pstate->dst);
	dst_h = drm_rect_height(&pstate->dst);
	if (intel_rotation_90_or_270(pstate->base.rotation))
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3020
static unsigned int
3021 3022 3023
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3024
{
3025
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3026
	struct drm_framebuffer *fb = pstate->fb;
3027
	uint32_t down_scale_amount, data_rate;
3028
	uint32_t width = 0, height = 0;
3029 3030 3031 3032 3033 3034 3035 3036
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

	if (!intel_pstate->visible)
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3037 3038 3039 3040 3041 3042

	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
3043 3044

	/* for planar format */
3045
	if (format == DRM_FORMAT_NV12) {
3046
		if (y)  /* y-plane data rate */
3047
			data_rate = width * height *
3048
				drm_format_plane_cpp(format, 0);
3049
		else    /* uv-plane data rate */
3050
			data_rate = (width / 2) * (height / 2) *
3051
				drm_format_plane_cpp(format, 1);
3052 3053 3054
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3055 3056
	}

3057 3058 3059
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3060 3061 3062 3063 3064 3065 3066 3067
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3068
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3069
{
3070 3071 3072 3073 3074
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3075
	const struct drm_plane *plane;
3076
	const struct intel_plane *intel_plane;
3077
	struct drm_plane_state *pstate;
3078
	unsigned int rate, total_data_rate = 0;
3079
	int id;
3080 3081 3082 3083
	int i;

	if (WARN_ON(!state))
		return 0;
3084

3085
	/* Calculate and cache data rate for each plane */
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
	for_each_plane_in_state(state, plane, pstate, i) {
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe != intel_crtc->pipe)
			continue;

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3102
	}
3103

3104 3105 3106
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3107

3108
		/* packed/uv */
3109 3110
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3111 3112
	}

3113 3114
	WARN_ON(cstate->plane_mask && total_data_rate == 0);

3115 3116 3117
	return total_data_rate;
}

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

	src_w = drm_rect_width(&intel_pstate->src) >> 16;
	src_h = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

	if (intel_rotation_90_or_270(pstate->rotation)) {
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3181
static int
3182
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3183 3184
		      struct skl_ddb_allocation *ddb /* out */)
{
3185
	struct drm_atomic_state *state = cstate->base.state;
3186
	struct drm_crtc *crtc = cstate->base.crtc;
3187 3188
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3189
	struct intel_plane *intel_plane;
3190 3191
	struct drm_plane *plane;
	struct drm_plane_state *pstate;
3192
	enum pipe pipe = intel_crtc->pipe;
3193
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3194
	uint16_t alloc_size, start, cursor_blocks;
3195 3196
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3197
	unsigned int total_data_rate;
3198 3199
	int num_active;
	int id, i;
3200

3201 3202 3203
	if (WARN_ON(!state))
		return 0;

3204 3205 3206 3207 3208 3209 3210
	if (!cstate->base.active) {
		ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
		return 0;
	}

3211
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3212
	alloc_size = skl_ddb_entry_size(alloc);
3213 3214
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3215
		return 0;
3216 3217
	}

3218
	cursor_blocks = skl_cursor_allocation(num_active);
3219 3220
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3221 3222 3223

	alloc_size -= cursor_blocks;

3224
	/* 1. Allocate the mininum required blocks for each active plane */
3225 3226 3227
	for_each_plane_in_state(state, plane, pstate, i) {
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3228

3229 3230
		if (intel_plane->pipe != pipe)
			continue;
3231

3232 3233 3234 3235 3236 3237 3238 3239 3240
		if (!to_intel_plane_state(pstate)->visible) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3241
		}
3242

3243 3244
		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3245
	}
3246

3247 3248 3249
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3250 3251
	}

3252
	/*
3253 3254
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3255 3256 3257
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3258
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3259
	if (total_data_rate == 0)
3260
		return 0;
3261

3262
	start = alloc->start;
3263
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3264 3265
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3266
		int id = skl_wm_plane_id(intel_plane);
3267

3268
		data_rate = cstate->wm.skl.plane_data_rate[id];
3269 3270

		/*
3271
		 * allocation for (packed formats) or (uv-plane part of planar format):
3272 3273 3274
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3275
		plane_blocks = minimum[id];
3276 3277
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3278

3279 3280 3281 3282 3283
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3284 3285

		start += plane_blocks;
3286 3287 3288 3289

		/*
		 * allocation for y_plane part of planar format:
		 */
3290 3291 3292 3293 3294
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3295

3296 3297 3298 3299
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3300 3301

		start += y_plane_blocks;
3302 3303
	}

3304
	return 0;
3305 3306
}

3307
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3308 3309
{
	/* TODO: Take into account the scalers once we support them */
3310
	return config->base.adjusted_mode.crtc_clock;
3311 3312 3313 3314
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3315
 * for the read latency) and cpp should always be <= 8, so that
3316 3317 3318
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3319
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3320 3321 3322 3323 3324 3325
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3326
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3327 3328 3329 3330 3331 3332
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3333
			       uint32_t horiz_pixels, uint8_t cpp,
3334
			       uint64_t tiling, uint32_t latency)
3335
{
3336 3337 3338
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3339 3340 3341 3342

	if (latency == 0)
		return UINT_MAX;

3343
	plane_bytes_per_line = horiz_pixels * cpp;
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3354 3355
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3356
				plane_blocks_per_line;
3357 3358 3359 3360

	return ret;
}

3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
	if (WARN_ON(!pstate->visible))
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
	adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3385 3386 3387 3388 3389 3390 3391 3392
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3393
{
3394 3395
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3396 3397 3398 3399 3400
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3401
	uint8_t cpp;
3402
	uint32_t width = 0, height = 0;
3403
	uint32_t plane_pixel_rate;
3404

3405 3406 3407 3408
	if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
		*enabled = false;
		return 0;
	}
3409

3410 3411 3412
	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

3413
	if (intel_rotation_90_or_270(pstate->rotation))
3414 3415
		swap(width, height);

3416
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3417 3418 3419 3420
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3421
				 cstate->base.adjusted_mode.crtc_htotal,
3422 3423 3424
				 width,
				 cpp,
				 fb->modifier[0],
3425
				 latency);
3426

3427
	plane_bytes_per_line = width * cpp;
3428
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3429

3430 3431
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3432 3433
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3434
		if (intel_rotation_90_or_270(pstate->rotation)) {
3435
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3436 3437 3438
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3439
			switch (cpp) {
3440 3441 3442 3443 3444 3445 3446 3447
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3448
			}
3449 3450
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3451 3452 3453 3454 3455 3456 3457
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3458

3459 3460
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3461

3462
	if (level >= 1 && level <= 7) {
3463 3464
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3465 3466 3467 3468
			res_lines += 4;
		else
			res_blocks++;
	}
3469

3470 3471
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3488
	}
3489 3490 3491

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3492
	*enabled = true;
3493

3494
	return 0;
3495 3496
}

3497 3498 3499 3500 3501 3502
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
		     int level,
		     struct skl_wm_level *result)
3503
{
3504
	struct drm_atomic_state *state = cstate->base.state;
3505
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3506
	struct drm_plane *plane;
3507
	struct intel_plane *intel_plane;
3508
	struct intel_plane_state *intel_pstate;
3509
	uint16_t ddb_blocks;
3510
	enum pipe pipe = intel_crtc->pipe;
3511
	int ret;
3512

3513 3514 3515 3516 3517 3518
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(result, 0, sizeof(*result));

3519 3520 3521
	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3522
		int i = skl_wm_plane_id(intel_plane);
3523

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
		plane = &intel_plane->base;
		intel_pstate = NULL;
		if (state)
			intel_pstate =
				intel_atomic_get_existing_plane_state(state,
								      intel_plane);

		/*
		 * Note: If we start supporting multiple pending atomic commits
		 * against the same planes/CRTC's in the future, plane->state
		 * will no longer be the correct pre-state to use for the
		 * calculations here and we'll need to change where we get the
		 * 'unchanged' plane data from.
		 *
		 * For now this is fine because we only allow one queued commit
		 * against a CRTC.  Even if the plane isn't modified by this
		 * transaction and we don't have a plane lock, we still have
		 * the CRTC's lock, so we know that no other transactions are
		 * racing with us to update it.
		 */
		if (!intel_pstate)
			intel_pstate = to_intel_plane_state(plane->state);

		WARN_ON(!intel_pstate->base.fb);

3549 3550
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
					   ddb_blocks,
					   level,
					   &result->plane_res_b[i],
					   &result->plane_res_l[i],
					   &result->plane_en[i]);
		if (ret)
			return ret;
3561
	}
3562 3563

	return 0;
3564 3565
}

3566
static uint32_t
3567
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3568
{
3569
	if (!cstate->base.active)
3570 3571
		return 0;

3572
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3573
		return 0;
3574

3575 3576
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3577 3578
}

3579
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3580
				      struct skl_wm_level *trans_wm /* out */)
3581
{
3582
	struct drm_crtc *crtc = cstate->base.crtc;
3583
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3584
	struct intel_plane *intel_plane;
3585

3586
	if (!cstate->base.active)
3587
		return;
3588 3589

	/* Until we know more, just disable transition WMs */
3590 3591 3592
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3593
		trans_wm->plane_en[i] = false;
3594
	}
3595 3596
}

3597 3598 3599
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3600
{
3601
	struct drm_device *dev = cstate->base.crtc->dev;
3602
	const struct drm_i915_private *dev_priv = to_i915(dev);
3603
	int level, max_level = ilk_wm_max_level(dev);
3604
	int ret;
3605 3606

	for (level = 0; level <= max_level; level++) {
3607 3608 3609 3610
		ret = skl_compute_wm_level(dev_priv, ddb, cstate,
					   level, &pipe_wm->wm[level]);
		if (ret)
			return ret;
3611
	}
3612
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3613

3614
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3615 3616

	return 0;
3617 3618 3619 3620 3621 3622 3623 3624 3625
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3626 3627
	uint32_t temp;
	int i;
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3644 3645
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3646

3647
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3648 3649
			temp |= PLANE_WM_EN;

3650
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3651 3652 3653

	}

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3666 3667 3668
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3669 3670
		temp |= PLANE_WM_EN;

3671
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3672

3673 3674 3675
	r->wm_linetime[pipe] = p_wm->linetime;
}

3676 3677
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3678 3679 3680 3681 3682 3683 3684 3685
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3686 3687 3688
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
3689
	struct drm_device *dev = &dev_priv->drm;
3690 3691
	struct intel_crtc *crtc;

3692
	for_each_intel_crtc(dev, crtc) {
3693 3694 3695
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3696
		if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3697
			continue;
3698 3699
		if (!crtc->active)
			continue;
3700

3701
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3702

3703 3704 3705 3706 3707
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3708
				   new->plane[pipe][PLANE_CURSOR][level]);
3709
		}
3710 3711 3712
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3713 3714
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3715

3716
		for (i = 0; i < intel_num_planes(crtc); i++) {
3717 3718 3719
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3720 3721 3722 3723
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3724 3725

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3726
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3727 3728 3729
	}
}

3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3754 3755
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3756 3757 3758
{
	int plane;

3759 3760
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3761
	for_each_plane(dev_priv, pipe, plane) {
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
3786
	struct drm_device *dev = &dev_priv->drm;
3787
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3788
	bool reallocated[I915_MAX_PIPES] = {};
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3811
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3836
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3837
			intel_wait_for_vblank(dev, pipe);
3838
			reallocated[pipe] = true;
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3861
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3862 3863 3864
	}
}

3865 3866 3867 3868
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3869
{
3870 3871
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3872
	int ret;
3873

3874 3875 3876
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3877

3878
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3879 3880 3881
		*changed = false;
	else
		*changed = true;
3882

3883
	return 0;
3884 3885
}

3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3899 3900 3901 3902 3903 3904 3905
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3906
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3907
	uint32_t realloc_pipes = pipes_modified(state);
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm)
		intel_state->active_pipe_changes = ~0;

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
3932
	if (intel_state->active_pipe_changes) {
3933
		realloc_pipes = ~0;
3934 3935
		intel_state->wm_results.dirty_pipes = ~0;
	}
3936 3937 3938 3939 3940 3941 3942 3943

	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

3944
		ret = skl_allocate_pipe_ddb(cstate, ddb);
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
		if (ret)
			return ret;
	}

	return 0;
}

static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
3957 3958 3959
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
3960
	bool changed = false;
3961
	int ret, i;
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

3976 3977 3978
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

3979 3980 3981 3982
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
	}

4015 4016 4017
	return 0;
}

4018 4019 4020 4021
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
4022
	struct drm_i915_private *dev_priv = to_i915(dev);
4023
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4024
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4025
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4026

4027
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4028 4029
		return;

4030 4031 4032
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
4033 4034

	skl_write_wm_values(dev_priv, results);
4035
	skl_flush_wm_values(dev_priv, results);
4036 4037 4038

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
4039 4040

	mutex_unlock(&dev_priv->wm.wm_mutex);
4041 4042
}

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4061
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4062
{
4063
	struct drm_device *dev = &dev_priv->drm;
4064
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4065
	struct ilk_wm_maximums max;
4066
	struct intel_wm_config config = {};
4067
	struct ilk_wm_values results = {};
4068
	enum intel_ddb_partitioning partitioning;
4069

4070 4071 4072 4073
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4074 4075

	/* 5/6 split only in single pipe config on IVB+ */
4076
	if (INTEL_INFO(dev)->gen >= 7 &&
4077 4078 4079
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4080

4081
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4082
	} else {
4083
		best_lp_wm = &lp_wm_1_2;
4084 4085
	}

4086
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4087
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4088

4089
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4090

4091
	ilk_write_wm_values(dev_priv, &results);
4092 4093
}

4094
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4095
{
4096 4097
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4098

4099
	mutex_lock(&dev_priv->wm.wm_mutex);
4100
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4101 4102 4103
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4104

4105 4106 4107 4108
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4109

4110 4111
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4112
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4113 4114 4115
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4116 4117
}

4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4136 4137
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
4138
					val & PLANE_WM_BLOCKS_MASK;
4139
			active->wm[level].plane_res_l[PLANE_CURSOR] =
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4152 4153
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
4154
					val & PLANE_WM_BLOCKS_MASK;
4155
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
4156 4157 4158 4159 4160 4161 4162 4163 4164
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4165
	struct drm_i915_private *dev_priv = to_i915(dev);
4166 4167
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4168
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4169
	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
4182
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4183 4184 4185 4186
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4187
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4188

4189
	if (!intel_crtc->active)
4190 4191
		return;

4192
	hw->dirty_pipes |= drm_crtc_mask(crtc);
4193 4194 4195 4196 4197 4198 4199 4200 4201

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
4202
		temp = hw->plane[pipe][PLANE_CURSOR][level];
4203 4204 4205 4206 4207 4208 4209 4210
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

4211
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4212
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4213 4214

	intel_crtc->wm.active.skl = *active;
4215 4216 4217 4218
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4219
	struct drm_i915_private *dev_priv = to_i915(dev);
4220
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4221 4222
	struct drm_crtc *crtc;

4223
	skl_ddb_get_hw_state(dev_priv, ddb);
4224 4225
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
4226

4227 4228 4229 4230 4231 4232 4233
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4234 4235
}

4236 4237 4238
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4239
	struct drm_i915_private *dev_priv = to_i915(dev);
4240
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4241
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4242
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4243
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4244
	enum pipe pipe = intel_crtc->pipe;
4245
	static const i915_reg_t wm0_pipe_reg[] = {
4246 4247 4248 4249 4250 4251
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4252
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4253
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4254

4255 4256
	memset(active, 0, sizeof(*active));

4257
	active->pipe_enabled = intel_crtc->active;
4258 4259

	if (active->pipe_enabled) {
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4284 4285

	intel_crtc->wm.active.ilk = *active;
4286 4287
}

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4405 4406 4407 4408 4409 4410 4411 4412 4413
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4414
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4441 4442
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4443
	struct drm_i915_private *dev_priv = to_i915(dev);
4444
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4445 4446
	struct drm_crtc *crtc;

4447
	for_each_crtc(dev, crtc)
4448 4449 4450 4451 4452 4453 4454
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4455 4456 4457 4458
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4459

4460
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4461 4462 4463 4464 4465
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4466 4467 4468 4469 4470

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4503
void intel_update_watermarks(struct drm_crtc *crtc)
4504
{
4505
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4506 4507

	if (dev_priv->display.update_wm)
4508
		dev_priv->display.update_wm(crtc);
4509 4510
}

4511
/*
4512 4513 4514 4515 4516 4517 4518 4519
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4520
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4521 4522 4523
{
	u16 rgvswctl;

4524 4525
	assert_spin_locked(&mchdev_lock);

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4543
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4544
{
4545
	u32 rgvmodectl;
4546 4547
	u8 fmax, fmin, fstart, vstart;

4548 4549
	spin_lock_irq(&mchdev_lock);

4550 4551
	rgvmodectl = I915_READ(MEMMODECTL);

4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4572
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4573 4574
		PXVFREQ_PX_SHIFT;

4575 4576
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4577

4578 4579 4580
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4597
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4598
		DRM_ERROR("stuck trying to change perf mode\n");
4599
	mdelay(1);
4600

4601
	ironlake_set_drps(dev_priv, fstart);
4602

4603 4604
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4605
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4606
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4607
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4608 4609

	spin_unlock_irq(&mchdev_lock);
4610 4611
}

4612
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4613
{
4614 4615 4616 4617 4618
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4619 4620 4621 4622 4623 4624 4625 4626 4627

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4628
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4629
	mdelay(1);
4630 4631
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4632
	mdelay(1);
4633

4634
	spin_unlock_irq(&mchdev_lock);
4635 4636
}

4637 4638 4639 4640 4641
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4642
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4643
{
4644
	u32 limits;
4645

4646 4647 4648 4649 4650 4651
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4652
	if (IS_GEN9(dev_priv)) {
4653 4654 4655 4656 4657 4658 4659 4660
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4661 4662 4663 4664

	return limits;
}

4665 4666 4667
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4668 4669
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4670 4671 4672 4673

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4674 4675
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4676 4677 4678 4679
			new_power = BETWEEN;
		break;

	case BETWEEN:
4680 4681
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4682
			new_power = LOW_POWER;
4683 4684
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4685 4686 4687 4688
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4689 4690
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4691 4692 4693 4694
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4695
	if (val <= dev_priv->rps.min_freq_softlimit)
4696
		new_power = LOW_POWER;
4697
	if (val >= dev_priv->rps.max_freq_softlimit)
4698 4699 4700 4701 4702 4703 4704 4705
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4706 4707
		ei_up = 16000;
		threshold_up = 95;
4708 4709

		/* Downclock if less than 85% busy over 32ms */
4710 4711
		ei_down = 32000;
		threshold_down = 85;
4712 4713 4714 4715
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4716 4717
		ei_up = 13000;
		threshold_up = 90;
4718 4719

		/* Downclock if less than 75% busy over 32ms */
4720 4721
		ei_down = 32000;
		threshold_down = 75;
4722 4723 4724 4725
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4726 4727
		ei_up = 10000;
		threshold_up = 85;
4728 4729

		/* Downclock if less than 60% busy over 32ms */
4730 4731
		ei_down = 32000;
		threshold_down = 60;
4732 4733 4734
		break;
	}

4735
	I915_WRITE(GEN6_RP_UP_EI,
4736
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4737
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4738 4739
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4740 4741

	I915_WRITE(GEN6_RP_DOWN_EI,
4742
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4743
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4754

4755
	dev_priv->rps.power = new_power;
4756 4757
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4758 4759 4760
	dev_priv->rps.last_adj = 0;
}

4761 4762 4763 4764 4765
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4766
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4767
	if (val < dev_priv->rps.max_freq_softlimit)
4768
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4769

4770 4771
	mask &= dev_priv->pm_rps_events;

4772
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4773 4774
}

4775 4776 4777
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4778
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4779
{
4780
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4781
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4782 4783
		return;

4784
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4785 4786
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4787

C
Chris Wilson 已提交
4788 4789 4790 4791 4792
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4793

4794
		if (IS_GEN9(dev_priv))
4795 4796
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4797
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4798 4799 4800 4801 4802 4803 4804
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4805
	}
4806 4807 4808 4809

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4810
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4811
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4812

4813 4814
	POSTING_READ(GEN6_RPNSWREQ);

4815
	dev_priv->rps.cur_freq = val;
4816
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4817 4818
}

4819
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4820 4821
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4822 4823
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4824

4825
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4826 4827 4828
		      "Odd GPU freq value\n"))
		val &= ~1;

4829 4830
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4831
	if (val != dev_priv->rps.cur_freq) {
4832
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4833 4834 4835
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4836 4837 4838 4839 4840

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4841
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4842 4843
 *
 * * If Gfx is Idle, then
4844 4845 4846
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4847 4848 4849
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4850
	u32 val = dev_priv->rps.idle_freq;
4851

4852
	if (dev_priv->rps.cur_freq <= val)
4853 4854
		return;

4855 4856 4857
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4858
	valleyview_set_rps(dev_priv, val);
4859
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4860 4861
}

4862 4863 4864 4865 4866 4867 4868 4869
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4870

4871 4872
		gen6_enable_rps_interrupts(dev_priv);

4873 4874 4875 4876 4877
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
4878 4879 4880 4881
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4882 4883
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4884 4885 4886 4887 4888 4889 4890
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

4891
	mutex_lock(&dev_priv->rps.hw_lock);
4892
	if (dev_priv->rps.enabled) {
4893
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4894
			vlv_set_rps_idle(dev_priv);
4895
		else
4896
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4897
		dev_priv->rps.last_adj = 0;
4898 4899
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4900
	}
4901
	mutex_unlock(&dev_priv->rps.hw_lock);
4902

4903
	spin_lock(&dev_priv->rps.client_lock);
4904 4905
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4906
	spin_unlock(&dev_priv->rps.client_lock);
4907 4908
}

4909
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4910 4911
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4912
{
4913 4914 4915
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
4916
	if (!(dev_priv->gt.awake &&
4917
	      dev_priv->rps.enabled &&
4918
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
4919
		return;
4920

4921 4922 4923
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4924
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4925 4926
		rps = NULL;

4927 4928 4929 4930 4931
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
4932
			schedule_work(&dev_priv->rps.work);
4933 4934
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4935

4936 4937 4938
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4939 4940
		} else
			dev_priv->rps.boosts++;
4941
	}
4942
	spin_unlock(&dev_priv->rps.client_lock);
4943 4944
}

4945
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4946
{
4947 4948
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
4949
	else
4950
		gen6_set_rps(dev_priv, val);
4951 4952
}

4953
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
4954 4955
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4956
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4957 4958
}

4959
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4960 4961 4962 4963
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

4964
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4965 4966
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4967
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4968
	I915_WRITE(GEN6_RP_CONTROL, 0);
4969 4970
}

4971
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4972 4973 4974 4975
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4976
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4977
{
4978 4979
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4980
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4981

4982
	I915_WRITE(GEN6_RC_CONTROL, 0);
4983

4984
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4985 4986
}

4987
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
4988
{
4989
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4990 4991 4992 4993 4994
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4995
	if (HAS_RC6p(dev_priv))
4996 4997 4998 4999 5000
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5001 5002

	else
5003 5004
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5005 5006
}

5007
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5008
{
5009
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5010 5011
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5023 5024

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5025
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5026 5027 5028 5029 5030 5031 5032 5033
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5034 5035 5036
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5037
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5038 5039 5040 5041 5042 5043 5044
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5045
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5046 5047 5048
		enable_rc6 = false;
	}

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5063 5064 5065 5066 5067 5068
		enable_rc6 = false;
	}

	return enable_rc6;
}

5069
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5070
{
5071
	/* No RC6 before Ironlake and code is gone for ilk. */
5072
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5073 5074
		return 0;

5075 5076 5077
	if (!enable_rc6)
		return 0;

5078
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5079 5080 5081 5082
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5083
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5084 5085 5086
	if (enable_rc6 >= 0) {
		int mask;

5087
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5088 5089 5090 5091 5092 5093
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5094 5095 5096
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5097 5098 5099

		return enable_rc6 & mask;
	}
5100

5101
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5102
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5103 5104

	return INTEL_RC6_ENABLE;
5105 5106
}

5107
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5108 5109
{
	/* All of these values are in units of 50MHz */
5110

5111
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5112
	if (IS_BROXTON(dev_priv)) {
5113
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5114 5115 5116 5117
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5118
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5119 5120 5121 5122
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5123
	/* hw_max = RP0 until we check for overclocking */
5124
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5125

5126
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5127 5128
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5129 5130 5131 5132 5133
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5134
			dev_priv->rps.efficient_freq =
5135 5136 5137 5138
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5139 5140
	}

5141
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5142
		/* Store the frequency values in 16.66 MHZ units, which is
5143 5144
		 * the natural hardware unit for SKL
		 */
5145 5146 5147 5148 5149 5150
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5151 5152
}

5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5165
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5166
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5167 5168 5169
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5170
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5171
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5172 5173 5174 5175 5176 5177 5178 5179 5180
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5181
		gen9_disable_rps(dev_priv);
5182 5183 5184 5185
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5186 5187 5188 5189 5190 5191 5192 5193
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5194 5195
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5196 5197 5198
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5199
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5200 5201 5202 5203

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5204
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5205
{
5206
	struct intel_engine_cs *engine;
Z
Zhe Wang 已提交
5207 5208 5209 5210 5211 5212 5213
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5214
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5215 5216 5217 5218 5219

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5220 5221

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5222
	if (IS_SKYLAKE(dev_priv))
5223 5224 5225
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5226 5227
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5228
	for_each_engine(engine, dev_priv)
5229
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5230

5231
	if (HAS_GUC(dev_priv))
5232 5233
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5234 5235
	I915_WRITE(GEN6_RC_SLEEP, 0);

5236 5237 5238 5239
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5240
	/* 3a: Enable RC6 */
5241
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5242
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5243
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5244
	/* WaRsUseTimeoutMode */
5245 5246
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5247
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5248 5249 5250
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5251 5252
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5253 5254 5255
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5256
	}
Z
Zhe Wang 已提交
5257

5258 5259
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5260
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5261
	 */
5262
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5263 5264 5265 5266
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5267

5268
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5269 5270
}

5271
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5272
{
5273
	struct intel_engine_cs *engine;
5274
	uint32_t rc6_mask = 0;
5275 5276 5277 5278 5279 5280

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5281
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5282 5283 5284 5285 5286 5287 5288 5289

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5290
	for_each_engine(engine, dev_priv)
5291
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5292
	I915_WRITE(GEN6_RC_SLEEP, 0);
5293
	if (IS_BROADWELL(dev_priv))
5294 5295 5296
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5297 5298

	/* 3: Enable RC6 */
5299
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5300
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5301 5302
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5303 5304 5305 5306 5307 5308 5309
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5310 5311

	/* 4 Program defaults and thresholds for RPS*/
5312 5313 5314 5315
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5330 5331

	/* 5: Enable RPS */
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5342
	reset_rps(dev_priv, gen6_set_rps);
5343

5344
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5345 5346
}

5347
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5348
{
5349
	struct intel_engine_cs *engine;
5350
	u32 rc6vids, rc6_mask = 0;
5351 5352
	u32 gtfifodbg;
	int rc6_mode;
5353
	int ret;
5354

5355
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5356

5357 5358 5359 5360 5361 5362 5363 5364 5365
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5366 5367
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5368 5369 5370 5371
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5372
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5383
	for_each_engine(engine, dev_priv)
5384
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5385 5386 5387

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5388
	if (IS_IVYBRIDGE(dev_priv))
5389 5390 5391
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5392
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5393 5394
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5395
	/* Check if we are enabling RC6 */
5396
	rc6_mode = intel_enable_rc6();
5397 5398 5399
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5400
	/* We don't use those on Haswell */
5401
	if (!IS_HASWELL(dev_priv)) {
5402 5403
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5404

5405 5406 5407
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5408

5409
	intel_print_rc6_info(dev_priv, rc6_mask);
5410 5411 5412 5413 5414 5415

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5416 5417
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5418 5419
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5420
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5421
	if (ret)
B
Ben Widawsky 已提交
5422
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5423

5424
	reset_rps(dev_priv, gen6_set_rps);
5425

5426 5427
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5428
	if (IS_GEN6(dev_priv) && ret) {
5429
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5430
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5431 5432 5433 5434 5435 5436 5437 5438 5439
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5440
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5441 5442
}

5443
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5444 5445
{
	int min_freq = 15;
5446 5447
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5448
	unsigned int max_gpu_freq, min_gpu_freq;
5449
	int scaling_factor = 180;
5450
	struct cpufreq_policy *policy;
5451

5452
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5453

5454 5455 5456 5457 5458 5459 5460 5461 5462
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5463
		max_ia_freq = tsc_khz;
5464
	}
5465 5466 5467 5468

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5469
	min_ring_freq = I915_READ(DCLK) & 0xf;
5470 5471
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5472

5473
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5474 5475 5476 5477 5478 5479 5480 5481
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5482 5483 5484 5485 5486
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5487 5488
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5489 5490
		unsigned int ia_freq = 0, ring_freq = 0;

5491
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5492 5493 5494 5495 5496
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5497
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5498 5499
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5500
		} else if (IS_HASWELL(dev_priv)) {
5501
			ring_freq = mult_frac(gpu_freq, 5, 4);
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5518

B
Ben Widawsky 已提交
5519 5520
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5521 5522 5523
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5524 5525 5526
	}
}

5527
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5528 5529 5530
{
	u32 val, rp0;

5531
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5532

5533
	switch (INTEL_INFO(dev_priv)->eu_total) {
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5548
	}
5549 5550 5551

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5565 5566 5567 5568
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5569 5570 5571
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5572 5573 5574
	return rp1;
}

5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5586
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5587 5588 5589
{
	u32 val, rp0;

5590
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5603
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5604
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5605
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5606 5607 5608 5609 5610
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5611
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5612
{
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5624 5625
}

5626 5627 5628 5629 5630 5631 5632 5633 5634
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5635 5636 5637 5638 5639 5640 5641 5642 5643

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5644
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5645
{
5646
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5647
	unsigned long pctx_paddr, paddr;
5648 5649 5650 5651 5652
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5653
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5654
		paddr = (dev_priv->mm.stolen_base +
5655
			 (ggtt->stolen_size - pctx_size));
5656 5657 5658 5659

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5660 5661

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5662 5663
}

5664
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5665 5666 5667 5668 5669 5670
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5671
	mutex_lock(&dev_priv->drm.struct_mutex);
5672

5673 5674 5675 5676 5677 5678
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5679
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5680
								      pcbr_offset,
5681
								      I915_GTT_OFFSET_NONE,
5682 5683 5684 5685
								      pctx_size);
		goto out;
	}

5686 5687
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5688 5689 5690 5691 5692 5693 5694 5695
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5696
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5697 5698
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5699
		goto out;
5700 5701 5702 5703 5704 5705
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5706
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5707
	dev_priv->vlv_pctx = pctx;
5708
	mutex_unlock(&dev_priv->drm.struct_mutex);
5709 5710
}

5711
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5712 5713 5714 5715
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5716
	i915_gem_object_put_unlocked(dev_priv->vlv_pctx);
5717 5718 5719
	dev_priv->vlv_pctx = NULL;
}

5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5731
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5732
{
5733
	u32 val;
5734

5735
	valleyview_setup_pctx(dev_priv);
5736

5737 5738
	vlv_init_gpll_ref_freq(dev_priv);

5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5752
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5753

5754 5755 5756
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5757
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5758 5759 5760 5761
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5762
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5763 5764
			 dev_priv->rps.efficient_freq);

5765 5766
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5767
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5768 5769
			 dev_priv->rps.rp1_freq);

5770 5771
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5772
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5773 5774 5775
			 dev_priv->rps.min_freq);
}

5776
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5777
{
5778
	u32 val;
5779

5780
	cherryview_setup_pctx(dev_priv);
5781

5782 5783
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5784
	mutex_lock(&dev_priv->sb_lock);
5785
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5786
	mutex_unlock(&dev_priv->sb_lock);
5787

5788 5789 5790 5791
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5792
	default:
5793 5794 5795
		dev_priv->mem_freq = 1600;
		break;
	}
5796
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5797

5798 5799 5800
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5801
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5802 5803 5804 5805
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5806
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5807 5808
			 dev_priv->rps.efficient_freq);

5809 5810
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5811
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5812 5813
			 dev_priv->rps.rp1_freq);

5814 5815
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5816
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5817
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5818 5819
			 dev_priv->rps.min_freq);

5820 5821 5822 5823 5824
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5825 5826
}

5827
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5828
{
5829
	valleyview_cleanup_pctx(dev_priv);
5830 5831
}

5832
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5833
{
5834
	struct intel_engine_cs *engine;
5835
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5836 5837 5838

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5839 5840
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5851
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5852

5853 5854 5855
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5856 5857 5858 5859 5860
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5861
	for_each_engine(engine, dev_priv)
5862
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5863 5864
	I915_WRITE(GEN6_RC_SLEEP, 0);

5865 5866
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
5878 5879
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
5880
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5881 5882 5883

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5884
	/* 4 Program defaults and thresholds for RPS*/
5885
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5896
		   GEN6_RP_MEDIA_IS_GFX |
5897 5898 5899 5900
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5901 5902 5903 5904 5905 5906
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5907 5908
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5909 5910 5911
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5912
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5913 5914
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5915
	reset_rps(dev_priv, valleyview_set_rps);
5916

5917
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5918 5919
}

5920
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5921
{
5922
	struct intel_engine_cs *engine;
5923
	u32 gtfifodbg, val, rc6_mode = 0;
5924 5925 5926

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5927 5928
	valleyview_check_pctx(dev_priv);

5929 5930
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5931 5932
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5933 5934 5935
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5936
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5937
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5938

5939 5940 5941
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5942
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5962
	for_each_engine(engine, dev_priv)
5963
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5964

5965
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5966 5967

	/* allows RC6 residency counter to work */
5968
	I915_WRITE(VLV_COUNTER_CONTROL,
5969 5970
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5971 5972
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5973

5974
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5975
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5976

5977
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
5978

5979
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5980

D
Deepak S 已提交
5981 5982 5983 5984 5985 5986
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5987
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5988

5989 5990 5991
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5992
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5993 5994
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5995
	reset_rps(dev_priv, valleyview_set_rps);
5996

5997
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5998 5999
}

6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6029
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6030 6031 6032 6033 6034 6035
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6036 6037
	assert_spin_locked(&mchdev_lock);

6038
	diff1 = now - dev_priv->ips.last_time1;
6039 6040 6041 6042 6043 6044 6045

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6046
		return dev_priv->ips.chipset_power;
6047 6048 6049 6050 6051 6052 6053 6054

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6055 6056
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6057 6058
		diff += total_count;
	} else {
6059
		diff = total_count - dev_priv->ips.last_count1;
6060 6061 6062
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6063 6064
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6075 6076
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6077

6078
	dev_priv->ips.chipset_power = ret;
6079 6080 6081 6082

	return ret;
}

6083 6084 6085 6086
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6087
	if (INTEL_INFO(dev_priv)->gen != 5)
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6126
{
6127 6128 6129
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6130
	if (INTEL_INFO(dev_priv)->is_mobile)
6131 6132 6133
		return vm > 0 ? vm : 0;

	return vd;
6134 6135
}

6136
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6137
{
6138
	u64 now, diff, diffms;
6139 6140
	u32 count;

6141
	assert_spin_locked(&mchdev_lock);
6142

6143 6144 6145
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6146 6147 6148 6149 6150 6151 6152

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6153 6154
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6155 6156
		diff += count;
	} else {
6157
		diff = count - dev_priv->ips.last_count2;
6158 6159
	}

6160 6161
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6162 6163 6164 6165

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6166
	dev_priv->ips.gfx_power = diff;
6167 6168
}

6169 6170
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6171
	if (INTEL_INFO(dev_priv)->gen != 5)
6172 6173
		return;

6174
	spin_lock_irq(&mchdev_lock);
6175 6176 6177

	__i915_update_gfx_val(dev_priv);

6178
	spin_unlock_irq(&mchdev_lock);
6179 6180
}

6181
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6182 6183 6184 6185
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6186 6187
	assert_spin_locked(&mchdev_lock);

6188
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6208
	corr2 = (corr * dev_priv->ips.corr);
6209 6210 6211 6212

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6213
	__i915_update_gfx_val(dev_priv);
6214

6215
	return dev_priv->ips.gfx_power + state2;
6216 6217
}

6218 6219 6220 6221
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6222
	if (INTEL_INFO(dev_priv)->gen != 5)
6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6245
	spin_lock_irq(&mchdev_lock);
6246 6247 6248 6249
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6250 6251
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6252 6253 6254 6255

	ret = chipset_val + graphics_val;

out_unlock:
6256
	spin_unlock_irq(&mchdev_lock);
6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6272
	spin_lock_irq(&mchdev_lock);
6273 6274 6275 6276 6277 6278
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6279 6280
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6281 6282

out_unlock:
6283
	spin_unlock_irq(&mchdev_lock);
6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6300
	spin_lock_irq(&mchdev_lock);
6301 6302 6303 6304 6305 6306
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6307 6308
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6309 6310

out_unlock:
6311
	spin_unlock_irq(&mchdev_lock);
6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
6325
	struct intel_engine_cs *engine;
6326 6327
	bool ret = false;

6328
	spin_lock_irq(&mchdev_lock);
6329 6330 6331 6332
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6333
	for_each_engine(engine, dev_priv)
6334
		ret |= !list_empty(&engine->request_list);
6335 6336

out_unlock:
6337
	spin_unlock_irq(&mchdev_lock);
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6354
	spin_lock_irq(&mchdev_lock);
6355 6356 6357 6358 6359 6360
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6361
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6362

6363
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6364 6365 6366
		ret = false;

out_unlock:
6367
	spin_unlock_irq(&mchdev_lock);
6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6395 6396
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6397
	spin_lock_irq(&mchdev_lock);
6398
	i915_mch_dev = dev_priv;
6399
	spin_unlock_irq(&mchdev_lock);
6400 6401 6402 6403 6404 6405

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6406
	spin_lock_irq(&mchdev_lock);
6407
	i915_mch_dev = NULL;
6408
	spin_unlock_irq(&mchdev_lock);
6409
}
6410

6411
static void intel_init_emon(struct drm_i915_private *dev_priv)
6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6428
		I915_WRITE(PEW(i), 0);
6429
	for (i = 0; i < 3; i++)
6430
		I915_WRITE(DEW(i), 0);
6431 6432 6433

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6434
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6455
		I915_WRITE(PXW(i), val);
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6471
		I915_WRITE(PXWL(i), 0);
6472 6473 6474 6475 6476 6477

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6478
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6479 6480
}

6481
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6482
{
6483 6484 6485 6486 6487 6488 6489 6490
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6491

6492 6493 6494
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6495 6496 6497 6498
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6499
	else if (INTEL_GEN(dev_priv) >= 6)
6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6529 6530 6531
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6532
	mutex_unlock(&dev_priv->rps.hw_lock);
6533 6534

	intel_autoenable_gt_powersave(dev_priv);
6535 6536
}

6537
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6538
{
6539
	if (IS_CHERRYVIEW(dev_priv))
6540
		return;
6541 6542
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_cleanup_gt_powersave(dev_priv);
6543 6544 6545

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6546 6547
}

6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6567 6568 6569 6570
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6571 6572

	gen6_reset_rps_interrupts(dev_priv);
6573 6574
}

6575
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6576
{
6577 6578
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6579

6580
	mutex_lock(&dev_priv->rps.hw_lock);
6581

6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6593
	}
6594 6595 6596

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6597 6598
}

6599
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6600
{
6601 6602 6603
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6604 6605
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6606

6607 6608 6609
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6610

6611
	mutex_lock(&dev_priv->rps.hw_lock);
6612 6613 6614 6615 6616

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6617
	} else if (INTEL_GEN(dev_priv) >= 9) {
6618 6619 6620
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6621
			gen6_update_ring_freq(dev_priv);
6622 6623
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6624
		gen6_update_ring_freq(dev_priv);
6625
	} else if (INTEL_GEN(dev_priv) >= 6) {
6626
		gen6_enable_rps(dev_priv);
6627
		gen6_update_ring_freq(dev_priv);
6628 6629 6630
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6631
	}
6632 6633 6634 6635 6636 6637 6638

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6639
	dev_priv->rps.enabled = true;
6640 6641
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6642

6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

	rcs = &dev_priv->engine[RCS];
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		mutex_lock(&dev_priv->drm.struct_mutex);
		intel_init_emon(dev_priv);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6708 6709
static void ibx_init_clock_gating(struct drm_device *dev)
{
6710
	struct drm_i915_private *dev_priv = to_i915(dev);
6711 6712 6713 6714 6715 6716 6717 6718 6719

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6720 6721
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
6722
	struct drm_i915_private *dev_priv = to_i915(dev);
6723
	enum pipe pipe;
6724

6725
	for_each_pipe(dev_priv, pipe) {
6726 6727 6728
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6729 6730 6731

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6732 6733 6734
	}
}

6735 6736
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
6737
	struct drm_i915_private *dev_priv = to_i915(dev);
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6749
static void ironlake_init_clock_gating(struct drm_device *dev)
6750
{
6751
	struct drm_i915_private *dev_priv = to_i915(dev);
6752
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6753

6754 6755 6756 6757
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6758 6759 6760
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6778
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6779 6780 6781
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6782 6783

	ilk_init_lp_watermarks(dev);
6784 6785 6786 6787 6788 6789 6790 6791 6792

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6793
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6794 6795 6796 6797 6798 6799 6800 6801
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6802 6803
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6804 6805 6806 6807 6808 6809
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6810

6811
	/* WaDisableRenderCachePipelinedFlush:ilk */
6812 6813
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6814

6815 6816 6817
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6818
	g4x_disable_trickle_feed(dev);
6819

6820 6821 6822 6823 6824
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
6825
	struct drm_i915_private *dev_priv = to_i915(dev);
6826
	int pipe;
6827
	uint32_t val;
6828 6829 6830 6831 6832 6833

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6834 6835 6836
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6837 6838
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6839 6840 6841
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6842
	for_each_pipe(dev_priv, pipe) {
6843 6844 6845
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6846
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6847
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6848 6849 6850
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6851 6852
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6853
	/* WADP0ClockGatingDisable */
6854
	for_each_pipe(dev_priv, pipe) {
6855 6856 6857
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6858 6859
}

6860 6861
static void gen6_check_mch_setup(struct drm_device *dev)
{
6862
	struct drm_i915_private *dev_priv = to_i915(dev);
6863 6864 6865
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6866 6867 6868
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6869 6870
}

6871
static void gen6_init_clock_gating(struct drm_device *dev)
6872
{
6873
	struct drm_i915_private *dev_priv = to_i915(dev);
6874
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6875

6876
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6877 6878 6879 6880 6881

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6882
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6883 6884 6885
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6886 6887 6888
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6889 6890 6891
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6892 6893 6894 6895
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6896 6897
	 */
	I915_WRITE(GEN6_GT_MODE,
6898
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6899

6900
	ilk_init_lp_watermarks(dev);
6901 6902

	I915_WRITE(CACHE_MODE_0,
6903
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6919
	 *
6920 6921
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6922 6923 6924 6925 6926
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6927
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6928 6929
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6930

6931 6932 6933 6934 6935 6936 6937 6938
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6939 6940 6941 6942 6943 6944 6945 6946
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6947 6948
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6949 6950 6951 6952 6953 6954 6955
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6956 6957 6958 6959
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6960

6961
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6962

6963
	cpt_init_clock_gating(dev);
6964 6965

	gen6_check_mch_setup(dev);
6966 6967 6968 6969 6970 6971
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6972
	/*
6973
	 * WaVSThreadDispatchOverride:ivb,vlv
6974 6975 6976 6977
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6978 6979 6980 6981 6982 6983 6984 6985
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6986 6987
static void lpt_init_clock_gating(struct drm_device *dev)
{
6988
	struct drm_i915_private *dev_priv = to_i915(dev);
6989 6990 6991 6992 6993

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6994
	if (HAS_PCH_LPT_LP(dev))
6995 6996 6997
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6998 6999

	/* WADPOClockGatingDisable:hsw */
7000 7001
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7002
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7003 7004
}

7005 7006
static void lpt_suspend_hw(struct drm_device *dev)
{
7007
	struct drm_i915_private *dev_priv = to_i915(dev);
7008

7009
	if (HAS_PCH_LPT_LP(dev)) {
7010 7011 7012 7013 7014 7015 7016
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7040 7041
static void kabylake_init_clock_gating(struct drm_device *dev)
{
7042
	struct drm_i915_private *dev_priv = to_i915(dev);
7043

7044
	gen9_init_clock_gating(dev);
7045 7046 7047 7048 7049

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7050 7051 7052 7053 7054

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7055 7056 7057 7058

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7059 7060
}

7061 7062
static void skylake_init_clock_gating(struct drm_device *dev)
{
7063
	struct drm_i915_private *dev_priv = to_i915(dev);
7064

7065
	gen9_init_clock_gating(dev);
7066 7067 7068 7069

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7070 7071 7072 7073

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7074 7075
}

7076
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7077
{
7078
	struct drm_i915_private *dev_priv = to_i915(dev);
7079
	enum pipe pipe;
B
Ben Widawsky 已提交
7080

7081
	ilk_init_lp_watermarks(dev);
7082

7083
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7084
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7085

7086
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7087 7088 7089
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7090
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7091
	for_each_pipe(dev_priv, pipe) {
7092
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7093
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7094
			   BDW_DPRS_MASK_VBLANK_SRD);
7095
	}
7096

7097 7098 7099 7100 7101
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7102

7103 7104
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7105 7106 7107 7108

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7109

7110 7111
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7112

7113 7114 7115 7116 7117 7118 7119
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7120 7121 7122 7123
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7124
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7125 7126
}

7127 7128
static void haswell_init_clock_gating(struct drm_device *dev)
{
7129
	struct drm_i915_private *dev_priv = to_i915(dev);
7130

7131
	ilk_init_lp_watermarks(dev);
7132

7133 7134 7135 7136 7137
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7138
	/* This is required by WaCatErrorRejectionIssue:hsw */
7139 7140 7141 7142
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7143 7144 7145
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7146

7147 7148 7149
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7150 7151 7152 7153
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7154
	/* WaDisable4x2SubspanOptimization:hsw */
7155 7156
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7157

7158 7159 7160
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7161 7162 7163 7164
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7165 7166
	 */
	I915_WRITE(GEN7_GT_MODE,
7167
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7168

7169 7170 7171 7172
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7173
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7174 7175
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7176 7177 7178
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7179

7180
	lpt_init_clock_gating(dev);
7181 7182
}

7183
static void ivybridge_init_clock_gating(struct drm_device *dev)
7184
{
7185
	struct drm_i915_private *dev_priv = to_i915(dev);
7186
	uint32_t snpcr;
7187

7188
	ilk_init_lp_watermarks(dev);
7189

7190
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7191

7192
	/* WaDisableEarlyCull:ivb */
7193 7194 7195
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7196
	/* WaDisableBackToBackFlipFix:ivb */
7197 7198 7199 7200
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7201
	/* WaDisablePSDDualDispatchEnable:ivb */
7202 7203 7204 7205
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7206 7207 7208
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7209
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7210 7211 7212
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7213
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7214 7215 7216
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7217 7218 7219 7220
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7221 7222 7223 7224
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7225 7226
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7227
	}
7228

7229
	/* WaForceL3Serialization:ivb */
7230 7231 7232
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7233
	/*
7234
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7235
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7236 7237
	 */
	I915_WRITE(GEN6_UCGCTL2,
7238
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7239

7240
	/* This is required by WaCatErrorRejectionIssue:ivb */
7241 7242 7243 7244
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7245
	g4x_disable_trickle_feed(dev);
7246 7247

	gen7_setup_fixed_func_scheduler(dev_priv);
7248

7249 7250 7251 7252 7253
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7254

7255
	/* WaDisable4x2SubspanOptimization:ivb */
7256 7257
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7258

7259 7260 7261
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7262 7263 7264 7265
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7266 7267
	 */
	I915_WRITE(GEN7_GT_MODE,
7268
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7269

7270 7271 7272 7273
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7274

7275 7276
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
7277 7278

	gen6_check_mch_setup(dev);
7279 7280
}

7281
static void valleyview_init_clock_gating(struct drm_device *dev)
7282
{
7283
	struct drm_i915_private *dev_priv = to_i915(dev);
7284

7285
	/* WaDisableEarlyCull:vlv */
7286 7287 7288
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7289
	/* WaDisableBackToBackFlipFix:vlv */
7290 7291 7292 7293
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7294
	/* WaPsdDispatchEnable:vlv */
7295
	/* WaDisablePSDDualDispatchEnable:vlv */
7296
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7297 7298
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7299

7300 7301 7302
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7303
	/* WaForceL3Serialization:vlv */
7304 7305 7306
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7307
	/* WaDisableDopClockGating:vlv */
7308 7309 7310
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7311
	/* This is required by WaCatErrorRejectionIssue:vlv */
7312 7313 7314 7315
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7316 7317
	gen7_setup_fixed_func_scheduler(dev_priv);

7318
	/*
7319
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7320
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7321 7322
	 */
	I915_WRITE(GEN6_UCGCTL2,
7323
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7324

7325 7326 7327 7328 7329
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7330

7331 7332 7333 7334
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7335 7336
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7337

7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7349 7350 7351 7352 7353 7354
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7355
	/*
7356
	 * WaDisableVLVClockGating_VBIIssue:vlv
7357 7358 7359
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7360
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7361 7362
}

7363 7364
static void cherryview_init_clock_gating(struct drm_device *dev)
{
7365
	struct drm_i915_private *dev_priv = to_i915(dev);
7366

7367 7368 7369 7370 7371
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7372 7373 7374 7375

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7376 7377 7378 7379

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7380 7381 7382 7383

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7384

7385 7386 7387 7388 7389 7390 7391
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7392 7393 7394 7395 7396
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7397 7398
}

7399
static void g4x_init_clock_gating(struct drm_device *dev)
7400
{
7401
	struct drm_i915_private *dev_priv = to_i915(dev);
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7415 7416 7417 7418

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7419

7420 7421 7422
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7423
	g4x_disable_trickle_feed(dev);
7424 7425
}

7426
static void crestline_init_clock_gating(struct drm_device *dev)
7427
{
7428
	struct drm_i915_private *dev_priv = to_i915(dev);
7429 7430 7431 7432 7433 7434

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7435 7436
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7437 7438 7439

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7440 7441
}

7442
static void broadwater_init_clock_gating(struct drm_device *dev)
7443
{
7444
	struct drm_i915_private *dev_priv = to_i915(dev);
7445 7446 7447 7448 7449 7450 7451

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7452 7453
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7454 7455 7456

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7457 7458
}

7459
static void gen3_init_clock_gating(struct drm_device *dev)
7460
{
7461
	struct drm_i915_private *dev_priv = to_i915(dev);
7462 7463 7464 7465 7466
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7467 7468 7469

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7470 7471 7472

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7473 7474

	/* interrupts should cause a wake up from C3 */
7475
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7476 7477 7478

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7479 7480 7481

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7482 7483
}

7484
static void i85x_init_clock_gating(struct drm_device *dev)
7485
{
7486
	struct drm_i915_private *dev_priv = to_i915(dev);
7487 7488

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7489 7490 7491 7492

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7493 7494 7495

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7496 7497
}

7498
static void i830_init_clock_gating(struct drm_device *dev)
7499
{
7500
	struct drm_i915_private *dev_priv = to_i915(dev);
7501 7502

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7503 7504 7505 7506

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7507 7508 7509 7510
}

void intel_init_clock_gating(struct drm_device *dev)
{
7511
	struct drm_i915_private *dev_priv = to_i915(dev);
7512

7513
	dev_priv->display.init_clock_gating(dev);
7514 7515
}

7516 7517 7518 7519 7520 7521
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7539
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7540
	else if (IS_KABYLAKE(dev_priv))
7541
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7576 7577 7578
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
7579
	struct drm_i915_private *dev_priv = to_i915(dev);
7580

7581
	intel_fbc_init(dev_priv);
7582

7583 7584 7585 7586 7587 7588
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7589
	/* For FIFO watermark updates */
7590
	if (INTEL_INFO(dev)->gen >= 9) {
7591
		skl_setup_wm_latency(dev);
7592
		dev_priv->display.update_wm = skl_update_wm;
7593
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7594
	} else if (HAS_PCH_SPLIT(dev)) {
7595
		ilk_setup_wm_latency(dev);
7596

7597 7598 7599 7600
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7601
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7602 7603 7604 7605 7606 7607
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7608 7609 7610 7611
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7612
	} else if (IS_CHERRYVIEW(dev)) {
7613 7614
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7615
	} else if (IS_VALLEYVIEW(dev)) {
7616 7617
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7629
			intel_set_memory_cxsr(dev_priv, false);
7630 7631 7632 7633 7634 7635 7636 7637 7638 7639
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7640 7641 7642
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7643
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7644 7645
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7646
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7647 7648 7649
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7650 7651 7652
	}
}

7653
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7654
{
7655
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7656

7657 7658 7659 7660 7661 7662
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7663 7664 7665 7666
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7667 7668 7669
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7670

7671 7672 7673
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7674 7675 7676 7677
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7678 7679
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7680 7681 7682 7683

	return 0;
}

7684 7685
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
			       u32 mbox, u32 val)
B
Ben Widawsky 已提交
7686
{
7687
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7688

7689 7690 7691 7692 7693 7694
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7695 7696 7697 7698
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7699 7700
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7701

7702 7703 7704
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7705 7706 7707 7708
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7709
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7710 7711 7712

	return 0;
}
7713

7714 7715
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7716 7717 7718 7719 7720
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7721 7722
}

7723
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7724
{
7725
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7726 7727
}

7728
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7729
{
7730 7731 7732 7733 7734
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7735 7736
}

7737
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7738
{
7739
	/* CHV needs even values */
7740
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7741 7742
}

7743
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7744
{
7745
	if (IS_GEN9(dev_priv))
7746 7747
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7748
	else if (IS_CHERRYVIEW(dev_priv))
7749
		return chv_gpu_freq(dev_priv, val);
7750
	else if (IS_VALLEYVIEW(dev_priv))
7751 7752 7753
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7754 7755
}

7756 7757
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7758
	if (IS_GEN9(dev_priv))
7759 7760
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7761
	else if (IS_CHERRYVIEW(dev_priv))
7762
		return chv_freq_opcode(dev_priv, val);
7763
	else if (IS_VALLEYVIEW(dev_priv))
7764 7765
		return byt_freq_opcode(dev_priv, val);
	else
7766
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7767
}
7768

7769 7770
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7771
	struct drm_i915_gem_request *req;
7772 7773 7774 7775 7776
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7777
	struct drm_i915_gem_request *req = boost->req;
7778

7779
	if (!i915_gem_request_completed(req))
7780
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7781

7782
	i915_gem_request_put(req);
7783 7784 7785
	kfree(boost);
}

7786
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7787 7788 7789
{
	struct request_boost *boost;

7790
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7791 7792
		return;

7793
	if (i915_gem_request_completed(req))
7794 7795
		return;

7796 7797 7798 7799
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

7800
	boost->req = i915_gem_request_get(req);
7801 7802

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7803
	queue_work(req->i915->wq, &boost->work);
7804 7805
}

D
Daniel Vetter 已提交
7806
void intel_pm_setup(struct drm_device *dev)
7807
{
7808
	struct drm_i915_private *dev_priv = to_i915(dev);
7809

D
Daniel Vetter 已提交
7810
	mutex_init(&dev_priv->rps.hw_lock);
7811
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7812

7813 7814
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
7815
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7816

7817
	dev_priv->pm.suspended = false;
7818
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7819
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7820
}