intel_pm.c 225.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_device *dev)
60
{
61 62
	struct drm_i915_private *dev_priv = dev->dev_private;

63
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
64 65 66
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

67 68
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
69 70 71 72

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
73 74

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
75 76 77 78
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
79 80 81 82

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
83 84 85 86
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
87
	struct drm_i915_private *dev_priv = to_i915(dev);
88 89 90

	gen9_init_clock_gating(dev);

91 92 93 94
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

95 96
	/*
	 * FIXME:
97
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
98 99
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
100
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
101 102 103 104 105 106 107 108

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
109 110
}

111 112
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
113
	struct drm_i915_private *dev_priv = to_i915(dev);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
152
	struct drm_i915_private *dev_priv = to_i915(dev);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

178
	dev_priv->ips.r_t = dev_priv->mem_freq;
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
210
		dev_priv->ips.c_m = 0;
211
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
212
		dev_priv->ips.c_m = 1;
213
	} else {
214
		dev_priv->ips.c_m = 2;
215 216 217
	}
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

256 257
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

321
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
322
{
323
	struct drm_device *dev = &dev_priv->drm;
324
	u32 val;
325

326
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
327
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
328
		POSTING_READ(FW_BLC_SELF_VLV);
329
		dev_priv->wm.vlv.cxsr = enable;
330
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
331
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
332
		POSTING_READ(FW_BLC_SELF);
333 334 335 336
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
337
		POSTING_READ(DSPFW3);
338
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
339 340 341
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
342
		POSTING_READ(FW_BLC_SELF);
343
	} else if (IS_I915GM(dev_priv)) {
344 345 346 347 348
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
349 350 351
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
352
		POSTING_READ(INSTPM);
353 354 355
	} else {
		return;
	}
356

357 358
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
359 360
}

361

362 363 364 365 366 367 368 369 370 371 372 373 374 375
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
376
static const int pessimal_latency_ns = 5000;
377

378 379 380 381 382 383
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
384
	struct drm_i915_private *dev_priv = to_i915(dev);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

433
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
434
{
435
	struct drm_i915_private *dev_priv = to_i915(dev);
436 437 438 439 440 441 442 443 444 445 446 447 448
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

449
static int i830_get_fifo_size(struct drm_device *dev, int plane)
450
{
451
	struct drm_i915_private *dev_priv = to_i915(dev);
452 453 454 455 456 457 458 459 460 461 462 463 464 465
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

466
static int i845_get_fifo_size(struct drm_device *dev, int plane)
467
{
468
	struct drm_i915_private *dev_priv = to_i915(dev);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
484 485 486 487 488
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
489 490
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
491 492 493 494 495
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
496 497
};
static const struct intel_watermark_params pineview_cursor_wm = {
498 499 500 501 502
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
503 504
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
505 506 507 508 509
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
510 511
};
static const struct intel_watermark_params g4x_wm_info = {
512 513 514 515 516
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
517 518
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
519 520 521 522 523
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
524 525
};
static const struct intel_watermark_params i965_cursor_wm_info = {
526 527 528 529 530
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
531 532
};
static const struct intel_watermark_params i945_wm_info = {
533 534 535 536 537
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
538 539
};
static const struct intel_watermark_params i915_wm_info = {
540 541 542 543 544
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
545
};
546
static const struct intel_watermark_params i830_a_wm_info = {
547 548 549 550 551
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
552
};
553 554 555 556 557 558 559
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
560
static const struct intel_watermark_params i845_wm_info = {
561 562 563 564 565
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
566 567 568 569 570 571
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
572
 * @cpp: bytes per pixel
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
588
					int fifo_size, int cpp,
589 590 591 592 593 594 595 596 597 598
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
599
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
600 601 602 603 604 605 606 607 608 609 610 611 612 613
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
614 615 616 617 618 619 620 621 622 623 624

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

625 626 627
	return wm_size;
}

628
static struct intel_crtc *single_enabled_crtc(struct drm_device *dev)
629
{
630
	struct intel_crtc *crtc, *enabled = NULL;
631

632 633
	for_each_intel_crtc(dev, crtc) {
		if (intel_crtc_active(crtc)) {
634 635 636 637 638 639 640 641 642
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

643
static void pineview_update_wm(struct intel_crtc *unused_crtc)
644
{
645
	struct drm_device *dev = unused_crtc->base.dev;
646
	struct drm_i915_private *dev_priv = to_i915(dev);
647
	struct intel_crtc *crtc;
648 649 650 651
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

652 653 654 655
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
656 657
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
658
		intel_set_memory_cxsr(dev_priv, false);
659 660 661 662 663
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
664 665 666 667 668
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
669
		int clock = adjusted_mode->crtc_clock;
670 671 672 673

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
674
					cpp, latency->display_sr);
675 676
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
677
		reg |= FW_WM(wm, SR);
678 679 680 681 682 683
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
684
					cpp, latency->cursor_sr);
685 686
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
687
		reg |= FW_WM(wm, CURSOR_SR);
688 689 690 691 692
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
693
					cpp, latency->display_hpll_disable);
694 695
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
696
		reg |= FW_WM(wm, HPLL_SR);
697 698 699 700 701
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
702
					cpp, latency->cursor_hpll_disable);
703 704
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
705
		reg |= FW_WM(wm, HPLL_CURSOR);
706 707 708
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

709
		intel_set_memory_cxsr(dev_priv, true);
710
	} else {
711
		intel_set_memory_cxsr(dev_priv, false);
712 713 714
	}
}

715
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
716 717 718 719 720 721 722 723
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
724
	struct intel_crtc *crtc;
725
	const struct drm_display_mode *adjusted_mode;
726
	const struct drm_framebuffer *fb;
727
	int htotal, hdisplay, clock, cpp;
728 729 730
	int line_time_us, line_count;
	int entries, tlb_miss;

731
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
732
	if (!intel_crtc_active(crtc)) {
733 734 735 736 737
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

738 739
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
740
	clock = adjusted_mode->crtc_clock;
741
	htotal = adjusted_mode->crtc_htotal;
742 743
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
744 745

	/* Use the small buffer method to calculate plane watermark */
746
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
747 748 749 750 751 752 753 754 755
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
756
	line_time_us = max(htotal * 1000 / clock, 1);
757
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
758
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
777
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
778 779 780 781 782 783 784 785
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
786
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
787 788 789 790 791
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
792
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
793 794 795 796 797 798 799 800 801 802 803 804
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

805
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
806 807 808 809 810 811
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
812
	struct intel_crtc *crtc;
813
	const struct drm_display_mode *adjusted_mode;
814
	const struct drm_framebuffer *fb;
815
	int hdisplay, htotal, cpp, clock;
816 817 818 819 820 821 822 823 824 825
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

826
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
827 828
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
829
	clock = adjusted_mode->crtc_clock;
830
	htotal = adjusted_mode->crtc_htotal;
831 832
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
833

834
	line_time_us = max(htotal * 1000 / clock, 1);
835
	line_count = (latency_ns / line_time_us + 1000) / 1000;
836
	line_size = hdisplay * cpp;
837 838

	/* Use the minimum of the small and large buffer method for primary */
839
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
840 841 842 843 844 845
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
846
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
847 848 849
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

850
	return g4x_check_srwm(dev_priv,
851 852 853 854
			      *display_wm, *cursor_wm,
			      display, cursor);
}

855 856 857
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

858 859 860 861 862 863 864 865 866 867 868 869
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

870
	I915_WRITE(DSPFW1,
871 872 873 874
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
875
	I915_WRITE(DSPFW2,
876 877 878
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
879
	I915_WRITE(DSPFW3,
880
		   FW_WM(wm->sr.cursor, CURSOR_SR));
881 882 883

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
884 885
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
886
		I915_WRITE(DSPFW8_CHV,
887 888
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
889
		I915_WRITE(DSPFW9_CHV,
890 891
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
892
		I915_WRITE(DSPHOWM,
893 894 895 896 897 898 899 900 901 902
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
903 904
	} else {
		I915_WRITE(DSPFW7,
905 906
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
907
		I915_WRITE(DSPHOWM,
908 909 910 911 912 913 914
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
915 916
	}

917 918 919 920 921 922
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

923
	POSTING_READ(DSPFW1);
924 925
}

926 927
#undef FW_WM_VLV

928 929 930 931 932 933
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

934 935 936 937
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
938
				   unsigned int cpp,
939 940 941 942 943
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
944
	ret = (ret + 1) * horiz_pixels * cpp;
945 946 947 948 949 950 951
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
952
	struct drm_i915_private *dev_priv = to_i915(dev);
953 954 955 956

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

957 958
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

959 960 961
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
962 963

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
964 965 966 967 968 969 970 971 972
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
973
	int clock, htotal, cpp, width, wm;
974 975 976 977

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

978
	if (!state->base.visible)
979 980
		return 0;

981
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
997
		wm = vlv_wm_method2(clock, htotal, width, cpp,
998 999 1000 1001 1002 1003
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1020
		if (state->base.visible) {
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1036
		if (!state->base.visible) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1105
static void vlv_compute_wm(struct intel_crtc *crtc)
1106 1107 1108 1109 1110 1111 1112 1113 1114
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1115
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1116
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1117 1118 1119

	wm_state->num_active_planes = 0;

1120
	vlv_compute_fifo(crtc);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1136
		if (!state->base.visible)
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1177
					wm_state->wm[level].cursor;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1196
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1197 1198 1199 1200 1201 1202 1203
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1294 1295 1296 1297 1298 1299
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1300
	wm->level = to_i915(dev)->wm.max_level;
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1319 1320 1321
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

1340
static void vlv_update_wm(struct intel_crtc *crtc)
1341
{
1342
	struct drm_device *dev = crtc->base.dev;
1343
	struct drm_i915_private *dev_priv = to_i915(dev);
1344
	enum pipe pipe = crtc->pipe;
1345 1346
	struct vlv_wm_values wm = {};

1347
	vlv_compute_wm(crtc);
1348 1349
	vlv_merge_wm(dev, &wm);

1350 1351
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
1352
		vlv_pipe_set_fifo_size(crtc);
1353
		return;
1354
	}
1355 1356 1357 1358 1359 1360 1361 1362 1363

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1364
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1365 1366
		intel_set_memory_cxsr(dev_priv, false);

1367
	/* FIXME should be part of crtc atomic commit */
1368
	vlv_pipe_set_fifo_size(crtc);
1369

1370
	vlv_write_wm_values(crtc, &wm);
1371 1372 1373 1374 1375 1376 1377

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1378
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1390 1391
}

1392 1393
#define single_plane_enabled(mask) is_power_of_2(mask)

1394
static void g4x_update_wm(struct intel_crtc *crtc)
1395
{
1396
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1397 1398 1399 1400
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1401
	bool cxsr_enabled;
1402

1403
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1404 1405
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1406
			    &planea_wm, &cursora_wm))
1407
		enabled |= 1 << PIPE_A;
1408

1409
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1410 1411
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1412
			    &planeb_wm, &cursorb_wm))
1413
		enabled |= 1 << PIPE_B;
1414 1415

	if (single_plane_enabled(enabled) &&
1416
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1417 1418 1419
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1420
			     &plane_sr, &cursor_sr)) {
1421
		cxsr_enabled = true;
1422
	} else {
1423
		cxsr_enabled = false;
1424
		intel_set_memory_cxsr(dev_priv, false);
1425 1426
		plane_sr = cursor_sr = 0;
	}
1427

1428 1429
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1430 1431 1432 1433 1434
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1435 1436 1437 1438
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1439
	I915_WRITE(DSPFW2,
1440
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1441
		   FW_WM(cursora_wm, CURSORA));
1442 1443
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1444
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1445
		   FW_WM(cursor_sr, CURSOR_SR));
1446 1447 1448

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1449 1450
}

1451
static void i965_update_wm(struct intel_crtc *unused_crtc)
1452
{
1453
	struct drm_device *dev = unused_crtc->base.dev;
1454
	struct drm_i915_private *dev_priv = to_i915(dev);
1455
	struct intel_crtc *crtc;
1456 1457
	int srwm = 1;
	int cursor_sr = 16;
1458
	bool cxsr_enabled;
1459 1460 1461 1462 1463 1464

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1465 1466 1467 1468
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1469
		int clock = adjusted_mode->crtc_clock;
1470
		int htotal = adjusted_mode->crtc_htotal;
1471 1472
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1473 1474 1475
		unsigned long line_time_us;
		int entries;

1476
		line_time_us = max(htotal * 1000 / clock, 1);
1477 1478 1479

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1480
			cpp * hdisplay;
1481 1482 1483 1484 1485 1486 1487 1488 1489
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1490
			cpp * crtc->base.cursor->state->crtc_w;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1502
		cxsr_enabled = true;
1503
	} else {
1504
		cxsr_enabled = false;
1505
		/* Turn off self refresh if both pipes are enabled */
1506
		intel_set_memory_cxsr(dev_priv, false);
1507 1508 1509 1510 1511 1512
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1513 1514 1515 1516 1517 1518
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1519
	/* update cursor SR watermark */
1520
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1521 1522 1523

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1524 1525
}

1526 1527
#undef FW_WM

1528
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1529
{
1530
	struct drm_device *dev = unused_crtc->base.dev;
1531
	struct drm_i915_private *dev_priv = to_i915(dev);
1532 1533 1534 1535 1536 1537
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1538
	struct intel_crtc *crtc, *enabled = NULL;
1539 1540 1541

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
1542
	else if (!IS_GEN2(dev_priv))
1543 1544
		wm_info = &i915_wm_info;
	else
1545
		wm_info = &i830_a_wm_info;
1546 1547

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1548
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1549 1550 1551 1552 1553 1554 1555
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1556
		if (IS_GEN2(dev_priv))
1557
			cpp = 4;
1558 1559
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1560

1561
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1562
					       wm_info, fifo_size, cpp,
1563
					       pessimal_latency_ns);
1564
		enabled = crtc;
1565
	} else {
1566
		planea_wm = fifo_size - wm_info->guard_size;
1567 1568 1569 1570
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1571
	if (IS_GEN2(dev_priv))
1572
		wm_info = &i830_bc_wm_info;
1573 1574

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1575
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1576 1577 1578 1579 1580 1581 1582
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1583
		if (IS_GEN2(dev_priv))
1584
			cpp = 4;
1585 1586
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1587

1588
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1589
					       wm_info, fifo_size, cpp,
1590
					       pessimal_latency_ns);
1591 1592 1593 1594
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1595
	} else {
1596
		planeb_wm = fifo_size - wm_info->guard_size;
1597 1598 1599
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1600 1601 1602

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1603
	if (IS_I915GM(dev_priv) && enabled) {
1604
		struct drm_i915_gem_object *obj;
1605

1606
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1607 1608

		/* self-refresh seems busted with untiled */
1609
		if (!i915_gem_object_is_tiled(obj))
1610 1611 1612
			enabled = NULL;
	}

1613 1614 1615 1616 1617 1618
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1619
	intel_set_memory_cxsr(dev_priv, false);
1620 1621 1622 1623 1624

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1625 1626 1627 1628
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1629
		int clock = adjusted_mode->crtc_clock;
1630
		int htotal = adjusted_mode->crtc_htotal;
1631 1632
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1633 1634 1635
		unsigned long line_time_us;
		int entries;

1636
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1637
			cpp = 4;
1638 1639
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1640

1641
		line_time_us = max(htotal * 1000 / clock, 1);
1642 1643 1644

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1645
			cpp * hdisplay;
1646 1647 1648 1649 1650 1651
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1652
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1653 1654
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1655
		else
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1672 1673
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1674 1675
}

1676
static void i845_update_wm(struct intel_crtc *unused_crtc)
1677
{
1678
	struct drm_device *dev = unused_crtc->base.dev;
1679
	struct drm_i915_private *dev_priv = to_i915(dev);
1680
	struct intel_crtc *crtc;
1681
	const struct drm_display_mode *adjusted_mode;
1682 1683 1684 1685 1686 1687 1688
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1689
	adjusted_mode = &crtc->config->base.adjusted_mode;
1690
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1691
				       &i845_wm_info,
1692
				       dev_priv->display.get_fifo_size(dev, 0),
1693
				       4, pessimal_latency_ns);
1694 1695 1696 1697 1698 1699 1700 1701
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1702
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1703
{
1704
	uint32_t pixel_rate;
1705

1706
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1707 1708 1709 1710

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1711
	if (pipe_config->pch_pfit.enabled) {
1712
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1713 1714 1715 1716
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1717 1718 1719 1720 1721 1722 1723 1724

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1725 1726 1727
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1728 1729 1730 1731 1732 1733 1734
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1735
/* latency must be in 0.1us units. */
1736
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1737 1738 1739
{
	uint64_t ret;

1740 1741 1742
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1743
	ret = (uint64_t) pixel_rate * cpp * latency;
1744 1745 1746 1747 1748
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1749
/* latency must be in 0.1us units. */
1750
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1751
			       uint32_t horiz_pixels, uint8_t cpp,
1752 1753 1754 1755
			       uint32_t latency)
{
	uint32_t ret;

1756 1757
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1758 1759
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1760

1761
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1762
	ret = (ret + 1) * horiz_pixels * cpp;
1763 1764 1765 1766
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1767
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1768
			   uint8_t cpp)
1769
{
1770 1771 1772 1773 1774 1775
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1776
	if (WARN_ON(!cpp))
1777 1778 1779 1780
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1781
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1782 1783
}

1784
struct ilk_wm_maximums {
1785 1786 1787 1788 1789 1790
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1791 1792 1793 1794
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1795
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1796
				   const struct intel_plane_state *pstate,
1797 1798
				   uint32_t mem_value,
				   bool is_lp)
1799
{
1800 1801
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1802 1803
	uint32_t method1, method2;

1804
	if (!cstate->base.active || !pstate->base.visible)
1805 1806
		return 0;

1807
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1808 1809 1810 1811

	if (!is_lp)
		return method1;

1812 1813
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1814
				 drm_rect_width(&pstate->base.dst),
1815
				 cpp, mem_value);
1816 1817

	return min(method1, method2);
1818 1819
}

1820 1821 1822 1823
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1824
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1825
				   const struct intel_plane_state *pstate,
1826 1827
				   uint32_t mem_value)
{
1828 1829
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1830 1831
	uint32_t method1, method2;

1832
	if (!cstate->base.active || !pstate->base.visible)
1833 1834
		return 0;

1835
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1836 1837
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1838
				 drm_rect_width(&pstate->base.dst),
1839
				 cpp, mem_value);
1840 1841 1842
	return min(method1, method2);
}

1843 1844 1845 1846
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1847
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1848
				   const struct intel_plane_state *pstate,
1849 1850
				   uint32_t mem_value)
{
1851 1852 1853 1854 1855 1856
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1857
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1858

1859
	if (!cstate->base.active)
1860 1861
		return 0;

1862 1863
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1864
			      width, cpp, mem_value);
1865 1866
}

1867
/* Only for WM_LP. */
1868
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1869
				   const struct intel_plane_state *pstate,
1870
				   uint32_t pri_val)
1871
{
1872 1873
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1874

1875
	if (!cstate->base.active || !pstate->base.visible)
1876 1877
		return 0;

1878
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1879 1880
}

1881 1882
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1883 1884 1885
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1886 1887 1888 1889 1890
		return 768;
	else
		return 512;
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1925 1926 1927
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1928
				     const struct intel_wm_config *config,
1929 1930 1931 1932 1933 1934
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1935
	if (is_sprite && !config->sprites_enabled)
1936 1937 1938
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1939
	if (level == 0 || config->num_pipes_active > 1) {
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1951
	if (config->sprites_enabled) {
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1963
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1964 1965 1966 1967
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1968 1969
				      int level,
				      const struct intel_wm_config *config)
1970 1971
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1972
	if (level > 0 && config->num_pipes_active > 1)
1973 1974 1975
		return 64;

	/* otherwise just report max that registers can hold */
1976
	return ilk_cursor_wm_reg_max(dev, level);
1977 1978
}

1979
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1980 1981 1982
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1983
				    struct ilk_wm_maximums *max)
1984
{
1985 1986 1987
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1988
	max->fbc = ilk_fbc_wm_reg_max(dev);
1989 1990
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

2001
static bool ilk_validate_wm_level(int level,
2002
				  const struct ilk_wm_maximums *max,
2003
				  struct intel_wm_level *result)
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2042
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2043
				 const struct intel_crtc *intel_crtc,
2044
				 int level,
2045
				 struct intel_crtc_state *cstate,
2046 2047 2048
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2049
				 struct intel_wm_level *result)
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2074 2075 2076
	result->enable = true;
}

2077
static uint32_t
2078
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2079
{
2080 2081
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2082 2083
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2084
	u32 linetime, ips_linetime;
2085

2086 2087 2088 2089
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2090
	if (WARN_ON(intel_state->cdclk == 0))
2091
		return 0;
2092

2093 2094 2095
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2096 2097 2098
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2099
					 intel_state->cdclk);
2100

2101 2102
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2103 2104
}

2105
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2106
{
2107
	struct drm_i915_private *dev_priv = to_i915(dev);
2108

2109
	if (IS_GEN9(dev_priv)) {
2110
		uint32_t val;
2111
		int ret, i;
2112
		int level, max_level = ilk_wm_max_level(dev_priv);
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2168
		/*
2169 2170
		 * WaWmMemoryReadLatency:skl
		 *
2171
		 * punit doesn't take into account the read latency so we need
2172 2173
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2174
		 */
2175 2176 2177 2178 2179
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2180
				wm[level] += 2;
2181
			}
2182 2183
		}

2184
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2185 2186 2187 2188 2189
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2190 2191 2192 2193
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2194 2195 2196 2197 2198 2199 2200
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2201 2202 2203 2204 2205 2206 2207
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2208 2209 2210
	}
}

2211 2212
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2213 2214
{
	/* ILK sprite LP0 latency is 1300 ns */
2215
	if (IS_GEN5(dev_priv))
2216 2217 2218
		wm[0] = 13;
}

2219 2220
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2221 2222
{
	/* ILK cursor LP0 latency is 1300 ns */
2223
	if (IS_GEN5(dev_priv))
2224 2225 2226
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2227
	if (IS_IVYBRIDGE(dev_priv))
2228 2229 2230
		wm[3] *= 2;
}

2231
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2232 2233
{
	/* how many WM levels are we expecting */
2234
	if (INTEL_GEN(dev_priv) >= 9)
2235
		return 7;
2236
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2237
		return 4;
2238
	else if (INTEL_GEN(dev_priv) >= 6)
2239
		return 3;
2240
	else
2241 2242
		return 2;
}
2243

2244
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2245
				   const char *name,
2246
				   const uint16_t wm[8])
2247
{
2248
	int level, max_level = ilk_wm_max_level(dev_priv);
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2259 2260 2261 2262
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2263
		if (IS_GEN9(dev_priv))
2264 2265
			latency *= 10;
		else if (level > 0)
2266 2267 2268 2269 2270 2271 2272 2273
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2274 2275 2276
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2277
	int level, max_level = ilk_wm_max_level(dev_priv);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
2291
	struct drm_i915_private *dev_priv = to_i915(dev);
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2306 2307 2308
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2309 2310
}

2311
static void ilk_setup_wm_latency(struct drm_device *dev)
2312
{
2313
	struct drm_i915_private *dev_priv = to_i915(dev);
2314 2315 2316 2317 2318 2319 2320 2321

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2322
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2323
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2324

2325 2326 2327
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2328

2329
	if (IS_GEN6(dev_priv))
2330
		snb_wm_latency_quirk(dev);
2331 2332
}

2333 2334
static void skl_setup_wm_latency(struct drm_device *dev)
{
2335
	struct drm_i915_private *dev_priv = to_i915(dev);
2336 2337

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2338
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2339 2340
}

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2364
/* Compute new watermarks for the pipe */
2365
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2366
{
2367 2368
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2369
	struct intel_pipe_wm *pipe_wm;
2370
	struct drm_device *dev = state->dev;
2371
	const struct drm_i915_private *dev_priv = to_i915(dev);
2372
	struct intel_plane *intel_plane;
2373
	struct intel_plane_state *pristate = NULL;
2374
	struct intel_plane_state *sprstate = NULL;
2375
	struct intel_plane_state *curstate = NULL;
2376
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2377
	struct ilk_wm_maximums max;
2378

2379
	pipe_wm = &cstate->wm.ilk.optimal;
2380

2381
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2382 2383 2384 2385 2386 2387
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2388 2389

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2390
			pristate = ps;
2391
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2392
			sprstate = ps;
2393
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2394
			curstate = ps;
2395 2396
	}

2397
	pipe_wm->pipe_enabled = cstate->base.active;
2398
	if (sprstate) {
2399 2400 2401 2402
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2403 2404
	}

2405 2406
	usable_level = max_level;

2407
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2408
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2409
		usable_level = 1;
2410 2411

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2412
	if (pipe_wm->sprites_scaled)
2413
		usable_level = 0;
2414

2415
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2416 2417 2418 2419
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2420

2421
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2422
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2423

2424
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2425
		return -EINVAL;
2426 2427 2428 2429

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2430
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2431

2432
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2433
				     pristate, sprstate, curstate, wm);
2434 2435 2436 2437 2438 2439

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2440 2441 2442 2443 2444 2445
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2446
			usable_level = level;
2447 2448
	}

2449
	return 0;
2450 2451
}

2452 2453 2454 2455 2456 2457 2458 2459 2460
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2461
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2462
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2463
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2464 2465 2466 2467 2468 2469

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2470
	*a = newstate->wm.ilk.optimal;
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2499
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2500 2501 2502 2503 2504
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2505 2506 2507 2508 2509 2510 2511 2512 2513
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2514 2515
	ret_wm->enable = true;

2516
	for_each_intel_crtc(dev, intel_crtc) {
2517
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2518 2519 2520 2521
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2522

2523 2524 2525 2526 2527
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2528
		if (!wm->enable)
2529
			ret_wm->enable = false;
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2542
			 const struct intel_wm_config *config,
2543
			 const struct ilk_wm_maximums *max,
2544 2545
			 struct intel_pipe_wm *merged)
{
2546
	struct drm_i915_private *dev_priv = to_i915(dev);
2547
	int level, max_level = ilk_wm_max_level(dev_priv);
2548
	int last_enabled_level = max_level;
2549

2550
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2551
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2552
	    config->num_pipes_active > 1)
2553
		last_enabled_level = 0;
2554

2555 2556
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2557 2558 2559 2560 2561 2562 2563

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2564 2565 2566 2567 2568
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2569 2570 2571 2572 2573 2574

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2575 2576
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2577 2578 2579
			wm->fbc_val = 0;
		}
	}
2580 2581 2582 2583 2584 2585 2586

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2587
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2588
	    intel_fbc_is_active(dev_priv)) {
2589 2590 2591 2592 2593 2594
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2595 2596
}

2597 2598 2599 2600 2601 2602
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2603 2604 2605
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2606
	struct drm_i915_private *dev_priv = to_i915(dev);
2607

2608
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2609 2610 2611 2612 2613
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2614
static void ilk_compute_wm_results(struct drm_device *dev,
2615
				   const struct intel_pipe_wm *merged,
2616
				   enum intel_ddb_partitioning partitioning,
2617
				   struct ilk_wm_values *results)
2618
{
2619 2620
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2621

2622
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2623
	results->partitioning = partitioning;
2624

2625
	/* LP1+ register values */
2626
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2627
		const struct intel_wm_level *r;
2628

2629
		level = ilk_wm_lp_to_level(wm_lp, merged);
2630

2631
		r = &merged->wm[level];
2632

2633 2634 2635 2636 2637
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2638
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2639 2640 2641
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2642 2643 2644
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2645 2646 2647 2648 2649 2650 2651
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2652 2653 2654 2655
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2656 2657 2658 2659 2660
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2661
	}
2662

2663
	/* LP0 register values */
2664
	for_each_intel_crtc(dev, intel_crtc) {
2665
		enum pipe pipe = intel_crtc->pipe;
2666 2667
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2668 2669 2670 2671

		if (WARN_ON(!r->enable))
			continue;

2672
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2673

2674 2675 2676 2677
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2678 2679 2680
	}
}

2681 2682
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2683
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2684 2685
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2686
{
2687
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2688
	int level1 = 0, level2 = 0;
2689

2690 2691 2692 2693 2694
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2695 2696
	}

2697 2698
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2699 2700 2701
			return r2;
		else
			return r1;
2702
	} else if (level1 > level2) {
2703 2704 2705 2706 2707 2708
		return r1;
	} else {
		return r2;
	}
}

2709 2710 2711 2712 2713 2714 2715 2716
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2717
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2718 2719
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2720 2721 2722 2723 2724
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2725
	for_each_pipe(dev_priv, pipe) {
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2769 2770
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2771
{
2772
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2773
	bool changed = false;
2774

2775 2776 2777
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2778
		changed = true;
2779 2780 2781 2782
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2783
		changed = true;
2784 2785 2786 2787
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2788
		changed = true;
2789
	}
2790

2791 2792 2793 2794
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2795

2796 2797 2798 2799 2800 2801 2802
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2803 2804
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2805
{
2806
	struct drm_device *dev = &dev_priv->drm;
2807
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2808 2809 2810
	unsigned int dirty;
	uint32_t val;

2811
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2812 2813 2814 2815 2816
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2817
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2818
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2819
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2820
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2821
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2822 2823
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2824
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2825
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2826
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2827
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2828
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2829 2830
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2831
	if (dirty & WM_DIRTY_DDB) {
2832
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2847 2848
	}

2849
	if (dirty & WM_DIRTY_FBC) {
2850 2851 2852 2853 2854 2855 2856 2857
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2858 2859 2860 2861 2862
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2863 2864 2865 2866 2867
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2868

2869
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2870
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2871
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2872
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2873
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2874
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2875 2876

	dev_priv->wm.hw = *results;
2877 2878
}

2879
bool ilk_disable_lp_wm(struct drm_device *dev)
2880
{
2881
	struct drm_i915_private *dev_priv = to_i915(dev);
2882 2883 2884 2885

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2886
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2887

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2925 2926 2927
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2928 2929 2930 2931 2932 2933 2934 2935
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2936 2937
}

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2950
intel_enable_sagv(struct drm_i915_private *dev_priv)
2951 2952 2953
{
	int ret;

2954 2955 2956 2957
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2973
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2974
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2975
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2976 2977 2978 2979 2980 2981
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2982
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2983 2984 2985 2986
	return 0;
}

static int
2987
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
3001
intel_disable_sagv(struct drm_i915_private *dev_priv)
3002 3003 3004
{
	int ret, result;

3005 3006 3007 3008
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3009 3010 3011 3012 3013 3014
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3015
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3027
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
3028
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3029
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3030 3031 3032 3033 3034 3035
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

3036
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3037 3038 3039
	return 0;
}

3040
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3041 3042 3043 3044
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3045 3046
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3047 3048
	struct intel_crtc_state *cstate;
	struct skl_plane_wm *wm;
3049
	enum pipe pipe;
3050
	int level, latency;
3051

3052 3053 3054
	if (!intel_has_sagv(dev_priv))
		return false;

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3068
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3069
	cstate = to_intel_crtc_state(crtc->base.state);
3070

3071
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3072 3073
		return false;

3074
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3075
		wm = &cstate->wm.skl.optimal.planes[skl_wm_plane_id(plane)];
3076

3077
		/* Skip this plane if it's not enabled */
3078
		if (!wm->wm[0].plane_en)
3079 3080 3081
			continue;

		/* Find the highest enabled wm level for this plane */
3082
		for (level = ilk_wm_max_level(dev_priv);
3083
		     !wm->wm[level].plane_en; --level)
3084 3085
		     { }

3086 3087 3088 3089 3090 3091 3092
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
		    plane->base.state->fb->modifier[0] ==
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3093 3094 3095 3096 3097
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3098
		if (latency < SKL_SAGV_BLOCK_TIME)
3099 3100 3101 3102 3103 3104
			return false;
	}

	return true;
}

3105 3106
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3107
				   const struct intel_crtc_state *cstate,
3108 3109
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3110
{
3111 3112 3113
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3114
	struct drm_crtc *for_crtc = cstate->base.crtc;
3115 3116
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3117

3118
	if (WARN_ON(!state) || !cstate->base.active) {
3119 3120
		alloc->start = 0;
		alloc->end = 0;
3121
		*num_active = hweight32(dev_priv->active_crtcs);
3122 3123 3124
		return;
	}

3125 3126 3127 3128 3129
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3130 3131
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3132 3133 3134

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3135
	/*
3136 3137 3138 3139 3140 3141
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3142
	 */
3143
	if (!intel_state->active_pipe_changes) {
3144
		*alloc = to_intel_crtc(for_crtc)->hw_ddb;
3145
		return;
3146
	}
3147 3148 3149 3150 3151 3152

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3153 3154
}

3155
static unsigned int skl_cursor_allocation(int num_active)
3156
{
3157
	if (num_active == 1)
3158 3159 3160 3161 3162
		return 32;

	return 8;
}

3163 3164 3165 3166
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3167 3168
	if (entry->end)
		entry->end += 1;
3169 3170
}

3171 3172
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3173 3174 3175 3176 3177
{
	enum pipe pipe;
	int plane;
	u32 val;

3178 3179
	memset(ddb, 0, sizeof(*ddb));

3180
	for_each_pipe(dev_priv, pipe) {
3181 3182 3183 3184
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3185 3186
			continue;

3187
		for_each_universal_plane(dev_priv, pipe, plane) {
3188 3189 3190 3191 3192 3193
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3194 3195
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3196 3197

		intel_display_power_put(dev_priv, power_domain);
3198 3199 3200
	}
}

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3223
	if (WARN_ON(!pstate->base.visible))
3224 3225 3226
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3227 3228 3229 3230
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3231
	if (drm_rotation_90_or_270(pstate->base.rotation))
3232 3233 3234 3235 3236 3237 3238 3239 3240
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3241
static unsigned int
3242 3243 3244
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3245
{
3246
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3247
	struct drm_framebuffer *fb = pstate->fb;
3248
	uint32_t down_scale_amount, data_rate;
3249
	uint32_t width = 0, height = 0;
3250 3251
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3252
	if (!intel_pstate->base.visible)
3253 3254 3255 3256 3257
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3258

3259 3260
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3261

3262
	if (drm_rotation_90_or_270(pstate->rotation))
3263
		swap(width, height);
3264 3265

	/* for planar format */
3266
	if (format == DRM_FORMAT_NV12) {
3267
		if (y)  /* y-plane data rate */
3268
			data_rate = width * height *
3269
				drm_format_plane_cpp(format, 0);
3270
		else    /* uv-plane data rate */
3271
			data_rate = (width / 2) * (height / 2) *
3272
				drm_format_plane_cpp(format, 1);
3273 3274 3275
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3276 3277
	}

3278 3279 3280
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3281 3282 3283 3284 3285 3286 3287 3288
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3289 3290 3291
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3292
{
3293 3294
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3295
	struct drm_plane *plane;
3296
	const struct intel_plane *intel_plane;
3297
	const struct drm_plane_state *pstate;
3298
	unsigned int rate, total_data_rate = 0;
3299
	int id;
3300 3301 3302

	if (WARN_ON(!state))
		return 0;
3303

3304
	/* Calculate and cache data rate for each plane */
3305
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3306 3307 3308 3309 3310 3311
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3312 3313 3314
		plane_data_rate[id] = rate;

		total_data_rate += rate;
3315 3316 3317 3318

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3319
		plane_y_data_rate[id] = rate;
3320

3321
		total_data_rate += rate;
3322 3323 3324 3325 3326
	}

	return total_data_rate;
}

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3349 3350
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3351

3352
	if (drm_rotation_90_or_270(pstate->rotation))
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3366
	if (drm_rotation_90_or_270(pstate->rotation)) {
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
		struct intel_plane *intel_plane = to_intel_plane(plane);
		int id = skl_wm_plane_id(intel_plane);

		if (id == PLANE_CURSOR)
			continue;

		if (!pstate->visible)
			continue;

		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3414
static int
3415
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3416 3417
		      struct skl_ddb_allocation *ddb /* out */)
{
3418
	struct drm_atomic_state *state = cstate->base.state;
3419
	struct drm_crtc *crtc = cstate->base.crtc;
3420 3421 3422
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3423
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3424
	uint16_t alloc_size, start;
3425 3426
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3427
	unsigned int total_data_rate;
3428 3429
	int num_active;
	int id, i;
3430 3431
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3432

3433 3434 3435 3436
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3437 3438 3439
	if (WARN_ON(!state))
		return 0;

3440
	if (!cstate->base.active) {
3441
		alloc->start = alloc->end = 0;
3442 3443 3444
		return 0;
	}

3445
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3446
	alloc_size = skl_ddb_entry_size(alloc);
3447 3448
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3449
		return 0;
3450 3451
	}

3452
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3453

3454 3455 3456 3457 3458
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3459

3460
	for (i = 0; i < I915_MAX_PLANES; i++) {
3461 3462
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3463 3464
	}

3465 3466 3467
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3468
	/*
3469 3470
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3471 3472 3473
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3474 3475 3476
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3477
	if (total_data_rate == 0)
3478
		return 0;
3479

3480
	start = alloc->start;
3481
	for (id = 0; id < I915_MAX_PLANES; id++) {
3482 3483
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3484

3485 3486 3487
		if (id == PLANE_CURSOR)
			continue;

3488
		data_rate = plane_data_rate[id];
3489 3490

		/*
3491
		 * allocation for (packed formats) or (uv-plane part of planar format):
3492 3493 3494
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3495
		plane_blocks = minimum[id];
3496 3497
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3498

3499 3500 3501 3502 3503
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3504 3505

		start += plane_blocks;
3506 3507 3508 3509

		/*
		 * allocation for y_plane part of planar format:
		 */
3510
		y_data_rate = plane_y_data_rate[id];
3511 3512 3513 3514

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3515

3516 3517 3518 3519
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3520 3521

		start += y_plane_blocks;
3522 3523
	}

3524
	return 0;
3525 3526
}

3527 3528
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3529
 * for the read latency) and cpp should always be <= 8, so that
3530 3531 3532
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3533
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3534 3535 3536 3537 3538 3539
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3540
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3541 3542 3543 3544 3545 3546
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3547
			       uint32_t latency, uint32_t plane_blocks_per_line)
3548
{
3549 3550
	uint32_t ret;
	uint32_t wm_intermediate_val;
3551 3552 3553 3554 3555 3556

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3557
				plane_blocks_per_line;
3558 3559 3560 3561

	return ret;
}

3562 3563 3564 3565 3566 3567 3568 3569
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3570
	if (WARN_ON(!pstate->base.visible))
3571 3572 3573 3574 3575 3576
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3577
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3578 3579 3580 3581 3582 3583 3584 3585
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3586 3587 3588 3589 3590 3591 3592 3593
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3594
{
3595 3596
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3597 3598 3599 3600 3601
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3602
	uint8_t cpp;
3603
	uint32_t width = 0, height = 0;
3604
	uint32_t plane_pixel_rate;
3605
	uint32_t y_tile_minimum, y_min_scanlines;
3606 3607 3608
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3609

3610
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3611 3612 3613
		*enabled = false;
		return 0;
	}
3614

3615 3616 3617
	if (apply_memory_bw_wa && fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
		latency += 15;

3618 3619
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3620

3621
	if (drm_rotation_90_or_270(pstate->rotation))
3622 3623
		swap(width, height);

3624
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3625 3626
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3627
	if (drm_rotation_90_or_270(pstate->rotation)) {
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3642 3643 3644
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3645 3646 3647 3648 3649
		}
	} else {
		y_min_scanlines = 4;
	}

3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
	plane_bytes_per_line = width * cpp;
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3663 3664
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3665
				 cstate->base.adjusted_mode.crtc_htotal,
3666
				 latency,
3667
				 plane_blocks_per_line);
3668

3669
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3670 3671
	if (apply_memory_bw_wa)
		y_tile_minimum *= 2;
3672

3673 3674
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3675 3676
		selected_result = max(method2, y_tile_minimum);
	} else {
3677 3678 3679 3680
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3681 3682 3683 3684
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3685

3686 3687
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3688

3689
	if (level >= 1 && level <= 7) {
3690
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3691 3692
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
			res_blocks += y_tile_minimum;
3693
			res_lines += y_min_scanlines;
3694
		} else {
3695
			res_blocks++;
3696
		}
3697
	}
3698

3699 3700
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3717
	}
3718 3719 3720

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3721
	*enabled = true;
3722

3723
	return 0;
3724 3725
}

3726 3727 3728 3729
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3730
		     struct intel_plane *intel_plane,
3731 3732
		     int level,
		     struct skl_wm_level *result)
3733
{
3734
	struct drm_atomic_state *state = cstate->base.state;
3735
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3736 3737
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3738
	uint16_t ddb_blocks;
3739
	enum pipe pipe = intel_crtc->pipe;
3740
	int ret;
L
Lyude 已提交
3741 3742 3743 3744 3745 3746
	int i = skl_wm_plane_id(intel_plane);

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3747

3748
	/*
L
Lyude 已提交
3749 3750 3751 3752 3753 3754 3755 3756 3757
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3758
	 */
L
Lyude 已提交
3759 3760
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3761

L
Lyude 已提交
3762
	WARN_ON(!intel_pstate->base.fb);
3763

L
Lyude 已提交
3764
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3765

L
Lyude 已提交
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3776 3777

	return 0;
3778 3779
}

3780
static uint32_t
3781
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3782
{
3783 3784
	uint32_t pixel_rate;

3785
	if (!cstate->base.active)
3786 3787
		return 0;

3788 3789 3790
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3791
		return 0;
3792

3793
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3794
			    pixel_rate);
3795 3796
}

3797
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3798
				      struct skl_wm_level *trans_wm /* out */)
3799
{
3800
	if (!cstate->base.active)
3801
		return;
3802 3803

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3804
	trans_wm->plane_en = false;
3805 3806
}

3807 3808 3809
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3810
{
3811
	struct drm_device *dev = cstate->base.crtc->dev;
3812
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3813 3814
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3815
	int level, max_level = ilk_wm_max_level(dev_priv);
3816
	int ret;
3817

L
Lyude 已提交
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
		wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3837
	}
3838
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3839

3840
	return 0;
3841 3842
}

3843 3844
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3845 3846 3847 3848 3849 3850 3851 3852
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3868
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3869 3870
			const struct skl_plane_wm *wm,
			const struct skl_ddb_allocation *ddb,
3871 3872 3873 3874 3875
			int plane)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3876
	int level, max_level = ilk_wm_max_level(dev_priv);
3877 3878 3879
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3880 3881
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane, level),
				   &wm->wm[level]);
3882
	}
3883 3884
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane),
			   &wm->trans_wm);
3885 3886

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3887
			    &ddb->plane[pipe][plane]);
3888
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3889
			    &ddb->y_plane[pipe][plane]);
3890 3891 3892
}

void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3893 3894
			 const struct skl_plane_wm *wm,
			 const struct skl_ddb_allocation *ddb)
3895 3896 3897 3898
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3899
	int level, max_level = ilk_wm_max_level(dev_priv);
3900 3901 3902
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3903 3904
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3905
	}
3906
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3907

3908
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3909
			    &ddb->plane[pipe][PLANE_CURSOR]);
3910 3911
}

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3926 3927
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3928
{
3929
	return a->start < b->end && b->start < a->end;
3930 3931
}

3932
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
3933
				 struct intel_crtc *intel_crtc)
3934
{
3935 3936 3937 3938 3939 3940
	struct drm_crtc *other_crtc;
	struct drm_crtc_state *other_cstate;
	struct intel_crtc *other_intel_crtc;
	const struct skl_ddb_entry *ddb =
		&to_intel_crtc_state(intel_crtc->base.state)->wm.skl.ddb;
	int i;
3941

3942 3943
	for_each_crtc_in_state(state, other_crtc, other_cstate, i) {
		other_intel_crtc = to_intel_crtc(other_crtc);
3944

3945
		if (other_intel_crtc == intel_crtc)
3946 3947
			continue;

3948
		if (skl_ddb_entries_overlap(ddb, &other_intel_crtc->hw_ddb))
3949
			return true;
3950 3951
	}

3952
	return false;
3953 3954
}

3955
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3956
			      const struct skl_pipe_wm *old_pipe_wm,
3957
			      struct skl_pipe_wm *pipe_wm, /* out */
3958
			      struct skl_ddb_allocation *ddb, /* out */
3959
			      bool *changed /* out */)
3960
{
3961
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3962
	int ret;
3963

3964 3965 3966
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3967

3968
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3969 3970 3971
		*changed = false;
	else
		*changed = true;
3972

3973
	return 0;
3974 3975
}

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3989
static int
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;
	int id;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

4007
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
		id = skl_wm_plane_id(to_intel_plane(plane));

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
					&new_ddb->plane[pipe][id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
					&new_ddb->y_plane[pipe][id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4024 4025 4026 4027 4028 4029 4030
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4031
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4032
	uint32_t realloc_pipes = pipes_modified(state);
4033 4034 4035 4036 4037 4038 4039 4040
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4041 4042 4043 4044 4045 4046
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4047 4048
		intel_state->active_pipe_changes = ~0;

4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4072
	if (intel_state->active_pipe_changes) {
4073
		realloc_pipes = ~0;
4074 4075
		intel_state->wm_results.dirty_pipes = ~0;
	}
4076

4077 4078 4079 4080 4081 4082
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4083 4084 4085 4086 4087 4088 4089
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4090
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4091 4092
		if (ret)
			return ret;
4093

4094
		ret = skl_ddb_add_affected_planes(cstate);
4095 4096
		if (ret)
			return ret;
4097 4098 4099 4100 4101
	}

	return 0;
}

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	int id;
4126
	int i;
4127 4128

	for_each_crtc_in_state(state, crtc, cstate, i) {
4129 4130
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4131

4132
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4133 4134 4135 4136 4137 4138 4139 4140 4141
			const struct skl_ddb_entry *old, *new;

			id = skl_wm_plane_id(intel_plane);
			old = &old_ddb->plane[pipe][id];
			new = &new_ddb->plane[pipe][id];

			if (skl_ddb_entry_equal(old, new))
				continue;

4142 4143 4144 4145 4146
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4147 4148 4149 4150
		}
	}
}

4151 4152 4153 4154 4155
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4156 4157 4158
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4159
	bool changed = false;
4160
	int ret, i;
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4175 4176 4177
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4178 4179 4180 4181
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4195 4196
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4197 4198

		pipe_wm = &intel_cstate->wm.skl.optimal;
4199 4200
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4214 4215
	skl_print_wm_changes(state);

4216 4217 4218
	return 0;
}

4219
static void skl_update_wm(struct intel_crtc *intel_crtc)
4220
{
4221
	struct drm_device *dev = intel_crtc->base.dev;
4222
	struct drm_i915_private *dev_priv = to_i915(dev);
4223
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4224
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4225
	struct intel_crtc_state *cstate = to_intel_crtc_state(intel_crtc->base.state);
4226
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4227
	enum pipe pipe = intel_crtc->pipe;
4228

4229
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4230 4231
		return;

4232
	mutex_lock(&dev_priv->wm.wm_mutex);
4233

4234
	/*
4235 4236 4237 4238
	 * If this pipe isn't active already, we're going to be enabling it
	 * very soon. Since it's safe to update a pipe's ddb allocation while
	 * the pipe's shut off, just do so here. Already active pipes will have
	 * their watermarks updated once we update their planes.
4239
	 */
4240
	if (intel_crtc->base.state->active_changed) {
4241 4242
		int plane;

4243
		for_each_universal_plane(dev_priv, pipe, plane)
4244 4245
			skl_write_plane_wm(intel_crtc, &pipe_wm->planes[plane],
					   &results->ddb, plane);
4246

4247 4248
		skl_write_cursor_wm(intel_crtc, &pipe_wm->planes[PLANE_CURSOR],
				    &results->ddb);
4249 4250 4251
	}

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4252

4253 4254
	intel_crtc->hw_ddb = cstate->wm.skl.ddb;

4255
	mutex_unlock(&dev_priv->wm.wm_mutex);
4256 4257
}

4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4276
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4277
{
4278
	struct drm_device *dev = &dev_priv->drm;
4279
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4280
	struct ilk_wm_maximums max;
4281
	struct intel_wm_config config = {};
4282
	struct ilk_wm_values results = {};
4283
	enum intel_ddb_partitioning partitioning;
4284

4285 4286 4287 4288
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4289 4290

	/* 5/6 split only in single pipe config on IVB+ */
4291
	if (INTEL_INFO(dev)->gen >= 7 &&
4292 4293 4294
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4295

4296
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4297
	} else {
4298
		best_lp_wm = &lp_wm_1_2;
4299 4300
	}

4301
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4302
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4303

4304
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4305

4306
	ilk_write_wm_values(dev_priv, &results);
4307 4308
}

4309
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4310
{
4311 4312
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4313

4314
	mutex_lock(&dev_priv->wm.wm_mutex);
4315
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4316 4317 4318
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4319

4320 4321 4322 4323
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4324

4325 4326
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4327
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4328 4329 4330
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4331 4332
}

4333 4334
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4335
{
4336 4337 4338 4339
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4340 4341
}

4342 4343
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4344 4345
{
	struct drm_device *dev = crtc->dev;
4346
	struct drm_i915_private *dev_priv = to_i915(dev);
4347
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4348 4349
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4350
	enum pipe pipe = intel_crtc->pipe;
4351 4352
	int level, id, max_level;
	uint32_t val;
4353

4354
	max_level = ilk_wm_max_level(dev_priv);
4355

4356 4357
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		id = skl_wm_plane_id(intel_plane);
4358
		wm = &out->planes[id];
4359

4360 4361 4362 4363 4364
		for (level = 0; level <= max_level; level++) {
			if (id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, id, level));
			else
				val = I915_READ(CUR_WM(pipe, level));
4365

4366
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4367 4368
		}

4369 4370 4371 4372 4373 4374
		if (id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, id));
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4375 4376
	}

4377 4378
	if (!intel_crtc->active)
		return;
4379

4380
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4381 4382 4383 4384
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4385
	struct drm_i915_private *dev_priv = to_i915(dev);
4386
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4387
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4388
	struct drm_crtc *crtc;
4389 4390
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4391

4392
	skl_ddb_get_hw_state(dev_priv, ddb);
4393 4394 4395 4396 4397 4398
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4399
		if (intel_crtc->active)
4400 4401
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4402

4403 4404 4405 4406 4407 4408 4409
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4410 4411
}

4412 4413 4414
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4415
	struct drm_i915_private *dev_priv = to_i915(dev);
4416
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4417
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4418
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4419
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4420
	enum pipe pipe = intel_crtc->pipe;
4421
	static const i915_reg_t wm0_pipe_reg[] = {
4422 4423 4424 4425 4426 4427
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4428
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4429
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4430

4431 4432
	memset(active, 0, sizeof(*active));

4433
	active->pipe_enabled = intel_crtc->active;
4434 4435

	if (active->pipe_enabled) {
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4450
		int level, max_level = ilk_wm_max_level(dev_priv);
4451 4452 4453 4454 4455 4456 4457 4458 4459

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4460 4461

	intel_crtc->wm.active.ilk = *active;
4462 4463
}

4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4581 4582 4583 4584 4585 4586 4587 4588 4589
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4590
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4617 4618
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4619
	struct drm_i915_private *dev_priv = to_i915(dev);
4620
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4621 4622
	struct drm_crtc *crtc;

4623
	for_each_crtc(dev, crtc)
4624 4625 4626 4627 4628 4629 4630
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4631 4632 4633 4634
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4635

4636
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4637 4638
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4639
	else if (IS_IVYBRIDGE(dev_priv))
4640 4641
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4642 4643 4644 4645 4646

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4679
void intel_update_watermarks(struct intel_crtc *crtc)
4680
{
4681
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4682 4683

	if (dev_priv->display.update_wm)
4684
		dev_priv->display.update_wm(crtc);
4685 4686
}

4687
/*
4688 4689 4690 4691 4692 4693 4694 4695
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4696
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4697 4698 4699
{
	u16 rgvswctl;

4700 4701
	assert_spin_locked(&mchdev_lock);

4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4719
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4720
{
4721
	u32 rgvmodectl;
4722 4723
	u8 fmax, fmin, fstart, vstart;

4724 4725
	spin_lock_irq(&mchdev_lock);

4726 4727
	rgvmodectl = I915_READ(MEMMODECTL);

4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4748
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4749 4750
		PXVFREQ_PX_SHIFT;

4751 4752
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4753

4754 4755 4756
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4773
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4774
		DRM_ERROR("stuck trying to change perf mode\n");
4775
	mdelay(1);
4776

4777
	ironlake_set_drps(dev_priv, fstart);
4778

4779 4780
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4781
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4782
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4783
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4784 4785

	spin_unlock_irq(&mchdev_lock);
4786 4787
}

4788
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4789
{
4790 4791 4792 4793 4794
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4795 4796 4797 4798 4799 4800 4801 4802 4803

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4804
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4805
	mdelay(1);
4806 4807
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4808
	mdelay(1);
4809

4810
	spin_unlock_irq(&mchdev_lock);
4811 4812
}

4813 4814 4815 4816 4817
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4818
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4819
{
4820
	u32 limits;
4821

4822 4823 4824 4825 4826 4827
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4828
	if (IS_GEN9(dev_priv)) {
4829 4830 4831 4832 4833 4834 4835 4836
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4837 4838 4839 4840

	return limits;
}

4841 4842 4843
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4844 4845
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4846 4847 4848 4849

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4850 4851
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4852 4853 4854 4855
			new_power = BETWEEN;
		break;

	case BETWEEN:
4856 4857
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4858
			new_power = LOW_POWER;
4859 4860
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4861 4862 4863 4864
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4865 4866
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4867 4868 4869 4870
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4871
	if (val <= dev_priv->rps.min_freq_softlimit)
4872
		new_power = LOW_POWER;
4873
	if (val >= dev_priv->rps.max_freq_softlimit)
4874 4875 4876 4877 4878 4879 4880 4881
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4882 4883
		ei_up = 16000;
		threshold_up = 95;
4884 4885

		/* Downclock if less than 85% busy over 32ms */
4886 4887
		ei_down = 32000;
		threshold_down = 85;
4888 4889 4890 4891
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4892 4893
		ei_up = 13000;
		threshold_up = 90;
4894 4895

		/* Downclock if less than 75% busy over 32ms */
4896 4897
		ei_down = 32000;
		threshold_down = 75;
4898 4899 4900 4901
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4902 4903
		ei_up = 10000;
		threshold_up = 85;
4904 4905

		/* Downclock if less than 60% busy over 32ms */
4906 4907
		ei_down = 32000;
		threshold_down = 60;
4908 4909 4910
		break;
	}

4911
	I915_WRITE(GEN6_RP_UP_EI,
4912
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4913
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4914 4915
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4916 4917

	I915_WRITE(GEN6_RP_DOWN_EI,
4918
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4919
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4930

4931
	dev_priv->rps.power = new_power;
4932 4933
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4934 4935 4936
	dev_priv->rps.last_adj = 0;
}

4937 4938 4939 4940 4941
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4942
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4943
	if (val < dev_priv->rps.max_freq_softlimit)
4944
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4945

4946 4947
	mask &= dev_priv->pm_rps_events;

4948
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4949 4950
}

4951 4952 4953
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4954
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4955
{
4956
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4957
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4958 4959
		return;

4960
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4961 4962
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4963

C
Chris Wilson 已提交
4964 4965 4966 4967 4968
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4969

4970
		if (IS_GEN9(dev_priv))
4971 4972
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4973
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4974 4975 4976 4977 4978 4979 4980
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4981
	}
4982 4983 4984 4985

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4986
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4987
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4988

4989 4990
	POSTING_READ(GEN6_RPNSWREQ);

4991
	dev_priv->rps.cur_freq = val;
4992
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4993 4994
}

4995
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4996 4997
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4998 4999
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
5000

5001
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5002 5003 5004
		      "Odd GPU freq value\n"))
		val &= ~1;

5005 5006
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5007
	if (val != dev_priv->rps.cur_freq) {
5008
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5009 5010 5011
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
5012 5013 5014 5015 5016

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

5017
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5018 5019
 *
 * * If Gfx is Idle, then
5020 5021 5022
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5023 5024 5025
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5026
	u32 val = dev_priv->rps.idle_freq;
5027

5028
	if (dev_priv->rps.cur_freq <= val)
5029 5030
		return;

5031 5032 5033
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5034
	valleyview_set_rps(dev_priv, val);
5035
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5036 5037
}

5038 5039 5040 5041 5042 5043 5044 5045
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5046

5047 5048
		gen6_enable_rps_interrupts(dev_priv);

5049 5050 5051 5052 5053
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5054 5055 5056 5057
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5058 5059
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5060 5061 5062 5063 5064 5065 5066
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5067
	mutex_lock(&dev_priv->rps.hw_lock);
5068
	if (dev_priv->rps.enabled) {
5069
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5070
			vlv_set_rps_idle(dev_priv);
5071
		else
5072
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5073
		dev_priv->rps.last_adj = 0;
5074 5075
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5076
	}
5077
	mutex_unlock(&dev_priv->rps.hw_lock);
5078

5079
	spin_lock(&dev_priv->rps.client_lock);
5080 5081
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5082
	spin_unlock(&dev_priv->rps.client_lock);
5083 5084
}

5085
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5086 5087
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5088
{
5089 5090 5091
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5092
	if (!(dev_priv->gt.awake &&
5093
	      dev_priv->rps.enabled &&
5094
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5095
		return;
5096

5097 5098 5099
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5100
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5101 5102
		rps = NULL;

5103 5104 5105 5106 5107
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5108
			schedule_work(&dev_priv->rps.work);
5109 5110
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5111

5112 5113 5114
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5115 5116
		} else
			dev_priv->rps.boosts++;
5117
	}
5118
	spin_unlock(&dev_priv->rps.client_lock);
5119 5120
}

5121
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5122
{
5123 5124
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5125
	else
5126
		gen6_set_rps(dev_priv, val);
5127 5128
}

5129
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5130 5131
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5132
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5133 5134
}

5135
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5136 5137 5138 5139
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5140
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5141 5142
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5143
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5144
	I915_WRITE(GEN6_RP_CONTROL, 0);
5145 5146
}

5147
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5148 5149 5150 5151
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5152
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5153
{
5154 5155
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5156
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5157

5158
	I915_WRITE(GEN6_RC_CONTROL, 0);
5159

5160
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5161 5162
}

5163
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5164
{
5165
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5166 5167 5168 5169 5170
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5171
	if (HAS_RC6p(dev_priv))
5172 5173 5174 5175 5176
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5177 5178

	else
5179 5180
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5181 5182
}

5183
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5184
{
5185
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5186 5187
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5199 5200

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5201
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5202 5203 5204 5205 5206 5207 5208 5209
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5210 5211 5212
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5213
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5214 5215 5216 5217 5218 5219 5220
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5221
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5222 5223 5224
		enable_rc6 = false;
	}

5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5239 5240 5241 5242 5243 5244
		enable_rc6 = false;
	}

	return enable_rc6;
}

5245
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5246
{
5247
	/* No RC6 before Ironlake and code is gone for ilk. */
5248
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5249 5250
		return 0;

5251 5252 5253
	if (!enable_rc6)
		return 0;

5254
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5255 5256 5257 5258
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5259
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5260 5261 5262
	if (enable_rc6 >= 0) {
		int mask;

5263
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5264 5265 5266 5267 5268 5269
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5270 5271 5272
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5273 5274 5275

		return enable_rc6 & mask;
	}
5276

5277
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5278
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5279 5280

	return INTEL_RC6_ENABLE;
5281 5282
}

5283
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5284 5285
{
	/* All of these values are in units of 50MHz */
5286

5287
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5288
	if (IS_BROXTON(dev_priv)) {
5289
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5290 5291 5292 5293
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5294
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5295 5296 5297 5298
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5299
	/* hw_max = RP0 until we check for overclocking */
5300
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5301

5302
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5303 5304
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5305 5306 5307 5308 5309
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5310
			dev_priv->rps.efficient_freq =
5311 5312 5313 5314
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5315 5316
	}

5317
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5318
		/* Store the frequency values in 16.66 MHZ units, which is
5319 5320
		 * the natural hardware unit for SKL
		 */
5321 5322 5323 5324 5325 5326
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5327 5328
}

5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5341
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5342
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5343 5344 5345
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5346
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5347
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5348 5349 5350 5351 5352 5353 5354 5355 5356
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5357
		gen9_disable_rps(dev_priv);
5358 5359 5360 5361
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5362 5363 5364 5365 5366 5367 5368 5369
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5370 5371
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5372 5373 5374
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5375
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5376 5377 5378 5379

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5380
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5381
{
5382
	struct intel_engine_cs *engine;
5383
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5384 5385 5386 5387 5388 5389 5390
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5391
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5392 5393 5394 5395 5396

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5397 5398

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5399
	if (IS_SKYLAKE(dev_priv))
5400 5401 5402
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5403 5404
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5405
	for_each_engine(engine, dev_priv, id)
5406
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5407

5408
	if (HAS_GUC(dev_priv))
5409 5410
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5411 5412
	I915_WRITE(GEN6_RC_SLEEP, 0);

5413 5414 5415 5416
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5417
	/* 3a: Enable RC6 */
5418
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5419
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5420
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5421
	/* WaRsUseTimeoutMode:bxt */
5422
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5423
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5424 5425 5426
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5427 5428
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5429 5430 5431
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5432
	}
Z
Zhe Wang 已提交
5433

5434 5435
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5436
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5437
	 */
5438
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5439 5440 5441 5442
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5443

5444
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5445 5446
}

5447
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5448
{
5449
	struct intel_engine_cs *engine;
5450
	enum intel_engine_id id;
5451
	uint32_t rc6_mask = 0;
5452 5453 5454 5455 5456 5457

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5458
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5459 5460 5461 5462 5463 5464 5465 5466

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5467
	for_each_engine(engine, dev_priv, id)
5468
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5469
	I915_WRITE(GEN6_RC_SLEEP, 0);
5470
	if (IS_BROADWELL(dev_priv))
5471 5472 5473
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5474 5475

	/* 3: Enable RC6 */
5476
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5477
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5478 5479
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5480 5481 5482 5483 5484 5485 5486
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5487 5488

	/* 4 Program defaults and thresholds for RPS*/
5489 5490 5491 5492
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5507 5508

	/* 5: Enable RPS */
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5519
	reset_rps(dev_priv, gen6_set_rps);
5520

5521
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5522 5523
}

5524
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5525
{
5526
	struct intel_engine_cs *engine;
5527
	enum intel_engine_id id;
5528
	u32 rc6vids, rc6_mask = 0;
5529 5530
	u32 gtfifodbg;
	int rc6_mode;
5531
	int ret;
5532

5533
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5534

5535 5536 5537 5538 5539 5540 5541 5542 5543
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5544 5545
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5546 5547 5548 5549
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5550
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5561
	for_each_engine(engine, dev_priv, id)
5562
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5563 5564 5565

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5566
	if (IS_IVYBRIDGE(dev_priv))
5567 5568 5569
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5570
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5571 5572
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5573
	/* Check if we are enabling RC6 */
5574
	rc6_mode = intel_enable_rc6();
5575 5576 5577
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5578
	/* We don't use those on Haswell */
5579
	if (!IS_HASWELL(dev_priv)) {
5580 5581
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5582

5583 5584 5585
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5586

5587
	intel_print_rc6_info(dev_priv, rc6_mask);
5588 5589 5590 5591 5592 5593

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5594 5595
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5596 5597
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5598
	reset_rps(dev_priv, gen6_set_rps);
5599

5600 5601
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5602
	if (IS_GEN6(dev_priv) && ret) {
5603
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5604
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5605 5606 5607 5608 5609 5610 5611 5612 5613
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5614
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5615 5616
}

5617
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5618 5619
{
	int min_freq = 15;
5620 5621
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5622
	unsigned int max_gpu_freq, min_gpu_freq;
5623
	int scaling_factor = 180;
5624
	struct cpufreq_policy *policy;
5625

5626
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5627

5628 5629 5630 5631 5632 5633 5634 5635 5636
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5637
		max_ia_freq = tsc_khz;
5638
	}
5639 5640 5641 5642

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5643
	min_ring_freq = I915_READ(DCLK) & 0xf;
5644 5645
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5646

5647
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5648 5649 5650 5651 5652 5653 5654 5655
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5656 5657 5658 5659 5660
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5661 5662
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5663 5664
		unsigned int ia_freq = 0, ring_freq = 0;

5665
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5666 5667 5668 5669 5670
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5671
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5672 5673
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5674
		} else if (IS_HASWELL(dev_priv)) {
5675
			ring_freq = mult_frac(gpu_freq, 5, 4);
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5692

B
Ben Widawsky 已提交
5693 5694
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5695 5696 5697
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5698 5699 5700
	}
}

5701
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5702 5703 5704
{
	u32 val, rp0;

5705
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5706

5707
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5722
	}
5723 5724 5725

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5739 5740 5741 5742
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5743 5744 5745
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5746 5747 5748
	return rp1;
}

5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5760
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5761 5762 5763
{
	u32 val, rp0;

5764
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5777
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5778
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5779
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5780 5781 5782 5783 5784
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5785
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5786
{
5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5798 5799
}

5800 5801 5802 5803 5804 5805 5806 5807 5808
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5809 5810 5811 5812 5813 5814 5815 5816 5817

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5818
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5819
{
5820
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5821
	unsigned long pctx_paddr, paddr;
5822 5823 5824 5825 5826
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5827
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5828
		paddr = (dev_priv->mm.stolen_base +
5829
			 (ggtt->stolen_size - pctx_size));
5830 5831 5832 5833

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5834 5835

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5836 5837
}

5838
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5851
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5852
								      pcbr_offset,
5853
								      I915_GTT_OFFSET_NONE,
5854 5855 5856 5857
								      pctx_size);
		goto out;
	}

5858 5859
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5860 5861 5862 5863 5864 5865 5866 5867
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5868
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5869 5870
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5871
		goto out;
5872 5873 5874 5875 5876 5877
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5878
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5879 5880 5881
	dev_priv->vlv_pctx = pctx;
}

5882
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5883 5884 5885 5886
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5887
	i915_gem_object_put(dev_priv->vlv_pctx);
5888 5889 5890
	dev_priv->vlv_pctx = NULL;
}

5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5902
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5903
{
5904
	u32 val;
5905

5906
	valleyview_setup_pctx(dev_priv);
5907

5908 5909
	vlv_init_gpll_ref_freq(dev_priv);

5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5923
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5924

5925 5926 5927
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5928
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5929 5930 5931 5932
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5933
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5934 5935
			 dev_priv->rps.efficient_freq);

5936 5937
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5938
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5939 5940
			 dev_priv->rps.rp1_freq);

5941 5942
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5943
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5944 5945 5946
			 dev_priv->rps.min_freq);
}

5947
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5948
{
5949
	u32 val;
5950

5951
	cherryview_setup_pctx(dev_priv);
5952

5953 5954
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5955
	mutex_lock(&dev_priv->sb_lock);
5956
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5957
	mutex_unlock(&dev_priv->sb_lock);
5958

5959 5960 5961 5962
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5963
	default:
5964 5965 5966
		dev_priv->mem_freq = 1600;
		break;
	}
5967
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5968

5969 5970 5971
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5972
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5973 5974 5975 5976
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5977
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5978 5979
			 dev_priv->rps.efficient_freq);

5980 5981
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5982
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5983 5984
			 dev_priv->rps.rp1_freq);

5985 5986
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5987
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5988
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5989 5990
			 dev_priv->rps.min_freq);

5991 5992 5993 5994 5995
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5996 5997
}

5998
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5999
{
6000
	valleyview_cleanup_pctx(dev_priv);
6001 6002
}

6003
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6004
{
6005
	struct intel_engine_cs *engine;
6006
	enum intel_engine_id id;
6007
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6008 6009 6010

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6011 6012
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6023
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6024

6025 6026 6027
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6028 6029 6030 6031 6032
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6033
	for_each_engine(engine, dev_priv, id)
6034
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6035 6036
	I915_WRITE(GEN6_RC_SLEEP, 0);

6037 6038
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6050 6051
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6052
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6053 6054 6055

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6056
	/* 4 Program defaults and thresholds for RPS*/
6057
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6068
		   GEN6_RP_MEDIA_IS_GFX |
6069 6070 6071 6072
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6073 6074 6075 6076 6077 6078
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6079 6080
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6081 6082 6083
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6084
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6085 6086
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6087
	reset_rps(dev_priv, valleyview_set_rps);
6088

6089
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6090 6091
}

6092
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6093
{
6094
	struct intel_engine_cs *engine;
6095
	enum intel_engine_id id;
6096
	u32 gtfifodbg, val, rc6_mode = 0;
6097 6098 6099

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6100 6101
	valleyview_check_pctx(dev_priv);

6102 6103
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6104 6105
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6106 6107 6108
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6109
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6110
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6111

6112 6113 6114
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6115
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6135
	for_each_engine(engine, dev_priv, id)
6136
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6137

6138
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6139 6140

	/* allows RC6 residency counter to work */
6141
	I915_WRITE(VLV_COUNTER_CONTROL,
6142 6143
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6144 6145
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6146

6147
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6148
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6149

6150
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6151

6152
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6153

D
Deepak S 已提交
6154 6155 6156 6157 6158 6159
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6160
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6161

6162 6163 6164
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6165
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6166 6167
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6168
	reset_rps(dev_priv, valleyview_set_rps);
6169

6170
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6171 6172
}

6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6202
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6203 6204 6205 6206 6207 6208
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6209 6210
	assert_spin_locked(&mchdev_lock);

6211
	diff1 = now - dev_priv->ips.last_time1;
6212 6213 6214 6215 6216 6217 6218

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6219
		return dev_priv->ips.chipset_power;
6220 6221 6222 6223 6224 6225 6226 6227

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6228 6229
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6230 6231
		diff += total_count;
	} else {
6232
		diff = total_count - dev_priv->ips.last_count1;
6233 6234 6235
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6236 6237
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6248 6249
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6250

6251
	dev_priv->ips.chipset_power = ret;
6252 6253 6254 6255

	return ret;
}

6256 6257 6258 6259
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6260
	if (INTEL_INFO(dev_priv)->gen != 5)
6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6299
{
6300 6301 6302
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6303
	if (INTEL_INFO(dev_priv)->is_mobile)
6304 6305 6306
		return vm > 0 ? vm : 0;

	return vd;
6307 6308
}

6309
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6310
{
6311
	u64 now, diff, diffms;
6312 6313
	u32 count;

6314
	assert_spin_locked(&mchdev_lock);
6315

6316 6317 6318
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6319 6320 6321 6322 6323 6324 6325

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6326 6327
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6328 6329
		diff += count;
	} else {
6330
		diff = count - dev_priv->ips.last_count2;
6331 6332
	}

6333 6334
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6335 6336 6337 6338

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6339
	dev_priv->ips.gfx_power = diff;
6340 6341
}

6342 6343
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6344
	if (INTEL_INFO(dev_priv)->gen != 5)
6345 6346
		return;

6347
	spin_lock_irq(&mchdev_lock);
6348 6349 6350

	__i915_update_gfx_val(dev_priv);

6351
	spin_unlock_irq(&mchdev_lock);
6352 6353
}

6354
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6355 6356 6357 6358
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6359 6360
	assert_spin_locked(&mchdev_lock);

6361
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6381
	corr2 = (corr * dev_priv->ips.corr);
6382 6383 6384 6385

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6386
	__i915_update_gfx_val(dev_priv);
6387

6388
	return dev_priv->ips.gfx_power + state2;
6389 6390
}

6391 6392 6393 6394
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6395
	if (INTEL_INFO(dev_priv)->gen != 5)
6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6418
	spin_lock_irq(&mchdev_lock);
6419 6420 6421 6422
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6423 6424
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6425 6426 6427 6428

	ret = chipset_val + graphics_val;

out_unlock:
6429
	spin_unlock_irq(&mchdev_lock);
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6445
	spin_lock_irq(&mchdev_lock);
6446 6447 6448 6449 6450 6451
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6452 6453
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6454 6455

out_unlock:
6456
	spin_unlock_irq(&mchdev_lock);
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6473
	spin_lock_irq(&mchdev_lock);
6474 6475 6476 6477 6478 6479
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6480 6481
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6482 6483

out_unlock:
6484
	spin_unlock_irq(&mchdev_lock);
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6499
	spin_lock_irq(&mchdev_lock);
6500 6501
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6502
	spin_unlock_irq(&mchdev_lock);
6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6519
	spin_lock_irq(&mchdev_lock);
6520 6521 6522 6523 6524 6525
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6526
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6527

6528
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6529 6530 6531
		ret = false;

out_unlock:
6532
	spin_unlock_irq(&mchdev_lock);
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6560 6561
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6562
	spin_lock_irq(&mchdev_lock);
6563
	i915_mch_dev = dev_priv;
6564
	spin_unlock_irq(&mchdev_lock);
6565 6566 6567 6568 6569 6570

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6571
	spin_lock_irq(&mchdev_lock);
6572
	i915_mch_dev = NULL;
6573
	spin_unlock_irq(&mchdev_lock);
6574
}
6575

6576
static void intel_init_emon(struct drm_i915_private *dev_priv)
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6593
		I915_WRITE(PEW(i), 0);
6594
	for (i = 0; i < 3; i++)
6595
		I915_WRITE(DEW(i), 0);
6596 6597 6598

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6599
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6620
		I915_WRITE(PXW(i), val);
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6636
		I915_WRITE(PXWL(i), 0);
6637 6638 6639 6640 6641 6642

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6643
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6644 6645
}

6646
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6647
{
6648 6649 6650 6651 6652 6653 6654 6655
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6656

6657
	mutex_lock(&dev_priv->drm.struct_mutex);
6658 6659 6660
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6661 6662 6663 6664
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6665
	else if (INTEL_GEN(dev_priv) >= 6)
6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6695 6696 6697
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6698
	mutex_unlock(&dev_priv->rps.hw_lock);
6699
	mutex_unlock(&dev_priv->drm.struct_mutex);
6700 6701

	intel_autoenable_gt_powersave(dev_priv);
6702 6703
}

6704
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6705
{
6706
	if (IS_VALLEYVIEW(dev_priv))
6707
		valleyview_cleanup_gt_powersave(dev_priv);
6708 6709 6710

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6711 6712
}

6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6732 6733 6734 6735
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6736 6737

	gen6_reset_rps_interrupts(dev_priv);
6738 6739
}

6740
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6741
{
6742 6743
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6744

6745
	mutex_lock(&dev_priv->rps.hw_lock);
6746

6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6758
	}
6759 6760 6761

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6762 6763
}

6764
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6765
{
6766 6767 6768
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6769 6770
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6771

6772 6773 6774
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6775

6776
	mutex_lock(&dev_priv->rps.hw_lock);
6777 6778 6779 6780 6781

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6782
	} else if (INTEL_GEN(dev_priv) >= 9) {
6783 6784 6785
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6786
			gen6_update_ring_freq(dev_priv);
6787 6788
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6789
		gen6_update_ring_freq(dev_priv);
6790
	} else if (INTEL_GEN(dev_priv) >= 6) {
6791
		gen6_enable_rps(dev_priv);
6792
		gen6_update_ring_freq(dev_priv);
6793 6794 6795
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6796
	}
6797 6798 6799 6800 6801 6802 6803

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6804
	dev_priv->rps.enabled = true;
6805 6806
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6807

6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6818
	rcs = dev_priv->engine[RCS];
6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6871 6872
static void ibx_init_clock_gating(struct drm_device *dev)
{
6873
	struct drm_i915_private *dev_priv = to_i915(dev);
6874 6875 6876 6877 6878 6879 6880 6881 6882

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6883 6884
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
6885
	struct drm_i915_private *dev_priv = to_i915(dev);
6886
	enum pipe pipe;
6887

6888
	for_each_pipe(dev_priv, pipe) {
6889 6890 6891
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6892 6893 6894

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6895 6896 6897
	}
}

6898 6899
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
6900
	struct drm_i915_private *dev_priv = to_i915(dev);
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6912
static void ironlake_init_clock_gating(struct drm_device *dev)
6913
{
6914
	struct drm_i915_private *dev_priv = to_i915(dev);
6915
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6916

6917 6918 6919 6920
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6921 6922 6923
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6941
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6942 6943 6944
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6945 6946

	ilk_init_lp_watermarks(dev);
6947 6948 6949 6950 6951 6952 6953 6954

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6955
	if (IS_IRONLAKE_M(dev_priv)) {
6956
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6957 6958 6959 6960 6961 6962 6963 6964
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6965 6966
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6967 6968 6969 6970 6971 6972
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6973

6974
	/* WaDisableRenderCachePipelinedFlush:ilk */
6975 6976
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6977

6978 6979 6980
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6981
	g4x_disable_trickle_feed(dev);
6982

6983 6984 6985 6986 6987
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
6988
	struct drm_i915_private *dev_priv = to_i915(dev);
6989
	int pipe;
6990
	uint32_t val;
6991 6992 6993 6994 6995 6996

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6997 6998 6999
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7000 7001
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
7002 7003 7004
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
7005
	for_each_pipe(dev_priv, pipe) {
7006 7007 7008
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7009
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7010
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7011 7012 7013
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7014 7015
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7016
	/* WADP0ClockGatingDisable */
7017
	for_each_pipe(dev_priv, pipe) {
7018 7019 7020
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7021 7022
}

7023 7024
static void gen6_check_mch_setup(struct drm_device *dev)
{
7025
	struct drm_i915_private *dev_priv = to_i915(dev);
7026 7027 7028
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7029 7030 7031
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7032 7033
}

7034
static void gen6_init_clock_gating(struct drm_device *dev)
7035
{
7036
	struct drm_i915_private *dev_priv = to_i915(dev);
7037
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7038

7039
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7040 7041 7042 7043 7044

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7045
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7046 7047 7048
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7049 7050 7051
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7052 7053 7054
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7055 7056 7057 7058
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7059 7060
	 */
	I915_WRITE(GEN6_GT_MODE,
7061
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7062

7063
	ilk_init_lp_watermarks(dev);
7064 7065

	I915_WRITE(CACHE_MODE_0,
7066
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7082
	 *
7083 7084
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7085 7086 7087 7088 7089
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7090
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7091 7092
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7093

7094 7095 7096 7097 7098 7099 7100 7101
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7102 7103 7104 7105 7106 7107 7108 7109
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7110 7111
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7112 7113 7114 7115 7116 7117 7118
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7119 7120 7121 7122
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7123

7124
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
7125

7126
	cpt_init_clock_gating(dev);
7127 7128

	gen6_check_mch_setup(dev);
7129 7130 7131 7132 7133 7134
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7135
	/*
7136
	 * WaVSThreadDispatchOverride:ivb,vlv
7137 7138 7139 7140
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7141 7142 7143 7144 7145 7146 7147 7148
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7149 7150
static void lpt_init_clock_gating(struct drm_device *dev)
{
7151
	struct drm_i915_private *dev_priv = to_i915(dev);
7152 7153 7154 7155 7156

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7157
	if (HAS_PCH_LPT_LP(dev_priv))
7158 7159 7160
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7161 7162

	/* WADPOClockGatingDisable:hsw */
7163 7164
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7165
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7166 7167
}

7168 7169
static void lpt_suspend_hw(struct drm_device *dev)
{
7170
	struct drm_i915_private *dev_priv = to_i915(dev);
7171

7172
	if (HAS_PCH_LPT_LP(dev_priv)) {
7173 7174 7175 7176 7177 7178 7179
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7203 7204
static void kabylake_init_clock_gating(struct drm_device *dev)
{
7205
	struct drm_i915_private *dev_priv = dev->dev_private;
7206

7207
	gen9_init_clock_gating(dev);
7208 7209 7210 7211 7212

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7213 7214 7215 7216 7217

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7218 7219 7220 7221

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7222 7223
}

7224 7225
static void skylake_init_clock_gating(struct drm_device *dev)
{
7226
	struct drm_i915_private *dev_priv = dev->dev_private;
7227

7228
	gen9_init_clock_gating(dev);
7229 7230 7231 7232

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7233 7234 7235 7236

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7237 7238
}

7239
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7240
{
7241
	struct drm_i915_private *dev_priv = to_i915(dev);
7242
	enum pipe pipe;
B
Ben Widawsky 已提交
7243

7244
	ilk_init_lp_watermarks(dev);
7245

7246
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7247
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7248

7249
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7250 7251 7252
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7253
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7254
	for_each_pipe(dev_priv, pipe) {
7255
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7256
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7257
			   BDW_DPRS_MASK_VBLANK_SRD);
7258
	}
7259

7260 7261 7262 7263 7264
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7265

7266 7267
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7268 7269 7270 7271

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7272

7273 7274
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7275

7276 7277 7278 7279 7280 7281 7282
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7283 7284 7285 7286
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7287
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7288 7289
}

7290 7291
static void haswell_init_clock_gating(struct drm_device *dev)
{
7292
	struct drm_i915_private *dev_priv = to_i915(dev);
7293

7294
	ilk_init_lp_watermarks(dev);
7295

7296 7297 7298 7299 7300
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7301
	/* This is required by WaCatErrorRejectionIssue:hsw */
7302 7303 7304 7305
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7306 7307 7308
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7309

7310 7311 7312
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7313 7314 7315 7316
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7317
	/* WaDisable4x2SubspanOptimization:hsw */
7318 7319
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7320

7321 7322 7323
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7324 7325 7326 7327
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7328 7329
	 */
	I915_WRITE(GEN7_GT_MODE,
7330
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7331

7332 7333 7334 7335
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7336
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7337 7338
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7339 7340 7341
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7342

7343
	lpt_init_clock_gating(dev);
7344 7345
}

7346
static void ivybridge_init_clock_gating(struct drm_device *dev)
7347
{
7348
	struct drm_i915_private *dev_priv = to_i915(dev);
7349
	uint32_t snpcr;
7350

7351
	ilk_init_lp_watermarks(dev);
7352

7353
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7354

7355
	/* WaDisableEarlyCull:ivb */
7356 7357 7358
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7359
	/* WaDisableBackToBackFlipFix:ivb */
7360 7361 7362 7363
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7364
	/* WaDisablePSDDualDispatchEnable:ivb */
7365
	if (IS_IVB_GT1(dev_priv))
7366 7367 7368
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7369 7370 7371
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7372
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7373 7374 7375
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7376
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7377 7378 7379
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7380
		   GEN7_WA_L3_CHICKEN_MODE);
7381
	if (IS_IVB_GT1(dev_priv))
7382 7383
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7384 7385 7386 7387
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7388 7389
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7390
	}
7391

7392
	/* WaForceL3Serialization:ivb */
7393 7394 7395
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7396
	/*
7397
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7398
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7399 7400
	 */
	I915_WRITE(GEN6_UCGCTL2,
7401
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7402

7403
	/* This is required by WaCatErrorRejectionIssue:ivb */
7404 7405 7406 7407
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7408
	g4x_disable_trickle_feed(dev);
7409 7410

	gen7_setup_fixed_func_scheduler(dev_priv);
7411

7412 7413 7414 7415 7416
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7417

7418
	/* WaDisable4x2SubspanOptimization:ivb */
7419 7420
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7421

7422 7423 7424
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7425 7426 7427 7428
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7429 7430
	 */
	I915_WRITE(GEN7_GT_MODE,
7431
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7432

7433 7434 7435 7436
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7437

7438
	if (!HAS_PCH_NOP(dev_priv))
7439
		cpt_init_clock_gating(dev);
7440 7441

	gen6_check_mch_setup(dev);
7442 7443
}

7444
static void valleyview_init_clock_gating(struct drm_device *dev)
7445
{
7446
	struct drm_i915_private *dev_priv = to_i915(dev);
7447

7448
	/* WaDisableEarlyCull:vlv */
7449 7450 7451
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7452
	/* WaDisableBackToBackFlipFix:vlv */
7453 7454 7455 7456
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7457
	/* WaPsdDispatchEnable:vlv */
7458
	/* WaDisablePSDDualDispatchEnable:vlv */
7459
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7460 7461
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7462

7463 7464 7465
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7466
	/* WaForceL3Serialization:vlv */
7467 7468 7469
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7470
	/* WaDisableDopClockGating:vlv */
7471 7472 7473
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7474
	/* This is required by WaCatErrorRejectionIssue:vlv */
7475 7476 7477 7478
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7479 7480
	gen7_setup_fixed_func_scheduler(dev_priv);

7481
	/*
7482
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7483
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7484 7485
	 */
	I915_WRITE(GEN6_UCGCTL2,
7486
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7487

7488 7489 7490 7491 7492
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7493

7494 7495 7496 7497
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7498 7499
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7500

7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7512 7513 7514 7515 7516 7517
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7518
	/*
7519
	 * WaDisableVLVClockGating_VBIIssue:vlv
7520 7521 7522
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7523
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7524 7525
}

7526 7527
static void cherryview_init_clock_gating(struct drm_device *dev)
{
7528
	struct drm_i915_private *dev_priv = to_i915(dev);
7529

7530 7531 7532 7533 7534
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7535 7536 7537 7538

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7539 7540 7541 7542

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7543 7544 7545 7546

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7547

7548 7549 7550 7551 7552 7553 7554
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7555 7556 7557 7558 7559
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7560 7561
}

7562
static void g4x_init_clock_gating(struct drm_device *dev)
7563
{
7564
	struct drm_i915_private *dev_priv = to_i915(dev);
7565 7566 7567 7568 7569 7570 7571 7572 7573 7574
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7575
	if (IS_GM45(dev_priv))
7576 7577
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7578 7579 7580 7581

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7582

7583 7584 7585
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7586
	g4x_disable_trickle_feed(dev);
7587 7588
}

7589
static void crestline_init_clock_gating(struct drm_device *dev)
7590
{
7591
	struct drm_i915_private *dev_priv = to_i915(dev);
7592 7593 7594 7595 7596 7597

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7598 7599
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7600 7601 7602

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7603 7604
}

7605
static void broadwater_init_clock_gating(struct drm_device *dev)
7606
{
7607
	struct drm_i915_private *dev_priv = to_i915(dev);
7608 7609 7610 7611 7612 7613 7614

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7615 7616
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7617 7618 7619

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7620 7621
}

7622
static void gen3_init_clock_gating(struct drm_device *dev)
7623
{
7624
	struct drm_i915_private *dev_priv = to_i915(dev);
7625 7626 7627 7628 7629
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7630 7631 7632

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7633 7634 7635

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7636 7637

	/* interrupts should cause a wake up from C3 */
7638
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7639 7640 7641

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7642 7643 7644

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7645 7646
}

7647
static void i85x_init_clock_gating(struct drm_device *dev)
7648
{
7649
	struct drm_i915_private *dev_priv = to_i915(dev);
7650 7651

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7652 7653 7654 7655

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7656 7657 7658

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7659 7660
}

7661
static void i830_init_clock_gating(struct drm_device *dev)
7662
{
7663
	struct drm_i915_private *dev_priv = to_i915(dev);
7664 7665

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7666 7667 7668 7669

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7670 7671 7672 7673
}

void intel_init_clock_gating(struct drm_device *dev)
{
7674
	struct drm_i915_private *dev_priv = to_i915(dev);
7675

7676
	dev_priv->display.init_clock_gating(dev);
7677 7678
}

7679 7680
void intel_suspend_hw(struct drm_device *dev)
{
7681
	if (HAS_PCH_LPT(to_i915(dev)))
7682 7683 7684
		lpt_suspend_hw(dev);
}

7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7702
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7703
	else if (IS_KABYLAKE(dev_priv))
7704
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7739 7740 7741
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
7742
	struct drm_i915_private *dev_priv = to_i915(dev);
7743

7744
	intel_fbc_init(dev_priv);
7745

7746 7747 7748
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
7749
	else if (IS_GEN5(dev_priv))
7750 7751
		i915_ironlake_get_mem_freq(dev);

7752
	/* For FIFO watermark updates */
7753
	if (INTEL_INFO(dev)->gen >= 9) {
7754
		skl_setup_wm_latency(dev);
7755
		dev_priv->display.update_wm = skl_update_wm;
7756
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7757
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7758
		ilk_setup_wm_latency(dev);
7759

7760
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7761
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7762
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7763
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7764
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7765 7766 7767 7768 7769 7770
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7771 7772 7773 7774
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7775
	} else if (IS_CHERRYVIEW(dev_priv)) {
7776 7777
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7778
	} else if (IS_VALLEYVIEW(dev_priv)) {
7779 7780
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7781
	} else if (IS_PINEVIEW(dev)) {
7782
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7783 7784 7785 7786 7787 7788 7789 7790 7791
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7792
			intel_set_memory_cxsr(dev_priv, false);
7793 7794 7795
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7796
	} else if (IS_G4X(dev_priv)) {
7797
		dev_priv->display.update_wm = g4x_update_wm;
7798
	} else if (IS_GEN4(dev_priv)) {
7799
		dev_priv->display.update_wm = i965_update_wm;
7800
	} else if (IS_GEN3(dev_priv)) {
7801 7802
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7803
	} else if (IS_GEN2(dev_priv)) {
7804 7805
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7806
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7807 7808
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7809
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7810 7811 7812
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7813 7814 7815
	}
}

7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7828
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7860
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7861
{
7862 7863
	int status;

7864
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7865

7866 7867 7868 7869 7870 7871
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7872 7873 7874 7875
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7876 7877 7878
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7879

7880 7881 7882
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7883 7884 7885 7886
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7887 7888
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7889

7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7901 7902 7903
	return 0;
}

7904
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7905
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7906
{
7907 7908
	int status;

7909
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7910

7911 7912 7913 7914 7915 7916
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7917 7918 7919 7920
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7921 7922
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7923

7924 7925 7926
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7927 7928 7929 7930
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7931
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7932

7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7944 7945
	return 0;
}
7946

7947 7948
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7949 7950 7951 7952 7953
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7954 7955
}

7956
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7957
{
7958
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7959 7960
}

7961
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7962
{
7963 7964 7965 7966 7967
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7968 7969
}

7970
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7971
{
7972
	/* CHV needs even values */
7973
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7974 7975
}

7976
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7977
{
7978
	if (IS_GEN9(dev_priv))
7979 7980
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7981
	else if (IS_CHERRYVIEW(dev_priv))
7982
		return chv_gpu_freq(dev_priv, val);
7983
	else if (IS_VALLEYVIEW(dev_priv))
7984 7985 7986
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7987 7988
}

7989 7990
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7991
	if (IS_GEN9(dev_priv))
7992 7993
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7994
	else if (IS_CHERRYVIEW(dev_priv))
7995
		return chv_freq_opcode(dev_priv, val);
7996
	else if (IS_VALLEYVIEW(dev_priv))
7997 7998
		return byt_freq_opcode(dev_priv, val);
	else
7999
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8000
}
8001

8002 8003
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8004
	struct drm_i915_gem_request *req;
8005 8006 8007 8008 8009
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8010
	struct drm_i915_gem_request *req = boost->req;
8011

8012
	if (!i915_gem_request_completed(req))
8013
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8014

8015
	i915_gem_request_put(req);
8016 8017 8018
	kfree(boost);
}

8019
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8020 8021 8022
{
	struct request_boost *boost;

8023
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8024 8025
		return;

8026
	if (i915_gem_request_completed(req))
8027 8028
		return;

8029 8030 8031 8032
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8033
	boost->req = i915_gem_request_get(req);
8034 8035

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8036
	queue_work(req->i915->wq, &boost->work);
8037 8038
}

D
Daniel Vetter 已提交
8039
void intel_pm_setup(struct drm_device *dev)
8040
{
8041
	struct drm_i915_private *dev_priv = to_i915(dev);
8042

D
Daniel Vetter 已提交
8043
	mutex_init(&dev_priv->rps.hw_lock);
8044
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8045

8046 8047
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8048
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8049

8050
	dev_priv->pm.suspended = false;
8051
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8052
}