intel_pm.c 214.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34
/**
35 36
 * DOC: RC6
 *
B
Ben Widawsky 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

57 58
static void bxt_init_clock_gating(struct drm_device *dev)
{
59 60
	struct drm_i915_private *dev_priv = dev->dev_private;

61 62 63 64
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:bxt */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66 67 68
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

69 70
	/*
	 * FIXME:
71
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
72 73
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
74
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
75 76 77 78 79 80 81 82

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
83 84
}

85 86
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
87
	struct drm_i915_private *dev_priv = dev->dev_private;
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
126
	struct drm_i915_private *dev_priv = dev->dev_private;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

152
	dev_priv->ips.r_t = dev_priv->mem_freq;
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
184
		dev_priv->ips.c_m = 0;
185
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
186
		dev_priv->ips.c_m = 1;
187
	} else {
188
		dev_priv->ips.c_m = 2;
189 190 191
	}
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

230
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

292 293 294
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

295
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
296
{
297 298
	struct drm_device *dev = dev_priv->dev;
	u32 val;
299

300
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
301
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
302
		POSTING_READ(FW_BLC_SELF_VLV);
303
		dev_priv->wm.vlv.cxsr = enable;
304 305
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
306
		POSTING_READ(FW_BLC_SELF);
307 308 309 310
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
311
		POSTING_READ(DSPFW3);
312 313 314 315
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
316
		POSTING_READ(FW_BLC_SELF);
317 318 319 320
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
321
		POSTING_READ(INSTPM);
322 323 324
	} else {
		return;
	}
325

326 327
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
328 329
}

330

331 332 333 334 335 336 337 338 339 340 341 342 343 344
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
345
static const int pessimal_latency_ns = 5000;
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

402
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

418
static int i830_get_fifo_size(struct drm_device *dev, int plane)
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

435
static int i845_get_fifo_size(struct drm_device *dev, int plane)
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
453 454 455 456 457
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
458 459
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
460 461 462 463 464
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
465 466
};
static const struct intel_watermark_params pineview_cursor_wm = {
467 468 469 470 471
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
472 473
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
474 475 476 477 478
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
479 480
};
static const struct intel_watermark_params g4x_wm_info = {
481 482 483 484 485
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
486 487
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
488 489 490 491 492
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
493 494
};
static const struct intel_watermark_params i965_cursor_wm_info = {
495 496 497 498 499
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
500 501
};
static const struct intel_watermark_params i945_wm_info = {
502 503 504 505 506
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
507 508
};
static const struct intel_watermark_params i915_wm_info = {
509 510 511 512 513
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
514
};
515
static const struct intel_watermark_params i830_a_wm_info = {
516 517 518 519 520
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
521
};
522 523 524 525 526 527 528
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
529
static const struct intel_watermark_params i845_wm_info = {
530 531 532 533 534
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
535 536 537 538 539 540
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
541
 * @cpp: bytes per pixel
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
557
					int fifo_size, int cpp,
558 559 560 561 562 563 564 565 566 567
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
568
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
569 570 571 572 573 574 575 576 577 578 579 580 581 582
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
583 584 585 586 587 588 589 590 591 592 593

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

594 595 596 597 598 599 600
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

601
	for_each_crtc(dev, crtc) {
602
		if (intel_crtc_active(crtc)) {
603 604 605 606 607 608 609 610 611
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

612
static void pineview_update_wm(struct drm_crtc *unused_crtc)
613
{
614
	struct drm_device *dev = unused_crtc->dev;
615 616 617 618 619 620 621 622 623 624
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
625
		intel_set_memory_cxsr(dev_priv, false);
626 627 628 629 630
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
631
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
632
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
633
		int clock = adjusted_mode->crtc_clock;
634 635 636 637

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
638
					cpp, latency->display_sr);
639 640
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
641
		reg |= FW_WM(wm, SR);
642 643 644 645 646 647
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
648
					cpp, latency->cursor_sr);
649 650
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
651
		reg |= FW_WM(wm, CURSOR_SR);
652 653 654 655 656
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
657
					cpp, latency->display_hpll_disable);
658 659
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
660
		reg |= FW_WM(wm, HPLL_SR);
661 662 663 664 665
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
666
					cpp, latency->cursor_hpll_disable);
667 668
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
669
		reg |= FW_WM(wm, HPLL_CURSOR);
670 671 672
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

673
		intel_set_memory_cxsr(dev_priv, true);
674
	} else {
675
		intel_set_memory_cxsr(dev_priv, false);
676 677 678 679 680 681 682 683 684 685 686 687 688
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
689
	const struct drm_display_mode *adjusted_mode;
690
	int htotal, hdisplay, clock, cpp;
691 692 693 694
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
695
	if (!intel_crtc_active(crtc)) {
696 697 698 699 700
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

701
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
702
	clock = adjusted_mode->crtc_clock;
703
	htotal = adjusted_mode->crtc_htotal;
704
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
705
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
706 707

	/* Use the small buffer method to calculate plane watermark */
708
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
709 710 711 712 713 714 715 716 717
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
718
	line_time_us = max(htotal * 1000 / clock, 1);
719
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
720
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
775
	const struct drm_display_mode *adjusted_mode;
776
	int hdisplay, htotal, cpp, clock;
777 778 779 780 781 782 783 784 785 786 787
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
788
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
789
	clock = adjusted_mode->crtc_clock;
790
	htotal = adjusted_mode->crtc_htotal;
791
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
792
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
793

794
	line_time_us = max(htotal * 1000 / clock, 1);
795
	line_count = (latency_ns / line_time_us + 1000) / 1000;
796
	line_size = hdisplay * cpp;
797 798

	/* Use the minimum of the small and large buffer method for primary */
799
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
800 801 802 803 804 805
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
806
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
807 808 809 810 811 812 813 814
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

815 816 817
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

818 819 820 821 822 823 824 825 826 827 828 829
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

830
	I915_WRITE(DSPFW1,
831 832 833 834
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
835
	I915_WRITE(DSPFW2,
836 837 838
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
839
	I915_WRITE(DSPFW3,
840
		   FW_WM(wm->sr.cursor, CURSOR_SR));
841 842 843

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
844 845
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
846
		I915_WRITE(DSPFW8_CHV,
847 848
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
849
		I915_WRITE(DSPFW9_CHV,
850 851
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
852
		I915_WRITE(DSPHOWM,
853 854 855 856 857 858 859 860 861 862
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
863 864
	} else {
		I915_WRITE(DSPFW7,
865 866
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
867
		I915_WRITE(DSPHOWM,
868 869 870 871 872 873 874
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
875 876
	}

877 878 879 880 881 882
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

883
	POSTING_READ(DSPFW1);
884 885
}

886 887
#undef FW_WM_VLV

888 889 890 891 892 893
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

894 895 896 897
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
898
				   unsigned int cpp,
899 900 901 902 903
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
904
	ret = (ret + 1) * horiz_pixels * cpp;
905 906 907 908 909 910 911 912 913 914 915 916
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

917 918
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

919 920 921
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
922 923

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
924 925 926 927 928 929 930 931 932
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
933
	int clock, htotal, cpp, width, wm;
934 935 936 937 938 939 940

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

941
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
957
		wm = vlv_wm_method2(clock, htotal, width, cpp,
958 959 960 961 962 963
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1065
static void vlv_compute_wm(struct intel_crtc *crtc)
1066 1067 1068 1069 1070 1071 1072 1073 1074
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1075
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1076
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1077 1078 1079

	wm_state->num_active_planes = 0;

1080
	vlv_compute_fifo(crtc);
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1137
					wm_state->wm[level].cursor;
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1156
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1157 1158 1159 1160 1161 1162 1163
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1254 1255 1256 1257 1258 1259
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1260
	wm->level = to_i915(dev)->wm.max_level;
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1279 1280 1281
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1308
	vlv_compute_wm(intel_crtc);
1309 1310
	vlv_merge_wm(dev, &wm);

1311 1312 1313
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1314
		return;
1315
	}
1316 1317 1318 1319 1320 1321 1322 1323 1324

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1325
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1326 1327
		intel_set_memory_cxsr(dev_priv, false);

1328 1329 1330
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1331 1332 1333 1334 1335 1336 1337 1338
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1339
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1351 1352
}

1353 1354
#define single_plane_enabled(mask) is_power_of_2(mask)

1355
static void g4x_update_wm(struct drm_crtc *crtc)
1356
{
1357
	struct drm_device *dev = crtc->dev;
1358 1359 1360 1361 1362
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1363
	bool cxsr_enabled;
1364

1365
	if (g4x_compute_wm0(dev, PIPE_A,
1366 1367
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1368
			    &planea_wm, &cursora_wm))
1369
		enabled |= 1 << PIPE_A;
1370

1371
	if (g4x_compute_wm0(dev, PIPE_B,
1372 1373
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1374
			    &planeb_wm, &cursorb_wm))
1375
		enabled |= 1 << PIPE_B;
1376 1377 1378 1379 1380 1381

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1382
			     &plane_sr, &cursor_sr)) {
1383
		cxsr_enabled = true;
1384
	} else {
1385
		cxsr_enabled = false;
1386
		intel_set_memory_cxsr(dev_priv, false);
1387 1388
		plane_sr = cursor_sr = 0;
	}
1389

1390 1391
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1392 1393 1394 1395 1396
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1397 1398 1399 1400
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1401
	I915_WRITE(DSPFW2,
1402
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1403
		   FW_WM(cursora_wm, CURSORA));
1404 1405
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1406
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1407
		   FW_WM(cursor_sr, CURSOR_SR));
1408 1409 1410

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1411 1412
}

1413
static void i965_update_wm(struct drm_crtc *unused_crtc)
1414
{
1415
	struct drm_device *dev = unused_crtc->dev;
1416 1417 1418 1419
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1420
	bool cxsr_enabled;
1421 1422 1423 1424 1425 1426

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1427
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1428
		int clock = adjusted_mode->crtc_clock;
1429
		int htotal = adjusted_mode->crtc_htotal;
1430
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1431
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1432 1433 1434
		unsigned long line_time_us;
		int entries;

1435
		line_time_us = max(htotal * 1000 / clock, 1);
1436 1437 1438

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1439
			cpp * hdisplay;
1440 1441 1442 1443 1444 1445 1446 1447 1448
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1449
			cpp * crtc->cursor->state->crtc_w;
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1461
		cxsr_enabled = true;
1462
	} else {
1463
		cxsr_enabled = false;
1464
		/* Turn off self refresh if both pipes are enabled */
1465
		intel_set_memory_cxsr(dev_priv, false);
1466 1467 1468 1469 1470 1471
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1472 1473 1474 1475 1476 1477
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1478
	/* update cursor SR watermark */
1479
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1480 1481 1482

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1483 1484
}

1485 1486
#undef FW_WM

1487
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1488
{
1489
	struct drm_device *dev = unused_crtc->dev;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1504
		wm_info = &i830_a_wm_info;
1505 1506 1507

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1508
	if (intel_crtc_active(crtc)) {
1509
		const struct drm_display_mode *adjusted_mode;
1510
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1511 1512 1513
		if (IS_GEN2(dev))
			cpp = 4;

1514
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1515
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1516
					       wm_info, fifo_size, cpp,
1517
					       pessimal_latency_ns);
1518
		enabled = crtc;
1519
	} else {
1520
		planea_wm = fifo_size - wm_info->guard_size;
1521 1522 1523 1524 1525 1526
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1527 1528 1529

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1530
	if (intel_crtc_active(crtc)) {
1531
		const struct drm_display_mode *adjusted_mode;
1532
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1533 1534 1535
		if (IS_GEN2(dev))
			cpp = 4;

1536
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1537
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1538
					       wm_info, fifo_size, cpp,
1539
					       pessimal_latency_ns);
1540 1541 1542 1543
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1544
	} else {
1545
		planeb_wm = fifo_size - wm_info->guard_size;
1546 1547 1548
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1549 1550 1551

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1552
	if (IS_I915GM(dev) && enabled) {
1553
		struct drm_i915_gem_object *obj;
1554

1555
		obj = intel_fb_obj(enabled->primary->state->fb);
1556 1557

		/* self-refresh seems busted with untiled */
1558
		if (obj->tiling_mode == I915_TILING_NONE)
1559 1560 1561
			enabled = NULL;
	}

1562 1563 1564 1565 1566 1567
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1568
	intel_set_memory_cxsr(dev_priv, false);
1569 1570 1571 1572 1573

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1574
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1575
		int clock = adjusted_mode->crtc_clock;
1576
		int htotal = adjusted_mode->crtc_htotal;
1577
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1578
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1579 1580 1581
		unsigned long line_time_us;
		int entries;

1582
		line_time_us = max(htotal * 1000 / clock, 1);
1583 1584 1585

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1586
			cpp * hdisplay;
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1613 1614
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1615 1616
}

1617
static void i845_update_wm(struct drm_crtc *unused_crtc)
1618
{
1619
	struct drm_device *dev = unused_crtc->dev;
1620 1621
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1622
	const struct drm_display_mode *adjusted_mode;
1623 1624 1625 1626 1627 1628 1629
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1630
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1631
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1632
				       &i845_wm_info,
1633
				       dev_priv->display.get_fifo_size(dev, 0),
1634
				       4, pessimal_latency_ns);
1635 1636 1637 1638 1639 1640 1641 1642
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1643
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1644
{
1645
	uint32_t pixel_rate;
1646

1647
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1648 1649 1650 1651

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1652
	if (pipe_config->pch_pfit.enabled) {
1653
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1654 1655 1656 1657
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1658 1659 1660 1661 1662 1663 1664 1665

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1666 1667 1668
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1669 1670 1671 1672 1673 1674 1675
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1676
/* latency must be in 0.1us units. */
1677
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1678 1679 1680
{
	uint64_t ret;

1681 1682 1683
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1684
	ret = (uint64_t) pixel_rate * cpp * latency;
1685 1686 1687 1688 1689
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1690
/* latency must be in 0.1us units. */
1691
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1692
			       uint32_t horiz_pixels, uint8_t cpp,
1693 1694 1695 1696
			       uint32_t latency)
{
	uint32_t ret;

1697 1698
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1699 1700
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1701

1702
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1703
	ret = (ret + 1) * horiz_pixels * cpp;
1704 1705 1706 1707
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1708
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1709
			   uint8_t cpp)
1710
{
1711 1712 1713 1714 1715 1716
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1717
	if (WARN_ON(!cpp))
1718 1719 1720 1721
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1722
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1723 1724
}

1725
struct ilk_wm_maximums {
1726 1727 1728 1729 1730 1731
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1732 1733 1734 1735
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1736
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1737
				   const struct intel_plane_state *pstate,
1738 1739
				   uint32_t mem_value,
				   bool is_lp)
1740
{
1741 1742
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1743 1744
	uint32_t method1, method2;

1745
	if (!cstate->base.active || !pstate->visible)
1746 1747
		return 0;

1748
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1749 1750 1751 1752

	if (!is_lp)
		return method1;

1753 1754
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1755
				 drm_rect_width(&pstate->dst),
1756
				 cpp, mem_value);
1757 1758

	return min(method1, method2);
1759 1760
}

1761 1762 1763 1764
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1765
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1766
				   const struct intel_plane_state *pstate,
1767 1768
				   uint32_t mem_value)
{
1769 1770
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1771 1772
	uint32_t method1, method2;

1773
	if (!cstate->base.active || !pstate->visible)
1774 1775
		return 0;

1776
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1777 1778
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1779
				 drm_rect_width(&pstate->dst),
1780
				 cpp, mem_value);
1781 1782 1783
	return min(method1, method2);
}

1784 1785 1786 1787
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1788
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1789
				   const struct intel_plane_state *pstate,
1790 1791
				   uint32_t mem_value)
{
1792 1793 1794 1795 1796 1797 1798
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
	int width = pstate->visible ? pstate->base.crtc_w : 64;
1799

1800
	if (!cstate->base.active)
1801 1802
		return 0;

1803 1804
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1805
			      width, cpp, mem_value);
1806 1807
}

1808
/* Only for WM_LP. */
1809
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1810
				   const struct intel_plane_state *pstate,
1811
				   uint32_t pri_val)
1812
{
1813 1814
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1815

1816
	if (!cstate->base.active || !pstate->visible)
1817 1818
		return 0;

1819
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1820 1821
}

1822 1823
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1824 1825 1826
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1827 1828 1829 1830 1831
		return 768;
	else
		return 512;
}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1866 1867 1868
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1869
				     const struct intel_wm_config *config,
1870 1871 1872 1873 1874 1875
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1876
	if (is_sprite && !config->sprites_enabled)
1877 1878 1879
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1880
	if (level == 0 || config->num_pipes_active > 1) {
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1892
	if (config->sprites_enabled) {
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1904
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1905 1906 1907 1908
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1909 1910
				      int level,
				      const struct intel_wm_config *config)
1911 1912
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1913
	if (level > 0 && config->num_pipes_active > 1)
1914 1915 1916
		return 64;

	/* otherwise just report max that registers can hold */
1917
	return ilk_cursor_wm_reg_max(dev, level);
1918 1919
}

1920
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1921 1922 1923
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1924
				    struct ilk_wm_maximums *max)
1925
{
1926 1927 1928
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1929
	max->fbc = ilk_fbc_wm_reg_max(dev);
1930 1931
}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1942
static bool ilk_validate_wm_level(int level,
1943
				  const struct ilk_wm_maximums *max,
1944
				  struct intel_wm_level *result)
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1983
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1984
				 const struct intel_crtc *intel_crtc,
1985
				 int level,
1986
				 struct intel_crtc_state *cstate,
1987 1988 1989
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
1990
				 struct intel_wm_level *result)
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2015 2016 2017
	result->enable = true;
}

2018
static uint32_t
2019
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2020
{
2021 2022
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2023 2024
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2025
	u32 linetime, ips_linetime;
2026

2027 2028 2029 2030
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2031
	if (WARN_ON(intel_state->cdclk == 0))
2032
		return 0;
2033

2034 2035 2036
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2037 2038 2039
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2040
					 intel_state->cdclk);
2041

2042 2043
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2044 2045
}

2046
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2047 2048 2049
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2050 2051
	if (IS_GEN9(dev)) {
		uint32_t val;
2052
		int ret, i;
2053
		int level, max_level = ilk_wm_max_level(dev);
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2096
		/*
2097 2098
		 * WaWmMemoryReadLatency:skl
		 *
2099 2100 2101 2102 2103 2104 2105 2106
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2107 2108 2109 2110 2111
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2112 2113 2114 2115 2116
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2117 2118 2119
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2120

2121 2122
				break;
			}
2123
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2124 2125 2126 2127 2128
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2129 2130 2131 2132
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2133 2134 2135 2136 2137 2138 2139
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2140 2141 2142 2143 2144 2145 2146
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2147 2148 2149
	}
}

2150 2151 2152
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
2153
	if (IS_GEN5(dev))
2154 2155 2156 2157 2158 2159
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
2160
	if (IS_GEN5(dev))
2161 2162 2163 2164 2165 2166 2167
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2168
int ilk_wm_max_level(const struct drm_device *dev)
2169 2170
{
	/* how many WM levels are we expecting */
2171
	if (INTEL_INFO(dev)->gen >= 9)
2172 2173
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2174
		return 4;
2175
	else if (INTEL_INFO(dev)->gen >= 6)
2176
		return 3;
2177
	else
2178 2179
		return 2;
}
2180

2181 2182
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2183
				   const uint16_t wm[8])
2184 2185
{
	int level, max_level = ilk_wm_max_level(dev);
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2196 2197 2198 2199 2200 2201 2202
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2203 2204 2205 2206 2207 2208 2209 2210
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2248
static void ilk_setup_wm_latency(struct drm_device *dev)
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2261 2262 2263 2264

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2265 2266 2267

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2268 2269
}

2270 2271 2272 2273 2274 2275 2276 2277
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2301
/* Compute new watermarks for the pipe */
2302
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2303
{
2304 2305
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2306
	struct intel_pipe_wm *pipe_wm;
2307
	struct drm_device *dev = state->dev;
2308
	const struct drm_i915_private *dev_priv = dev->dev_private;
2309
	struct intel_plane *intel_plane;
2310
	struct intel_plane_state *pristate = NULL;
2311
	struct intel_plane_state *sprstate = NULL;
2312
	struct intel_plane_state *curstate = NULL;
2313
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2314
	struct ilk_wm_maximums max;
2315

2316
	pipe_wm = &cstate->wm.ilk.optimal;
2317

2318
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2319 2320 2321 2322 2323 2324
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2325 2326

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2327
			pristate = ps;
2328
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2329
			sprstate = ps;
2330
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2331
			curstate = ps;
2332 2333
	}

2334
	pipe_wm->pipe_enabled = cstate->base.active;
2335 2336 2337 2338 2339 2340 2341
	if (sprstate) {
		pipe_wm->sprites_enabled = sprstate->visible;
		pipe_wm->sprites_scaled = sprstate->visible &&
			(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
			 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
	}

2342 2343
	usable_level = max_level;

2344
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2345
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2346
		usable_level = 1;
2347 2348

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2349
	if (pipe_wm->sprites_scaled)
2350
		usable_level = 0;
2351

2352
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2353 2354 2355 2356
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2357

2358
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2359
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2360

2361
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2362
		return -EINVAL;
2363 2364 2365 2366

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2367
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2368

2369
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2370
				     pristate, sprstate, curstate, wm);
2371 2372 2373 2374 2375 2376

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2377 2378 2379 2380 2381 2382
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2383
			usable_level = level;
2384 2385
	}

2386
	return 0;
2387 2388
}

2389 2390 2391 2392 2393 2394 2395 2396 2397
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2398
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2399 2400 2401 2402 2403 2404 2405 2406
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2407
	*a = newstate->wm.ilk.optimal;
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2436
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2437 2438 2439 2440 2441
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2442 2443 2444 2445 2446 2447 2448 2449 2450
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2451 2452
	ret_wm->enable = true;

2453
	for_each_intel_crtc(dev, intel_crtc) {
2454
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2455 2456 2457 2458
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2459

2460 2461 2462 2463 2464
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2465
		if (!wm->enable)
2466
			ret_wm->enable = false;
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2479
			 const struct intel_wm_config *config,
2480
			 const struct ilk_wm_maximums *max,
2481 2482
			 struct intel_pipe_wm *merged)
{
2483
	struct drm_i915_private *dev_priv = dev->dev_private;
2484
	int level, max_level = ilk_wm_max_level(dev);
2485
	int last_enabled_level = max_level;
2486

2487 2488 2489
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
2490
		last_enabled_level = 0;
2491

2492 2493
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2494 2495 2496 2497 2498 2499 2500

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2501 2502 2503 2504 2505
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2506 2507 2508 2509 2510 2511

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2512 2513
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2514 2515 2516
			wm->fbc_val = 0;
		}
	}
2517 2518 2519 2520 2521 2522 2523

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2524
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2525
	    intel_fbc_is_active(dev_priv)) {
2526 2527 2528 2529 2530 2531
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2532 2533
}

2534 2535 2536 2537 2538 2539
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2540 2541 2542 2543 2544
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2545
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2546 2547 2548 2549 2550
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2551
static void ilk_compute_wm_results(struct drm_device *dev,
2552
				   const struct intel_pipe_wm *merged,
2553
				   enum intel_ddb_partitioning partitioning,
2554
				   struct ilk_wm_values *results)
2555
{
2556 2557
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2558

2559
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2560
	results->partitioning = partitioning;
2561

2562
	/* LP1+ register values */
2563
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2564
		const struct intel_wm_level *r;
2565

2566
		level = ilk_wm_lp_to_level(wm_lp, merged);
2567

2568
		r = &merged->wm[level];
2569

2570 2571 2572 2573 2574
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2575
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2576 2577 2578
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2579 2580 2581
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2582 2583 2584 2585 2586 2587 2588
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2589 2590 2591 2592
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2593 2594 2595 2596 2597
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2598
	}
2599

2600
	/* LP0 register values */
2601
	for_each_intel_crtc(dev, intel_crtc) {
2602
		enum pipe pipe = intel_crtc->pipe;
2603 2604
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2605 2606 2607 2608

		if (WARN_ON(!r->enable))
			continue;

2609
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2610

2611 2612 2613 2614
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2615 2616 2617
	}
}

2618 2619
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2620
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2621 2622
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2623
{
2624 2625
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2626

2627 2628 2629 2630 2631
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2632 2633
	}

2634 2635
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2636 2637 2638
			return r2;
		else
			return r1;
2639
	} else if (level1 > level2) {
2640 2641 2642 2643 2644 2645
		return r1;
	} else {
		return r2;
	}
}

2646 2647 2648 2649 2650 2651 2652 2653
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2654
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2655 2656
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2657 2658 2659 2660 2661
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2662
	for_each_pipe(dev_priv, pipe) {
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2706 2707
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2708
{
2709
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2710
	bool changed = false;
2711

2712 2713 2714
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2715
		changed = true;
2716 2717 2718 2719
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2720
		changed = true;
2721 2722 2723 2724
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2725
		changed = true;
2726
	}
2727

2728 2729 2730 2731
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2732

2733 2734 2735 2736 2737 2738 2739
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2740 2741
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2742 2743
{
	struct drm_device *dev = dev_priv->dev;
2744
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2745 2746 2747
	unsigned int dirty;
	uint32_t val;

2748
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2749 2750 2751 2752 2753
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2754
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2755
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2756
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2757
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2758
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2759 2760
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2761
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2762
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2763
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2764
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2765
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2766 2767
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2768
	if (dirty & WM_DIRTY_DDB) {
2769
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2784 2785
	}

2786
	if (dirty & WM_DIRTY_FBC) {
2787 2788 2789 2790 2791 2792 2793 2794
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2795 2796 2797 2798 2799
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2800 2801 2802 2803 2804
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2805

2806
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2807
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2808
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2809
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2810
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2811
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2812 2813

	dev_priv->wm.hw = *results;
2814 2815
}

2816
bool ilk_disable_lp_wm(struct drm_device *dev)
2817 2818 2819 2820 2821 2822
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2823 2824 2825 2826 2827 2828
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2829
#define BXT_DDB_SIZE		512
2830

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2853 2854
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2855
				   const struct intel_crtc_state *cstate,
2856 2857
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
2858
{
2859 2860 2861
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
2862
	struct drm_crtc *for_crtc = cstate->base.crtc;
2863 2864
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
2865 2866
	int pipe = to_intel_crtc(for_crtc)->pipe;

2867
	if (WARN_ON(!state) || !cstate->base.active) {
2868 2869
		alloc->start = 0;
		alloc->end = 0;
2870
		*num_active = hweight32(dev_priv->active_crtcs);
2871 2872 2873
		return;
	}

2874 2875 2876 2877 2878
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

2879 2880 2881 2882
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2883 2884 2885

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

2886
	/*
2887 2888 2889 2890 2891 2892
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
2893
	 */
2894 2895 2896
	if (!intel_state->active_pipe_changes) {
		*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
		return;
2897
	}
2898 2899 2900 2901 2902 2903

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
2904 2905
}

2906
static unsigned int skl_cursor_allocation(int num_active)
2907
{
2908
	if (num_active == 1)
2909 2910 2911 2912 2913
		return 32;

	return 8;
}

2914 2915 2916 2917
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2918 2919
	if (entry->end)
		entry->end += 1;
2920 2921
}

2922 2923
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2924 2925 2926 2927 2928
{
	enum pipe pipe;
	int plane;
	u32 val;

2929 2930
	memset(ddb, 0, sizeof(*ddb));

2931
	for_each_pipe(dev_priv, pipe) {
2932 2933 2934 2935
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2936 2937
			continue;

2938
		for_each_plane(dev_priv, pipe, plane) {
2939 2940 2941 2942 2943 2944
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2945 2946
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2947 2948

		intel_display_power_put(dev_priv, power_domain);
2949 2950 2951
	}
}

2952
static unsigned int
2953 2954 2955
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
2956
{
2957
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2958
	struct drm_framebuffer *fb = pstate->fb;
2959
	uint32_t width = 0, height = 0;
2960 2961 2962 2963 2964 2965 2966 2967
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

	if (!intel_pstate->visible)
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
2968 2969 2970 2971 2972 2973

	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
2974 2975

	/* for planar format */
2976
	if (format == DRM_FORMAT_NV12) {
2977
		if (y)  /* y-plane data rate */
2978
			return width * height *
2979
				drm_format_plane_cpp(format, 0);
2980
		else    /* uv-plane data rate */
2981
			return (width / 2) * (height / 2) *
2982
				drm_format_plane_cpp(format, 1);
2983 2984 2985
	}

	/* for packed formats */
2986
	return width * height * drm_format_plane_cpp(format, 0);
2987 2988 2989 2990 2991 2992 2993 2994
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
2995
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
2996
{
2997 2998 2999 3000 3001
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3002
	const struct drm_plane *plane;
3003
	const struct intel_plane *intel_plane;
3004
	struct drm_plane_state *pstate;
3005
	unsigned int rate, total_data_rate = 0;
3006
	int id;
3007 3008 3009 3010
	int i;

	if (WARN_ON(!state))
		return 0;
3011

3012
	/* Calculate and cache data rate for each plane */
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
	for_each_plane_in_state(state, plane, pstate, i) {
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe != intel_crtc->pipe)
			continue;

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3029
	}
3030

3031 3032 3033
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3034

3035
		/* packed/uv */
3036 3037
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3038 3039
	}

3040 3041
	WARN_ON(cstate->plane_mask && total_data_rate == 0);

3042 3043 3044
	return total_data_rate;
}

3045
static int
3046
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3047 3048
		      struct skl_ddb_allocation *ddb /* out */)
{
3049
	struct drm_atomic_state *state = cstate->base.state;
3050
	struct drm_crtc *crtc = cstate->base.crtc;
3051 3052
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3053
	struct intel_plane *intel_plane;
3054 3055
	struct drm_plane *plane;
	struct drm_plane_state *pstate;
3056
	enum pipe pipe = intel_crtc->pipe;
3057
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3058
	uint16_t alloc_size, start, cursor_blocks;
3059 3060
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3061
	unsigned int total_data_rate;
3062 3063
	int num_active;
	int id, i;
3064

3065 3066 3067
	if (WARN_ON(!state))
		return 0;

3068 3069 3070 3071 3072 3073 3074
	if (!cstate->base.active) {
		ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
		return 0;
	}

3075
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3076
	alloc_size = skl_ddb_entry_size(alloc);
3077 3078
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3079
		return 0;
3080 3081
	}

3082
	cursor_blocks = skl_cursor_allocation(num_active);
3083 3084
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3085 3086 3087

	alloc_size -= cursor_blocks;

3088
	/* 1. Allocate the mininum required blocks for each active plane */
3089 3090 3091
	for_each_plane_in_state(state, plane, pstate, i) {
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3092

3093 3094
		if (intel_plane->pipe != pipe)
			continue;
3095

3096 3097 3098 3099 3100 3101 3102 3103 3104
		if (!to_intel_plane_state(pstate)->visible) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3105
		}
3106 3107 3108 3109 3110 3111

		minimum[id] = 8;
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
			y_minimum[id] = 8;
		else
			y_minimum[id] = 0;
3112
	}
3113

3114 3115 3116
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3117 3118
	}

3119
	/*
3120 3121
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3122 3123 3124
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3125
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3126
	if (total_data_rate == 0)
3127
		return 0;
3128

3129
	start = alloc->start;
3130
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3131 3132
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3133
		int id = skl_wm_plane_id(intel_plane);
3134

3135
		data_rate = cstate->wm.skl.plane_data_rate[id];
3136 3137

		/*
3138
		 * allocation for (packed formats) or (uv-plane part of planar format):
3139 3140 3141
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3142
		plane_blocks = minimum[id];
3143 3144
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3145

3146 3147 3148 3149 3150
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3151 3152

		start += plane_blocks;
3153 3154 3155 3156

		/*
		 * allocation for y_plane part of planar format:
		 */
3157 3158 3159 3160 3161
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3162

3163 3164 3165 3166
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3167 3168

		start += y_plane_blocks;
3169 3170
	}

3171
	return 0;
3172 3173
}

3174
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3175 3176
{
	/* TODO: Take into account the scalers once we support them */
3177
	return config->base.adjusted_mode.crtc_clock;
3178 3179 3180 3181
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3182
 * for the read latency) and cpp should always be <= 8, so that
3183 3184 3185
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3186
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3187 3188 3189 3190 3191 3192
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3193
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3194 3195 3196 3197 3198 3199
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3200
			       uint32_t horiz_pixels, uint8_t cpp,
3201
			       uint64_t tiling, uint32_t latency)
3202
{
3203 3204 3205
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3206 3207 3208 3209

	if (latency == 0)
		return UINT_MAX;

3210
	plane_bytes_per_line = horiz_pixels * cpp;
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3221 3222
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3223
				plane_blocks_per_line;
3224 3225 3226 3227

	return ret;
}

3228 3229 3230 3231 3232 3233 3234 3235
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3236
{
3237 3238
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3239 3240 3241 3242 3243
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3244
	uint8_t cpp;
3245
	uint32_t width = 0, height = 0;
3246

3247 3248 3249 3250
	if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
		*enabled = false;
		return 0;
	}
3251

3252 3253 3254
	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

3255
	if (intel_rotation_90_or_270(pstate->rotation))
3256 3257
		swap(width, height);

3258
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3259
	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3260
				 cpp, latency);
3261 3262
	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
3263 3264 3265
				 width,
				 cpp,
				 fb->modifier[0],
3266
				 latency);
3267

3268
	plane_bytes_per_line = width * cpp;
3269
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3270

3271 3272
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3273 3274
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3275
		if (intel_rotation_90_or_270(pstate->rotation)) {
3276
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3277 3278 3279
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3280
			switch (cpp) {
3281 3282 3283 3284 3285 3286 3287 3288
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3289
			}
3290 3291
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3292 3293 3294 3295 3296 3297 3298
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3299

3300 3301
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3302

3303
	if (level >= 1 && level <= 7) {
3304 3305
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3306 3307 3308 3309
			res_lines += 4;
		else
			res_blocks++;
	}
3310

3311 3312
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3329
	}
3330 3331 3332

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3333
	*enabled = true;
3334

3335
	return 0;
3336 3337
}

3338 3339 3340 3341 3342 3343
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
		     int level,
		     struct skl_wm_level *result)
3344
{
3345
	struct drm_device *dev = dev_priv->dev;
3346
	struct drm_atomic_state *state = cstate->base.state;
3347
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3348
	struct drm_plane *plane;
3349
	struct intel_plane *intel_plane;
3350
	struct intel_plane_state *intel_pstate;
3351
	uint16_t ddb_blocks;
3352
	enum pipe pipe = intel_crtc->pipe;
3353
	int ret;
3354

3355 3356 3357 3358 3359 3360 3361
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(result, 0, sizeof(*result));

	for_each_intel_plane_mask(dev, intel_plane, cstate->base.plane_mask) {
3362
		int i = skl_wm_plane_id(intel_plane);
3363

3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
		plane = &intel_plane->base;
		intel_pstate = NULL;
		if (state)
			intel_pstate =
				intel_atomic_get_existing_plane_state(state,
								      intel_plane);

		/*
		 * Note: If we start supporting multiple pending atomic commits
		 * against the same planes/CRTC's in the future, plane->state
		 * will no longer be the correct pre-state to use for the
		 * calculations here and we'll need to change where we get the
		 * 'unchanged' plane data from.
		 *
		 * For now this is fine because we only allow one queued commit
		 * against a CRTC.  Even if the plane isn't modified by this
		 * transaction and we don't have a plane lock, we still have
		 * the CRTC's lock, so we know that no other transactions are
		 * racing with us to update it.
		 */
		if (!intel_pstate)
			intel_pstate = to_intel_plane_state(plane->state);

		WARN_ON(!intel_pstate->base.fb);

3389 3390
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
					   ddb_blocks,
					   level,
					   &result->plane_res_b[i],
					   &result->plane_res_l[i],
					   &result->plane_en[i]);
		if (ret)
			return ret;
3401
	}
3402 3403

	return 0;
3404 3405
}

3406
static uint32_t
3407
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3408
{
3409
	if (!cstate->base.active)
3410 3411
		return 0;

3412
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3413
		return 0;
3414

3415 3416
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3417 3418
}

3419
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3420
				      struct skl_wm_level *trans_wm /* out */)
3421
{
3422
	struct drm_crtc *crtc = cstate->base.crtc;
3423
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3424
	struct intel_plane *intel_plane;
3425

3426
	if (!cstate->base.active)
3427
		return;
3428 3429

	/* Until we know more, just disable transition WMs */
3430 3431 3432
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3433
		trans_wm->plane_en[i] = false;
3434
	}
3435 3436
}

3437 3438 3439
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3440
{
3441
	struct drm_device *dev = cstate->base.crtc->dev;
3442 3443
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);
3444
	int ret;
3445 3446

	for (level = 0; level <= max_level; level++) {
3447 3448 3449 3450
		ret = skl_compute_wm_level(dev_priv, ddb, cstate,
					   level, &pipe_wm->wm[level]);
		if (ret)
			return ret;
3451
	}
3452
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3453

3454
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3455 3456

	return 0;
3457 3458 3459 3460 3461 3462 3463 3464 3465
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3466 3467
	uint32_t temp;
	int i;
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3484 3485
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3486

3487
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3488 3489
			temp |= PLANE_WM_EN;

3490
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3491 3492 3493

	}

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3506 3507 3508
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3509 3510
		temp |= PLANE_WM_EN;

3511
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3512

3513 3514 3515
	r->wm_linetime[pipe] = p_wm->linetime;
}

3516 3517
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3518 3519 3520 3521 3522 3523 3524 3525
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3526 3527 3528 3529 3530 3531
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

3532
	for_each_intel_crtc(dev, crtc) {
3533 3534 3535
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3536
		if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3537
			continue;
3538 3539
		if (!crtc->active)
			continue;
3540

3541
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3542

3543 3544 3545 3546 3547
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3548
				   new->plane[pipe][PLANE_CURSOR][level]);
3549
		}
3550 3551 3552
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3553 3554
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3555

3556
		for (i = 0; i < intel_num_planes(crtc); i++) {
3557 3558 3559
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3560 3561 3562 3563
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3564 3565

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3566
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3567 3568 3569
	}
}

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3594 3595
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3596 3597 3598
{
	int plane;

3599 3600
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3601
	for_each_plane(dev_priv, pipe, plane) {
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3628
	bool reallocated[I915_MAX_PIPES] = {};
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3651
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3676
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3677
			intel_wait_for_vblank(dev, pipe);
3678
			reallocated[pipe] = true;
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3701
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3702 3703 3704
	}
}

3705 3706 3707 3708
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3709
{
3710 3711
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3712
	int ret;
3713

3714 3715 3716
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3717

3718
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3719 3720 3721
		*changed = false;
	else
		*changed = true;
3722

3723
	return 0;
3724 3725
}

3726 3727 3728 3729 3730 3731 3732
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3733
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	unsigned realloc_pipes = dev_priv->active_crtcs;
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm)
		intel_state->active_pipe_changes = ~0;

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
3759
	if (intel_state->active_pipe_changes) {
3760
		realloc_pipes = ~0;
3761 3762
		intel_state->wm_results.dirty_pipes = ~0;
	}
3763 3764 3765 3766 3767 3768 3769 3770

	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

3771
		ret = skl_allocate_pipe_ddb(cstate, ddb);
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
		if (ret)
			return ret;
	}

	return 0;
}

static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
3784 3785 3786
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
3787
	bool changed = false;
3788
	int ret, i;
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

3803 3804 3805
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

3806 3807 3808 3809
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
	}

3842 3843 3844
	return 0;
}

3845 3846 3847 3848 3849 3850
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3851
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3852
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
3853

3854
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
3855 3856
		return;

3857 3858 3859
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
3860 3861

	skl_write_wm_values(dev_priv, results);
3862
	skl_flush_wm_values(dev_priv, results);
3863 3864 3865

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3866 3867

	mutex_unlock(&dev_priv->wm.wm_mutex);
3868 3869
}

3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

3888
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3889
{
3890
	struct drm_device *dev = dev_priv->dev;
3891
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3892
	struct ilk_wm_maximums max;
3893
	struct intel_wm_config config = {};
3894
	struct ilk_wm_values results = {};
3895
	enum intel_ddb_partitioning partitioning;
3896

3897 3898 3899 3900
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3901 3902

	/* 5/6 split only in single pipe config on IVB+ */
3903
	if (INTEL_INFO(dev)->gen >= 7 &&
3904 3905 3906
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3907

3908
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3909
	} else {
3910
		best_lp_wm = &lp_wm_1_2;
3911 3912
	}

3913
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3914
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3915

3916
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3917

3918
	ilk_write_wm_values(dev_priv, &results);
3919 3920
}

3921
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
3922
{
3923 3924
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3925

3926
	mutex_lock(&dev_priv->wm.wm_mutex);
3927
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
3928 3929 3930
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
3931

3932 3933 3934 3935
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3936

3937 3938
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
3939
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
3940 3941 3942
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
3943 3944
}

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3963 3964
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
3965
					val & PLANE_WM_BLOCKS_MASK;
3966
			active->wm[level].plane_res_l[PLANE_CURSOR] =
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3979 3980
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3981
					val & PLANE_WM_BLOCKS_MASK;
3982
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3995
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3996
	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
4009
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4010 4011 4012 4013
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4014
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4015

4016
	if (!intel_crtc->active)
4017 4018
		return;

4019
	hw->dirty_pipes |= drm_crtc_mask(crtc);
4020 4021 4022 4023 4024 4025 4026 4027 4028

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
4029
		temp = hw->plane[pipe][PLANE_CURSOR][level];
4030 4031 4032 4033 4034 4035 4036 4037
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

4038
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4039
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4040 4041

	intel_crtc->wm.active.skl = *active;
4042 4043 4044 4045
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4046 4047
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4048 4049
	struct drm_crtc *crtc;

4050
	skl_ddb_get_hw_state(dev_priv, ddb);
4051 4052
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
4053

4054 4055 4056 4057 4058 4059 4060
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4061 4062
}

4063 4064 4065 4066
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
4067
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4068
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4069
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4070
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4071
	enum pipe pipe = intel_crtc->pipe;
4072
	static const i915_reg_t wm0_pipe_reg[] = {
4073 4074 4075 4076 4077 4078
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4079
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4080
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4081

4082 4083
	memset(active, 0, sizeof(*active));

4084
	active->pipe_enabled = intel_crtc->active;
4085 4086

	if (active->pipe_enabled) {
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4111 4112

	intel_crtc->wm.active.ilk = *active;
4113 4114
}

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4232 4233 4234 4235 4236 4237 4238 4239 4240
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4241
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4268 4269 4270
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4271
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4272 4273
	struct drm_crtc *crtc;

4274
	for_each_crtc(dev, crtc)
4275 4276 4277 4278 4279 4280 4281
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4282 4283 4284 4285
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4286

4287
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4288 4289 4290 4291 4292
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4293 4294 4295 4296 4297

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4330
void intel_update_watermarks(struct drm_crtc *crtc)
4331
{
4332
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4333 4334

	if (dev_priv->display.update_wm)
4335
		dev_priv->display.update_wm(crtc);
4336 4337
}

4338
/*
4339 4340 4341 4342 4343 4344 4345 4346
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4347
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4348 4349 4350
{
	u16 rgvswctl;

4351 4352
	assert_spin_locked(&mchdev_lock);

4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4370
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4371
{
4372
	u32 rgvmodectl;
4373 4374
	u8 fmax, fmin, fstart, vstart;

4375 4376
	spin_lock_irq(&mchdev_lock);

4377 4378
	rgvmodectl = I915_READ(MEMMODECTL);

4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4399
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4400 4401
		PXVFREQ_PX_SHIFT;

4402 4403
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4404

4405 4406 4407
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4424
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4425
		DRM_ERROR("stuck trying to change perf mode\n");
4426
	mdelay(1);
4427

4428
	ironlake_set_drps(dev_priv, fstart);
4429

4430 4431
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4432
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4433
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4434
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4435 4436

	spin_unlock_irq(&mchdev_lock);
4437 4438
}

4439
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4440
{
4441 4442 4443 4444 4445
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4446 4447 4448 4449 4450 4451 4452 4453 4454

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4455
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4456
	mdelay(1);
4457 4458
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4459
	mdelay(1);
4460

4461
	spin_unlock_irq(&mchdev_lock);
4462 4463
}

4464 4465 4466 4467 4468
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4469
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4470
{
4471
	u32 limits;
4472

4473 4474 4475 4476 4477 4478
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4479
	if (IS_GEN9(dev_priv)) {
4480 4481 4482 4483 4484 4485 4486 4487
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4488 4489 4490 4491

	return limits;
}

4492 4493 4494
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4495 4496
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4497 4498 4499 4500

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4501
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4502 4503 4504 4505
			new_power = BETWEEN;
		break;

	case BETWEEN:
4506
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4507
			new_power = LOW_POWER;
4508
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4509 4510 4511 4512
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4513
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4514 4515 4516 4517
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4518
	if (val <= dev_priv->rps.min_freq_softlimit)
4519
		new_power = LOW_POWER;
4520
	if (val >= dev_priv->rps.max_freq_softlimit)
4521 4522 4523 4524 4525 4526 4527 4528
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4529 4530
		ei_up = 16000;
		threshold_up = 95;
4531 4532

		/* Downclock if less than 85% busy over 32ms */
4533 4534
		ei_down = 32000;
		threshold_down = 85;
4535 4536 4537 4538
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4539 4540
		ei_up = 13000;
		threshold_up = 90;
4541 4542

		/* Downclock if less than 75% busy over 32ms */
4543 4544
		ei_down = 32000;
		threshold_down = 75;
4545 4546 4547 4548
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4549 4550
		ei_up = 10000;
		threshold_up = 85;
4551 4552

		/* Downclock if less than 60% busy over 32ms */
4553 4554
		ei_down = 32000;
		threshold_down = 60;
4555 4556 4557
		break;
	}

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4576
	dev_priv->rps.power = new_power;
4577 4578
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4579 4580 4581
	dev_priv->rps.last_adj = 0;
}

4582 4583 4584 4585 4586
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4587
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4588
	if (val < dev_priv->rps.max_freq_softlimit)
4589
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4590

4591 4592
	mask &= dev_priv->pm_rps_events;

4593
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4594 4595
}

4596 4597 4598
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4599
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4600
{
4601
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4602
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4603 4604
		return;

4605
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4606 4607
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4608

C
Chris Wilson 已提交
4609 4610 4611 4612 4613
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4614

4615
		if (IS_GEN9(dev_priv))
4616 4617
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4618
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4619 4620 4621 4622 4623 4624 4625
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4626
	}
4627 4628 4629 4630

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4631
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4632
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4633

4634 4635
	POSTING_READ(GEN6_RPNSWREQ);

4636
	dev_priv->rps.cur_freq = val;
4637
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4638 4639
}

4640
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4641 4642
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4643 4644
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4645

4646
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4647 4648 4649
		      "Odd GPU freq value\n"))
		val &= ~1;

4650 4651
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4652
	if (val != dev_priv->rps.cur_freq) {
4653
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4654 4655 4656
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4657 4658 4659 4660 4661

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4662
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4663 4664
 *
 * * If Gfx is Idle, then
4665 4666 4667
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4668 4669 4670
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4671
	u32 val = dev_priv->rps.idle_freq;
4672

4673
	if (dev_priv->rps.cur_freq <= val)
4674 4675
		return;

4676 4677 4678
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4679
	valleyview_set_rps(dev_priv, val);
4680
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4681 4682
}

4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4695 4696 4697
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
4698
	if (dev_priv->rps.enabled) {
4699
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4700
			vlv_set_rps_idle(dev_priv);
4701
		else
4702
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4703
		dev_priv->rps.last_adj = 0;
4704
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4705
	}
4706
	mutex_unlock(&dev_priv->rps.hw_lock);
4707

4708
	spin_lock(&dev_priv->rps.client_lock);
4709 4710
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4711
	spin_unlock(&dev_priv->rps.client_lock);
4712 4713
}

4714
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4715 4716
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4717
{
4718 4719 4720 4721 4722 4723 4724
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4725

4726 4727 4728
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4729
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4730 4731
		rps = NULL;

4732 4733 4734 4735 4736 4737 4738 4739
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4740

4741 4742 4743
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4744 4745
		} else
			dev_priv->rps.boosts++;
4746
	}
4747
	spin_unlock(&dev_priv->rps.client_lock);
4748 4749
}

4750
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4751
{
4752 4753
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
4754
	else
4755
		gen6_set_rps(dev_priv, val);
4756 4757
}

4758
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
4759 4760
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4761
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4762 4763
}

4764
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4765 4766 4767 4768
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

4769
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4770 4771
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4772
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4773
	I915_WRITE(GEN6_RP_CONTROL, 0);
4774 4775
}

4776
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4777 4778 4779 4780
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4781
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4782
{
4783 4784
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4785
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4786

4787
	I915_WRITE(GEN6_RC_CONTROL, 0);
4788

4789
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4790 4791
}

4792
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
4793
{
4794
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4795 4796 4797 4798 4799
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4800
	if (HAS_RC6p(dev_priv))
4801
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4802 4803 4804
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4805 4806 4807

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4808
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
4809 4810
}

4811
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
4812
{
4813
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4827 4828 4829
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
		enable_rc6 = false;
	}

	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
					    GEN6_RC_CTL_HW_ENABLE)) &&
	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
		enable_rc6 = false;
	}

	return enable_rc6;
}

4853
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
4854
{
4855
	/* No RC6 before Ironlake and code is gone for ilk. */
4856
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
4857 4858
		return 0;

4859 4860 4861
	if (!enable_rc6)
		return 0;

4862
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
4863 4864 4865 4866
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

4867
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4868 4869 4870
	if (enable_rc6 >= 0) {
		int mask;

4871
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
4872 4873 4874 4875 4876 4877
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4878 4879
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4880 4881 4882

		return enable_rc6 & mask;
	}
4883

4884
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
4885
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4886 4887

	return INTEL_RC6_ENABLE;
4888 4889
}

4890
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
4891
{
4892 4893 4894 4895
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4896 4897
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4898
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4899
	if (IS_BROXTON(dev_priv)) {
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4911 4912 4913
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4914
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4915 4916
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
4917 4918 4919 4920 4921
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4922 4923 4924 4925
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4926 4927
	}

4928
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
4929 4930 4931 4932 4933 4934 4935 4936 4937
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4938 4939
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4940 4941 4942 4943
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4944
	if (dev_priv->rps.min_freq_softlimit == 0) {
4945
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4946
			dev_priv->rps.min_freq_softlimit =
4947 4948
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4949 4950 4951 4952
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4953 4954
}

J
Jesse Barnes 已提交
4955
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
4956
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
4957 4958 4959
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4960
	gen6_init_rps_frequencies(dev_priv);
4961

4962
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4963
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
4964 4965 4966 4967 4968 4969 4970 4971 4972
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
4973
		gen9_disable_rps(dev_priv);
4974 4975 4976 4977
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

4978 4979 4980 4981 4982 4983 4984 4985
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4986 4987
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4988 4989 4990 4991
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4992
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
J
Jesse Barnes 已提交
4993 4994 4995 4996

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

4997
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
4998
{
4999
	struct intel_engine_cs *engine;
Z
Zhe Wang 已提交
5000 5001 5002 5003 5004 5005 5006
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5007
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5008 5009 5010 5011 5012

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5013 5014

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5015
	if (IS_SKYLAKE(dev_priv))
5016 5017 5018
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5019 5020
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5021
	for_each_engine(engine, dev_priv)
5022
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5023

5024
	if (HAS_GUC(dev_priv))
5025 5026
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5027 5028
	I915_WRITE(GEN6_RC_SLEEP, 0);

5029 5030 5031 5032
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5033
	/* 3a: Enable RC6 */
5034
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5035
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5036
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5037
	/* WaRsUseTimeoutMode */
5038 5039
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5040
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5041 5042 5043
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5044 5045
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5046 5047 5048
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5049
	}
Z
Zhe Wang 已提交
5050

5051 5052
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5053
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5054
	 */
5055
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5056 5057 5058 5059
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5060

5061
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5062 5063
}

5064
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5065
{
5066
	struct intel_engine_cs *engine;
5067
	uint32_t rc6_mask = 0;
5068 5069 5070 5071 5072 5073

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5074
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5075 5076 5077 5078

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5079
	/* Initialize rps frequencies */
5080
	gen6_init_rps_frequencies(dev_priv);
5081 5082 5083 5084 5085

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5086
	for_each_engine(engine, dev_priv)
5087
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5088
	I915_WRITE(GEN6_RC_SLEEP, 0);
5089
	if (IS_BROADWELL(dev_priv))
5090 5091 5092
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5093 5094

	/* 3: Enable RC6 */
5095
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5096
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5097 5098
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5099 5100 5101 5102 5103 5104 5105
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5106 5107

	/* 4 Program defaults and thresholds for RPS*/
5108 5109 5110 5111
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5126 5127

	/* 5: Enable RPS */
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5138
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5139
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5140

5141
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5142 5143
}

5144
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5145
{
5146
	struct intel_engine_cs *engine;
5147
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5148 5149
	u32 gtfifodbg;
	int rc6_mode;
5150
	int ret;
5151

5152
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5153

5154 5155 5156 5157 5158 5159 5160 5161 5162
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5163 5164
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5165 5166 5167 5168
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5169
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5170

5171
	/* Initialize rps frequencies */
5172
	gen6_init_rps_frequencies(dev_priv);
J
Jeff McGee 已提交
5173

5174 5175 5176 5177 5178 5179 5180 5181 5182
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5183
	for_each_engine(engine, dev_priv)
5184
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5185 5186 5187

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5188
	if (IS_IVYBRIDGE(dev_priv))
5189 5190 5191
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5192
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5193 5194
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5195
	/* Check if we are enabling RC6 */
5196
	rc6_mode = intel_enable_rc6();
5197 5198 5199
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5200
	/* We don't use those on Haswell */
5201
	if (!IS_HASWELL(dev_priv)) {
5202 5203
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5204

5205 5206 5207
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5208

5209
	intel_print_rc6_info(dev_priv, rc6_mask);
5210 5211 5212 5213 5214 5215

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5216 5217
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5218 5219
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5220
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5221
	if (ret)
B
Ben Widawsky 已提交
5222
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5223 5224 5225 5226

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5227
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5228
				 (pcu_mbox & 0xff) * 50);
5229
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5230 5231
	}

5232
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5233
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5234

5235 5236
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5237
	if (IS_GEN6(dev_priv) && ret) {
5238
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5239
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5240 5241 5242 5243 5244 5245 5246 5247 5248
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5249
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5250 5251
}

5252
static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5253 5254
{
	int min_freq = 15;
5255 5256
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5257
	unsigned int max_gpu_freq, min_gpu_freq;
5258
	int scaling_factor = 180;
5259
	struct cpufreq_policy *policy;
5260

5261
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5262

5263 5264 5265 5266 5267 5268 5269 5270 5271
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5272
		max_ia_freq = tsc_khz;
5273
	}
5274 5275 5276 5277

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5278
	min_ring_freq = I915_READ(DCLK) & 0xf;
5279 5280
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5281

5282
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5283 5284 5285 5286 5287 5288 5289 5290
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5291 5292 5293 5294 5295
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5296 5297
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5298 5299
		unsigned int ia_freq = 0, ring_freq = 0;

5300
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5301 5302 5303 5304 5305
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5306
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5307 5308
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5309
		} else if (IS_HASWELL(dev_priv)) {
5310
			ring_freq = mult_frac(gpu_freq, 5, 4);
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5327

B
Ben Widawsky 已提交
5328 5329
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5330 5331 5332
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5333 5334 5335
	}
}

5336
void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5337
{
5338
	if (!HAS_CORE_RING_FREQ(dev_priv))
5339 5340 5341
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
5342
	__gen6_update_ring_freq(dev_priv);
5343 5344 5345
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5346
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5347 5348 5349
{
	u32 val, rp0;

5350
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5351

5352
	switch (INTEL_INFO(dev_priv)->eu_total) {
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5367
	}
5368 5369 5370

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5384 5385 5386 5387
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5388 5389 5390
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5391 5392 5393
	return rp1;
}

5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5405
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5406 5407 5408
{
	u32 val, rp0;

5409
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5422
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5423
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5424
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5425 5426 5427 5428 5429
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5430
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5431
{
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5443 5444
}

5445 5446 5447 5448 5449 5450 5451 5452 5453
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5454 5455 5456 5457 5458 5459 5460 5461 5462

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5463
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5464
{
5465
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5466
	unsigned long pctx_paddr, paddr;
5467 5468 5469 5470 5471
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5472
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5473
		paddr = (dev_priv->mm.stolen_base +
5474
			 (ggtt->stolen_size - pctx_size));
5475 5476 5477 5478

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5479 5480

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5481 5482
}

5483
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5484 5485 5486 5487 5488 5489
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5490
	mutex_lock(&dev_priv->dev->struct_mutex);
5491

5492 5493 5494 5495 5496 5497 5498 5499
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5500
								      I915_GTT_OFFSET_NONE,
5501 5502 5503 5504
								      pctx_size);
		goto out;
	}

5505 5506
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5507 5508 5509 5510 5511 5512 5513 5514
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5515
	pctx = i915_gem_object_create_stolen(dev_priv->dev, pctx_size);
5516 5517
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5518
		goto out;
5519 5520 5521 5522 5523 5524
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5525
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5526
	dev_priv->vlv_pctx = pctx;
5527
	mutex_unlock(&dev_priv->dev->struct_mutex);
5528 5529
}

5530
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5531 5532 5533 5534
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5535
	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5536 5537 5538
	dev_priv->vlv_pctx = NULL;
}

5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5550
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5551
{
5552
	u32 val;
5553

5554
	valleyview_setup_pctx(dev_priv);
5555

5556 5557
	vlv_init_gpll_ref_freq(dev_priv);

5558 5559
	mutex_lock(&dev_priv->rps.hw_lock);

5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5573
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5574

5575 5576 5577
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5578
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5579 5580 5581 5582
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5583
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5584 5585
			 dev_priv->rps.efficient_freq);

5586 5587
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5588
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5589 5590
			 dev_priv->rps.rp1_freq);

5591 5592
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5593
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5594 5595
			 dev_priv->rps.min_freq);

5596 5597
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5608
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5609
{
5610
	u32 val;
5611

5612
	cherryview_setup_pctx(dev_priv);
5613

5614 5615
	vlv_init_gpll_ref_freq(dev_priv);

5616 5617
	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5618
	mutex_lock(&dev_priv->sb_lock);
5619
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5620
	mutex_unlock(&dev_priv->sb_lock);
5621

5622 5623 5624 5625
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5626
	default:
5627 5628 5629
		dev_priv->mem_freq = 1600;
		break;
	}
5630
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5631

5632 5633 5634
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5635
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5636 5637 5638 5639
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5640
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5641 5642
			 dev_priv->rps.efficient_freq);

5643 5644
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5645
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5646 5647
			 dev_priv->rps.rp1_freq);

5648 5649
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5650
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5651
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5652 5653
			 dev_priv->rps.min_freq);

5654 5655 5656 5657 5658 5659
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5660 5661
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5662 5663 5664 5665 5666 5667 5668 5669
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5670 5671
}

5672
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5673
{
5674
	valleyview_cleanup_pctx(dev_priv);
5675 5676
}

5677
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5678
{
5679
	struct intel_engine_cs *engine;
5680
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5681 5682 5683

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5684 5685
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5696
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5697

5698 5699 5700
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5701 5702 5703 5704 5705
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5706
	for_each_engine(engine, dev_priv)
5707
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5708 5709
	I915_WRITE(GEN6_RC_SLEEP, 0);

5710 5711
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
5723 5724
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
5725
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5726 5727 5728

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5729
	/* 4 Program defaults and thresholds for RPS*/
5730
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5741
		   GEN6_RP_MEDIA_IS_GFX |
5742 5743 5744 5745
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5746 5747 5748 5749 5750 5751
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5752 5753
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5754 5755 5756
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5757
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5758 5759 5760 5761
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5762
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5763 5764 5765
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5766 5767
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5768

5769
	valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5770

5771
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5772 5773
}

5774
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5775
{
5776
	struct intel_engine_cs *engine;
5777
	u32 gtfifodbg, val, rc6_mode = 0;
5778 5779 5780

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5781 5782
	valleyview_check_pctx(dev_priv);

5783 5784
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5785 5786
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5787 5788 5789
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5790
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5791
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5792

5793 5794 5795
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5796
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5816
	for_each_engine(engine, dev_priv)
5817
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5818

5819
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5820 5821

	/* allows RC6 residency counter to work */
5822
	I915_WRITE(VLV_COUNTER_CONTROL,
5823 5824
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5825 5826
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5827

5828
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5829
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5830

5831
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
5832

5833
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5834

D
Deepak S 已提交
5835 5836 5837 5838 5839 5840
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5841
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5842

5843 5844 5845
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5846
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5847 5848
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5849
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5850
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5851
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5852
			 dev_priv->rps.cur_freq);
5853

5854
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5855 5856
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5857

5858
	valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5859

5860
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5861 5862
}

5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5892
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5893 5894 5895 5896 5897 5898
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5899 5900
	assert_spin_locked(&mchdev_lock);

5901
	diff1 = now - dev_priv->ips.last_time1;
5902 5903 5904 5905 5906 5907 5908

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5909
		return dev_priv->ips.chipset_power;
5910 5911 5912 5913 5914 5915 5916 5917

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5918 5919
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5920 5921
		diff += total_count;
	} else {
5922
		diff = total_count - dev_priv->ips.last_count1;
5923 5924 5925
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5926 5927
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5938 5939
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5940

5941
	dev_priv->ips.chipset_power = ret;
5942 5943 5944 5945

	return ret;
}

5946 5947 5948 5949
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

5950
	if (INTEL_INFO(dev_priv)->gen != 5)
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5989
{
5990 5991 5992
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5993
	if (INTEL_INFO(dev_priv)->is_mobile)
5994 5995 5996
		return vm > 0 ? vm : 0;

	return vd;
5997 5998
}

5999
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6000
{
6001
	u64 now, diff, diffms;
6002 6003
	u32 count;

6004
	assert_spin_locked(&mchdev_lock);
6005

6006 6007 6008
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6009 6010 6011 6012 6013 6014 6015

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6016 6017
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6018 6019
		diff += count;
	} else {
6020
		diff = count - dev_priv->ips.last_count2;
6021 6022
	}

6023 6024
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6025 6026 6027 6028

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6029
	dev_priv->ips.gfx_power = diff;
6030 6031
}

6032 6033
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6034
	if (INTEL_INFO(dev_priv)->gen != 5)
6035 6036
		return;

6037
	spin_lock_irq(&mchdev_lock);
6038 6039 6040

	__i915_update_gfx_val(dev_priv);

6041
	spin_unlock_irq(&mchdev_lock);
6042 6043
}

6044
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6045 6046 6047 6048
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6049 6050
	assert_spin_locked(&mchdev_lock);

6051
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6071
	corr2 = (corr * dev_priv->ips.corr);
6072 6073 6074 6075

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6076
	__i915_update_gfx_val(dev_priv);
6077

6078
	return dev_priv->ips.gfx_power + state2;
6079 6080
}

6081 6082 6083 6084
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6085
	if (INTEL_INFO(dev_priv)->gen != 5)
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6108
	spin_lock_irq(&mchdev_lock);
6109 6110 6111 6112
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6113 6114
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6115 6116 6117 6118

	ret = chipset_val + graphics_val;

out_unlock:
6119
	spin_unlock_irq(&mchdev_lock);
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6135
	spin_lock_irq(&mchdev_lock);
6136 6137 6138 6139 6140 6141
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6142 6143
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6144 6145

out_unlock:
6146
	spin_unlock_irq(&mchdev_lock);
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6163
	spin_lock_irq(&mchdev_lock);
6164 6165 6166 6167 6168 6169
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6170 6171
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6172 6173

out_unlock:
6174
	spin_unlock_irq(&mchdev_lock);
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
6188
	struct intel_engine_cs *engine;
6189 6190
	bool ret = false;

6191
	spin_lock_irq(&mchdev_lock);
6192 6193 6194 6195
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6196
	for_each_engine(engine, dev_priv)
6197
		ret |= !list_empty(&engine->request_list);
6198 6199

out_unlock:
6200
	spin_unlock_irq(&mchdev_lock);
6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6217
	spin_lock_irq(&mchdev_lock);
6218 6219 6220 6221 6222 6223
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6224
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6225

6226
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6227 6228 6229
		ret = false;

out_unlock:
6230
	spin_unlock_irq(&mchdev_lock);
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6258 6259
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6260
	spin_lock_irq(&mchdev_lock);
6261
	i915_mch_dev = dev_priv;
6262
	spin_unlock_irq(&mchdev_lock);
6263 6264 6265 6266 6267 6268

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6269
	spin_lock_irq(&mchdev_lock);
6270
	i915_mch_dev = NULL;
6271
	spin_unlock_irq(&mchdev_lock);
6272
}
6273

6274
static void intel_init_emon(struct drm_i915_private *dev_priv)
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6291
		I915_WRITE(PEW(i), 0);
6292
	for (i = 0; i < 3; i++)
6293
		I915_WRITE(DEW(i), 0);
6294 6295 6296

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6297
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6318
		I915_WRITE(PXW(i), val);
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6334
		I915_WRITE(PXWL(i), 0);
6335 6336 6337 6338 6339 6340

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6341
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6342 6343
}

6344
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6345
{
6346 6347 6348 6349 6350 6351 6352 6353
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6354

6355 6356 6357 6358
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6359 6360
}

6361
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6362
{
6363
	if (IS_CHERRYVIEW(dev_priv))
6364
		return;
6365 6366
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_cleanup_gt_powersave(dev_priv);
6367 6368 6369

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6370 6371
}

6372
static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6373 6374 6375
{
	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6376
	gen6_disable_rps_interrupts(dev_priv);
6377 6378
}

6379 6380
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
6381
 * @dev_priv: i915 device
6382 6383 6384 6385 6386
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
6387
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6388
{
6389
	if (INTEL_GEN(dev_priv) < 6)
I
Imre Deak 已提交
6390 6391
		return;

6392
	gen6_suspend_rps(dev_priv);
6393 6394 6395

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6396 6397
}

6398
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6399
{
6400
	if (IS_IRONLAKE_M(dev_priv)) {
6401
		ironlake_disable_drps(dev_priv);
6402 6403
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		intel_suspend_gt_powersave(dev_priv);
6404

6405
		mutex_lock(&dev_priv->rps.hw_lock);
6406 6407 6408 6409 6410 6411 6412
		if (INTEL_INFO(dev_priv)->gen >= 9) {
			gen9_disable_rc6(dev_priv);
			gen9_disable_rps(dev_priv);
		} else if (IS_CHERRYVIEW(dev_priv))
			cherryview_disable_rps(dev_priv);
		else if (IS_VALLEYVIEW(dev_priv))
			valleyview_disable_rps(dev_priv);
6413
		else
6414
			gen6_disable_rps(dev_priv);
6415

6416
		dev_priv->rps.enabled = false;
6417
		mutex_unlock(&dev_priv->rps.hw_lock);
6418
	}
6419 6420
}

6421 6422 6423 6424 6425 6426
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);

6427
	mutex_lock(&dev_priv->rps.hw_lock);
6428

6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442
	gen6_reset_rps_interrupts(dev_priv);

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 9) {
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
			__gen6_update_ring_freq(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
		__gen6_update_ring_freq(dev_priv);
6443
	} else {
6444 6445
		gen6_enable_rps(dev_priv);
		__gen6_update_ring_freq(dev_priv);
6446
	}
6447 6448 6449 6450 6451 6452 6453

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6454
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6455

6456
	gen6_enable_rps_interrupts(dev_priv);
I
Imre Deak 已提交
6457

6458
	mutex_unlock(&dev_priv->rps.hw_lock);
6459 6460

	intel_runtime_pm_put(dev_priv);
6461 6462
}

6463
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6464
{
6465
	/* Powersaving is controlled by the host when inside a VM */
6466
	if (intel_vgpu_active(dev_priv))
6467 6468
		return;

6469
	if (IS_IRONLAKE_M(dev_priv)) {
6470
		ironlake_enable_drps(dev_priv);
6471 6472 6473 6474
		mutex_lock(&dev_priv->dev->struct_mutex);
		intel_init_emon(dev_priv);
		mutex_unlock(&dev_priv->dev->struct_mutex);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
6475 6476 6477 6478
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6479 6480 6481 6482 6483 6484 6485
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6486
		 */
6487 6488 6489
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6490 6491 6492
	}
}

6493
void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6494
{
6495
	if (INTEL_INFO(dev_priv)->gen < 6)
6496 6497
		return;

6498
	gen6_suspend_rps(dev_priv);
6499 6500 6501
	dev_priv->rps.enabled = false;
}

6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6514 6515 6516
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6517
	enum pipe pipe;
6518

6519
	for_each_pipe(dev_priv, pipe) {
6520 6521 6522
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6523 6524 6525

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6526 6527 6528
	}
}

6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6543
static void ironlake_init_clock_gating(struct drm_device *dev)
6544 6545
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6546
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6547

6548 6549 6550 6551
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6552 6553 6554
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6572
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6573 6574 6575
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6576 6577

	ilk_init_lp_watermarks(dev);
6578 6579 6580 6581 6582 6583 6584 6585 6586

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6587
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6588 6589 6590 6591 6592 6593 6594 6595
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6596 6597
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6598 6599 6600 6601 6602 6603
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6604

6605
	/* WaDisableRenderCachePipelinedFlush:ilk */
6606 6607
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6608

6609 6610 6611
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6612
	g4x_disable_trickle_feed(dev);
6613

6614 6615 6616 6617 6618 6619 6620
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6621
	uint32_t val;
6622 6623 6624 6625 6626 6627

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6628 6629 6630
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6631 6632
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6633 6634 6635
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6636
	for_each_pipe(dev_priv, pipe) {
6637 6638 6639
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6640
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6641
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6642 6643 6644
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6645 6646
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6647
	/* WADP0ClockGatingDisable */
6648
	for_each_pipe(dev_priv, pipe) {
6649 6650 6651
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6652 6653
}

6654 6655 6656 6657 6658 6659
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6660 6661 6662
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6663 6664
}

6665
static void gen6_init_clock_gating(struct drm_device *dev)
6666 6667
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6668
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6669

6670
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6671 6672 6673 6674 6675

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6676
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6677 6678 6679
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6680 6681 6682
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6683 6684 6685
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6686 6687 6688 6689
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6690 6691
	 */
	I915_WRITE(GEN6_GT_MODE,
6692
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6693

6694
	ilk_init_lp_watermarks(dev);
6695 6696

	I915_WRITE(CACHE_MODE_0,
6697
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6713
	 *
6714 6715
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6716 6717 6718 6719 6720
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6721
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6722 6723
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6724

6725 6726 6727 6728 6729 6730 6731 6732
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6733 6734 6735 6736 6737 6738 6739 6740
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6741 6742
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6743 6744 6745 6746 6747 6748 6749
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6750 6751 6752 6753
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6754

6755
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6756

6757
	cpt_init_clock_gating(dev);
6758 6759

	gen6_check_mch_setup(dev);
6760 6761 6762 6763 6764 6765
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6766
	/*
6767
	 * WaVSThreadDispatchOverride:ivb,vlv
6768 6769 6770 6771
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6772 6773 6774 6775 6776 6777 6778 6779
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6780 6781 6782 6783 6784 6785 6786 6787
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6788
	if (HAS_PCH_LPT_LP(dev))
6789 6790 6791
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6792 6793

	/* WADPOClockGatingDisable:hsw */
6794 6795
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6796
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6797 6798
}

6799 6800 6801 6802
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6803
	if (HAS_PCH_LPT_LP(dev)) {
6804 6805 6806 6807 6808 6809 6810
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

6834 6835 6836 6837 6838 6839 6840 6841 6842
static void skylake_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,kbl */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
}

6843
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6844 6845
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6846
	enum pipe pipe;
B
Ben Widawsky 已提交
6847

6848
	ilk_init_lp_watermarks(dev);
6849

6850
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6851
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6852

6853
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6854 6855 6856
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6857
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6858
	for_each_pipe(dev_priv, pipe) {
6859
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6860
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6861
			   BDW_DPRS_MASK_VBLANK_SRD);
6862
	}
6863

6864 6865 6866 6867 6868
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6869

6870 6871
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6872 6873 6874 6875

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6876

6877 6878
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
6879

6880 6881 6882 6883 6884 6885 6886
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6887
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6888 6889
}

6890 6891 6892 6893
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6894
	ilk_init_lp_watermarks(dev);
6895

6896 6897 6898 6899 6900
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6901
	/* This is required by WaCatErrorRejectionIssue:hsw */
6902 6903 6904 6905
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6906 6907 6908
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6909

6910 6911 6912
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6913 6914 6915 6916
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6917
	/* WaDisable4x2SubspanOptimization:hsw */
6918 6919
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6920

6921 6922 6923
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6924 6925 6926 6927
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6928 6929
	 */
	I915_WRITE(GEN7_GT_MODE,
6930
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6931

6932 6933 6934 6935
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6936
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6937 6938
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6939 6940 6941
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6942

6943
	lpt_init_clock_gating(dev);
6944 6945
}

6946
static void ivybridge_init_clock_gating(struct drm_device *dev)
6947 6948
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6949
	uint32_t snpcr;
6950

6951
	ilk_init_lp_watermarks(dev);
6952

6953
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6954

6955
	/* WaDisableEarlyCull:ivb */
6956 6957 6958
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6959
	/* WaDisableBackToBackFlipFix:ivb */
6960 6961 6962 6963
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6964
	/* WaDisablePSDDualDispatchEnable:ivb */
6965 6966 6967 6968
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6969 6970 6971
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6972
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6973 6974 6975
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6976
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6977 6978 6979
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6980 6981 6982 6983
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6984 6985 6986 6987
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6988 6989
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6990
	}
6991

6992
	/* WaForceL3Serialization:ivb */
6993 6994 6995
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6996
	/*
6997
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6998
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6999 7000
	 */
	I915_WRITE(GEN6_UCGCTL2,
7001
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7002

7003
	/* This is required by WaCatErrorRejectionIssue:ivb */
7004 7005 7006 7007
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7008
	g4x_disable_trickle_feed(dev);
7009 7010

	gen7_setup_fixed_func_scheduler(dev_priv);
7011

7012 7013 7014 7015 7016
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7017

7018
	/* WaDisable4x2SubspanOptimization:ivb */
7019 7020
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7021

7022 7023 7024
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7025 7026 7027 7028
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7029 7030
	 */
	I915_WRITE(GEN7_GT_MODE,
7031
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7032

7033 7034 7035 7036
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7037

7038 7039
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
7040 7041

	gen6_check_mch_setup(dev);
7042 7043
}

7044
static void valleyview_init_clock_gating(struct drm_device *dev)
7045 7046 7047
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7048
	/* WaDisableEarlyCull:vlv */
7049 7050 7051
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7052
	/* WaDisableBackToBackFlipFix:vlv */
7053 7054 7055 7056
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7057
	/* WaPsdDispatchEnable:vlv */
7058
	/* WaDisablePSDDualDispatchEnable:vlv */
7059
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7060 7061
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7062

7063 7064 7065
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7066
	/* WaForceL3Serialization:vlv */
7067 7068 7069
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7070
	/* WaDisableDopClockGating:vlv */
7071 7072 7073
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7074
	/* This is required by WaCatErrorRejectionIssue:vlv */
7075 7076 7077 7078
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7079 7080
	gen7_setup_fixed_func_scheduler(dev_priv);

7081
	/*
7082
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7083
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7084 7085
	 */
	I915_WRITE(GEN6_UCGCTL2,
7086
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7087

7088 7089 7090 7091 7092
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7093

7094 7095 7096 7097
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7098 7099
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7100

7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7112 7113 7114 7115 7116 7117
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7118
	/*
7119
	 * WaDisableVLVClockGating_VBIIssue:vlv
7120 7121 7122
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7123
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7124 7125
}

7126 7127 7128 7129
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7130 7131 7132 7133 7134
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7135 7136 7137 7138

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7139 7140 7141 7142

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7143 7144 7145 7146

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7147

7148 7149 7150 7151 7152 7153 7154
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7155 7156 7157 7158 7159
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7160 7161
}

7162
static void g4x_init_clock_gating(struct drm_device *dev)
7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7178 7179 7180 7181

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7182

7183 7184 7185
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7186
	g4x_disable_trickle_feed(dev);
7187 7188
}

7189
static void crestline_init_clock_gating(struct drm_device *dev)
7190 7191 7192 7193 7194 7195 7196 7197
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7198 7199
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7200 7201 7202

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7203 7204
}

7205
static void broadwater_init_clock_gating(struct drm_device *dev)
7206 7207 7208 7209 7210 7211 7212 7213 7214
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7215 7216
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7217 7218 7219

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7220 7221
}

7222
static void gen3_init_clock_gating(struct drm_device *dev)
7223 7224 7225 7226 7227 7228 7229
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7230 7231 7232

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7233 7234 7235

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7236 7237

	/* interrupts should cause a wake up from C3 */
7238
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7239 7240 7241

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7242 7243 7244

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7245 7246
}

7247
static void i85x_init_clock_gating(struct drm_device *dev)
7248 7249 7250 7251
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7252 7253 7254 7255

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7256 7257 7258

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7259 7260
}

7261
static void i830_init_clock_gating(struct drm_device *dev)
7262 7263 7264 7265
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7266 7267 7268 7269

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7270 7271 7272 7273 7274 7275
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7276
	dev_priv->display.init_clock_gating(dev);
7277 7278
}

7279 7280 7281 7282 7283 7284
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7302
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7303
	else if (IS_KABYLAKE(dev_priv))
7304
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7339 7340 7341 7342 7343
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7344
	intel_fbc_init(dev_priv);
7345

7346 7347 7348 7349 7350 7351
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7352
	/* For FIFO watermark updates */
7353
	if (INTEL_INFO(dev)->gen >= 9) {
7354
		skl_setup_wm_latency(dev);
7355
		dev_priv->display.update_wm = skl_update_wm;
7356
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7357
	} else if (HAS_PCH_SPLIT(dev)) {
7358
		ilk_setup_wm_latency(dev);
7359

7360 7361 7362 7363
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7364
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7365 7366 7367 7368 7369 7370
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7371 7372 7373 7374
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7375
	} else if (IS_CHERRYVIEW(dev)) {
7376 7377
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7378
	} else if (IS_VALLEYVIEW(dev)) {
7379 7380
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7392
			intel_set_memory_cxsr(dev_priv, false);
7393 7394 7395 7396 7397 7398 7399 7400 7401 7402
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7403 7404 7405
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7406
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7407 7408
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7409
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7410 7411 7412
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7413 7414 7415
	}
}

7416
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7417
{
7418
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7419 7420 7421 7422 7423 7424 7425

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7426
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7441
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7442
{
7443
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7463

7464 7465
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7466 7467 7468 7469 7470
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7471 7472
}

7473
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7474
{
7475
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7476 7477
}

7478
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7479
{
7480 7481 7482 7483 7484
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7485 7486
}

7487
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7488
{
7489
	/* CHV needs even values */
7490
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7491 7492
}

7493
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7494
{
7495
	if (IS_GEN9(dev_priv))
7496 7497
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7498
	else if (IS_CHERRYVIEW(dev_priv))
7499
		return chv_gpu_freq(dev_priv, val);
7500
	else if (IS_VALLEYVIEW(dev_priv))
7501 7502 7503
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7504 7505
}

7506 7507
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7508
	if (IS_GEN9(dev_priv))
7509 7510
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7511
	else if (IS_CHERRYVIEW(dev_priv))
7512
		return chv_freq_opcode(dev_priv, val);
7513
	else if (IS_VALLEYVIEW(dev_priv))
7514 7515
		return byt_freq_opcode(dev_priv, val);
	else
7516
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7517
}
7518

7519 7520
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7521
	struct drm_i915_gem_request *req;
7522 7523 7524 7525 7526
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7527
	struct drm_i915_gem_request *req = boost->req;
7528

7529
	if (!i915_gem_request_completed(req, true))
7530
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7531

7532
	i915_gem_request_unreference(req);
7533 7534 7535
	kfree(boost);
}

7536
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7537 7538 7539
{
	struct request_boost *boost;

7540
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7541 7542
		return;

7543 7544 7545
	if (i915_gem_request_completed(req, true))
		return;

7546 7547 7548 7549
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7550 7551
	i915_gem_request_reference(req);
	boost->req = req;
7552 7553

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7554
	queue_work(req->i915->wq, &boost->work);
7555 7556
}

D
Daniel Vetter 已提交
7557
void intel_pm_setup(struct drm_device *dev)
7558 7559 7560
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7561
	mutex_init(&dev_priv->rps.hw_lock);
7562
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7563

7564 7565
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7566
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7567 7568
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7569

7570
	dev_priv->pm.suspended = false;
7571
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7572
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7573
}